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hr�oderzAbstra
tWe present the �rst 
omprehensive experimental study of online algorithms for Graham'ss
heduling problem. Graham's s
heduling problem is a fundamental problem in s
heduling the-ory where a sequen
e of jobs has to be s
heduled on m identi
al parallel ma
hines so as to minimizethe makespan. Graham gave an elegant algorithm that is (2� 1=m)-
ompetitive. Re
ently a num-ber of new online algorithms were developed that a
hieve 
ompetitive ratios around 1.9. Sin
e
ompetitive analysis 
an only 
apture the worst 
ase behavior of an algorithm a question oftenasked is: Are these new algorithms geared only towards a pathologi
al 
ase or do they performbetter in pra
ti
e, too?We address this question by analyzing the algorithms on various job sequen
es. In our a
tualtests, we analyzed the algorithms (1) on real world jobs and (2) on jobs generated by probabilitydistributions. It turns out that the performan
e of the algorithms depends heavily on the 
hara
-teristi
s of the respe
tive work load. On job sequen
es that are generated by standard probabilitydistributions, Graham's strategy is 
learly the best. However, on the real world jobs the new algo-rithms often outperform Graham's strategy. Our experimental study 
on�rms theoreti
al resultsin the sense that there are also job sequen
es in pra
ti
e on whi
h the new online algorithms per-form better. Our study 
an help to inform pra
titioners about the new s
heduling strategies as analternative to Graham's algorithm.1 Introdu
tionDuring the last ten years online s
heduling has re
eived a lot of resear
h interest, see for instan
e [1,2, 18, 22, 23℄. In online s
heduling, a sequen
e of jobs � = J1; J2; : : : ; Jn has to be s
heduled on anumber of ma
hines. The jobs arrive one by one; whenever a new job arrives, it has to be dispat
hedimmediately to one of the ma
hines, without knowledge of any future jobs. The goal is to optimize agiven obje
tive fun
tion. Many online algorithms for various s
heduling problems have been proposedand evaluated using 
ompetitive analysis. However, an experimental evaluation of the algorithms wasusually not presented. We remark here that there exist experimental studies for many s
hedulingstrategies used in parallel super
omputers [11, 12℄. However, these are strategies for s
heduling jobs�Important note: The �gures presented in this paper make heavily use of 
olor to distinguish between the perfor-man
e of di�erent algorithms. We re
ommend to print the paper on a 
olor printer, if possible, or to preview it on a
olor s
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that 
an span more than one ma
hine, while in Graham's model ea
h job has to be assigned to exa
tlyone ma
hine. Savelsbergh et al. [19℄ re
ently gave an experimental analysis of o�ine approximationalgorithms for the problem of minimizing the weighted sum of 
ompletion times. Moreover, there areaverage-
ase analyses and related experimental studies of bin pa
king problems, see e.g. [4, 6℄.In this paper we present an experimental study of algorithms for a fundamental problem in onlines
heduling. This problem is referred to as Graham's problem and has been investigated extensivelyfrom a theoreti
al point of view, see for instan
e [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 18, 21℄. In Graham'sproblem, a sequen
e of jobs � = J1; J2; : : : ; Jn has to be s
heduled on m identi
al parallel ma
hines.Whenever a new job Jt, 1 � t � n, arrives, its pro
essing time pt is known in advan
e. Ea
h job has tobe assigned immediately on one of the ma
hines, without knowledge of any future jobs. The goal is tominimize the makespan, whi
h is the 
ompletion time of the job that �nishes last. This problem arisesfor instan
e in high performan
e and super
omputing environments. Here, it is often the 
ase thateither preemption is not supported by the system or the high memory requirements of the jobs makepreemption prohibitively expensive. The runtimes of the jobs are known at least approximately sin
eusers are usually required to give an estimate for the CPU requirements of their jobs. The obje
tiveof minimizing the makespan in this setting aims at a
hieving a high utilization on the ma
hines. Inaddition to its pra
ti
al relevan
e, Graham's problem is important be
ause it is the root of manyproblem variants where, for instan
e, preemption is allowed, pre
eden
e 
onstraints exist among jobs,or ma
hines run at di�erent speeds.In 1966 Graham gave an algorithm that is (2� 1=m)-
ompetitive. Following [20℄ we 
all an onlines
heduling algorithm 
-
ompetitive if, for all job sequen
es � = J1; J2; : : : ; Jn, A(�) � 
 � OPT (�);where A(�) is the makespan of the s
hedule produ
ed by A and OPT (�) is the makespan of anoptimal s
hedule for �. It was open for a long time whether an online algorithm 
an a
hieve a
ompetitive ratio that is asymptoti
ally smaller than 2, for all values of m. In the early ninetiesBartal et al. [2℄ presented an algorithm that is 1.986-
ompetitive. Karger et al. [18℄ generalized thealgorithm and gave an upper bound of 1.945. Re
ently, Albers [1℄ presented an improved algorithmthat is 1.923-
ompetitive. An interesting question is whether these new te
hniques are geared onlytowards a pathologi
al worst 
ase or whether they also lead to better results in pra
ti
e. In this paperwe address this question and present the �rst 
omprehensive experimental study of online algorithmsfor Graham's s
heduling problem.Des
ription of the experiments: We implemented the online algorithms by Graham, Bartalet al., Karger et al. and Albers and tested them on (1) real world job sequen
es as well as on (2) jobsequen
es generated by probability distributions. As for the real world jobs, we investigated datasets from three di�erent ma
hine 
on�gurations. The �rst data set 
onsists of job sequen
es takenfrom the log �les of three MPP's (Massively Parallel Pro
essors) at three di�erent super
omputing
enters. The runtimes in the se
ond data set were extra
ted from a log �le of a 16 pro
essor ve
torma
hine at the Pittsburgh Super
omputing Center. This environment resembles very mu
h the modeldes
ribed above. The jobs in the third data set were obtained from a pro
ess a

