
Minimizing Stall Time in Single and Parallel Disk Systems

Susanne Albers� Naveen Gargy Stefano LeonardizAbstract
We study integrated prefetching and caching problems following
the work of Caoet. al. [3] and Kimbrel and Karlin [13]. Caoet. al.
and Kimbrel and Karlin gave approximation algorithms for mini-
mizing the total elapsed time in single and parallel disk settings.
The total elapsed time is the sum of the processor stall timesand
the length of the request sequence to be served.

We show that an optimum prefetching/caching schedule for a
single disk problem can be computed in polynomial time, thereby
settling an open question by Kimbrel and Karlin. For the parallel
disk problem we give an approximation algorithm for minimizing
stall time. Stall time is an important and harder to approximate
measure for this problem. All of our algorithms are based on a
new approach which involves formulating the prefetching/caching
problems as integer programs.1 Introduction
Prefetching and caching are powerful tools for increasing the per-
formance of file and data base systems. In prefetching, memory
blocks are loaded from slow memory, e.g. a disk, into cache be-
fore the actual references to the blocks so as to reduce the waiting
time incurred if the block were to be fetched from disk when itis
referenced. Caching on the other hand tries to maintain the most
frequently accessed blocks in cache so that they do not have to be
fetched from disk. Both prefetching and caching have separately
been the subjects of extensive theoretical and experimental stud-
ies [1, 2, 5, 6, 7, 8, 9, 14, 15, 19, 20]. However, only recently
have researchers started looking at these techniques in an integrated
manner and to explore interrelationships between them [3, 4, 11,
13, 16, 17]. In a seminal work Caoet. al. [3] introduced a model
that allows an algorithmic study of the problem.�Max-Planck-Institut für Informatik, Im Stadtwald, 66123Saarbrücken,
Germany. E-mail:albers@mpi-sb.mpg.deyDepartment of Computer Science and Engineering, Indian Institute of
Technology, New Delhi 110016, India. E-mail:
naveen@iitd.ernet.inzThis work was done while the author was visiting the Max-Planck-
Institut für Informatik, Saarbrücken, Germany. Dipartimento di Informatica
Sistemistica, Università di Roma “La Sapienza”, via Salaria 113, 00198-
Roma, Italia. This work was partly supported by EU ESPRIT Long term
Research Project ALCOM-IT under contract n. 20244, and by Italian Min-
istry of Scientific Research Project 40% “Algoritmi, Modelli di Calcolo e
Strutture Informative”. E-mail:leon@dis.uniroma1.it

First consider the case when all blocks reside on one disk. We
are given a request sequence� = r1; : : : ; rn and a cache of sizek. Each of then requestsri specifies a memory block stored on
disk. We emphasize that we study the offline problem in which
the entire request sequence is given in advance. Serving a request
takes one time-unit. However, a request can be served only ifthe
block requested is in cache. Fetching a block not in cache takesF time units. Thus if we encounter a request to a block that is
not in cache we can start fetching the block from disk; in thiscase
the processor has to stall forF time-units. A better option is to
initiate a fetch,a prefetch, to the block somei time-units before the
actual reference; the processor now has to stall for onlyF � i time-
units. A prefetch operation may be initiated at any time provided it
is the only prefetch happening at that time. However, — and this
is where caching enters the picture — when we initiate a prefetch
we also have to make room in cache for the in-coming block by
evicting some block from cache. Thus, not only do we need to
decide when to initiate a prefetch but also what blocks to fetch and
evict. Starting a prefetch too early might force us to evict blocks
which are requested fairly soon so that we have to initiate more
prefetches to avoid stalling for these blocks. On the other hand, if a
prefetch is started late, the processor might have to stall for a long
time. Our goal is to minimize the total stall time, which is the total
time the processor is idle. This is equivalent to minimizingthe total
time taken to serve the request sequence since this is just the sum
of the stall times and the length of the sequence.

As an example, consider the requests sequencea; b; c; g; a; b; g; h and a cache size of 4, with blocksa; b; c andd being initially in cache. AssumeF = 5. The minimum stall
time required on this sequence is 3. On the first request toa, we
start prefetchingg and evict blockd. Hence we have to stall for
two time-units waiting for blockg. On the request tog, we start
prefetchingh and evictc and hence have to stall for one time-unit
beforeh is in cache. -1 2 3 4 5 6 7 8 9 10 11a b c g a b g h-� g=d -� h=c
time

service

fetch/evict

Figure 1: An example for one disk.

In the case of a parallel disk system, first explored by Kimbrel
and Karlin [13], the memory blocks are distributed overD disks
with each block stored on exactly one disk. At any time at most
one block may be fetched from a given disk. However, blocks that
reside on different disks may be prefetched in parallel. Anyblock
in cache may be evicted to make room for a block being fetched.
Thus, this corresponds to the setting where blocks are read-only
and do not have to be written back to disk. Again, the goal is to
minimize the total stall time. Since blocks from different disks can

-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a1 a2 b1 a3 b2 b1 b1 a2 a4 b2 c2-� a3=c1 -� a4=a3-� b2=a1 -� c2=b1
time

service

fetch/evict

disk 1

disk 2

disk 3

Figure 2: An example for three disks.

be fetched in parallel, an efficient strategy for the parallel disk case
involves balancing the load,ie. the number of fetches, amongst the
disks.

We give a small illustrating example for three disks. Suppose
that disk 1 stores blocksa1; a2; a3; a4, disk 2 stores blocksb1; b2
and disk 3 stores blocksc1; c2. We assumeF = 5 and a cache
of size 4. Blocksa1; a2; b1; c1 are initially in cache. In Figure 2
we give a schedule for serving the request sequencea1; a2; b1; a3; b2; b1; b1; a2; a4; b2; c2. The total stall time is 4 time
units. The schedule shows that stall time may be used simultane-
ously on several disks. This is the case at times 4 and 5 as wellas
at time 11. A disk can only prefetch blocks that are stored on it.
However, evictions can be from any disk.

