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ABSTRACTWe study one of the most basi
 problems in online s
hedul-ing. A sequen
e of jobs has to be s
heduled on m identi
alparallel ma
hines so as to minimize the makespan. When-ever a new job arrives, its pro
essing time is known in ad-van
e. The job has to be s
heduled immediately on one ofthe ma
hines without knowledge of any future jobs. In thesixties Graham presented the famous List s
heduling algo-rithm whi
h is (2 � 1m )-
ompetitive. In the last ten yearsdeterministi
 online algorithms with an improved 
ompet-itiveness have been developed. The �rst algorithm with aperforman
e guarantee asymptoti
ally smaller than 2 was1.986-
ompetitive. The 
ompetitive ratio was �rst improvedto 1.945 and then to 1.923 and 1.9201. Randomized 
ompet-itive algorithms that are better than (known) deterministi
algorithms were proposed for spe
i�
 values of m, i.e. form 2 f2; : : : ; 7g.In this paper we present the �rst randomized online al-gorithm that performs better than known deterministi
 al-gorithms for general m. The algorithm is a 
ombination oftwo deterministi
 s
heduling strategies A1 and A2. Initially,when starting the s
heduling pro
ess, a s
heduler 
hoosesAi, i 2 f1; 2g, with probability 12 and then serves the entirejob sequen
e using the 
hosen algorithm. The new random-ized algorithm is 1.916-
ompetitive. We prove that this per-forman
e 
annot be a
hieved by a deterministi
 algorithmbased on analysis te
hniques that have been used in the liter-ature so far: Using known te
hniques (or generalizations) itis impossible to prove a 
ompetitiveness smaller than 1.919for any deterministi
 online algorithm. Our results stri
tlylimit the performan
e that 
an be a
hieved with existingte
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ien
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1. INTRODUCTIONWe study one of the most basi
 problems in online s
hedul-ing. A job sequen
e � = J1; : : : ; Jn has to be s
heduled onm identi
al parallel ma
hines. Whenever a new job Jt ar-rives, its pro
essing time pt is known in advan
e, 1 � t � n.The job has to be s
heduled immediately on one of the ma-
hines without knowledge of any future jobs. Preemption ofjobs is not allowed and any ma
hine may only pro
ess onejob at a time. The goal is to minimize the makespan, whi
his the 
ompletion time of the last job that �nishes in thes
hedule. The problem has been the subje
t of extensiveresear
h, see e.g. [1{13℄. Given a job sequen
e �, let A(�)be the makespan produ
ed by an online algorithm A andlet OPT (�) be the optimum makespan. Following [15℄ we
all a deterministi
 online algorithm 
-
ompetitive if A(�) �
 � OPT (�), for all �. A randomized online algorithm is 
-
ompetitive against any oblivious adversary if the expe
tedmakespan satis�es E[A(�)℄ � 
 �OPT (�), for all �.Previous results: Already in the sixties Graham [9℄ pre-sented the famous List s
heduling algorithm, whi
h alwaysassigns an in
oming job to the least loaded ma
hine, andproved that it is (2� 1m )-
ompetitive. In the last ten yearsdeterministi
 online algorithms with an improved 
ompeti-tiveness have been developed. A (2� 1m � �m)-
ompetitivealgorithm was given in [7℄, where �m tends to 0 as m goesto in�nity. Bartal et al. [2℄ presented the �rst algorithmwhose performan
e guarantee is asymptoti
ally smaller than2. Their algorithm is 1.986-
ompetitive. The 
ompetitiveratio was �rst improved to 1.945 by Karger et al. [10℄, andthen to 1.923 and 1.9201, see [1, 6℄. Lower bounds on theperforman
e of deterministi
 online algorithms were givenin [1, 3, 5, 8, 11℄. The best bound 
urrently known isdue to Rudin [11℄, who showed that no deterministi
 onlines
heduling algorithm 
an be better than 1.88-
ompetitive.Sin
e the publi
ation of the paper by Bartal et al. [2℄, therehas always been resear
h interest in developing better ran-domized online algorithms. Bartal et al. gave a random-ized algorithm for two ma
hines. The algorithm is (4=3)-
ompetitive, and this is the best possible performan
e form = 2. Chen et al. [4℄ and Sgall [14℄ proved that no random-ized online algorithm 
an a
hieve a 
ompetitiveness smallerthan 1=(1 � (1 � 1=m)m). This expression is equal to 4=3if m = 2 and tends to e=(e � 1) as m ! 1. Seiden [12℄presented a randomized algorithm whose 
