
Semi-Online Scheduling Revisited∗

Susanne Albers† Matthias Hellwig‡

Abstract

Makespan minimization onm identical machines is a fundamental scheduling problem. The goal is
to assign a sequence of jobs, each specified by a processing time, to parallel machines so as to minimize
the maximum completion time of any job. Deterministic online algorithms achieve a competitive ratio
of about 1.92. Due to this relatively high competitiveness and the lack of progress in the area of
randomized online strategies, recent research has investigated scenarios where the online constraint is
relaxed.

We studysemi-online scheduling where at any time an online scheduler knows the sum of the jobs’
processing times. This problem relaxation is well motivated by practical applications. The best known
semi-online algorithm achieves a competitive ratio of 1.6 (Cheng, Kellerer, Kotov, 2005). The best
known lower bound is equal to 1.565 (Angelelli, Nagy, Speranza, Tuza, 2004).

In this paper we present two contributions for semi-online scheduling. We develop an improved
lower bound showing that no deterministic semi-online algorithm can attain a competitive ratio smaller
than 1.585. This significantly reduces the gap between the previous lower bound and the upper bound
of 1.6. Secondly we present a new semi-online algorithm thatis based on an approach different from
that of previous strategies. The algorithm is 1.75-competitive and hence does not achieve the best
possible competitiveness. However, our algorithm is extremely simple and, unlike previous strategies,
does not resort to job classes. The algorithm is more in the spirit of online algorithms not using any
extra information. Hence our upper bound highlights the additional power of a small piece of advice
when provided to an online algorithm.

Keywords: Competitive analysis, makespan minimization, online computation.

1 Introduction

Makespan minimization on parallel machines is a fundamental and extensively studied scheduling prob-
lem with a considerable body of literature published over the last forty years. In the basic problem setting
we are givenm identical parallel machines. A sequence of jobsσ = J1, . . . , Jn has to be scheduled non-
preemptively on these machines. Each jobJi is specified by an individual processing timepi, 1 ≤ i ≤ n.
The goal is to minimize themakespan, i.e. the maximum completion time of any job in the schedule.

The performance of offline algorithms and deterministic online algorithms is well understood. In
the offline scenario the entire job sequence is known in advance. Computing optimum schedules is NP-
hard [17]. Hochbaum and Shmoys devised a famous polynomial time approximation scheme [20]. In the
online scenario the jobs arrive one by one. Whenever a new jobJi arrives, its processing timepi is known.
However future jobsJk, with k > i, and their processing times are unknown. JobJi has to be scheduled
irrevocably on one of the machines before the next job arrives. Following Sleator and Tarjan [26] an

∗Work supported by the German Research Foundation.
†Department of Computer Science, Humboldt-Universität zuBerlin, Unter den Linden 6, 10099 Berlin.

albers@informatik.hu-berlin.de
‡Department of Computer Science, Humboldt-Universität zuBerlin, Unter den Linden 6, 10099 Berlin.

mhellwig@informatik.hu-berlin.de

1



online algorithmA is calledc-competitive if, for everyσ, A’s makespan is at mostc-times the optimum
makespan. A series of papers, published mostly in the 1990s,narrowed down the competitiveness of
deterministic online strategies. More precisely, the bestcompetitive ratio achievable by deterministic
online algorithms is in the range[1.88, 1.9201]. Much less is known for randomized online algorithms.
To date we know of no randomized strategy that provably beatsdeterministic ones, for all values ofm.

Due to the relatively high competitiveness of deterministic online algorithms and the lack of progress
in designing randomized strategies, recent research has focused on studying scenarios where the online
constraint is relaxed. An online algorithm is provided withsome information on the job sequenceσ or has
some extra ability to process it. More specifically, the following scenarios have been addressed. (1) An
online algorithm has some information on the jobs’ processing times or their total sum [3, 4, 5, 11, 22].
(2) An online algorithm knows the optimum makespan [7, 13]. (3) An online strategy may reorder jobs in
σ to a limited extent [12].

In this paper we investigate basic online makespan minimization assuming that, additionally, the sum
S =

∑n
i=1 pi of the jobs’ processing times is known. The resulting setting is referred to assemi-online

scheduling. Obviously, informationS can help an algorithm to make scheduling decisions. We believe that
S is a very mild form of advice. We make no assumptions regarding the processing times of individual
jobs and generally do not restrict the family of allowed job sequences. Availability of adviceS is also
motivated by practical applications. In a parallel server system there usually exist fairly accurate estimates
of the workload that arrives over a given time horizon. In a shop floor a scheduler typically accepts orders
(tasks) of a targeted volume for a given time period, say a dayor a week.

Previous work: We review the most important results relevant to our work andfirst address on-
line scheduling without any extra information. Graham in 1966 [19] gave the first deterministic online
algorithm. He showed that the famousList scheduling algorithm is(2 − 1

m
)-competitive. Using new

strategies, the competitive ratio was improved to(2− 1
m
− ǫm) [16], whereǫm tends to 0 asm → ∞, then

to 1.986 [8] and 1.945 [21], and finally to 1.923 [1] and 1.9201[16]. As for lower bounds, Faigle, Kern
and Turan [14] showed that no deterministic online algorithm can achieve a competitiveness smaller than
2− 1

m
, for m = 2 andm = 3. Form = 4, Rudin and Chandrasekaran [24] recently gave a lower bound

of
√
3 ≈ 1.732. For generalm the lower bound was raised from 1.707 [14] to 1.837 [9] and 1.852 [1],

and finally to 1.854 [18] and 1.88 [23].
For randomized online algorithms there exists a significantgap between the best known upper and

lower bounds. Form = 2 machines, Bartal et al. [8] presented an algorithm that achieves an optimal
competitive ratio of 4/3. For generalm a 1.916-competitive algorithm was devised in [2]. The best known
lower bound on the performance of randomized online algorithms is equal toe/(e − 1) ≈ 1.581.