ounting on a SunUltra workstation. This workstation is one of the main 
omputing servers at the Max Plan
k Institutein Saarbr�u
ken. We believe that an analysis of the algorithms' performan
e on real job tra
es gives themost meaningful results. However, we also evaluated the algorithms under job sequen
es generatedby probability distributions. More spe
i�
ally, we generated job sequen
es a

ording to the uniform,exponential, Erlang, hyperexponential and Bounded Pareto distributions.2



For ea
h job sequen
e and ea
h of the four algorithms, we determined the ratio online makespan/optimummakespan after ea
h s
heduling step, i.e. whenever a new job was s
heduled, the ratio was re-
omputed.This allows us not only to 
ompare the algorithms against ea
h other but also gives us a measure forhow far away the online algorithms are from the optimal o�ine solution at any given point of time.Sin
e the problem of 
omputing an optimal solution for Graham's problem is NP-hard, at any time theoptimum makespan was approximated by a lower bound. Suppose that we have s
heduled J1; : : : ; Jt.Clearly, a lower bound on the optimum makespan for the subsequen
e J1; : : : ; Jt is given by the max-imum of the following three expressions: (1) max1�s�t ps; (2) 1mPts=1 ps; (3) twi
e the size of the(m+1)-st largest job in J1; : : : ; Jt. It turns out that this lower bound is suÆ
ient for a proper evalua-tion of the algorithms, i.e. we 
onsidered generalization of (3) but did not obtain any improved lowerbounds. Finally, we also 
onsidered the algorithms' performan
e for di�erent ma
hine numbers andevaluated settings with 10, 50, 100 and 500 ma
hines.Summary of the experimental results: The results di�er substantially depending on theworkload 
hara
teristi
s. In the experiments with real world jobs, the ratios online makespan/optimummakespan 
u
tuate. We observe sudden in
reases and de
reases, depending on the size of the last jobthat was s
heduled. Whenever the pro
essing time of a new job is in the order of the average load onthe ma
hines, the ratio goes up, with values up to 1.8{1.9. Whenever the pro
essing time of a newjob is very large 
ompared to the average load on the ma
hines, the ratio drops and approa
hes 1.Only after a large number of jobs has been s
heduled do the ratios stabilize. An important result ofthe experiments is that some of the new algorithms su�er mu
h less from these sudden in
reases thanGraham's algorithm and therefore lead to a more predi
table performan
e. They also often outperformGraham's algorithm. This makes the new algorithms also interesting from a pra
ti
al point of view.In the experiments with job sequen
es generated by one of the standard probability distributions,the ratios online makespan/optimum makespan 
onverge qui
kly. Graham's algorithm outperformsthe other three algorithms and a
hieves ratios 
lose to 1. The ratios of the algorithm by Bartal et al.and Albers are slightly higher and 
onverge to values between 1.2 and 1.3. The algorithm by Kargeret al. performs worse, with ratios between 1.7 and 1.9. Surprisingly, these results hold for all standardprobability distributions.Our experimental study 
on�rms and validates theoreti
al results in the sense that there are jobsequen
es in pra
ti
e where the new online algorithms outperform Graham's strategy. Our study 
anhelp that pra
titioners be
ome aware of the new strategies and possibly use them as an alternative toGraham's algorithm.Organization of the paper: In Se
tion 2 we des
ribe the online s
heduling algorithms byGraham, Bartal et al., Karger et al. and Albers. In Se