ompetitive ra-tio is smaller than the best known deterministi
 ratio form 2 f3; : : : ; 7g. The 
ompetitiveness is also smaller than thedeterministi
 lower bound for m = 3; 4; 5. The algorithmsby Bartal et al. and Seiden have to maintain t s
hedules



when t jobs have been s
heduled. Seiden [13℄ modi�ed hisalgorithm so that it maintains a 
onstant number of s
hed-ules. However, the 
onstant is large, i.e. it is equal to 2048,and the 
ompetitive ratio is worse, for m � 4.Our 
ontribution: In this paper we present the �rst ran-domized online algorithm that performs better than knowndeterministi
 algorithms for general m. Our new algorithm,
alled Rand , is a 
ombination of two deterministi
 algo-rithms A1 and A2. Initially, when starting the s
hedulingpro
ess, Rand 
hooses Ai, i 2 f1; 2g, with probability 12and then serves the entire job sequen
e using the 
hosen al-gorithm. At most two s
hedules have to be maintained atany time. Algorithm A1 is a 
onservative strategy that triesto maintain s
hedules with a low makespan. On the otherhand, A2 is an aggressive strategy that aims at generatings
hedules with a high makespan. We prove, as the mainresult of this paper, that the 
ombined algorithm Rand is1.916-
ompetitive.The improvement over deterministi
 algorithms may seemsmall. We show, however, that a 
ompetitiveness of 1.916
annot be proven for a deterministi
 algorithm based on theanalysis te
hniques that have been used in the literature sofar. All the previous analyses of online algorithms only usethe following three lower bounds on the optimum makespan.(a) The total amount of pro
essing in a given job sequen
edivided by m. (b) The largest pro
essing time of any job in�. (
) Twi
e the (m+1)-st largest pro
essing time in �. Weshow that using only these three lower bounds on the opti-mum makespan, it is impossible to prove a 
ompetitivenesssmaller than 1.919 on the performan
e of any deterministi
online algorithm. In fa
t we prove a stronger statement: Us-ing only the information (1) \The total amount of pro
ess-ing in a job sequen
e divided bym" and (2) \The pro
essingtimes of the m+1 largest jobs in �" it is impossible to provea 
ompetitive ratio smaller than 1.919. In addition to (1)and (2) an analysis 
ould 
onsider the pro
essing times ofthe (im+ 1)-st largest jobs, for i = 1; : : : ; b(n � 1)=m
. Weshow that this does not help mu
h either; it is impossible toprove a 
ompetitiveness smaller than 1.917. These resultsstri
tly limit the performan
e of deterministi
 algorithmsthat 
an be a
hieved using known te
hniques.Ideas of this paper: The algorithm Rand uses a num-ber of new ideas, the most important feature being that twoalgorithms A1 and A2 
oordinate their s
heduling de
isions.In ea
h s
heduling step, the aggressive algorithm A2 has totake into a

ount its own s
hedule, the 
onservative algo-rithm's s
hedule as well as future s
hedules that 
an evolvefrom the 
urrent 
on�guration. The maximum makespanthat A2 
an a�ord depends on this 
on�guration.The previous analyses of randomized online s
hedulingalgorithms for m 2 f2; : : : ; 7g are heavily based on the fa
tthat if the expe
ted makespan is high, a 
onsiderable fra
-tion of the total load in the system resides on the ma
hinewith the highest load. This approa
h does not work forgeneral m. Our main 
ontribution in the analysis is thatwe simultaneously keep tra
k of the s
hedules maintainedby A1 and A2. On job sequen
es 
onsisting of small andmedium size jobs, Rand 's expe
ted makespan is small. IfRand 's makespan is high, many large jobs must have beens
heduled. To identify large jobs, whi
h is essential for prov-ing a 
ompetitiveness below 2� 1m , we have to analyze the
ombined load ve
tors of A1's and A2's ma
hines at variouspoints in the s
heduling pro
ess. Our analysis is quite in-

volved but, unlike some previous analyses, does not rely on
omputer proofs.In our lower bound proofs we 
onstru
t nemesis sequen
eswhere the number of di�erent job sizes grows withm. Previ-ous lower bound 
onstru
tions worked with a bounded num-ber of sizes.Organization of the paper: We �rst present the lowerbounds in Se
tion 2 and then 
on
entrate on the develop-ment of the randomized online algorithm, whi
h is more in-volved. A des
ription of the algorithm is given in Se
tion 3.A detailed analysis follows in Se
tion 4.