Previous work: Caoet. al. analyzed two algorithms,conserva-
tive andaggressive for the single disk problem. Theconservative
strategy incurs the same faults as Belady’s optimal paging algo-
rithm [1] but starts prefetch operations at the earliest possible point
in time. Theaggressive strategy starts prefetch operations at the
earliest reasonable times.

The elapsed time of the schedule obtained byconservative (re-
spectivelyaggressive) is at most 2 (respectivelymin f2; 1 + F=kg)
times the optimum. In addition to combinatorial analyses, Caoet. al.
presented extensive experimental studies of the two algorithms.

Kimbrel and Karlin studiedconservative andaggressive for the
parallel disk problem. They showed that the approximation ratios,
when the measure is the elapsed time, areD+ 1 andD(1 + (F +1)=k) respectively. They also presented an algorithm calledre-
verse aggressive, which is theaggressive strategy on the reverse
sequence. This algorithm achieves an approximation ratio of (1 +DF=k). This gives good approximation ratios ifD andF=k are
small, which is true in many practical applications. Karlinand
Kimbrel left open the question whether an optimum
prefetching/caching schedule can be computed in polynomial time
even for the single disk case. A partial answer to this question was
given by Kimbrel [10] who showed a dynamic programming strat-
egy that decides whether a request sequence can be served with
zero stall time in the single disk setting.

Our contribution: In this paper we present a new approach
to the problem of minimizing stall time in single and parallel disk
systems. We formulate the problems as integer programs and solve
linear relaxations of these programs.

First, in Sections 2 and 3, we give a polynomial time algorithm
for minimizing the stall time for the single disk problem, thereby
settling a question left open by Kimbrel and Karlin. In particular,
we show that any optimum fractional solution of our linear program
can be written as a convex combination of (polynomially many) in-

tegral solutions. This is equivalent to saying that there isan opti-
mum solution to the linear program that is integral.

All results in the mathematical programming literature that
prove that the optimum solution to a certain linear program is in-
tegral do so by arguing that all vertices of the corresponding poly-
tope are integral. This is done either by arguing that the constraint
matrix is totally unimodular, as is in the case of bipartite match-
ing and maximums-t flow, or by combinatorial arguments as for
the matching and matroid polytopes [18]. However, the polytope
corresponding to theLP we consider has non-integral vertices. Our
proof of integrality of the optimum solution exploits a certain prop-
erty of the objective function we work with.

In Section 4 we study the parallel disk problem; the main nov-
elty here being that we minimize the total stall time insteadof the
total elapsed time. While minimizing these two measures is equiv-
alent, approximating total stall time is harder than approximating
elapsed time, since the length of the sequence is not part of our ob-
jective function. To minimize total stall time is the real objective
of an efficient prefetch/caching strategy. We generalize the linear
program and the proof techniques presented in Sections 2 and3 for
a single disk to the setting of parallel disks. An optimum solution
to the linear program is then transformed into an integral solution
that achieves an approximation ratio ofD on the total stall time.
The solution constructed uses at mostD � 1 additional memory
locations in cache. This is actually very small –D is typically 4 or
5 – when compared with the size of the cache.

Note that forD = 1, we obtain our optimum algorithm for
the single disk case. Another pleasing feature of our algorithm is
that, if a sequence can be served with zero stall time, we obtain
a schedule that has no stall either and uses at mostD � 1 extra
memory locations in cache. Finally, we demonstrate that if no extra
memory locations are allowed, then the integrality gap of our linear
program can be arbitrarily large.

In Section 5 we conclude with some remarks and open prob-
lems.2 The LP formulation for a single disk
We assume that the request sequence is of lengthn. It is no loss
of generality to assume that the cache is initially empty since an
initial cache configuration can be modeled by prefixing the request
sequence with requests to the blocks that are in cache. We identify
periods in which a prefetch is performed by considering intervals of
the request sequence of length at mostF ; the length of an interval
is the number of requests in it. An intervalI of length less thanF is
viewed as having a stall time ofF �jIj units at the end. With every

such intervalI we associate a variablex(I) which is 1 if a prefetch
is performed in the interval and 0 otherwise. Thus minimizing the
total stall time is equivalent to minimizing

PI x(I)(F � jIj). We
note that the total number of intervals is bounded bynminfF;ng.

To ensure that two prefetches are not performed simultaneously
we add for each pointr in the request sequence the constraint thatPI:r2I x(I) � 1.

With each intervalI and distinct blocka we associate two non-
negative variablesfI;a; eI;a which denote the extent to which blocka is fetched/evicted in intervalI. Clearly the total amount of fetch
should be exactly equal to the total amount of eviction and this
value should not exceed the value of the interval,x(I). Formally,8I Xa fI;a =Xa eI;a � x(I):

In a feasible solution prefetches are scheduled so that a block is
in cache when it is referenced. This constraint is enforced by look-
ing at all intervals between two consecutive references to ablock
and requiring that on these intervals the total fetch of thisblock
equals its total eviction which is no more than 1. Thus if the block
were in cache at a certain reference it would also be in cache at the
next one. Thus ifi; j are two consecutive references to a blocka
then XI�[i;j] fI;a = XI�[i;j] eI;a � 1
whereI � [i; j] denotes that intervalI is properly contained1 in
the interval[i; j]. To ensure that every block is in cache at its first
reference we require that the total fetch of a block on intervals be-
fore its first reference should be 1 and the total evict of the block on
these intervals should be 0. Thus ifi is the first reference to blocka,
PI�[0;i] fI;a = 1 and

PI�[0;i] eI;a = 0.
Finally, we require that on each request, the requested block is

neither prefetched nor evicted, i.e., if blocka is referenced at timei XI:i2I fI;a = XI:i2I eI;a = 0:
A compact description of the linear program is given in Appen-
dix A.