tion 3 we give a detailed presentation of theexperiments with real world jobs. A des
ription of the tests with randomly generated jobs follows inSe
tion 4. While the results in Se
tion 3 and Se
tion 4 are limited to the 10 ma
hine 
ase we dis
ussin Se
tion 5 the results for experiments with larger ma
hine numbers.2 The AlgorithmsIn this se
tion we des
ribe the online algorithms that we will analyze experimentally. An algorithm ispresented with a job sequen
e � = J1; J2; : : : ; Jn. Let pt denote the pro
essing time of Jt, 1 � t � n.At any time let the load of a ma
hine be the sum of the pro
essing times of the jobs already assigned3



to it. In the following, when des
ribing the algorithms, we assume that an algorithm has alreadys
heduled the �rst t� 1 jobs J1; : : : ; Jt�1. We spe
ify how the next job Jt is s
heduled.Algorithm by Graham: S
hedule Jt on the ma
hine with the smallest load.All the other algorithms maintain a list of the ma
hines sorted in non-de
reasing order by 
urrentload. The goal is to always maintain some lightly loaded and some heavily loaded ma
hines. LetM t�1i denote the ma
hine with the i-th smallest load, 1 � i � m, after exa
tly t � 1 jobs have beens
heduled. In parti
ular, M t�11 is the ma
hine with the smallest load and M t�1m is the ma
hine withthe largest load. We denote by lt�1i the load of ma
hine M t�1i , 1 � i � m. Note that the load lt�1mof the most loaded ma
hine is always equal to the 
urrent makespan. Let At�1i be the average loadon the i smallest ma
hines after t� 1 jobs have been s
heduled. The algorithm by Bartal et al. keepsabout 44.5% of the ma
hines lightly loaded.Algorithm by Bartal et al.: Let k = [0:445m℄ be the integer 
losest to 0:445m and � = 1=70.S
hedule Jt on M t�1k+1 if lt�1k+1 + pt � (2 � �)At�1k Otherwise s
hedule Jt on the ma
hine with thesmallest load.The algorithm by Karger et al. maintains a full stair-pattern.Algorithm by Karger et al.: Set � = 1:945. S
hedule Jt on the ma
hine M t�1k with the largestload su
h that lt�1k +pt � �At�1k�1. If there is no su
h ma
hine, then s
hedule Jt on the ma
hine withthe smallest load.The algorithm by Albers keeps 50% of the ma
hines lightly loaded.Algorithm by Albers: Set 
 = 1:923, k = bm2 
 and j = 0:29m. Set � = (
�1)k�j=2(
�1)(m�k) . Let Ll be thesum of the loads on ma
hines M t1; : : : ;M tk if Jt is s
heduled on the least loaded ma
hine. Similarly,let Lh be the sum of the loads on ma
hines M tk+1; : : : ;M tm if Jt is s
heduled on the least loadedma
hine. Let �tm be the makespan, i.e. the load of the most loaded ma
hine, if Jt is s
heduled on thema
hine with the (k+1)-st smallest load. Re
all that lt�1m is the makespan before the assignment ofJt. S
hedule Jt on the least loaded ma
hine if one of the following 
onditions holds: (a) Ll � �Lh;(b) �tm > lt�1m and �tm > 
 � Ll+Lhm . Otherwise s
hedule Jt on the ma
hine with the (k+1)-st smallestload.3 Experiments with Real World JobsBefore we dis
uss the results of the experiments we des
ribe the experimental setup. The jobs usedin the experiments 
ome from three di�erent types of systems. The �rst data set 
onsists of jobtra
es taken from MPP's (massively parallel pro
essors) and were obtained from Feitelson's ParallelWorkloads Ar
hive. It in
ludes a tra
e from a 512-node IBM-SP2 at Cornell Theory Center (CTC),a tra
e from a 100-node IBM-SP2 at the KTH in Sweden and a tra
e from a 128-node iPSC/860 atNASA Ames. The se
ond data set 
onsists of runtimes measured at the Pittsburgh Super
omputingCenter's Cray C90, whi
h is a ve
tor ma
hine. The jobs in the third data set were obtained froma pro
ess a