2. LOWER BOUNDSSeveral online s
heduling algorithms have been proposedin the literature [1, 2, 6, 7, 9, 10, 12℄. To evaluate the 
om-petitiveness of these algorithms, one has to determine lowerbounds on the makespan produ
ed by an optimal o�ine al-gorithm. So far, all the analyses are based on the followingthree lower bounds (a{
) on the optimum makespan. Let� = J1; : : : ; Jn be a given job sequen
e and let pt be thepro
essing time of the t-th job, 1 � t � n.(a) 1mPnt=1 pt(b) max1�t�n pt(
) Twi
e the pro
essing time of the (m+ 1)-st largest jobin �.Theorem 1 implies that using only these three lower boundson the optimum makespan, it is impossible to prove a 
om-petitiveness smaller than 1.919 on the performan
e of anydeterministi
 online algorithm. In fa
t Theorem 1 is moregeneral. Suppose that we use the following information toderive lower bounds on the optimum makespan.(1) 1mPnt=1 pt(2) The pro
essing times of the m+ 1 largest jobs in �.Information (2) is more general than (b) and (
) as it 
on-tains, in parti
ular, the largest and (m + 1)-st largest pro-
essing times and 
an be used to derive additional lowerbounds on the optimum makespan.Theorem 1. Let A be a deterministi
 online s
hedulingalgorithm. Using only information (1) and (2) to derivelower bounds on the optimum makespan, it is impossible toprove a 
ompetitive ratio smaller than 1.919 on A's perfor-man
e.Proof. We prove the theorem as m ! 1. Given a jobsequen
e �, what are the strongest lower bounds on theoptimum makespan we 
an derive from (1) and (2)? Inaddition to the lower bounds given in (a) and (b), whi
hwe will refer to as B1� and B2� respe
tively, the strongestadditional bound that follows from (2) is B3�: The sum of thepro
essing times of the m-th and the (m+1)-st largest jobs.This bound is stronger than (
). To establish the theorem,we will show that there exist job sequen
es � for whi
h A'smakespan is at least 1:919maxfB1�; B2�; B3�g. An adversary
onstru
ts a nemesis job sequen
e in phases. In ea
h ofthe �rst three phases m jobs are presented. Algorithm Awill have to s
hedule the jobs in ea
h phase on di�erentma
hines. In a fourth phase one large job is generated su
hthat A's makespan for the 
onstru
ted sequen
es � is at least1:919 �maxfB1� ; B2�; B3�g.Phase 1: The adversary �rst presents m jobs with a pro-
essing time of p = 0:05 ea
h. Algorithm A has to s
hedule



these jobs on di�erent ma
hines sin
e otherwise its 
ompet-itive ratio would be 2.Phase 2: The adversary �rst presents b0:975m
 jobs, ea
hwith a pro
essing time of q = 0:369. While these jobs are be-ing s
heduled, B1 � L1=m, where L1 = mp+ b0:975m
q <0:41m is the total pro
essing time of all the jobs after theq-jobs have been presented. Moreover, B2 = q and B3 =2p < B2. Here B1; B2 and B3 denote the 
urrent lowerbounds for the pre�x of � seen so far; we omit the sub-s
ript �. The online algorithm has to assign the q-jobsto di�erent ma
hines. Otherwise its makespan would bep+ 2q = 0:419 + q > 1:919maxfB1; B2g. At this point anyma
hine 
ontaining a q-job has a load of 0.419.The adversary then generates m� b0:975m
 = d0:025mejobs with a pro
essing time of q0 = 0:39. During the s
hedul-ing of these jobs, B1 � L2=m, where L2 = L1 + d0:025meq0is the total load in the system at the end of the phase, andthis value is at least 0:419m and upper bounded by 0:42mas m ! 1. For the other bounds we have B2 = q0 andB3 � p + q. The online algorithm has to s
hedule the q0-jobs on di�erent ma
hines whi
h do not already have a q-job.Otherwise the makespan would be p+ q+ q0 = 0:419 + q0 >1:919maxfB1; B2; B3g. At the end of this phase ea
h ma-
hine in A's s
hedule was assigned two jobs and has a loadof at least 0.419.Phase 3: De�ne m3 = b(1 + 2 � 0:919)m=1:919 � 2L2)
