Semi-Online Scheduling Revisited

Susanne Albefs Matthias Hellwig

Abstract

Makespan minimization om identical machines is a fundamental scheduling problera.gdal is
to assign a sequence of jobs, each specified by a procesamgai parallel machines so as to minimize
the maximum completion time of any job. Deterministic orladgorithms achieve a competitive ratio
of about 1.92. Due to this relatively high competitivenesd #e lack of progress in the area of
randomized online strategies, recent research has igaésti scenarios where the online constraint is
relaxed.

We studysemi-online scheduling where at any time an online scheduler knows the sum of the jobs
processing times. This problem relaxation is well motiddig practical applications. The best known
semi-online algorithm achieves a competitive ratio of Théng, Kellerer, Kotov, 2005). The best
known lower bound is equal to 1.565 (Angelelli, Nagy, Speeaiuza, 2004).

In this paper we present two contributions for semi-onlicleesiuling. We develop an improved
lower bound showing that no deterministic semi-online gt can attain a competitive ratio smaller
than 1.585. This significantly reduces the gap between tingqars lower bound and the upper bound
of 1.6. Secondly we present a new semi-online algorithmithldsed on an approach different from
that of previous strategies. The algorithm is 1.75-contipetand hence does not achieve the best
possible competitiveness. However, our algorithm is enély simple and, unlike previous strategies,
does not resort to job classes. The algorithm is more in thié sponline algorithms not using any
extra information. Hence our upper bound highlights thetamthl power of a small piece of advice
when provided to an online algorithm.

Keywords: Competitive analysis, makespan minimization, online cotafon.

1 Introduction

Makespan minimization on parallel machines is a fundanhema extensively studied scheduling prob-
lem with a considerable body of literature published overl#st forty years. In the basic problem setting
we are givenn identical parallel machines. A sequence of jebs Ji, ..., J, has to be scheduled non-
preemptively on these machines. Each jplis specified by an individual processing timg1 < i < n.
The goal is to minimize thenakespan, i.e. the maximum completion time of any job in the schedule.
The performance of offline algorithms and deterministiciranlalgorithms is well understood. In
the offline scenario the entire job sequence is known in amba@omputing optimum schedules is NP-
hard [17]. Hochbaum and Shmoys devised a famous polynomialdpproximation scheme [20]. In the
online scenario the jobs arrive one by one. Whenever a new;jalrives, its processing timeg is known.
However future jobs/y, with £ > ¢, and their processing times are unknown. Jphas to be scheduled
irrevocably on one of the machines before the next job ariveollowing Sleator and Tarjan [26] an

*Work supported by the German Research Foundation.

fDepartment of Computer Science, Humboldt-Universitat Berlin, Unter den Linden 6, 10099 Berlin.
al bers@nformati k. hu-berlin. de

iEDepartment of Computer Science, Humboldt-Universitat Berlin, Unter den Linden 6, 10099 Berlin.
mhel | Wi g@ nf ormati k. hu-berlin. de

online algorithmA is calledc-competitive if, for every o, A's makespan is at mosttimes the optimum
makespan. A series of papers, published mostly in the 1980spwed down the competitiveness of
deterministic online strategies. More precisely, the loeshpetitive ratio achievable by deterministic
online algorithms is in the rangé.88, 1.9201]. Much less is known for randomized online algorithms.
To date we know of no randomized strategy that provably baeterministic ones, for all values of.

Due to the relatively high competitiveness of determinisiiline algorithms and the lack of progress
in designing randomized strategies, recent research lasdd on studying scenarios where the online
constraint is relaxed. An online algorithm is provided wsttme information on the job sequencer has
some extra ability to process it. More specifically, thedaling scenarios have been addressed. (1) An
online algorithm has some information on the jobs’ progessimes or their total sum [3, 4, 5, 11, 22].
(2) An online algorithm knows the optimum makespan [7, 13]).An online strategy may reorder jobs in
o to a limited extent [12].

In this paper we investigate basic online makespan minitmizassuming that, additionally, the sum
S =3I, p; of the jobs’ processing times is known. The resulting sgttreferred to asemi-online
scheduling. Obviously, informationS can help an algorithm to make scheduling decisions. Weveseiret
S is a very mild form of advice. We make no assumptions reggrttie processing times of individual
jobs and generally do not restrict the family of allowed jaggences. Availability of advic§ is also
motivated by practical applications. In a parallel serystam there usually exist fairly accurate estimates
of the workload that arrives over a given time horizon. In egsfioor a scheduler typically accepts orders
(tasks) of a targeted volume for a given time period, say aodayweek.

Previous work: We review the most important results relevant to our work fired address on-
line scheduling without any extra information. Graham ir68919] gave the first deterministic online
algorithm. He showed that the famolist scheduling algorithm i$2 — %)-competitive. Using new
strategies, the competitive ratio was improved2e- % — €m,) [16], wheree,,, tends to 0 asn — oo, then
to 1.986 [8] and 1.945 [21], and finally to 1.923 [1] and 1.9208]. As for lower bounds, Faigle, Kern
and Turan [14] showed that no deterministic online algamittean achieve a competitiveness smaller than

— % form = 2 andm = 3. Form = 4, Rudin and Chandrasekaran [24] recently gave a lower bound
of v/3 ~ 1.732. For generaln the lower bound was raised from 1.707 [14] to 1.837 [9] and2.A],
and finally to 1.854 [18] and 1.88 [23].