We next consider semi-online scheduling, where an online algorithm knows the sumS of the jobs’
processing times. The setting was first introduced by Kellerer et al. [22] who concentrated onm = 2
machines and gave a deterministic semi-online algorithm that achieves an optimal competitive ratio of
4/3. Again form = 2, two papers by Angelelli et al. [4, 5] refined the results assuming that, additionally,
the job processing times are upper bounded by a known value. Asetting withm = 2 uniform machines
was studied in [6].

Semi-online scheduling on a general numberm of identical machines was investigated by Angelelli,
Nagy, Speranza and Tuza [3] and Cheng, Kellerer and Kotov [11]. The studies must have been done
independently since none of the two papers cites the other one. Angelelli et al. [3] gave a deterministic
semi-online algorithm that attains a competitiveness of(1 +

√
6)/2 ≈ 1.725 and showed a lower bound

of 1.565, asm → ∞, on the best possible competitive ratio of deterministic strategies. Cheng et al. [11]
presented a deterministic 1.6-competitive semi-online algorithm and gave a lower bound of 1.5, form ≥ 6,
on the competitiveness of deterministic strategies.

Our contribution: In this paper we present two contributions for semi-online

2



scheduling, complementing the existing results for classical makespan minimization. First we develop
a new lower bound on the competitive ratio that can be achieved by deterministic semi-online algorithms.
We show that the competitiveness is at leastc ≥ 1.58504, asm → ∞. This ratio almost matches the
upper bound of 1.6 presented by Cheng et al. [11]. Formally, the lower boundc is the root of the function
f(x) = 4x3−8x2+2x+1 that is in the range[1.58504, 1.58505]. We note thatc is greater thane/(e−1),
which is a ratio often appearing in the analysis of online algorithms. Our lower bound proof consists of
an explicit construction of a nemesis job sequence. It does not rely on numerical techniques or computer
assisted proofs.

As a second result we present a very simple deterministic semi-online algorithm that is based on an
approach different from that of previous strategies. The algorithms by Angelelli et al. [3] and Cheng et
al. [11] both resort to job classes, i.e. incoming jobs are classified according to their processing times. The
best known strategy by Cheng et al. [11] uses five job classes.The algorithm consists of sophisticated
job packing schemes. Over the course of the algorithm and itsanalysis two scheduling phases with two
associated stages and up to eight (or ten) machine types haveto be considered.

Instead in this paper we develop an algorithm that does not resort to job classes. Our strategy is
1.75-competitive and hence does not achieve the best possible competitiveness. However, as mentioned
above, the algorithm is very simple and can be stated in a single line (see Section 3). An incoming job
is either scheduled on the least loaded machine or on the machine with the⌈m/2⌉-th highest load. The
decision which of the two machines to choose depends on the least loaded machine. The analysis of the
algorithm relies on a potential function that keeps track ofaccumulated load on all the machines when
the least loaded machine has a certain load. We remark that our scheduling algorithm is more in the spirit
of online scheduling strategies not knowingS, which achieve a competitiveness around 1.92. Hence our
upper bound also highlights the additional power of a small piece of advice when provided to an online
algorithm.

Finally we show that our analysis is tight, i.e. our algorithm does not achieve a competitive ratio
smaller than 1.75. Moreover, we observe that the algorithm can be extended easily to the scenario where
an online scheduler knows the value of the optimum makespan.

2 A new lower bound

In this section we present a lower bound on the competitive ratio that can be achieved by deterministic
semi-online algorithms. Consider the functionf(x) = 4x3 − 8x2 + 2x + 1. This function has three
real-valued roots, one of which is in the range[1.58504, 1.58505]. The lower bound is equal to this root.
The other two roots off are in the ranges[−0.25,−0.24] and[0.65, 0.66].

Theorem 1 No deterministic semi-online algorithm can achieve a competitive ratio smaller than c as
m → ∞, where c is the root of f(x) = 4x3 − 8x2 + 2x+ 1 with c ∈ [1.58504, 1.58505].

Proof. Let A be any deterministic semi-online algorithm. In the following c always denotes the value
as specified in the statement of the theorem. The adversary presents a job sequenceσ in which the total
processing time of the jobs is equal toS = m + 16c2 − 12c − 16. We remark that the expression
16c2 − 12c − 16 is upper bounded by 5.2. The exact structure ofσ depends on the behavior ofA but in
each case the adversary uses at most four different processing times that we denote bypi, 1 ≤ i ≤ 4. A
job with a processing time ofpi is also referred to as api-job. The following construction ofσ works for
anym > 8.

Initially, the adversary presentsm− 4 jobs of processing timep1 = 1. If A assigns two of these jobs
to the same machine, then the lower bound proof is simple: Theadversary presents four additional jobs
with a processing time ofp1 = 1 as well asm jobs with a processing time ofp2 = (16c2 − 12c− 16)/m.

3



AlgorithmA has a makespan of2 while the adversary has a makespan of1+p2 only. In this case the ratio
of A’s makespan to the adversary’s makespan can be arbitrarily close to2, asm → ∞.