Note that the only integrality constraint we imposed was on the
variablesx(I). In any integral solution the intervals withx(I) = 1
are non-overlapping. Given that these are the intervals in which the
prefetch is to be performed, it is easy to determine the exactblock
to fetch/evict in each interval by using the following two rules, pro-
posed by Caoet. al., that govern optimal prefetching and eviction.

1. Optimal prefetching. Fetch the block that is not in cache and
is next in the stream of block references.

2. Optimal replacement. Evict the block from cache that is ref-
erenced latest in the future.

Our linear programming relaxation for the problem is obtained
by relaxing the integrality constraint onx(I) to the linear constraint0 � x(I) � 1. The optimum fractional solution to the linear pro-
gram is an assignment of values,x(I), to the intervals,I. While
intervals with positive values can overlap, the sum of values of any
set of pairwise overlapping intervals cannot exceed 1. Given that
the prefetches need to be performed in this set of fractionalinter-
vals we can use a fractional version of the two rules to determine
which blocks need to be evicted/fetched and to what extent ineach
interval.1 Interval I is properly contained inI 0 if I is a subset ofI 0 and both
endpoints ofI are different from those ofI 0.

3 Minimizing stall time for a single disk
In this section we consider an arbitrary optimum solution and show
how to write it as a convex combination of integral solutions. It then
follows that one of these integral solutions has a stall timewhich is
at most the stall time of the fractional solution and hence atmost
the minimum stall time.3.1 Modifying intervals
Let I be the set of intervals withx(I) > 0, ie. I = fIjx(I) > 0g.
An interval I1 = [i1; j1] is properly contained in interval I2 =[i2; j2] iff i1 > i2 andj1 < j2; a pair of intervals such that one is
properly contained in the other is called anested-pair. Let I1 2 I
be properly contained inI2 2 I and letx = minfxI1 ; xI2g. We
reduce each ofxI1 ; xI2 by an amountx; this causes one ofxI1 ; xI2
to go down to zero and we remove the corresponding interval. We
also add two new intervalsJ1 = [i2; j1] andJ2 = [i1; j2] withxJ1 = xJ2 = x. The fetch inJ1 (respectivelyJ2) is the same as
the fetch inI1 (respectivelyI2) while the evict inJ1 (respectivelyJ2) is the same as the evict inI2 (respectivelyI1). SinceJ1 ends
with I1 the blocks that were fetched inI1 still arrive in cache at
the same time. Further, sinceJ1 begins withI2 the blocks evicted
in I2 are evicted from cache at the same time as before. The same
is true for the blocks fetched/evicted in intervalJ2 and hence the
new solution also satisfies all the constraints of theLP (Fig 3).
Furthermore, since the total length of intervalsJ1; J2 is the same
as that ofI1; I2 and the reduction inxI1 ; xI2 is the same as the
increase inxJ1 ; xJ2 , the value of the objective function remains
unchanged. c=da=bJ1J2I2I2I1 x1x2x1x1x2 � x1c=ba=d c=d
Figure 3: Eliminating nested intervals. Characters on the intervals
specify “block fetched/block evicted”.

Thus any nested-pair of intervals can be replaced by a set of
at most 3 intervals none of which properly contains the other. By
performing this transformation for every nested-pair we obtain an
equivalent fractional solution without nested-pairs. Henceforth,I
denotes this new set of intervals.

We now order the intervals inI by increasing starting points;
if two intervals have the same start point then they are ordered by
increasing end-points. We could also have ordered the intervals by
increasing end-points, breaking ties by looking at starting points. It
turns out that sinceI has no nested-pairs these two orderings are
identical. Let< denote this total order onI.3.2 The optimum fractional solution
As observed in [3] the optimum (integral) solution obeys thefol-
lowing two rules for fetching/evicting blocks: at any pointthe block
fetched is the block not in cache whose next reference is earliest

and the block evicted is that block in cache whose next reference is
furthest in the future. The optimum fractional solution also follows
these rules albeit in a fractional sense.

Consider intervals in the order< and letC denote the cache
configuration after we have performed the fetches and evictscor-
responding to the firsti intervals in the sequence. Note that each
block is inC to an extent between 0 and 1. Further letI be the(i+ 1)-st interval. There exists an optimum fractional solution for
which the next two claims are satisfied.

Claim 3.1 In I we fetch the block which is not completely in C and
whose next reference is earliest.

Proof: For contradiction assume that this block, saya, is not fetched
in I and letb be one of the blocks fetched inI. We can now fetcha instead ofb in intervalI and fetchb in those intervals wherea is
fetched. Since the next reference ofb is later than the next reference
of a, b would be fetched before it is referenced.2
Claim 3.2 In I we evict the block which is partially or completely
in C whose next reference is furthest.

Proof: For contradiction assume that this block, saya, is not evicted
in I. Letb be one of the blocks evicted inI. We can evicta instead
of b in I and fetch backa in those intervals whereb is fetched.
Since the next reference ofa is only after the next reference ofb, a
would be fetched before it is referenced.2

The amount of fetch of a block prescribed by Claim 3.1 might
be less than the value ofI if the block is brought completely into
cache. In such a case we apply the same rule to fetch another block
in I. The same is true for the case of evictions in Claim 3.2. The
above two claims then tell us what blocks to fetch/evict inI. This
then gives us a new cache configuration which we use to decide
what blocks to fetch/evict in the interval that followsI in the order<.