For randomized online algorithms there exists a significap between the best known upper and
lower bounds. Forn = 2 machines, Bartal et al. [8] presented an algorithm thatexelsi an optimal
competitive ratio of 4/3. For general a 1.916-competitive algorithm was devised in [2]. The bastkn
lower bound on the performance of randomized online algoritis equal te/(e — 1) ~ 1.581.

We next consider semi-online scheduling, where an onligerghm knows the sun$’ of the jobs’
processing times. The setting was first introduced by Keillet al. [22] who concentrated on = 2
machines and gave a deterministic semi-online algoritha dichieves an optimal competitive ratio of
4/3. Again form = 2, two papers by Angelelli et al. [4, 5] refined the results assg that, additionally,
the job processing times are upper bounded by a known valigetthg withm = 2 uniform machines
was studied in [6].

Semi-online scheduling on a general numbeof identical machines was investigated by Angelelli,
Nagy, Speranza and Tuza [3] and Cheng, Kellerer and Kotol [The studies must have been done
independently since none of the two papers cites the other Angelelli et al. [3] gave a deterministic
semi-online algorithm that attains a competitivenesélof v/6)/2 ~ 1.725 and showed a lower bound
of 1.565, asn — oo, on the best possible competitive ratio of deterministiategies. Cheng et al. [11]
presented a deterministic 1.6-competitive semi-onliger@hm and gave a lower bound of 1.5, far> 6,
on the competitiveness of deterministic strategies.

Our contribution: In this paper we present two contributions for semi-online

scheduling, complementing the existing results for ctagsinakespan minimization. First we develop
a new lower bound on the competitive ratio that can be actibyadeterministic semi-online algorithms.
We show that the competitiveness is at least 1.58504, asm — oo. This ratio almost matches the
upper bound of 1.6 presented by Cheng et al. [11]. Formaléy|awer bound: is the root of the function
f(z) = 423 —82% 422 +1 that is in the rangél.58504, 1.58505]. We note that is greater thar /(e —1),
which is a ratio often appearing in the analysis of onlineoatgms. Our lower bound proof consists of
an explicit construction of a nemesis job sequence. It doésefy on numerical techniques or computer
assisted proofs.

As a second result we present a very simple deterministi¢-aelime algorithm that is based on an
approach different from that of previous strategies. Tigedthms by Angelelli et al. [3] and Cheng et
al. [11] both resort to job classes, i.e. incoming jobs aassified according to their processing times. The
best known strategy by Cheng et al. [11] uses five job clas§has. algorithm consists of sophisticated
job packing schemes. Over the course of the algorithm arahidysis two scheduling phases with two
associated stages and up to eight (or ten) machine typesdbeeconsidered.

Instead in this paper we develop an algorithm that does rsmtrtréo job classes. Our strategy is
1.75-competitive and hence does not achieve the best pmssitmpetitiveness. However, as mentioned
above, the algorithm is very simple and can be stated in deslimg (see Section 3). An incoming job
is either scheduled on the least loaded machine or on theingaalith the [m /2]-th highest load. The
decision which of the two machines to choose depends on #is¢ leaded machine. The analysis of the
algorithm relies on a potential function that keeps traclaefumulated load on all the machines when
the least loaded machine has a certain load. We remark thatbeduling algorithm is more in the spirit
of online scheduling strategies not knowifigwhich achieve a competitiveness around 1.92. Hence our
upper bound also highlights the additional power of a smialte of advice when provided to an online
algorithm.

Finally we show that our analysis is tight, i.e. our algaritlloes not achieve a competitive ratio
smaller than 1.75. Moreover, we observe that the algoritambe extended easily to the scenario where
an online scheduler knows the value of the optimum makespan.

2 A new lower bound

In this section we present a lower bound on the competititie that can be achieved by deterministic
semi-online algorithms. Consider the functigtw) = 423 — 822 + 2z + 1. This function has three
real-valued roots, one of which is in the rariges8504, 1.58505]. The lower bound is equal to this root.
The other two roots of are in the ranges-0.25, —0.24] and[0.65, 0.66].

Theorem 1 No deterministic semi-online algorithm can achieve a competitive ratio smaller than ¢ as
m — oo, where c istheroot of f(x) = 42 — 822 + 2z + 1 with ¢ € [1.58504, 1.58505].

Proof. Let A be any deterministic semi-online algorithm. In the follagic always denotes the value
as specified in the statement of the theorem. The adversesgiis a job sequeneein which the total
processing time of the jobs is equal $o = m + 16¢? — 12¢c — 16. We remark that the expression
16¢2 — 12¢ — 16 is upper bounded by 5.2. The exact structure afepends on the behavior df but in
each case the adversary uses at most four different progetasies that we denote by, 1 < i < 4. A
job with a processing time qgf; is also referred to asg-job. The following construction of works for
anym > 8.
Initially, the adversary presents — 4 jobs of processing timg; = 1. If A assigns two of these jobs

to the same machine, then the lower bound proof is simple:ativersary presents four additional jobs
with a processing time of; = 1 as well asn jobs with a processing time @b = (16¢2 — 12¢ — 16) /m.