In the following we concentrate on the case thatA places them− 4 p1-jobs on different machines. At
this pointA has four empty machines. The adversary presents four jobs ofprocessing timep2 = c − 1.
We distinguish three cases.

(1) AlgorithmA assigns ap2-job to a machine already containing ap1-job.

(2) AlgorithmA assigns thep2-jobs only to machines not already containingp1-jobs, and twop2-jobs
are placed on the same machine.

(3) AlgorithmA assigns all thep2-jobs to different machines, none of which already containsap1-job.

m machines

p1 − jobs

p2 − jobs

Figure 1: Case (1)

m machines

p1 − jobs

p2 − jobs

Figure 2: Case (2)

Figures 1 and 2 depictA’s schedules in Cases (1) and (2), respectively. We next analyze the various cases.

Case (1): When thep2-jobs are scheduled,A has a makespan ofp1 + p2 = 1 + c − 1 = c because
there is a machine containing ap1-job as well as ap2-job. The adversary completes the request sequence
by presenting four jobs of processing timep3 = 2− c andm jobs of processing timep4 = (16c2 − 12c−
16)/m. The sum of the jobs’ processing times isS = (m−4) ·1+4(c−1)+4(2− c)+m(16c2 −12c−
16)/m = m + 16c2 − 12c − 16, as desired. The adversary constructs a schedule in which the p1-jobs
are assigned to different machines. Eachp2-job is paired with ap3-job, yielding a total processing time of
c− 1 + 2− c = 1. Each such job pair is assigned to an empty machine. Finally each of them machines
receives ap4-job. Thus the adversary’s makespan is1 + p4. The ratio ofA’s makespan to the adversary’s
makespan isc/(1 + p4) and this ratio tends toc asm → ∞.

Case (2): As A has combined twop2-jobs, one machine inA’s schedule has a load of at least2p2 =
2(c − 1) > 1. There arem − 4 additional machines containing ap1-job and thus having a load of 1.
Hence, when thep2-jobs are scheduled, there exist at most three machines having a load smaller than 1.
The adversary next reveals four jobs with a processing time of p3 = c. AlgorithmA must place at least one
of them on a machine with a load of1, incurring a makespan of1+c. The adversary completes the request
sequence by presentingm−8 jobs of processing timep4 = (16c2−20c−8)/(m−8). The sum of the jobs’
processing times isS = (m−4)·1+4(c−1)+4c+(m−8)(16c2−20c−8)/(m−8) = m+16c2−12c−16,
as claimed. The adversary can construct a schedule with a makespan ofc: Them − 4 p1-jobs are placed

4



on separate machines. Among these machines, four receive anadditionalp2-job andm−8 get an extrap4-
job. The fourp3-jobs are placed separately on the four remaining empty machines. We havep1 + p2 = c
andp1 + p4 < c becausep4 < 0.5, for m > 8. Thus no machine has a load greater thanc. We conclude
that the ratio ofA’s makespan to the adversary’s makespan is at least(1 + c)/c and this expression is
greater thanc, for our choice ofc.

Case (3): Algorithm A assigns them − 4 p1-jobs and the fourp2-jobs to different machines so that,
after the assignment, each machine contains exactly one joband there is no empty machine in the schedule.
The adversary presents two jobs of processing timep3 = 2c(c − 1)− 1. Again we distinguish two cases.

(a) AlgorithmA assigns ap3-job to a machine containing ap1-job or assigns bothp3-jobs to the same
machine containing ap2-job.

(b) AlgorithmA assigns thep3-jobs to two machines containing ap2-job.

Figure 3 depictsA’s schedule in Case (3a) if ap3-job is assigned to a machine containing ap1-job. Figure 4
shows the schedule in Case (3b).

m machines

p1 − jobs

p2 − jobs

p3 − jobs

Figure 3: Case (3a)

m machines

p1 − jobs

p2 − jobs

p3 − jobs

Figure 4: Case (3b)

Case (3a): When thep3-jobs are scheduled,A has a makespan of at least2c(c−1). This holds true if a
p3-job is assigned to a machine containing ap1-job becausep1+p3 = 2c(c−1). This also holds true if both
p3-jobs are placed on the same machine containing ap2-job becausep2+2p3 = c−1+2(2c(c−1)−1) =
2c(c−1)+(2c+1)(c−1)−2 > 2c(c−1) becausec > 1.5. The adversary finishes the request sequence
by sendingm−4 jobs of processing timep4 = 6(2c(c−1)−1)/(m−4). The total processing time of the
jobs isS = (m−4)p1+4p2+2p3+(m−4)p4 = m−4+4(c−1)+2(2c(c−1)−1)+6(2c(c−1)−1) =
m+16c2−12c−16. The adversary constructs the following schedule. Eachp1-job is assigned to a separate
machine and will receive an additionalp4-job. The remaining four machines are used to schedule thep2-
and thep3-jobs. More specifically, two machines receive twop2-jobs each. The other two machines each
receive ap3-job. We have2p2 > p3 because this inequality is equivalent to1 > 2(c − 1)2 and is satisfied
sincec < 1.6. Moreover, form ≥ 35, we have2p2 > p1 + p4 and the adversary’s makespan is upper
bounded by2p2 = 2(c − 1). In summary, form ≥ 35 and hence form → ∞, the ratio ofA’s makespan
to the adversary’s makespan is2c(c − 1)/(2(c − 1)) = c.