Define thedistance of intervalI, dist(I), as the sum of the
values of all intervals which precedeI in <, ie., dist(I) =PÎ<I x(Î). We can also view the process of fetching/evicting as a
process in time by associating the time-interval[dist(I);dist(I)+x(I))with intervalI; thus there is a unique
interval inI associated with each time-instant. We will also asso-
ciate a unique fetch/evict with each time-instant. IfI 2 I is the
interval associated with timet anda is the only block fetched andb the only block evicted inI then we fetcha and evictb at timet.
If there are many blocks fetched/evicted inI then we order them as
follows. For any two blocksa; b fetched inI, a precedesb iff the
next reference toa is before the next reference tob. This defines
a total order on the blocks fetched inI; let a1; a2; : : : ai; : : : ap be
the blocks in this order. Blockai is now fetched forfI;ai time-
units starting at timedist(I) +Pi�1j=1 fI;aj . Similarly, for any
two blocksa; b evicted inI, a precedesb iff the next reference toa
is after the next reference tob. This defines another total order on
the blocks evicted inI; let b1; b2; : : : bi; : : : bq be the blocks in this
order. Blockbi is now evicted foreI;ai time-units starting at time
dist(I) +Pi�1j=1 eI;aj .

From the above two claims and our ordering of the
fetches/evicts within an interval it follows thata is fetched contin-
uously till it is fully in cache. With regard to evictions thesituation
is different. The eviction ofa could be interrupted — before it is
completely out of cache — by the eviction of another blockb which
is also in cache and which is better thana in the sense that its next
reference is further than the next reference ofa.

It will be useful to view the procedure for assigning
fetches/evicts to intervals as follows. We process intervals in the

order< and assign fetches/evicts to them by maintaining the cache
configuration and following the two rules discussed above.Besides
we also maintain a queue of those blocks which are only partially in
cache; the value of a block in this queue is the extent to which it is
not in cache. Before we start evicting a block which is completely
in cache we append it to the end of the queue with value 0. As
we evict a block we simultaneously increase its value in the queue.
If this value reaches 1, which means that the block is completely
evicted, we remove it from the queue. Similarly, before we start
fetching a block which is completely out of cache we add it to the
front of the queue with value 1. As we fetch a block we decreaseits
value in the queue. When this value goes down to 0, which implies
that the block is now fully in cache, we remove this block fromthe
queue.

Lemma 3.1 If block b is behind block a in the queue then the next
reference to b is further than the next reference to a.

Proof: The proof is by induction on the length of the queue. Sup-
posea is the block at the end of the queue. By the induction hypoth-
esis the next reference toa is furthest amongst the next reference to
the other blocks which are partially in cache. So if the blockbeing
evicted is only partially in cache then it is blocka. As discussed
above, the eviction ofa could only be interrupted by the eviction of
another blockb whose next reference is further than the next refer-
ence ofa. However, when we began evictinga its next reference
was further than the next reference ofb. This change in status could
have happened only after a reference to blockb. Hence when we
started evictingb it was fully in cache and sob was appended to the
end of the queue. Nowb is behinda in the queue and its next ref-
erence is further than the next reference ofa proving the induction
claim.2
Claim 3.3 At any point the block evicted is the block at the end of
the queue.

Proof: From the above lemma it follows that amongst blocks which
are partially in cache (and hence in the queue) the block at the end
of the queue is the one whose next reference is furthest. Thusthe
next block evicted is either this block at the end of the queueor a
block which is fully in cache. In the latter case we will first append
the block at the end of the queue and hence the block evicted is
always the one at the end of the queue.2
Claim 3.4 At any point the block fetched is the block at the front of
the queue.

Proof: From the above lemma it follows that if the block we fetch is
partially in cache then this block is the one at the front of the queue
since this is the block whose reference is earliest from amongst the
blocks in the queue. Else we fetch a block that is completely out of
cache that is first added to the front of the queue.2

In the remainder of this subsection we consider the
fetches/evictions of a blocka between two consecutive references
to a.

Lemma 3.2 Every interruption in the eviction of a is for some in-
tegral time-units.

Proof: Once the eviction ofa is interrupted it is resumed only when
all blocks that were appended to the queue aftera are completely
evicted. Hence the total length of the interruption in the eviction ofa is integral.2

We say thata is partially fetched/evicted if the total extent to
which a is fetched/evicted between these two consecutive refer-
ences is strictly less than one.

Lemma 3.3 If a is partially fetched/evicted, then the fetch of a be-
gins an integral time-units after the start of its evict.

Proof: Since the value of a block in the queue is the extent to which
the block is not in cache it follows that at any point the sum ofthe
values of the blocks in the queue is integral. In particular,this is
also true for the time at which we start evictinga; let the sum at
this time bep. Sincea is not evicted fully, all blocks that were in
the queue whena was appended are not evicted further. We start
fetchinga only after we have fetched back all these blocks. Since
the total value of these blocks isp it takesp time-units to fetch all
these blocks back. The other blocks fetched are completely out of
cache and so they are fetched for a unit-time each. Thus the total
time between the start of the evict and the start of the subsequent
fetch toa is integral.2
Lemma 3.4 If a is evicted at time t, then there is a time t0 = t+ i,
for some integer i, at which a is fetched back.

Proof: We first assume thata is partially fetched/evicted. By
Lemma 3.3 the difference in the times at which we start evictinga and fetchinga back is integral. Once we start fetchinga we fetch
it continuously till it is completely in cache. The evictionof a could
however be interrupted. But by Lemma 3.2 every interruptionis for
an integral time-unit. These facts together imply the lemma.

If a is fetched/evicted completely then it is no more the case that
the start of the eviction and the fetch ofa are integral time-units
apart. However, it is still true that once we begin fetchinga we
fetch it continuously for one time-unit after which it is completely
in cache and that every interruption in the eviction ofa is for an
integral time-unit. These two facts again imply the lemma.23.3 The convex decomposition
Claim 3.5 Let t1; t2 be two time-instants such that t2 = t1 + i for
some positive integer i, and let I1; I2 be the intervals associated
with these time-instants. Then I1 and I2 are disjoint.