3

Algorithm A has a makespan @fwhile the adversary has a makespan afp, only. In this case the ratio
of A’s makespan to the adversary’s makespan can be arbitréoge 02, asm — oc.

In the following we concentrate on the case tAgtlaces then — 4 p,-jobs on different machines. At
this point A has four empty machines. The adversary presents four jopsoéssing times, = ¢ — 1.
We distinguish three cases.

(1) Algorithm A assigns a»-job to a machine already containingajob.

(2) Algorithm A assigns thes-jobs only to machines not already containjmgjobs, and twag,-jobs
are placed on the same machine.

(3) Algorithm A assigns all thes-jobs to different machines, none of which already contaips-job.

[] p1 —jobs [] p; — jobs
B p, — jobs E p, — jobs
m machines m machines
Figure 1: Case (1) Figure 2: Case (2)

Figures 1 and 2 depict’s schedules in Cases (1) and (2), respectively. We nexyaa#he various cases.

Case (1): When thep,-jobs are scheduledd has a makespan @f + p» = 1 + ¢ — 1 = ¢ because
there is a machine containingpa-job as well as a»-job. The adversary completes the request sequence
by presenting four jobs of processing time= 2 — ¢ andm jobs of processing timg; = (16¢% — 12¢ —
16)/m. The sum of the jobs’ processing timesSis= (m —4) -1 +4(c—1) +4(2 —¢) + m(16¢*> — 12¢ —
16)/m = m + 16¢* — 12¢ — 16, as desired. The adversary constructs a schedule in whigh §obs
are assigned to different machines. Eagfob is paired with a3-job, yielding a total processing time of
¢ — 142 —c¢=1. Each such job pair is assigned to an empty machine. Finatli ef them» machines
receives a4-job. Thus the adversary’s makespan is ps. The ratio ofA’s makespan to the adversary’s
makespan ig/(1 + p4) and this ratio tends teasm — oo.

Case (2): As A has combined twe--jobs, one machine ial’s schedule has a load of at le@gt, =
2(¢ — 1) > 1. There aren — 4 additional machines containingza-job and thus having a load of 1.
Hence, when the,-jobs are scheduled, there exist at most three machinesghaMbad smaller than 1.
The adversary next reveals four jobs with a processing tipe e c. Algorithm A must place at least one
of them on a machine with a load dfincurring a makespan af+c. The adversary completes the request
sequence by presenting—8 jobs of processing timg; = (16¢> —20c—8)/(m—8). The sum of the jobs’
processing times i§ = (m—4)-1+4(c—1)+4c+(m—8)(16¢2 —20c—8) /(m—8) = m+16¢2—12¢c—16,
as claimed. The adversary can construct a schedule with agpak of:: Them — 4 p;-jobs are placed

on separate machines. Among these machines, four receadgdaimnalp,-job andm — 8 get an extra-
job. The fourps-jobs are placed separately on the four remaining empty meshWe have, + p, = ¢
andp; + p4 < c because, < 0.5, for m > 8. Thus no machine has a load greater thaWe conclude
that the ratio ofA’s makespan to the adversary’s makespan is at l@ast c)/c and this expression is
greater tham, for our choice of.

Case (3): Algorithm A assigns then — 4 p;-jobs and the foup,-jobs to different machines so that,
after the assignment, each machine contains exactly oramfbthere is no empty machine in the schedule.
The adversary presents two jobs of processing e 2¢(c — 1) — 1. Again we distinguish two cases.

(a) Algorithm A assigns a3-job to a machine containinga -job or assigns botjps-jobs to the same
machine containing gy-job.

(b) Algorithm A assigns thes-jobs to two machines containingpa-job.

Figure 3 depictsi’s schedule in Case (3a) ifig-job is assigned to a machine containing, gob. Figure 4
shows the schedule in Case (3b).

] p. —jobs [0 p: —jobs
B p, —jobs Bl p. —jobs
B p, —jobs B p, —jobs
m machines m machines
Figure 3: Case (3a) Figure 4: Case (3b)

Case (3a): When theps-jobs are scheduledi has a makespan of at le2s{c—1). This holds true if a
ps-job is assigned to a machine containing, gob because; +ps = 2¢(c—1). This also holds true if both
ps-jobs are placed on the same machine containipgjab becaus@s+2p3 = c—1+2(2¢(c—1)—1) =
2c(c—=1)+ (2¢+1)(c—1)—2 > 2¢(c—1) because > 1.5. The adversary finishes the request sequence
by sendingn — 4 jobs of processing timg, = 6(2c¢(c—1) —1)/(m —4). The total processing time of the
jobsisS = (m—4)p1 +4pa+2ps+ (m—4)ps = m—4+4(c—1)+2(2c(c—1)—1)+6(2¢(c—1)—1) =
m~+16¢®>—12c¢—16. The adversary constructs the following schedule. Eagbb is assigned to a separate
machine and will receive an additionaj-job. The remaining four machines are used to schedulgsthe
and theps-jobs. More specifically, two machines receive twgjobs each. The other two machines each
receive gsz-job. We have2p, > ps3 because this inequality is equivalentito- 2(c — 1)? and is satisfied
sincec < 1.6. Moreover, form > 35, we have2p, > p; + ps and the adversary’s makespan is upper
bounded by2py; = 2(¢ — 1). In summary, forn > 35 and hence forn — oo, the ratio ofA’s makespan
to the adversary’s makesparigc — 1)/(2(c — 1)) = c.