Case (3b): Algorithm A assigns the twop3-jobs to two machines containing ap2-job and hence the
load on these machines isp2 + p3 = c− 1 + 2c(c − 1) − 1 = (2c + 1)(c − 1) − 1 > 1. Thus when the

5



p3-jobs are scheduled, there are only two machines inA’s schedule that have a load smaller than1. The
adversary then presents three final jobs with a processing timep4 = 2p3 = 2(2c(c − 1) − 1). Again, we
have a total processing time ofS = (m−4)p1+4p2+2p3+3p4 = m−4+4(c−1)+8(2c(c−1)−1) =
m + 16c2 − 12c − 16. Algorithm A must schedule one of thep4-jobs on a machine having a load
of at least 1. Hence its makespan is at least1 + p4 = 1 + 2p3. On the other hand, the adversary
can construct a schedule with a makespan ofp4 = 2p3: Them − 4 p1-jobs are assigned to different
machines. Four of these machines receive an additionalp2-job, which results in a load of1+p2 = c < p4.
The remaining four machines are used to schedule thep3- and p4-jobs. One machine is assigned the
two p3-jobs. The other three machines each receive ap4-job. Hence the ratio ofA’s makespan to the
adversary’s makespan is(1 + p4)/p4 = 1 + 1/p4 = 1 + 1/(2p3). We have2(c − 1)p3 − 1 = 0 because
2(c − 1)p3 − 1 = 4c(c − 1)2 − 2(c − 1) − 1 = 4c3 − 8c2 + 2c + 1 and c is a root of the function
f(x) = 4x3 − 8x2 + 2x+ 1. Hence2p3 = 1/(c − 1) and we conclude that the ratio ofA’s makespan to
the adversary’s makespan is1 + 1/(2p3) = 1 + (c− 1) = c. 2 2

3 A semi-online algorithm without job classes

In this section we present a semi-online algorithm that is based on an approach different from that of
previous strategies [3, 11] and does not rely on job classes.The algorithm is calledLight Load, or LL for
short, because it tries to keep the least loaded machine, andin fact⌊m/2⌋ machines, lightly loaded. During
the scheduling process the algorithm always maintains a list of them machines sorted in non-increasing
order of current load. Theload of a machine is the sum of the processing times of the jobs currently
assigned to that machine. At any time, given the sorted listM1, . . . ,Mm of machines,Mj denotes the
machine with thej-th highest load,1 ≤ j ≤ m. In particular,M1 is a machine with the highest load and
Mm is a least loaded machine. Letlj denote the load ofMj , 1 ≤ j ≤ m. Moreover, letj0 = ⌈m/2⌉. Of
specific interest is machineMj0 having the⌈m/2⌉-th highest load.

Algorithm LL processes a job sequenceσ = J1, . . . , Jn as follows. Whilelm ≤ 0.25 S
m

, i.e. while the
least loaded machineMm has a load of at most0.25 S

m
, a new job is assigned to this machineMm. When

lm > 0.25 S
m

, LL prefers to schedule an incoming jobJi on machineMj0. The algorithm checks if such
an assignment is possible without exceeding a load of1.75 S

m
. If indeedlj0 + pi ≤ 1.75 S

m
, Ji is scheduled

onMj0; otherwiseJi is assigned to the least loaded machineMm. A summary of the algorithm is given
below.

Algorithm Light Load (LL): JobJi is assigned toMj0 if lm > 0.25 S
m

andlj0 + pi ≤ 1.75 S
m

, and toMm

otherwise.

We explain the choice of the algorithm’s parameters. The proof thatLL is 1.75-competitive crucially
depends on the definitionj0 = ⌈m/2⌉. We will show that iflm > 0.75 S

m
and hence a new job cannot

necessarily be scheduled such that the resulting makespan is upper bounded by1.75 S
m

, then the job se-
quence containsm+1 large jobs of processing time greater than0.5 S

m
. In order to secure the existence of

these jobs, we need to show that (a)Mj0 has a load of at most1.25 S
m

and (b) Mm had a load of at most
0.25 S

m
over a long time horizon. The load bounds of (a) and (b) only hold if j0 = ⌈m/2⌉. In this case it

is possible to balance load between⌈m/2⌉ heavily loaded and⌊m/2⌋ lightly loaded machines. Any other
choice ofj0 will lead to a higher competitive ratio. Moreover,LL works with a load bound of0.25 S

m
for

machineMm. This ensures that an assignment of a small job of processingtime at most0.5 S
m

does not
exceed the critical load threshold of0.75 S

m
.

Theorem 2 Algorithm LL achieves a competitive ratio of 1.75.

6



In the remainder of this section we prove the above theorem. We show that for any job sequenceσ

LL(σ) ≤ 1.75 · OPT (σ) (1)

whereLL(σ) andOPT (σ) denote the makespan ofLL and an optimal offline algorithmOPT, respec-
tively. The proof is by induction on the lengthn of the job sequenceσ. For job sequences consisting of a
single jobJ1 there is nothing to show becauseLL andOPT both have a makespan equal to the processing
timep1 of J1. Suppose that (1) holds for job sequences of up ton− 1 jobs. We will prove that (1) is also
satisfied for sequences consisting ofn jobs.

Let σ = J1, . . . , Jn be an arbitrary job sequence of lengthn. By induction hypothesisLL schedules
the firstn − 1 jobs such that a performance ratio of 1.75 is maintained, i.e. LL assigns each job such that
its resulting makespan is at most 1.75 times the optimum makespan for the job sequence processed so far.
In the following we investigate the assignment ofJn and prove that the scheduling step also maintains the
desired performance guarantee. We concentrate on the case that the assignment ofJn causes an increase
in LL’s makespan since otherwise there is nothing to show.