Proof: We havet2 � t1 + 1. Therefore the sum of the values of
all intervals between (and including)I1 andI2 in < is at least 1.
HenceI1; I2 cannot overlap.2

We decompose the fractional solution into a convex combina-
tion of integral solution as follows. Lett be in the range[0; 1) and
let ti = i+ t for every integeri, 0 � i � n. LetIt be the intervals
corresponding to the time-instantsti; by Claim 3.5 these intervals
are disjoint. In the interval corresponding toti we schedule the
fetch/evict associated withti. By Lemma 3.4 the set of intervalsIt
together with this schedule of fetches and evicts forms an integral
solution to the problem.

Consider the different solutions obtained ast varies from 0 to
1. Note that each solution is obtained not for just one value of t
but for a range of values, say for allt in the range[a; b]. We as-
sign this solution a weightb � a in the decomposition. Clearly,
the total weight of the solutions that an intervalI occurs in equalsx(I). Further, sincet ranges from 0 to 1, the sum of the weights as-
signed to all solutions is 1. Hence, this collection of solutions with
the associated weights is a convex decomposition of the optimum
fractional solution.4 The multiple disk case
In this setting the blocks are distributed overD different disks. At
any point we can fetch at most one block from a disk but fetches
from different disks may proceed simultaneously.

4.1 The linear program
The linear program for this case differs from the one for the single-
disk setting in that we now have one copy of intervalI for each
disk. LetId, d = 1; : : : ;D, denote the copy of intervalI for diskd; henceforth we view intervalsI1; I2; : : : ; ID as distinct intervals.
Let x(Id) be the value of intervalId and leteId;a, fId;a be the
extent to which blocka is evicted, fetched in intervalId. Since
only blocks that reside on diskd can be fetched in intervalId we
have thatfId;a = 0 if a is not on diskd. As before8Id Xa fId;a =Xa eId;a � x(Id):
To ensure that prefetches to a disk are not performed simultane-
ously we add for each pointi in the request sequence and for each
disk d, 1 � d � D, the constraint

PId:i2Id x(Id) � 1. As in
the single disk setting we require that the total fetch of a block a
on intervals between two consecutive references ofa equals the to-
tal eviction ofa on these intervals and is at most 1. Moreover, no
block may be fetched or evicted while it is referenced.

Let I be the set of intervals in an integral solution to this linear
program,ie those intervals withx(I) = 1. Then the stall time for
this solution is at least

�PI2I F � jIj� =D. Hence the objective
function for this linear program is to minimize�PI x(I)(F � jIj)� =D. We will construct an integral solution
with stall time at most

PI x(I)(F�jIj), which is at mostD times
the optimum. In Appendix B we give an alternative linear program
that models the objective function more accurately. However, we
show that the approximation ratio achieved using the corresponding
linear program relaxation cannot be better thanD.4.2 The optimum fractional solution
Let Id = �Idjx(Id) > 0	 be the set of intervals from diskd
which have a positive value and letI = [dId. As in the single
disk setting we can modify intervals so thatId contains no nested-
pairs. We order intervals inI by increasing starting points with ties
broken first by increasing ending points and then by the number of
the disk to which the interval belongs; let< denote this order. Note
that for intervals from one disk the order< is exactly the same as
for the single-disk setting.

Once again consider intervals in the order< and letC denote
the cache configuration after we have performed fetches and evicts
corresponding to the firsti intervals in this order. LetId be the(i+ 1)-st interval.

Claim 4.1 In Id we fetch the block from disk d which is not com-
pletely in C and whose next reference is earliest.

Claim 4.2 If we evict a block from disk j in interval Id then this
is that block from disk j which is partially or completely in C and
whose next reference is furthest.4.3 Constructing an integral solution
The multi-disk setting therefore differs from that of the single-disk
in that for an intervalId we only know what block to evict from
each disk; we do not know the relative amounts of the evictions of
blocks from different disks.

As in the single-disk setting define the distance of an intervalId, dist(Id), as the sum of the values of intervals inId which
precedeId in the order<, ie., dist(Id) = PÎd<Id x(Îd).
Once again we view this as a process in time by associating the

time-interval[dist(Id);dist(Id) + x(Id)] with interval Id.
Thus there is a unique interval inId associated with each time-
instant. As before we order the blocks fetched inId by increasing
order of their next references. Leta1; a2; : : : ap be the blocks in
this order. Blockai is now fetched forfId;ai time-units starting

at timedist(Id) +Pi�1j=1 fId;aj . Thus at each time-instant we
fetch a unique block from each disk.

At each time-instant we will also evict a unique block from
each disk. LetPd be the set of blocks that reside on diskd. Leta1; : : : ; ap 2 Pd be the blocks from diskd that are evicted in inter-
val I ordered in decreasing order of their next reference. Blockai
is evicted foreI;ai time-units starting at time

PÎ<I;â2Pd eÎ;â +Pi�1j=1 eI;aj . Note that if there was only one disk then the time
at which we start evictingai is exactly the same asdist(I) +Pi�1j=1 eI;aj which was how we had defined the starting time of
this eviction earlier. However, ifai is evicted at timet then, unlike
the single-disk setting, it is not necessary that in the fractional solu-
tion ai is evicted in one of the intervals associated with time-instantt.