Case (3b): Algorithm A assigns the tw@s-jobs to two machines containingga-job and hence the
load on these machinesjis + ps = c—1+2¢c(c—1) — 1 = (2c¢+ 1)(c — 1) — 1 > 1. Thus when the

5

p3-jobs are scheduled, there are only two machined’snschedule that have a load smaller tHanThe
adversary then presents three final jobs with a processimepti = 2p3 = 2(2¢(c — 1) — 1). Again, we
have a total processing time 8f= (m —4)p; +4p2+2p3+3ps = m—4+4(c—1)+8(2¢(c—1)—1) =

m + 16¢> — 12¢ — 16. Algorithm A must schedule one of the-jobs on a machine having a load
of at least 1. Hence its makespan is at lekst p; = 1 + 2p3. On the other hand, the adversary
can construct a schedule with a makespamof= 2p3: Them — 4 p;-jobs are assigned to different
machines. Four of these machines receive an additigrlb, which results in aload df+ps; = ¢ < p4.
The remaining four machines are used to schedulepth@and p4-jobs. One machine is assigned the
two p3-jobs. The other three machines each receiyg-ppb. Hence the ratio ofA’s makespan to the
adversary’s makespan ($ + p4)/ps = 1+ 1/ps = 1+ 1/(2p3). We have2(c — 1)ps — 1 = 0 because
2(c—1)p3 — 1 = 4de(c — 1)2 = 2(c — 1) = 1 = 4¢3 — 8% + 2c + 1 andc is a root of the function
f(x) = 423 — 822 + 22 + 1. Hence2pz = 1/(c — 1) and we conclude that the ratio dfs makespan to
the adversary’s makespanlis- 1/(2p3) =1+ (¢ —1) =¢. O O

3 A semi-online algorithm without job classes

In this section we present a semi-online algorithm that seaon an approach different from that of
previous strategies [3, 11] and does not rely on job clasHes.algorithm is calledLight Load, or LL for
short, because it tries to keep the least loaded machinén &uct | m /2] machines, lightly loaded. During
the scheduling process the algorithm always maintaing aflisie m machines sorted in non-increasing
order of current load. Theoad of a machine is the sum of the processing times of the jobsithyr
assigned to that machine. At any time, given the sortedMigt. . ., M,,, of machines,M; denotes the
machine with thej-th highest load] < j < m. In particular,); is a machine with the highest load and
M,, is a least loaded machine. Ligtdenote the load a#/;, 1 < j < m. Moreover, letjy = [m/2]. Of
specific interest is machink/;, having the[m /2]-th highest load.

Algorithm LL processes a job sequenece-= Jy, ..., J, as follows. Whilel,,, < 0.25%, i.e. while the
least loaded machin&/,,, has a load of at mo$125%, a new job is assigned to this machihg,,. When
Ly > 0.25%, LL prefers to schedule an incoming jobon machinel;,. The algorithm checks if such
an assignment is possible without exceeding a Ioﬂd?@f%. Ifindeedl;, +p; < 1.75%, J; is scheduled
on Mj,; otherwiseJ; is assigned to the least loaded machidg,. A summary of the algorithm is given
below.

Algorithm Light Load (LL): JobJ; is assigned td/;, if 1,, > 0.25% andlj, +p; < 1.75%, and toM,,
otherwise.

We explain the choice of the algorithm’s parameters. ThefptteatLL is 1.75-competitive crucially
depends on the definitiofy = [m/2]. We will show that ifl,,, > 0.75% and hence a new job cannot
necessarily be scheduled such that the resulting makespgpéer bounded by75%, then the job se-
quence contains: + 1 large jobs of processing time greater ttiaf= . In order to secure the existence of
these jobs, we need to show that {d), has a load of at most25-> and (b) M,, had a load of at most
0.25% over a long time horizon. The load bounds of (a) and (b) onld ifoj, = [m/2]. In this case it
is possible to balance load between /2] heavily loaded andim /2] lightly loaded machines. Any other
choice ofj, will lead to a higher competitive ratio. Moreovei,. works with a load bound (ﬁ.25% for
machinel,,. This ensures that an assignment of a small job of procesisireat mosﬂ.5% does not
exceed the critical load threshold @)175%.

Theorem 2 Algorithm LL achieves a competitive ratio of 1.75.

In the remainder of this section we prove the above theoremsWdw that for any job sequenee
LL(o) <1.75-OPT(0) @

where LL(0) andOPT (o) denote the makespan bf. and an optimal offline algorithr®PT, respec-
tively. The proof is by induction on the lengthof the job sequence. For job sequences consisting of a
single job.J; there is nothing to show becauise andOPT both have a makespan equal to the processing
time p; of J;. Suppose that (1) holds for job sequences of up to1 jobs. We will prove that (1) is also
satisfied for sequences consisting:gbbs.