If LL schedulesJn on machineMj0 , we are easily done because by the definition of the algorithm
lj0 + pn ≤ 1.75 S

m
. SinceJn is the last job ofσ, the ratio S

m
is a lower bound on the optimum makespan

and hencelj0 + pn ≤ 1.75 ·OPT (σ). Moreover, ifLL schedulesJn on the least loaded machineMm and
lm ≤ 0.75 S

m
, the analysis is simple: Ifpn ≤ S

m
, thenLL’s resulting makespan islm+pn ≤ 0.75 S

m
+ S

m
≤

1.75 S
m

≤ 1.75 · OPT (σ). If pn > S
m

, thenlm + pn ≤ 0.75pn + pn = 1.75pn ≤ 1.75 ·OPT (σ) because
the optimum makespan ofσ cannot be smaller than the processing time of any job.

Therefore we can restrict ourselves to the case thatLL schedulesJn onMm andlm > 0.75 S
m

imme-
diately before the assignment. Letlm = (0.75 + ǫ) S

m
, for someǫ > 0. We haveǫ < 0.25 becauseMm

is a least loaded machine and hence its loadlm is smaller thanS
m

. If we hadlm ≥ S
m

, then all machines
would have a load of at leastS

m
and the total load on them machines before the arrival ofJn would be

m · S
m

= S. Hence the total processing time of jobs inσ would be at leastS + pn > S, contradicting the
fact that total processing volume equalsS. Thus0 < ǫ < 0.25. If lm + pn ≤ 1.75 S

m
, we are again done.

Hence we assumelm+pn > 1.75 S
m

. We obtainpn > 0.75 S
m

because, as just argued,lm < S
m

. Therefore,
pn > (0.5 + ǫ) S

m
.

In the following we will show that immediately before the assignment ofJn, each machine inLL’s
schedule contains a job of processing time at least(0.5 + ǫ) S

m
. This implies that includingJn, the job

sequenceσ containsm + 1 jobs of processing time at least(0.5 + ǫ) S
m

each. Two of these jobs must
be scheduled on the same machine in an optimal schedule and henceOPT (σ) ≥ (1 + 2ǫ) S

m
. Using

this property we can finish the proof of Theorem 2. Ifpn ≤ (1 + 2ǫ) S
m

, thenLL’s resulting makespan
is lm + pn ≤ (0.75 + ǫ) S

m
+ (1 + 2ǫ) S

m
= (1.75 + 3ǫ) S

m
≤ 1.75(1 + 2ǫ) S

m
≤ 1.75 · OPT (σ). If

pn > (1+2ǫ) S
m

, then the resulting makespan islm+pn ≤ (0.75+ǫ) S
m
+pn ≤ (0.75+ǫ)pn/(1+2ǫ)+pn =

(1.75 + 3ǫ)pn/(1 + 2ǫ) ≤ 1.75 · pn ≤ 1.75 · OPT (σ).
It remains to prove that immediately before the assignment of Jn each machine inLL’s schedule

contains a job of processing time at least(0.5 + ǫ) S
m

. To this end we will show that while at mostj0
machines have a load of at least(0.75 + ǫ) S

m
each, the least loaded machine has a load of not more than

0.25 S
m

(Lemma 1). Moreover, after that time, the load of machineMj0 does not grow too large (Lemma 2).
In the following let timet be the point of time immediately after jobJt is scheduled,1 ≤ t ≤ n. At

any time a machine inLL’s schedule is calledfull if its load is at least(0.75 + ǫ) S
m

. WhenJn arrives,
the least loaded machine and hence any machine inLL’s schedule is full. We consider the past scheduling
steps of the jobsJ1, . . . , Jn−1. Let tj , 1 ≤ j ≤ m, be the first point of time when exactlyj machines
are full in LL’s schedule, i.e. the assignment ofJtj causes thej-th machine to become full. We have
1 ≤ t1 < . . . < tm ≤ n− 1. Of particular interest is the timetj0 when exactlyj0 machines are full. The
next lemma states that at this time the least loaded machineMm has a load of at most0.25 S

m
.

7



Lemma 1 At time tj0 there holds lm ≤ 0.25 S
m

.

Proof. We will assumelm > 0.25 S
m

and derive a contradiction to the fact that the total processing time
of jobs inσ is S. For any timet, 1 ≤ t ≤ n, letL(t) be the total load on them machines, i.e.L(t) is the
sum of the processing times of the jobsJ1, . . . , Jt. For the further analysis we need a potential function
Φ whose definition is based on a machine setM. LetM(tj0) be the set of machines that are full at time
tj0. At timest > tj0 we update this set whenever a machine becomes full. More specifically, for any time
t > tj0, setM(t) is defined as follows. Ift 6= tj, for all j = j0 + 1, . . . ,m, then the machine set remains
unchanged andM(t) = M(t − 1). If t = tj, for somej with j0 + 1 ≤ j ≤ m, thenM(tj) is obtained
from M(tj − 1) by deleting the machine having the smallest current load inM(tj − 1). In case of ties,
the machineMj ∈ M(tj − 1) with the highest index in the machine orderingM1, . . . ,Mm at timetj − 1
is chosen. Since at any timetj, for j = j0 + 1, . . . ,m, exactly one machine is deleted from the set and
j0 = ⌈m/2⌉ ≥ m− ⌈m/2⌉ = m − j0, setM(t) is non-empty at all timest with tj0 ≤ t < tm. For any
machineMj and any timet let lj(t) denote its current load. Define

Φ(t) =
∑

Mj∈M(t)

(lj(t)− 0.75 S
m
).