The machinery we developed for the single-disk case can now
be applied to each disk in the multi-disk setting. A queue is associ-
ated with each diskd. We consider the fetches/evictions of blocks
that reside on this disk as a process in time and update the queue
as in the single-disk case. Using Claims 4.1 and 4.2 we can ex-
tend Lemma 3.1 from which Claims 3.3 and 3.4 follow. It is also
straightforward to extend Lemmas 3.2 and 3.3 which can then be
used, exactly as before, to prove Lemma 3.4 for the multi-disk set-
ting.

Extending Claim 3.5 to the multi-disk setting yields

Claim 4.3 Let t1; t2 be two time-instants such that t2 = ti + i for
some positive integer i, and let Id1 ; Id2 be the intervals on disk d
associated with these time-instants. Then Id1 and Id2 are disjoint.

We now show how to obtain an integral solution. Lett be in
the range[0; 1) and letti = i + t for every integeri, 0 � i � n.
To each time-instantti and diskd there corresponds an interval;
our solution contains all these intervals and letIt denote this set
of intervals. In the interval corresponding toti and diskd we fetch
the block from diskd that is fetched at timeti. The block that
resides on diskd and is evicted at timeti will also be evicted in
this solution, albeit in a different interval.

Evictions are assigned to intervals ofIt in the following man-
ner. Consider the intervals inI in the order< and letI be the
current interval. Suppose there is a block that is evicted inI and
the same eviction is scheduled at timeti for somei. We then add
this block to a setS (S is the set of evictions that need to be as-
signed to intervals ofIt and is initially empty). IfI 2 It andS
is not empty then remove a block fromS and assign it to intervalI; no block is evicted in intervalI in this solution if the setS is
empty.

By Claim 3.5 any two intervals inIt that are from the same
disk are disjoint. If in our solution we fetch a block in an intervalI
then the same block is fetched inI in the fractional solution. If the
fractional solution evicts a block in an intervalI then in our solu-
tion the block is evicted in an interval whose starting pointis only
after the starting point ofI. Next consider two consecutive refer-
ences to a blocka. By Lemma 3.4 it follows that ifa is evicted in
some interval of this solution then it is also fetched back. Thus this
assignment of fetches/evictions to intervals ofIt is a feasible so-
lution to the problem provided every interval ofIt has an eviction
assigned to it. We next prove that at mostD � 1 intervals do not
have an eviction assigned.

Lemma 4.1 For any t there are at most D� 1 intervals in It that
do not have an eviction assigned.

Proof: Our procedure for assigning evictions to intervals ofIt con-
siders intervals ofI in the order<. At any step letF be the number
of intervals ofIt encountered andE the number of evictions en-
countered that are to be assigned to intervals inIt. We first prove
thatF � E � D � 1.

Let fd; ed be the total amount of fetch, evict of blocks from
disk d till this point. Clearly,

PDd=1 fd = PDd=1 ed. Further,F =PDd=1bfd � t+ 1c andE =PDd=1bed � t+1c. The claim
thatF � E +D � 1 follows fromF = DXd=1bfd � t+ 1c � b DXd=1(fd � t+ 1)c= b dXd=1(ed � t+ 1)c < DXd=1bed � t+ 1c+D= E +D:
Assume that the intervalI is in It and there areD � 1 intervals
precedingI in order< that belong toIt and do not have an eviction
assigned. Since at any pointF �E � D�1, the setS is not empty
and henceI will be assigned an eviction.2

Since at mostD� 1 intervals do not have an eviction assigned,
we can useD� 1 extra cache locations to fetch the blocks fetched
in these intervals. Note that a block fetched into one of these extra
locations can be evicted later and replaced by a different block.
Thus for everyt 2 [0; 1) we have a feasible solution that uses at
mostD� 1 extra blocks in cache.

Consider the different solutions obtained ast varies from 0 to
1. Note that each solution is obtained not for just one value of t
but for a range of values. Let0 � x1 < x2 < : : : < xs < 1
be a set of values such that if we start fetching/evicting a block
at time t on diskd or if dist(Id) = t for someId then there
exists a valuexi such thatxi = tmod 1. From our definition ofIt and the fetches/evictions assigned to intervals inIt it follows
that if xi � t < xi+1 then we would obtain the same solution for
all values oft in the range[xi; xi+1). We assign this solution a
weightxi+1 � xi. Clearly, the total weight of the solutions that an
intervalId occurs is equalsx(Id). Further, sincet ranges from 0
to 1, the sum of the weights assigned to all solutions is 1. Hence,
this collection of solutions with the associated weights isa convex
decomposition of the optimum fractional solution.

We would like to select the best among thes integral solutions.
The number of solutions we construct is bounded by the total num-
ber of fetches/evictions of blocks over all the intervals inthe frac-
tional solution. This number is bounded byO(Dn2minfF;ng).

We can therefore conclude with the following theorem.

Theorem 4.2 There exists a polynomial time algorithm for the
prefetch/caching problem on D parallel disks, that produces a so-
lution with at most D times the optimum stall time using at mostD� 1 extra memory locations.

Observe that forD = 1, we get a solution with minimum stall
time without using any extra memory locations. In Appendix Bwe
show that if no extra memory locations are used, then the integrality
gap of our linear program can be arbitrarily large.5 Conclusion
In this paper we presented a polynomial time algorithm for optimal
prefetching/caching on a single disk. For the parallel diskproblem

we developed aD-approximation algorithm that is allowed to useD� 1 extra memory locations in cache.
We can remove the additional memory locations at the expense

of increasing the stall time. The intergral solution constructed in
Section 4.3 works on a cache of sizek. Consider one of theD� 1
prefetch operations that do not have an eviction assigned. In this
operation we now evict the blocka in cache whose next reference
is furthest in the future. Ifa is evicted in some other intervalI
before the next reference toa, then we cancel the eviction there;
otherwise we introduce an intervalI right before the reference toa and fetcha. In any of the two cases, the block to be evicted inI is determined in the same way as before. We repeat this process
until the end of the request sequence is reached. In the same way
we process the otherD � 2 prefetch operations that do not have
an eviction assigned. We obtain a schedule in which every prefetch
operation has an eviction assigned. The extra stall time introduced
is at most(D � 1)Fk n. The total elapsed time is bounded by(1 +(D� 1)Fk)n +Ds, wheren is the length of the request sequence
ands is the stall time before the application of the procedure. The
approximation of the elapsed time so obtained improves overthe
factor(1+D Fk) of the algorithm by Kimbrel and Karlin ifFk � 1.