Leto = Jy,...,J, be an arbitrary job sequence of length By induction hypothesi&L schedules
the firstn — 1 jobs such that a performance ratio of 1.75 is maintainedl|_Lessigns each job such that
its resulting makespan is at most 1.75 times the optimum spelefor the job sequence processed so far.
In the following we investigate the assignmentfgfand prove that the scheduling step also maintains the
desired performance guarantee. We concentrate on thel@agbe assignment of, causes an increase
in LL’'s makespan since otherwise there is nothing to show.

If LL schedulesJ,, on machineM/;,, we are easily done because by the definition of the algorithm
Lig +pn < 1.75;2. SinceJ, is the last job otr, the ratio% is a lower bound on the optimum makespan
and hencé;, +p, < 1.75-OPT (o). Moreover, ifLL schedules/,, on the least loaded machilM and
Im <0.752 5 the analysis is S|mple W, < 2 S thenLL'’s resulting makespan is, + p,, < 0. 75 + 2 S <
1755 < 1 75 OPT (o). If p, > thenl + pp < 0.75p, 4 pp = 1.75p, < 1.75 - OPT (o) because
the optlmum makespan otcannot be smaller than the processing time of any job.

Therefore we can restrict ourselves to the caselthachedules/,, on M,, andl,, > 0.75> S imme-
diately before the assignment. Lgt = (0.75 + ¢)> 5 for somee > 0. We havee < 0.25 becauseM
is a least loaded machine and hence its Ihads smaller than— If we hadl,, > 5 , then all machines
Would have a load of at Ieaei and the total load on theu machlnes before the arrlval of, would be
m -2 = S. Hence the total processmg time of jobssinvould be at least + p,, > S, contradicting the
fact that total processing volume equélsThus0 < e < 0.25. If [,,, +p, < 1.75> S e are again done.
Hence we assurdeI +pn > 1.752 S \We obtainp,, > 0. e S pecause, as just arguéglb < 2. Therefore,

> (0.5 +¢)2

In the foIIowmg we will show that immediately before the iggsnent of.J,,, each machine ihL’s
schedule contains a job of processing time at I¢as$t + ¢) > S This implies that including/,,, the job
sequencer containsm + 1 jobs of processing time at Iea@l 5+¢€) 5 each. Two of these jobs must
be scheduled on the same machine in an optimal schedule acé di?ePT() > (1 +2¢)2. Using
this property we can finish the proof of Theorem 2pjlf < (1 + 2¢)2 S thenLL'’s resulting makespan
iS Ly +pp < (0.75+€)2 + (1 +26)2 = (175 + 3¢)2 < 175(+2e)5 < 1.75 - OPT (o). If

> (142¢)2, then the resulting makespari7|,§+pn < (0.75+€) 2 +py, < (0.75+€)pn /(142€)+p, =
(1.75 4+ 3¢)pn /(1 + 2¢) < 1.75 - p, < 1.75- OPT(0).

It remains to prove that immediately before the assignménf,,oeach machine ii.L’'s schedule
contains a job of processing time at Iea@f) +e)> S To this end we will show that while at mog
machines have a load of at le&8t75 + e)— each, the least loaded machine has a load of not more than
0. 257751 (Lemma 1). Moreover, after that time, the load of machifg does not grow too large (Lemma 2).

In the following let timet be the point of time immediately after job is scheduled;t <t<n. At
any time a machine ihL’s schedule is calledull if its load is at leas(0.75 + e) . When J,, arrives,
the least loaded machine and hence any machihé’sschedule is full. We con3|der the past scheduling
steps of the job¢/y, ..., J,—1. Lett;, 1 < j < m, be the first point of time when exactlymachines
are full in LL's schedule, i.e. the assignment 6f causes thg-th machine to become full. We have
1<t <...<t, <n-—1. Ofparticular interest is the timg, when exactlyj, machines are full. The
next lemma states that at this time the least loaded madijpdras a load of at mosé)t25%.

Lemmal Attimet;, there holdsl,, < 0.252.

Proof. We will assumd,,, > 0.25% and derive a contradiction to the fact that the total prdogssme

of jobs ing is S. For any timet, 1 < ¢ < n, let L(¢) be the total load on the: machines, i.eL(t) is the
sum of the processing times of the jolis .. ., J;. For the further analysis we need a potential function
® whose definition is based on a machine A¢t Let M(t;,) be the set of machines that are full at time
tj,- Attimest > t;, we update this set whenever a machine becomes full. Mordfigpdly, for any time

t > t;,, setM(t) is defined as follows. If # ¢;, for all j = jo + 1,...,m, then the machine set remains
unchanged and(t) = M(t — 1). If t = t;, for somej with jo + 1 < j < m, thenM(t;) is obtained
from M(t; — 1) by deleting the machine having the smallest current loadift; — 1). In case of ties,
the machinell; € M(t; — 1) with the highest index in the machine orderihg, . .., M,, attimet; — 1

is chosen. Since at any tinte, for j = jo + 1,...,m, exactly one machine is deleted from the set and
Jo = [m/2] > m — [m/2] = m — jo, setM(t) is non-empty at all timeswith ;) < ¢ < ¢,,. For any
machine)M; and any time let /;(¢) denote its current load. Define

()= > (1) —0.755).