Intuitively, Φ is the total load in excess to0.75 S
m

on the machines ofM(t). Since every machine of
M(tj0) has a load of at least(0.75+ ǫ) S

m
and machine loads can only increase,Φ is always non-negative.

We next argue that at all timest with tj0 ≤ t < tm, all machines ofM(t) are among thej0 machines
having the highest load inLL’s current schedule. More formally, at any timet, tj0 ≤ t < tm, let H(t)
denote the set consisting of thej0 machinesM1, . . . ,Mj0 with highest current load. We will showM(t) ⊆
H(t). We assume w.l.o.g. that whenever machines are sorted according to their load after a scheduling
step, only the rank of the machine that received the new job changes. The relative order of all the other
machines remains unchanged. In other words, machines having equal load appear in the same order before
and after the scheduling step. This property can always be maintained by simply renumbering machines
with equal load.

ObviouslyM(tj0) ⊆ H(tj0) is satisfied because at timetj0 there exist exactlyj0 full machines inLL’s
schedule andM(tj0) contains all these machines. So suppose thatM(t − 1) ⊆ H(t − 1) holds, where
tj0 < t ≤ tm − 1, and consider the scheduling step at timet. Algorithm LL assigns the incoming jobJt
either to machineMj0 with thej0-th highest load or to machineMm with the smallest load. IfJt is placed
on the current machineMj0, then the setH does not change andH(t− 1) = H(t). If Jt is assigned to the
least loaded machineMm and the machine does not become full, then againH(t− 1) = H(t) because set
H only contains full machines. Hence setH can change only ifJt is assigned toMm causing the machine
to become full.

If at time t setH does not change, thenM(t) ⊆ M(t − 1) ⊆ H(t − 1) = H(t) and we are done.
So assume thatH does change. As argued in the last paragraphJt is placed on the least loaded machine
Mm and this machines becomes full. Thust = tj, for somej with j0 < j ≤ m − 1. At this time the
former machineMm joinsH while the former machineMj0 leaves the set. Note thatMj0 is a least loaded
machine inH(t− 1). At time tj , the least loaded machine inM(tj − 1) is removed from this set; in case
of ties the highest indexed machine is chosen. Since both setsM(tj − 1) andH(tj − 1) lose least loaded
machines, propertyM(tj − 1) ⊆ H(tj − 1) impliesM(tj) ⊆ H(tj).

We will show that iflm > 0.25 S
m

at timetj0 , then the following inequality holds forj = j0, . . . ,m.

L(tj)− Φ(tj) > 0.25S + j0 · 0.5 S
m

+ (j − j0)
S
m

(2)

Using (2) forj = m and observing again that the potential is non-negative, we obtain that at timetm and
hence before the arrival ofJn, the total processing time of jobs scheduled so far is at least

L(tm) > 0.25S + ⌈m2 ⌉0.5 S
m

+ (m− ⌈m2 ⌉) S
m

≥ 1.25S − (m2 + 1
2 )0.5

S
m

= S − 0.25 S
m
.

8



SinceJn has a processing time ofpn > (0.5 + ǫ) S
m

, the total processing time of jobs inσ is at least
L(tm) + pn > S + 0.25 S

m
> S. We obtain the desired contradiction.

It remains to show (2), forj = j0, . . . ,m, assuming thatlm > 0.25 S
m

holds at timetj0. The proof is by
induction onj. First considerj0. At time tj0 exactlyj0 machines are full and these machinesM1, . . . ,Mj0

each have a load greater than0.75 S
m

. By assumptionlm > 0.25 S
m

. Hence machinesMj0+1, . . . ,Mm each
have a load greater than0.25 S

m
and the total load on thesem−j0 machines is greater than(m−j0)·0.25 S

m
.

We obtain that at timetj0 the total load on them machines is

L(tj0) >

j0∑

j=1

lj(tj0) +

m∑

j=j0+1

lj(tj0)

= j0 · 0.75 S
m

+
∑j0

j=1(lj(tj0)− 0.75 S
m
) + (m− j0)0.25

S
m

= 0.25S + j0 · 0.5 S
m

+Φ(tj0).

The last equation holds because machinesM1, . . . ,Mj0 form setM(tj0). Inequality (2) then follows for
j = j0.

Next suppose that (2) holds for indexj. We show that it is also satisfied forj + 1. We first argue that

L(t)− Φ(t) > 0.25S + j0 · 0.5 S
m

+ (j − j0)
S
m

(3)

holds for anyt = tj, tj + 1, . . . , tj+1 − 1. By induction hypothesis the above inequality holds fort = tj .
At timest with tj < t < tj+1 the machine setM(t) does not change and is equal toM(tj). At any time
t the incoming jobJt increases the total load on them machines bypt, i.e.L(t) = L(t − 1) + pt. The
potentialΦ only increases bypt if Jt is assigned to a machine inM(tj). Hence the left hand side of (3)
does not decrease at timest = tj + 1, . . . , tj+1 − 1.

At time tj+1 another machine becomes full. Since there exist alreadyj0 full machines andj+1 > j0,
an additional full machine can only be created if the incoming job Jtj+1

is placed on the currently least
loaded machineMm. An assignment to the current machineMj0 would not generate an additional full
machine. By assumption, at timetj0 and hence also at the current timelm > 0.25 S

m
. ThusLL would

prefer to scheduleJtj+1
on machineMj0 . Since this assignment is not performed, the resulting load

would exceed1.75 S
m

, i.e. lj0(tj+1 − 1) + ptj+1
> 1.75 S

m
and hence

ptj+1
> S

m
− (lj0(tj+1 − 1)− 0.75 S

m
).