ounting on a Sun Ultra workstation with two 200 MHz pro
essors and 1024 MB mainmemory. This workstation is one of the main 
omputing servers at the Max Plan
k Institute in4



Saarbr�u
ken. The following table summarizes the main 
hara
teristi
s of the workloads. These willbe 
ru
ial for the interpretation of the results.System Year Number Mean Size Min Max Squaredof Jobs (se
) (se
) (se
) CoeÆ
ientof VariationCTC IBM-SP2 1996 - 1997 57290 2903.6 1 43138 2.72KTH IBM-SP2 1996 - 1997 28490 8878.9 1 226709 5.48NASA Ames iPSC/860 1993 42050 348.20 1 62643 27.21PSC Cray C90 1997 54962 4562.6 1 2222749 43.16MPI Sun Ultra 1998 300000 2.3 0.01 47565.4 7550.58We split ea
h job tra
e into job sequen
es 
ontaining 10000 jobs. We then ran the online algorithmson ea
h job sequen
e and re
orded the ratio online makespan/optimum makespan after ea
h job. Thema
hine numbers used in these experiments range from 10 to 500. The next two se
tions des
ribe andanalyze the experimental results. In Se
tions 3.1 and 3.2 we �rst present the results for 10 ma
hines.The results for larger ma
hine numbers are summarized in Se
tion 5.3.1 The Experimental ResultsWe begin with the results for the MPP data. The development of the ratios under the job sequen
esobtained from the CTC and the KTH tra
es was virtually identi
al. Figure 1 shows the typi
aldevelopment of the ratios of the online algorithms' makespans to the optimal makespans for these jobsequen
es. We see that the ratios during the �rst 1000 jobs os
illate between values of 1.1 and 1.7.
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Figure 1: Performan
e of the online algorithms on the KTH dataThe only ex
eption are the ratios for Karger's algorithms whi
h immediately approa
h a value of 1.8.After the �rst 1000 jobs the ratios of all algorithms stabilize. For Bartal's and Albers' algorithm they
onverge towards a value around 1.2 while the ratio for Graham's algorithm approa
hes 1. Figure 2shows the results for the NASA jobs. The general trend in the development of the ratios is similar tothat observed for the CTC and the KTH data. Initially, the ratios 
u
tuate until they �nally 
onvergeto the same values as for the CTC/KTH data. In 
ontrast to the results for the CTC and KTH jobs it5
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Figure 2: Performan
e of the online algorithm on the NASA datatakes mu
h longer until the ratios stabilize. Under the PSC data the ratios are even more volatile (seeFigure 3). Espe
ially, the ratio for Graham's algorithm is extremely instable and goes frequently up to
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Figure 3: Performan
e of the online algorithms on the PSC datavalues between 1.7 and 1.8. Bartal's algorithm, on the other hand, 
onverges very early to a ratio 
loseto 1.2. After around 9000 jobs have been s
heduled the ratios approa
h the values that we observedfor the previous tra
es. The workstation data set is the only one where the results were di�erent forthe various job sequen
es. They also di�er from the results we have observed so far. Figure 4 showstwo typi
al s
enarios for job sequen
es extra
ted from the workstation tra
e. We see that the ratiosagain os
illate in the beginning, but this time they don't 
onverge gradually to some value. Insteadthey drop very abruptly to 1 and don't 
hange after that. This sudden drop in the ratios 
an o