M;eM(t)

Intuitively, ® is the total load in excess t((h75% on the machines aM (t). Since every machine of
M(t;,) has aload of at leag0.75 + e)% and machine loads can only increa$es always non-negative.

We next argue that at all timeswith ;) <t < ¢,,, all machines ofM(t) are among thg, machines
having the highest load ibL’s current schedule. More formally, at any timet;, < t < t,,, let ()
denote the set consisting of tigmachines\/y, . . ., M;, with highest current load. We will showt(t) C
H(t). We assume w.l.0.g. that whenever machines are sorteddingdo their load after a scheduling
step, only the rank of the machine that received the new jeimgbs. The relative order of all the other
machines remains unchanged. In other words, machinesghegiral load appear in the same order before
and after the scheduling step. This property can always hetair@ed by simply renumbering machines
with equal load.

ObviouslyM(t;,) C H(t;,) is satisfied because at timg there exist exactly, full machines inLL’s
schedule andM(t;,) contains all these machines. So suppose Mét — 1) C H(¢ — 1) holds, where
tj, <t <ty — 1, and consider the scheduling step at timélgorithm LL assigns the incoming jol,
either to machiné/;, with the jo-th highest load or to machin¥,,, with the smallest load. 1If; is placed
on the current maching/; , then the set{ does not change arfd(¢t — 1) = #(t). If J; is assigned to the
least loaded machink/,,, and the machine does not become full, then ag#&in— 1) = #(t) because set
‘H only contains full machines. Hence $étcan change only if; is assigned td/,,, causing the machine
to become full.

If at time ¢ set?{ does not change, thei(t) C M(t — 1) C H(t — 1) = H(t) and we are done.
So assume th&t does change. As argued in the last paragrapis placed on the least loaded machine
M,, and this machines becomes full. Thus- ¢;, for somej with jo < j < m — 1. Atthis time the
former machine\/,,, joins # while the former machiné/;, leaves the set. Note thaf}, is a least loaded
machine int{(t — 1). Attime¢;, the least loaded machine.ivi(¢; — 1) is removed from this set; in case
of ties the highest indexed machine is chosen. Since bath\dét; — 1) and#(¢; — 1) lose least loaded
machines, property(t; — 1) C H(t; — 1) impliesM(t;) C H(t;).

We will show that if,,, > 0.25% at timet,, then the following inequality holds for = jo, ..., m.

L(tj) — ®(t;) > 0.255 + jo - 0.52 + (j — jo) 2 2)

Using (2) forj = m and observing again that the potential is non-negative, ht@io that at time,,, and
hence before the arrival of,, the total processing time of jobs scheduled so far is at leas

L(ty) > 0.258 4+ [2]0.52 + (m — [2])2 > 1.255 — (2 + $)0.52 =5 —0.255.

8

Since J,, has a processing time @f, > (0.5 + e)%, the total processing time of jobs inis at least
L(ty) +pn > S+ 0.25% > S. We obtain the desired contradiction.

It remains to show (2), fof = jo, ..., m, assuming that,, > 0.25% holds at time ;. The proof is by
induction onyj. First considetjy. Attimet;, exactlyj, machines are full and these machiadés, . . ., M,
each have aload greater tham5%. By assumptiord,,, > 0.25%. Hence machines/;, 1,. .., M,, each
have a load greater th@nz5% and the total load on these— j, machines is greater tham—jo)-o.%%.

We obtain that at time;, the total load on then machines is

Jo m
Ltj,) > > Liti)+ > Liti)
Jj=1 j=jo+1
= Jo-0.752 + 30 (I(t5,) — 0.752) + (m — jo)0.25>
= 0.255 + jo - 0.52 + @(t,).

The last equation holds because machimgs. .., M;, form setM(t;,). Inequality (2) then follows for
J = Jo-
Next suppose that (2) holds for indgxWe show that it is also satisfied fgr- 1. We first argue that

L(t) — () > 0.255 + jo - 0.52 + (j — jo) 2 (3)

holds for anyt = t;,t; +1,...,t;41 — 1. By induction hypothesis the above inequality holdstfer ¢;.
Attimest with ¢t; < t < t;;1 the machine seM (t) does not change and is equalXd(t;). At any time

t the incoming jobJ; increases the total load on the machines by, i.e. L(t) = L(t — 1) + p:. The
potential® only increases by if J; is assigned to a machine i (¢;). Hence the left hand side of (3)
does not decrease attimes-t; +1,...,t;41 — 1.

Attime t;, another machine becomes full. Since there exist alrgaélyll machines ang +1 > jo,
an additional full machine can only be created if the incajob J;,, is placed on the currently least
loaded machiné//,,,. An assignment to the current maching,, would not generate an additional full
machine. By assumption, at tinte, and hence also at the current tirhg > 0.25%. ThusLL would
prefer to schedule/;, ,, on machine)M;,. Since this assignment is not performed, the resulting load
would exceed.752, i.e. L (tj+1 — 1) + py,,, > 1.752 and hence

Pryps > 2 — (Lot — 1) — 0.752).