An interesting open problem is to find a combinatorial, polyno-
mial time algorithm for minimizing stall time on a single disk. A
challenging open problem is to find a constant approximationalgo-
rithm for the parallel disk problem or decide if the problem can be
solved in polynomial time.References
[1] L.A. Belady. A study of replacement algorithms for virtual

storage computers.IBM Systems Journal, 5:78–101, 1966.
[2] A. Borodin, S. Irani, P. Raghavan and B. Schieber. Compet-

itive paging with locality of reference.Journal on Computer
and System Sciences, 50:244–258, 1995.

[3] P. Cao, E.W. Felten, A.R. Karlin and K. Li. A study of in-
tegrated prefetching and caching strategies. InProc. ACM
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), pages 188–196, 1995.

[4] K.M. Curewith, P. Krishnan and J.S. Vitter. Practical prefetch-
ing via data compression. InProc. 1993 ACM SIGMOD Inter-
national Conference on Managementof Data, pages 257–266,
1993.

[5] C.S. Ellis and D. Kotz. Prefetching in file systems for MIMD
multiprocessors. InProc. 1989 International Conference on
Parallel Processing, pages I306–314, 1989.

[6] A. Fiat, R.M. Karp, L.A. McGeoch, D.D. Sleator and N.E.
Young. Competitive paging algorithms.Journal of Algo-
rithms, 12:685–699, 1991.

[7] A. Fiat and A.R. Karlin. Randomized and multiprocessor pag-
ing with locality of reference. InProc. 27th Annual ACM
Symposium on Theory of Computing, pages 626–634, 1995.

[8] A. Fiat and Z. Rosen. Experimental studies of access graph
based heuristics. Beating the LRU standard. InProc. 8th
ACM-SIAM Symposium on Discrete Algorithms, pages 63–
72, 1997.

[9] A.R. Karlin, S. Phillips and P. Raghavan. Markov paging.
Proc. 33rd Annual Symposium on Foundations of Computer
Science, pages 208–217, 1992.

[10] Tracy Kimbrel. Parallel prefetching and caching (PhD thesis).
Technical report 97-07-03, Department of Computer Science
and Engineering, University of Washington, 1997.

[11] T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao,
E.W. Felten, G.A. Gibson, A.R. Karlin and K. Li. A trace-
driven comparison of algorithms for parallel prefetching and
caching. InProceedings of the ACM SIGOPS/USENIX As-
sociation Symposium on Operating System Design and Im-
plementation (OSDI), October 1996.

[12] D. Kotz and C.S. Ellis. Practical prefetching techniques for
mulitprocessor file systems.Journal of Distributed and Paral-
lel Databases, 1:33–51, 1993.

[13] T. Kimbrel and A.R. Karlin. Near-optimal parallel prefetch-
ing anch caching. InProc. 37th IEEE Annual Symposium on
Foundations of Computer Science, pages 540–549, 1996.

[14] P. Krishnan and J.S. Vitter. Optimal prediction for prefetching
in the worst case. InProc. 5th ACM-SIAM Symposium on
Discrete Algorithms, pages 392–401, 1994.

[15] K.-K. Lee and P. Varman. Prefetching and I/O parallelism in
multiple disk systems. InProc. 1995 International Conference
on Parallel Processing, pages III160–163, 1995.

[16] M. Palmer and S.B. Zdonik. Fido: A cache that learns to fetch.
In Proc. 17th International Conference on Very Large Data
Bases, pages 255–264, 1991.

[17] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky and
J. Zelenka. Informed prefetching and caching. InProc. 15th
Symposium on Operating Systems Principles, pages 79–95,
1995.

[18] A. Schrijver.Linear and Integer Programming. Wiley, Chich-
ester, 1986.

[19] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list up-
date and paging rules.Communication of the ACM, 28:202–
208, 1985.

[20] J. Vitter and P. Krishnan. Optimal prefetching via datacom-
pression. InProc. 32nd Annual Symposium on Foundations
of Computer Science, pages 121–130, 1991.Appendix A

We give the linear program for minimizing stall time for a single
disk and need one more definition. In the request sequence�, leta1; : : : ; ana be the requests to blocka.

minimize
PI x(I)(F � jIj)

subject to XI:r2I x(I) � 1 8rXa fI;a =Xa eI;a � x(I) 8IXI�[ai;ai+1] fI;a = XI�[ai;ai+1] eI;a � 1 8a; iXI�[0;a1] fI;a = 1 8aXI�[0;a1] eI;a = 0 8aXI:ai2I fI;a = XI:ai2I eI;a = 0 8a; ix(I) 2 f0; 1g 8I

-b1 b2 b2 b2 a1 a2 c3 d3 c1 c2 d1 d2 c1 a3 b3 c2 c1 a1 d1 d2 b1 a2 b2-� a3=b1 -� a1=c3-� a3=a1 -� a2=c3-� b3=b2 -� b1=d3-� b3=a2 -� b2=d3fractional solution

disk 1

disk 2 -� a3=b2 -� a2=c3-� b3=a2 -� b2=d3integral solution

disk 1

disk 2

Figure 4: Fractional and integral solutions for the sequence�12 = �1�2.Appendix B
An alternativeLP formulation for minimizing stall time in the multi-
disk setting would be as follows. We have stall-variablessi indicat-
ing the extent of the stall just before thei-th request is served. Thus
the objective would now be to minimize