MachineMj0 is a least loaded machine inH(tj+1−1). At time tj+1 the least loaded machine inM(tj+1−
1) is removed from the set. As argued aboveM(t) ⊆ H(t) for anyt with tj0 ≤ t < tm. Hence the least
loaded machine inM(tj+1 − 1) has a load of at leastlj0(tj+1 − 1). Thus at timetj+1 the potential
decreases by at least

Φ(tj+1 − 1)− Φ(tj+1) ≥ lj0(tj+1 − 1)− 0.75 S
m
.

We obtainptj+1
+Φ(tj+1 − 1)− Φ(tj+1) >

S
m

and, as desired,

L(tj+1)− Φ(tj+1) = L(tj+1 − 1)− Φ(tj+1 − 1) + ptj+1 +Φ(tj+1 − 1)− Φ(tj+1)

≥ 0.25S + j0 · 0.5 S
m

+ (j + 1− j0)
S
m
.

The inductive step is complete.2 2

For the further analysis we need a second lemma.

9



Lemma 2 At any time t with tj0 ≤ t < tm machine Mj0 in LL’s schedule has a load of at most (1.25 −
ǫ) S

m
.

Proof. Suppose that at some timet, tj0 ≤ t < tm, the machineMj0 with thej0-th highest load had a load
greater than(1.25 − ǫ) S

m
. Thus at this timet and also at timetm the j0 machines with highest load in

LL’s schedule had a total load greater thanj0(1.25 − ǫ) S
m

. At time tm all machines ofLL are full and the
m− j0 machines with the smallest load have a total load of at least(m − j0)(0.75 + ǫ) S

m
. Thus at time

tm the total load on them machines is greater than

j0(1.25 − ǫ) S
m

+ (m− j0)(0.75 + ǫ) S
m

≥ ⌈m2 ⌉0.5 S
m

+ 0.75S − ǫ S
m

≥ S − ǫ S
m
.

Including Jn, the total processing time of jobs inσ is greater thanS − ǫ S
m

+ pn > S becausepn >
(0.5 + ǫ) S

m
, This contradicts the fact that the total processing time ofjobs inσ is equal toS. 2

We are now ready to identifym large jobs inLL’s schedule at timetm. More specifically, we show
that at any timetj, for j = 1, . . . ,m, a job of processing time at least(0.5 + ǫ) S

m
is scheduled.

By Lemma 1 at timetj0 we havelm ≤ 0.25 S
m

. Hence at any time witht ≤ tj0 we havelm ≤ 0.25 S
m

and LL schedules an incoming job on the least loaded machine. At anytime tj with j = 1, . . . , j0 a
machine becomes full and hencelm + ptj ≥ (0.75 + ǫ) S

m
. This impliesptj ≥ (0.75 + ǫ) S

m
− 0.25 S

m
=

(0.5 + ǫ) S
m

.
Next consider the timestj with j0 < j ≤ m. At those times another full machine can only be created

if the incoming job is scheduled on the least loaded machine.Let t∗ be the first point of time at which the
least loaded machine inLL’s schedule has a load greater than0.25 S

m
. As above we can show that at any

timetj with tj0 < tj ≤ t∗ a job of processing time at least(0.5+ǫ) S
m

is scheduled. Finally consider times
tj with t∗ < tj ≤ tm. The least loaded machine inLL’s schedule has a load greater than0.25 S

m
. Therefore,

LL would prefer to placeJtj on the machine with thej0-th highest load. SinceJtj is placed on the least
loaded machine instead we havelj0(tj − 1) + ptj > 1.75 S

m
. By Lemma 2,lj0(tj − 1) ≤ (1.25− ǫ) S

m
and

henceptj > (0.5 + ǫ) S
m

. This concludes the proof of Theorem 2.
We next provide a matching lower bound on the performance ofLL.

Theorem 3 Algorithm LL does not achieve a competitive ratio smaller than 1.75.

Proof. For simplicity we assume thatm is even. Moreover, letm ≥ 4. Choose anǫ with 0 < ǫ < 1.
We prove thatLL does not achieve a competitive ratio smaller than1.75 − ǫ. Let S = m. Furthermore,
let k be an integer satisfyingk ≥ 1.75/ǫ and setp1 = 1/(4k). An adversary first presentskm jobs
of processing timep1. These jobs have a total processing time ofm/4. Thus, while thep1-jobs arrive,
machineMm in LL’s schedule has a load of at most1/4 = 0.25 S

m
and eachp1-job is assigned to this least

loaded machineMm. Hence, when all thekm p1-jobs are scheduled, each of them machine has a load of
exactlykp1 = 0.25.

Next the adversary presentsm/2 jobs of processing timep2 = 0.5 andm/2 jobs of processing time
p3 = 1− 2/m. While these jobs are scheduled, the least loaded machineMm in LL’s schedule has a load
of exactly0.25 S

m
. Thus, again, any of thesem jobs is placed on machineMm. After the assignment of

these jobs, each machine inLL’s schedule has a load of at least 0.75 becausep3 = 1 − 2/m ≥ 0.5. The
adversary finally reveals a job of processing timep4 = 1 so thatLL’s final makespan is 1.75.