Machine)/;, is aleast loaded machine#(t;; 1 —1). Attimet;; the least loaded machine Wt (¢, —
1) is removed from the set. As argued abov(t) C H(t) for anyt with t;, < ¢ < t¢,,. Hence the least
loaded machine infM(t;.1 — 1) has a load of at least (¢;.1 — 1). Thus at timet;,; the potential
decreases by at least

D(tjyr — 1) — D(tj41) > Lig(tj41 — 1) — 0.752.

We obtainp, ,, + ®(tj11 — 1) — ®(tj41) > % and, as desired,

L(tjs1) = @(tj41) = Lltjer —1) = (i1 — 1) + 1 + (i — 1) — 2(tj41)
0.255 + jo - 0.52 + (j+1— jo) 2.

m

V

The inductive step is completél O

For the further analysis we need a second lemma.

Lemma?2 Atanytimet witht;, <t < t,, machine M;, in LL’'s schedule has a load of at most (1.25 —
e)%
Proof. Suppose that at some timet;, < ¢ < t,,, the machinel/;, with the jo-th highest load had a load
greater thar(1.25 — e)%. Thus at this timg and also at time,,, the j, machines with highest load in
LL's schedule had a total load greater thafl.25 — e)%. At time t,,, all machines ot.L are full and the
m — jo machines with the smallest load have a total load of at least j;)(0.75 + e)%. Thus at time
t,, the total load on then machines is greater than

§0(1.25 — €) 2 + (m — jo)(0.75 + €) 2 > [M]0.52 4+ 0.755 — 2 > § — 2,

Including J,,, the total processing time of jobs inis greater thars — e% + pn, > S becausep,, >
0.5+ e)%, This contradicts the fact that the total processing timela$ ino is equal toS. O

We are now ready to identifyh large jobs inLL's schedule at time,,. More specifically, we show
that at any time;;, for j = 1,...,m, a job of processing time at lea$t5 + e)% is scheduled.

By Lemma 1 at time;;, we havel,, < 0.252. Hence at any time with < ¢, we havel,,, < 0.252
andLL schedules an incoming job on the least loaded machine. Atiamgyt; with j = 1,...,j0 a
machine becomes full and henkg + p;, > (0.75 + €)2. This impliesp;, > (0.75 + ¢)2 — 0.252 =
(0.5+¢€)2.

Next consider the time§ with jo < j < m. At those times another full machine can only be created
if the incoming job is scheduled on the least loaded machiaet* be the first point of time at which the
least loaded machine Irl's schedule has a load greater tha25= . As above we can show that at any
timet; with ¢;, < t; < t* ajob of processing time at lea$L5 +¢)-> is scheduled. Finally consider times
tj With t* < t; < t,,. The least loaded machineli’s schedule has a load greater tiie25 > . Therefore,
LL would prefer to place/;; on the machine with thg,-th highest load. Sincd,; is placed on the least
loaded machine instead we hayg(t; — 1) +p;, > 1.752. By Lemma 2/;,(t; — 1) < (1.25 — ¢)= and
hencep;;, > (0.5 + e)%. This concludes the proof of Theorem 2.

We next provide a matching lower bound on the performandd_of

Theorem 3 Algorithm LL does not achieve a competitive ratio smaller than 1.75.

Proof. For simplicity we assume that is even. Moreover, letn > 4. Choose ar with 0 < ¢ < 1.
We prove thal L does not achieve a competitive ratio smaller thafs — e. Let S = m. Furthermore,
let £ be an integer satisfying > 1.75/¢ and setp; = 1/(4k). An adversary first presenfan jobs
of processing time;. These jobs have a total processing timerof4. Thus, while thep;-jobs arrive,
machinel/,, in LL’s schedule has a load of at mds = 0.25% and eachp;-job is assigned to this least
loaded machiné/,,. Hence, when all thém p,-jobs are scheduled, each of themachine has a load of
exactlykp; = 0.25.

Next the adversary presenis/2 jobs of processing timg, = 0.5 andm/2 jobs of processing time
ps = 1 —2/m. While these jobs are scheduled, the least loaded madlijpén LL’s schedule has a load
of exactly0.25%. Thus, again, any of these jobs is placed on machin&/,,,. After the assignment of
these jobs, each machinelih’s schedule has a load of at least 0.75 becayse 1 — 2/m > 0.5. The
adversary finally reveals a job of processing time= 1 so thatLL’s final makespan is 1.75.

The total processing time of all jobsisnp; +m/2-ps+m/2-ps+1=m/4+m/4+m/2(1 —
2/m)+1 = m = S, as desired. The adversary can construct a schedule whdsespaa is upper
bounded byl + p;: Them/2 jobs of processing timgs and the job of processing timg are assigned
to different machines. The:/2 jobs of processing timg, = 0.5 are combined to pairs and placed on

10

machines not yet occupied by the- andp,-jobs. If m/2 is odd, then ongs-job is scheduled alone on a
machine. Finally, each job of processing timeis scheduled on a machine currently having the smallest
load.

We conclude that the competitive ratioldf is at leastl.75/(1 + p;) and this ratio is at leadt75 — e
because, < ¢/1.75. O

We finally observe thdtL can be extended easily to the scenario where an online dehédows the
valueOPT (o) of the optimum makespan. In this case we just have to reg%aby OPT (o) in both the
description and the analysis of the algorithm.