urvery early as shown in Figure 4 (top) or later in the s
heduling pro
ess as in Figure 4 (bottom).6
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Figure 4: Typi
al results for experiments with workstation jobs3.2 Analysis of the ResultsTo interpret the experimental results it is helpful to understand in whi
h way a new job 
an a�e
t theratio online makespan/optimal makespan. Depending on its size 
ompared to the average load on thema
hines, a job 
an have one of the following three e�e
ts.1. If the size of an arriving job is small 
ompared to the average load on the ma
hines, the jobwill neither signi�
antly a�e
t the optimum makespan nor the online makespans. Therefore, theratio online makespan/optimal makespan will remain almost un
hanged.2. If the size of an arriving job is in the order of the average load on the ma
hines the ratio onlinemakespan/optimal makespan will in
rease. The reason is that all algorithms have to maintaina 
ertain balan
e between the load on the ma
hines to prevent the makespan from growing toolarge. Therefore, they will have to assign the arriving job to a ma
hine that 
ontains already anamount of load 
lose to the average load. The optimal o�ine strategy would have been to reserveone ma
hine almost entirely for this job. Therefore, if the size of a new job is approximately that7



of the average load on the ma
hines, the ratio online makespan/optimal makespan will in
reaseand in the worst 
ase approa
h 2.3. If the size of the new job is extremely large 
ompared to the average load on the ma
hines, thenew job will 
ompletely dominate the optimal makespan, as well as the makespan of an onlinealgorithm. This leads to almost the same makespan for the optimal and the online algorithm'ssolutions. As a result, the ratio online makespan/optimal makespan will approa
h 1.In the following we will refer to these three e�e
ts as e�e
t 1, 2, and 3, respe
tively. Note at this pointthat a sequen
e of small jobs (e�e
t 1) followed by a job triggering e�e
t 2 is the worst 
ase s
enariofor Graham's algorithm. This is be
ause Graham will distribute the small jobs 
ompletely evenly overthe ma
hines and therefore has to assign the \e�e
t 2 job" to a ma
hine that 
ontains already a lot ofload. All the other algorithms try to alleviate this problem by keeping some of the ma
hines lightlyloaded and hen
e reserving some spa
e for \e�e
t 2 jobs" that might arrive in the future.How likely the o

urren
e of ea
h of the three e�e
ts is and how pronoun
ed the e�e
t will be,depends on the 
hara
teristi
s of the workload and the s
heduling algorithm. If the variability in thejob sizes is low e�e
t 2 and 3 are very unlikely to o