Pni=1 si. Once again we
have a variablex(Id) associated with the copy of intervalI on diskd whereI is of length at mostF . We also have fetch and evict
variables associated with every 3-tuple, (page, interval,disk), as
before. All constraints from the earlierLP still apply. However, we
now need additional constraints to ensure that for every intervalI
that is chosen the sum of the stall times before the requests in this
interval is at leastF � jIj. It will be convenient to have a variablesi;d;I indicating the stall time before thei-th request when a block
was fetched from diskd in interval I. Then for every diskd and
intervalI = [p; q] we haveqXi=p si;d;I � x(Id)(F � jIj):
Let si;d be the stall before thei-th request due to a block that was
being fetched from diskd. Thensi;d = XI:i2I si;d;I :
Now the stall time before thei-th request is the maximum of the
times spent waiting for blocks that were fetched from different
disks and hencesi = maxd si;d. Since the objective is to mini-
mize the sum of the stall timessi, we need the set of inequalitiessi � si;d 1 � d � D:

In this linear program we relax again the integrality constraint
on x(I) to the linear constraint0 � x(I) � 1. Using this relax-
ation, we cannot achieve an approximation ratio on the stalltime
that is better thanD. Consider a cache of sizeD + 1, with blocksa1; c1; : : : ; cD being initially in cache. Blocka1 is stored on disk
1 and blockci, for 1 � i � D, is stored on diski. The request
sequence to be served is(a1)F ; b1; c1; : : : ; cD where blockb1 is
stored on disk 1. Here(a1)F representsF requests toa1.

An optimum fractional solution for serving this sequence pre-
fetchesb1 during theF requests toa1 and evicts every blockci,

1 � i � D to an extent of1=D. Starting with the request tob1, theD disks simultaneously fetch the missing portions ofc1; : : : ; cD.
Before the request toc1 a stall ofF � 1 time units has to be in-
troduced. However, since each disk only prefetches a block to an
extent of1=D, sF+1 = sF+1;d for all d and thus the objective
function value is1D (F � 1).

An optimum integral solution, when prefetchingb1, evicts blockcD. On the request tob1, diskD starts prefetchingcD while the
other disks are idle. Before requestcD, a stall time ofF � D
time units has to be inserted. This gives a performance ratioof(F �D)=(1D (F � 1)) = D(1� D�1F�1), which can be arbitrarily
close toD.

Consider the intergral solution constructed in Section 4.3. We
show that if no extra memory blocks are allowed, the integrality gap
of our linear program can be arbitrarily large. This holds even for
problems on two disks. We give a request sequence� such that (a)
there exists a fractional solution with zero stall time and (b) there
exists no integral solution with zero stall time.

The request sequence� is composed of three subsequences�1; �2 and�3. We first give zero stall time solutions for�12 =�1�2 and�23 = �2�3 and then show that there is no integral solu-
tion for � = �1�2�3 that has zero stall time.

Consider a system with two disks. We need 12 blocksai; bi; ci
anddi, 1 � i � 3, whereai andci are stored on disk 1 andbi anddi are stored on disk 2,1 � i � 3. Let�1 = b1; b2; b2; b2; a1; a2; c3; d3; c1; c2; d1; d2; c1; a3; b3; c2; c1; a1�2 = d1; d2; b1; a2; b2�3 = c1; d2; c2; a3; b3; a1; a2; b1; b2; c3; a1; d3; c1; a2; b1;b2; a1; c2; d1; d2:
We assume a cache of size 10, where initially all but blocksa3 andb3 are stored in cache. The stall time isF = 8.

Figure 4 shows zero stall time schedules for the sequence�12 =�1�2. The intervals above the request sequence represent an opti-
mum fractional solution, where each intervalI has an associated
valuex(I) = 1=2. The intervals below the request sequence repre-
sent the integral solution in which fetches on disk 1 are completed

-d1 d2 b1 a2 b2 c1 d2 c2 a3 b3 a1 a2 b1 b2 c3 a1 d3 c1 a2 b1 b2 a1 c2 d1 d2-� c3=d1 -� c1=a3-� c3=c1 -� c2=a3-� d3=d2 -� d1=b3-� d3=a2 -� d2=b3fractional solution

disk 1

disk 2 -� c3=d1 -� c1=a3 -� d3=c1 -� d1=b3integral solution

disk 1

disk 2

Figure 5: Fractional and integral solutions for the sequence�23 = �2�3.

as early as possible. An earlier completion time on disk 1 could
only be achieved if, in the first prefetch operations, disk 1 evictsb1
and disk 2 evictsb2. However, this leads to a schedule with non-
zero stall time because disk 2 cannot simultaneously prefetch b1
andb2. Note that at the end of the schedules, blocksc3 andd3 are
not in cache.

Figure 5 shows solutions for the request sequence�23 = �2�3
given an initial cache in which blocksc3 andd3 are missing. The
integral solution given below the request sequence is the only in-
tegral solution with zero stall time. In an integral solution, disk
1 must evictd1 in the first prefetch operation. It is impossible to

evictc1 becausec1 cannot be fetched back in time. Given that disk
1 evictsd1, disk 2 must evictc1 in its first prefetch operation; oth-
erwised1 cannot be fetched back in time. This requires that the
prefetch on disk 1 starts on requestd2.

For the sequence� = �1�2�3, the fractional solutions in Fig-
ure 4 and 5 can be combined and give an optimum fractional so-
lution for �. However, there is no integral solution with zero stall
time. To serve�1�2, disk 1 must prefetcha2 while serving requestd2 in �2. To serve�2�3, disk 1 must prefetchc3 while serving that
particular request.