The total processing time of all jobs iskmp1 +m/2 · p2 +m/2 · p3 + 1 = m/4 +m/4 +m/2(1 −
2/m) + 1 = m = S, as desired. The adversary can construct a schedule whose makespan is upper
bounded by1 + p1: Them/2 jobs of processing timep3 and the job of processing timep4 are assigned
to different machines. Them/2 jobs of processing timep2 = 0.5 are combined to pairs and placed on

10



machines not yet occupied by thep3- andp4-jobs. Ifm/2 is odd, then onep2-job is scheduled alone on a
machine. Finally, each job of processing timep1 is scheduled on a machine currently having the smallest
load.

We conclude that the competitive ratio ofLL is at least1.75/(1 + p1) and this ratio is at least1.75− ǫ
becausep1 < ǫ/1.75. 2

We finally observe thatLL can be extended easily to the scenario where an online scheduler knows the
valueOPT (σ) of the optimum makespan. In this case we just have to replaceS

m
by OPT (σ) in both the

description and the analysis of the algorithm.

Corollary 1 Algorithm LL achieve a competitive ratio of 1.75 if S/m is replaced by the value of the
optimum makespan.

4 Conclusion and open problems

In this paper we have studied makespan minimization in the setting where an online scheduler knows
the sum of the jobs’ processing times. An obvious open problem is to determine the exact competitive
ratio that can be achieved in this scenario. However, since the gap between our lower bound of 1.585 and
the best known upper bound of 1.6 [11] is small, a further improvement in this range might be hard to
obtain. A more fruitful working direction is to analyze the best competitiveness attainable if an online
scheduler known the value of the optimum makespan. Azar and Regev [7] showed a lower bound of 4/3.
The algorithm by Cheng et al. [11] is also 1.6-competitive inthis problem setting.

References

[1] S. Albers. Better bounds for online scheduling.SIAM Journal on Computing, 29:459-473, 1999.

[2] S. Albers. On randomized online scheduling.Proc. 34th Annual ACM Symposium on Theory of
Computing, 134–143, 2002.

[3] E. Angelelli, A.B. Nagy, M.G. Speranza and Z. Tuza. The on-line multiprocessor scheduling problem
with known sum of the tasks.Journal of Scheduling, 7:421–428, 2004.

[4] E. Angelelli, M.G. Speranza and Z. Tuza. Semi-on-line scheduling on two parallel processors with
an upper bound on the items.Algorithmica, 37:243–262, 2003.

[5] E. Angelelli, M.G. Speranza and Z. Tuza. New bounds and algorithms for on-line scheduling: two
identical processors, known sum and upper bound on the tasks. Discrete Mathematics & Theoretical
Computer Science, 8:1–16, 2006.

[6] E. Angelelli, M.G. Speranza and Z. Tuza. Semi-online scheduling on two uniform processors.The-
oretical Computer Science, 393:211–219, 2008.

[7] Y. Azar and O. Regev. On-line bin-stretching.Theoretical Computer Science, 268:17–41, 2001.

[8] Y. Bartal, A. Fiat, H. Karloff and R. Vohra. New algorithms for an ancient scheduling problem.
Journal of Computer and System Sciences, 51:359–366, 1995.

[9] Y. Bartal, H. Karloff and Y. Rabani. A better lower bound for on-line scheduling.Infomation Pro-
cessing Letters, 50:113–116, 1994.

11



[10] B. Chen, A. van Vliet and G.J. Woeginger. A lower bound for randomized on-line scheduling algo-
rithms.Information Processing Letters, 51:219–222, 1994.

[11] T.C.E. Cheng, H. Kellerer and V. Kotov. Semi-on-line multiprocessor scheduling with given total
processing time.Theoretical Computer Science, 337:134–146, 2005.

[12] M. Englert, D.Özmen and M. Westermann. The power of reordering for online minimum makespan
scheduling.Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, 603-612,
2008.

[13] L. Epstein. Bin stretching revisited.Acta Informtica, 39:97–117, 2003.

[14] U. Faigle, W. Kern and G. Turan. On the performance of on-line algorithms for partition problems.
Acta Cybernetica, 9:107–119, 1989.

[15] R. Fleischer and M. Wahl. Online scheduling revisited.Journal of Scheduling, 3:343–353, 2000.

[16] G. Galambos and G. Woeginger. An on-line scheduling heuristic with better worst case ratio than
Graham’s list scheduling.SIAM Journal on Computing, 22:349–355, 1993.

[17] M.R. Garay and D.S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York, 1979.

[18] T. Gormley, N. Reingold, E. Torng and J. Westbrook. Generating adversaries for request-answer
games.Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, 564–565, 2000.

[19] R.L. Graham. Bounds for certain multi-processing anomalies. Bell System Technical Journal,
45:1563–1581, 1966.

[20] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems
theoretical and practical results.Journal of the ACM, 34:144–162, 1987.

[21] D.R. Karger, S.J. Phillips and E. Torng. A better algorithm for an ancient scheduling problem.Jour-
nal of Algorithms, 20:400–430, 1996.

[22] H. Kellerer, V. Kotov, M.G. Speranza and Z. Tuza. Semi on-line algorithms for the partition problem.
Operations Research Letters, 21:235–242, 1997.

[23] J.F. Rudin III. Improved bounds for the on-line scheduling problem. Ph.D. Thesis. The University of
Texas at Dallas, May 2001.

[24] J.F. Rudin III and R. Chandrasekaran. Improved bounds for the online scheduling problem.SIAM
Journal on Computing, 32:717–735, 2003.

[25] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling.Information Processing
Letters, 63:51–55, 1997.

[26] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications
of the ACM, 28:202–208, 1985.

12