Corallary 1 Algorithm LL achieve a competitive ratio of 1.75 if S/m is replaced by the value of the
optimum makespan.

4 Conclusion and open problems

In this paper we have studied makespan minimization in tt@ngewhere an online scheduler knows
the sum of the jobs’ processing times. An obvious open probeto determine the exact competitive

ratio that can be achieved in this scenario. However, sinegap between our lower bound of 1.585 and
the best known upper bound of 1.6 [11] is small, a further mpment in this range might be hard to
obtain. A more fruitful working direction is to analyze thedt competitiveness attainable if an online
scheduler known the value of the optimum makespan. Azar ag#\R[7] showed a lower bound of 4/3.

The algorithm by Cheng et al. [11] is also 1.6-competitivéhis problem setting.

References

[1] S. Albers. Better bounds for online schedulif®yAM Journal on Computing, 29:459-473, 1999.

[2] S. Albers. On randomized online schedulirigroc. 34th Annual ACM Symposium on Theory of
Computing, 134-143, 2002.

[3] E. Angelelli, A.B. Nagy, M.G. Speranza and Z. Tuza. Thelioe multiprocessor scheduling problem
with known sum of the taskdournal of Scheduling, 7:421-428, 2004.

[4] E. Angelelli, M.G. Speranza and Z. Tuza. Semi-on-linbextuling on two parallel processors with
an upper bound on the itemalgorithmica, 37:243—-262, 2003.

[5] E. Angelelli, M.G. Speranza and Z. Tuza. New bounds agorithms for on-line scheduling: two
identical processors, known sum and upper bound on the. fasksete Mathematics & Theoretical
Computer Science, 8:1-16, 2006.

[6] E. Angelelli, M.G. Speranza and Z. Tuza. Semi-onlineesitiiing on two uniform processorshe-
oretical Computer Science, 393:211-219, 2008.

[7] Y. Azar and O. Regev. On-line bin-stretchintheoretical Computer Science, 268:17—-41, 2001.

[8] Y. Bartal, A. Fiat, H. Karloff and R. Vohra. New algorittsnfor an ancient scheduling problem.
Journal of Computer and System Sciences, 51:359-366, 1995.

[9] V. Bartal, H. Karloff and Y. Rabani. A better lower boundrfon-line schedulinglnfomation Pro-
cessing Letters, 50:113-116, 1994.

11

[10] B. Chen, A. van Vliet and G.J. Woeginger. A lower boundfandomized on-line scheduling algo-
rithms. Information Processing Letters, 51:219-222, 1994.

[11] T.C.E. Cheng, H. Kellerer and V. Kotov. Semi-on-line ltiprocessor scheduling with given total
processing timeTheoretical Computer Science, 337:134-146, 2005.

[12] M. Englert, D.Ozmen and M. Westermann. The power of reordering for onlimemum makespan
scheduling.Proc. 49th Annual |IEEE Symposium on Foundations of Computer Science, 603-612,
2008.

[13] L. Epstein. Bin stretching revisitedcta Informtica, 39:97-117, 2003.

[14] U. Faigle, W. Kern and G. Turan. On the performance ofina-algorithms for partition problems.
Acta Cybernetica, 9:107-119, 1989.

[15] R. Fleischer and M. Wahl. Online scheduling revisitémurnal of Scheduling, 3:343-353, 2000.

[16] G. Galambos and G. Woeginger. An on-line schedulingriba with better worst case ratio than
Graham'’s list schedulings AM Journal on Computing, 22:349-355, 1993.

[17] M.R. Garay and D.S. Johnsoomputers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York, 1979.

[18] T. Gormley, N. Reingold, E. Torng and J. Westbrook. Gatieg adversaries for request-answer
gamesProc. 11th ACM-S AM Symposium on Discrete Algorithms, 564—-565, 2000.

[19] R.L. Graham. Bounds for certain multi-processing aabies. Bell System Technical Journal,
45:1563-1581, 1966.

[20] D.S. Hochbaum and D.B. Shmoys. Using dual approxinmatilyorithms for scheduling problems
theoretical and practical resultiournal of the ACM, 34:144-162, 1987.

[21] D.R. Karger, S.J. Phillips and E. Torng. A better algfum for an ancient scheduling probledour-
nal of Algorithms, 20:400-430, 1996.

[22] H. Kellerer, V. Kotov, M.G. Speranza and Z. Tuza. Semiioe algorithms for the partition problem.
Operations Research Letters, 21:235-242, 1997.

[23] J.F. Rudin Ill. Improved bounds for the on-line schédglproblem. Ph.D. Thesis. The University of
Texas at Dallas, May 2001.

[24] J.F. Rudin Il and R. Chandrasekaran. Improved boundshe online scheduling problerslAM
Journal on Computing, 32:717—735, 2003.

[25] J. Sgall. A lower bound for randomized on-line multipessor schedulindgnformation Processing
Letters, 63:51-55, 1997.

[26] D.D. Sleator and R.E. Tarjan. Amortized efficiency et lupdate and paging rulégSommunications
of the ACM, 28:202-208, 1985.

12