ur. The reason is that a low variability in thejob size distribution means that the jobs are relatively similar in size. Therefore, the probability thata new job has a size similar to that of all the jobs at one ma
hine 
ombined is very low. Lookingat the table with the 
hara
teristi
s of the tra
es we see that the CTC and the KTH tra
es havea very low squared 
oeÆ
ient of variation, whi
h indi
ates a low variability in the job sizes. Thisexplains why the ratios 
onverged so qui
kly in the experiments with these tra
es: the low variabilityin the job sizes makes the arrival of an \e�e
t 2" or \e�e
t 3" job very unlikely. It also explains whythe performan
e of the three new algorithms is worse than that of Graham's algorithm (ex
ept forthe �rst jobs). The new algorithms reserve some spa
e for large jobs that never arrive and thereforehave higher makespans. For the NASA and the PSC tra
e the squared 
oeÆ
ient of variation ismu
h higher than for the CTC and the KTH tra
es indi
ating a higher variability in the job sizes.Therefore, e�e
t 3 and in parti
ular e�e
t 2 are likely to happen, even after many jobs have beens
heduled. This leads to the 
u
tuation of the online makespan/optimal makespan that we observedin Figure 2 and 3. We also see that in this 
ase the strategy of keeping some ma
hines lightly loaded
an pay o�. The ratios for Bartal's algorithm, for instan
e, are in many 
ases mu
h lower than theratios of Graham's algorithm. Moreover, the ratio under Bartal's algorithm 
onverges qui
kly leadingto a more predi
table performan
e than the heavily os
illating ratio of Graham's algorithm. In theworkstation tra
e the variability is extremely high meaning that some jobs have a size that is extremelylarge 
ompared to that of an average job. Typi
ally, in workstation tra
es the largest 1 per
ent of alljobs make up half of the total load (a property sometimes referred to as heavy-tailed property). Assoon as one of these extremely large jobs arrives, it 
ompletely dominates both the optimal and theonline makespan. This leads to the drop of the ratios to 1 that we see in Figure 4.To sum it up, the development of the ratios for our real world data depends almost ex
lusively onthe o

urren
es of the large and parti
ularly the extremely large jobs. The most important quantityis the proportion of the large jobs to the average load on the ma
hines. Please note at this point, thatthe high variability that we observed in our tra
es is not a weirdness in these parti
ular tra
es. Theproperty that the largest jobs are extremely large 
ompared to the average size has been observed inmany systems and (as mentioned above) distributions like this are often 
alled heavy-tailed. See forexample [16℄ for more on heavy-tailed workloads. 8



4 Experiments with Jobs Generated by Probability DistributionsWe also analyzed the performan
e of the s
heduling algorithms on job sequen
es generated by the fol-lowing probability distributions: (a) the uniform distribution; (b) the exponential distribution; (
) theErlang distribution; (d) the hyperexponential distribution; and (e) the Bounded Pareto distribution.For a de�nition of these distributions, see e.g. [17, 24℄. When 
hoosing the parameters of the distribu-tions from whi
h the numbers where generated we tried on the one hand to 
over a great range and onthe other hand to use parameters similar to that in tests presented in [11℄ and [12℄. The distributions
ommonly used to model servi
e times of 
omputer systems are the exponential, hyperexponentialand the Erlang distribution [17℄. For the sake of 
ompleteness we also in
luded the uniform distribu-tion. The experimental results for these four standard distributions are dis
ussed in Se
tion 4.1. TheBounded Pareto distribution is dis
ussed in Se
tion4.2.4.1 The Standard DistributionsSurprisingly, the results did not di�er signi�
antly for the various standard distributions. Even moresurprisingly, the results were similar for all parameters. Figure 5 shows the development of the ratioonline makespan/optimum makespan on 10 ma
hines for exponentially distributed job sizes, but alsorepresents the results for the other distributions quite well. We observe that the 
urves 
u
tuate to amu
h smaller degree than under the real work loads. They 
onverge to the same values as in the 
aseof real job sequen
es, but they do so mu
h faster. The reason is that the variability in the job sizesis mu
h lower for these distributions. The exponential distribution has a mean squared 
oeÆ
ient ofvariation of 1 independently of its mean. The Erlang distribution and the uniform distribution alwayshave a squared 
oeÆ
ient of variation less than or equal to 1, independently of how their parametersare 
hosen. For the hyperexponential distribution it is theoreti
ally possible to 
hoose the parametersas to mat
h the mean and the squared 
oeÆ
ient of variation of any distribution. However, to a
hievesquared 
oeÆ
ients of variations as observed for the more variable real world tra
es one would haveto set the parameters to very extreme values.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 2000 4000 6000 8000 10000

Graham
Albers
Bartal

Karger

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 2000 4000 6000 8000 10000

Graham
Albers
Bartal

Karger

Figure 5: The performan
e of the algorithms with 10 ma
hines under an exponential workload.9



4.2 The Bounded Pareto DistributionIn 
ontrast to the standard distributions, the Bounded Pareto distribution 
an be easily �t to observeddata. We 
hose the parameters for this distribution so as to mat
h the mean job sizes in the variousjob tra
es and to 
reate di�erent degrees of variability in the job sizes. It turned out that for a verylow variability the results were virtually identi
al to those for the CTC and the KTH data as shown inFigure 1. For medium variability the results looked very similar to those for the PSC data in Figure3. For extremely variable job sizes the results mat
hed those for the workstation tra
es (see Figure4). This 
on�rms our theory from Se
tion 3 that the variability in the job sizes is the 
ru
ial fa
torfor the performan
e of the algorithms.5 Results for Larger Ma
hine NumbersAll results shown so far are for simulations with 10 ma
hines. We repeated all experiments for all jobsequen
es with 50, 100 and 500 ma
hines, to study the e�e
t of larger ma
hine numbers.It turns out that the performan
e of the algorithms for larger ma
hine numbers and jobs generatedfrom standard distributions 
an be predi
ted pretty well from their performan
e on 10 ma
hines. Thedevelopment of the ratios for large ma
hine numbers is similar to that in the 10 ma
hine 
ase in thatthe ratios �nally 
onverge to similar values. Figure 6 shows the ratios for the experimental resultswith 500 ma
hines on the same job sequen
e used for the 10 ma
hine experiment plotted in Figure5. Graham's performan
e ratio gets 
lose to 1 while Karger's ratio of approximately 1.9 is by far the
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Figure 6: The performan
e of the algorithms under an exponential workload and 500 ma
hinesworst. The 
urves of the algorithms by Albers and Bartal et al. are quite similar lying between 1.2 and1.3 with an advantage for Albers' algorithm that grows as the number of jobs gets larger. However,it is noti
eable that for larger ma
hine numbers the 
onvergen
e of the ratios is mu
h slower, sin
e ittakes more jobs to \�ll" all the ma
hines and rea
h s
hedules whose makespan is stable with respe
tto 
ompetitiveness. 10



If we, however, look at job sequen
es with length proportional to the number of ma
hines the
urves look very similar even for di�erent ma
hine numbers. Figure 7 shows the development of theratios for the 10 ma
hine experiment for only the �rst 200 jobs. These 
urves resemble very mu
h thosefor 500 ma
hines and 10000 jobs shown in Figure 6. For the Bounded Pareto distribution, dependingon the 
hosen parameters, we observe the same results as in the 
ase of the standard distributions orthe real world data presented below.
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Figure 7: The performan
e of the algorithms under an exponential workload and 10 ma
hines for the�rst 200 jobsFor the job sequen
es taken from the real world data the results don't s
ale in the above sense.Re
all that these job sequen
es exhibit a higher variability in the job sizes and that the results mainlydepend on how strong the e�e
ts of medium and very big jobs are. The important observation in theexperiments with these sequen
es and larger ma
hine numbers is that the more ma
hines we use thesmaller is the in
uen
e of e�e
t 2. Sin
e the average load on the ma
hines grows more slowly for along time the medium jobs 
ause e�e
t 3 rather than e�e
t 2. By the time the average load on thema
hines is on the order that makes e�e
t 2 more likely there is with high probability already one ofthe extremely large jobs on the ma
hines that dominates the makespan. As a result the ratios of themakespans for all algorithms are mu
h lower for larger ma
hine numbers. Figure 8 shows the resultsfor 100 ma
hines on the same workstation job sequen
e that was used for the 10 ma
hine experimentin Figure 4 (top). The 
urve of Graham's algorithm is identi
al to that of Albers.6 Con
lusionWe saw that the performan
e of s
heduling algorithms depends heavily on the workload 
hara
teristi
s.For workloads with a low variability the simple greedy algorithm by Graham has the best performan
e.For highly variable real workloads, however, the new algorithms often outperform Graham's algorithm.Our results also show the importan
e of 
hoosing the right workload when evaluating s
hedulingalgorithms experimentally. In parti
ular, we observed that standard probability distributions do notoften 
apture important 
hara
teristi
s of real workloads very well.11
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Figure 8: Typi
al results for experiments with workstation jobs for 100 ma
hines7 A
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