 andm03 = m�m3. Asm!1 we havem3 < 0:64m. The adver-sary �rst 
reates m3 jobs with a pro
essing time of r = 0:5ea
h. While these jobs are being s
heduled B3 = 2q = 0:738and B1 � L3=m, where L3 = L2 +m3r is the sum of thepro
essing times when all the r-jobs are s
heduled. We haveL3 � 1:419m=1:919. Also B2 = 0:5 < B3. Algorithm Amust s
hedule the r-jobs on di�erent ma
hines sin
e other-wise the makespan would be at least 0:419 + 2r = 1:419 �1:919maxfB1; B3g.In ea
h of the following m03 steps the adversary generatesa job whose pro
essing time is so large that an assignmentof the job to a ma
hine 
ontaining an r-job would result ina makespan that is at least 1.919 times the 
urrent valueof B1. Consider the t-th step, 1 � t � m03, and let lt�1be the total pro
essing time of all the jobs s
heduled up tothat step. The adversary generates a job whose pro
essingtime r0t satis�es 0:919 + r0t � 1:919(lt�1 + r0t)=m, i.e. r0t =( 1:919m lt�1 � 0:919)=(1 � 1:919m ). We �rst analyze the sumof the pro
essing times when all the r0-jobs are s
heduledand then show that at any time B1 � B2 and B1 � B3.This proves that the r0-jobs must be s
heduled on di�erentma
hines and 
annot be assigned to ma
hines 
ontainingany r-job. We show indu
tively that lt = (L3 � 
0m
 )(1 �
m )�t + 
0m
 ; where 
 = 1:919 and 
0 = 
� 1. The equationis satis�ed for t = 0. Suppose it holds for t� 1. Thenlt = lt�1 + r0t = (lt�1 � 
0)=(1� 
m )= (L3 � 
0m
 )(1� 
m )�t + 
0m
 =(1� 
m )� 
0=(1� 
m )= (L3 � 
0m
 )(1� 
m )�t + 
0m
 :Thus, when all the r0-jobs are s
heduled, the total pro
essingtime of all the jobs isL4 = (L3 � 
0m
 )(1� 
m )�m03 + 
0m
� (L3 � 
0m
 )e
m03=m + 
0m
 :

As m ! 1 we �nd L4 < 0:999m. The pro
essing times ofthe r0-jobs are in
reasing, the �rst job having a size of atleast 0:5 be
auser01 = ( 1:919m L3 � 0:919)=(1 � 1:919m )= ( 1:919m (L2 + 0:5m3)� 0:919)=(1 � 1:919m )� ( 1:919m (L2 + 0:5((1 + 2 � 0:919)m=1:919 � 2L2 � 1))�0:919)=(1 � 1:919m )= 0:5:Thus, for the proof that at any step B1 � B2, it is suÆ
ientto show that (lt�1 + r0t)=m = lt=m � r0t. This is equivalentto showing (lt�1 � 
0)=m � ( 
m lt�1 � 
0), whi
h in turn isequivalent to (1 � 1=m) � lt�1=m. Sin
e lt�1 � L4, thisholds as m ! 1. We still have to argue that at any stepB1 � B3. While the �rst m03 � d0:025me � 1 r0-jobs ares
heduled, B3 � 2q = 0:738 < L3=m � B1 be
ause L3 >0:739m as m ! 1. When the last d0:025me + 1 r0-jobsare s
heduled, B3 � q0 + r = 0:89, whereas B1 � (L2 +(b0:975m
 � 1)r)=m > 0:9 as m ! 1. At the end of thephase ea
h ma
hine has a load of at least 0:919.Phase 4: The adversary presents a �nal job with a pro
ess-ing time of 1. The online algorithm has a makespan of 1.919.We have B1 � 1 as m ! 1 and B2 = B3 = 1. Thus theonline makespan is 1:919maxfB1�; B2�; B3�g.What happens if, in addition to (2), we 
onsider a largerset of jobs? A generalization of the lower bound (
) on page 2is (d) (i + 1) times the pro
essing time of the (im + 1)-stlargest job in �, for i = 2; : : : ; b(n � 1)=m
. We 
onsideragain a generalized set of information.(3) The pro
essing times of the (im� i+1)-st to (im+1)-stlargest jobs in �, for i = 2; : : : ; b(n � 1)=m
.We show that even with this additional information it isimpossible to prove 
onsiderably better 
ompetitive ratios.The proof of the following theorem is omitted is this ex-tended abstra
t.Theorem 2. Let A be a deterministi
 online s
hedulingalgorithm. Using only information (1{3) to derive lowerbounds on the optimum makespan, it is impossible to provea 
ompetitive ratio smaller than 1.917 on A's performan
e.
3. THE RANDOMIZED ONLINE

ALGORITHMOur new randomized algorithm, 
alled Rand , is a 
ombi-nation of two deterministi
 algorithms A1 and A2. Initially,when starting the s
heduling pro
ess, Rand 
hooses A1 withprobability q and A2 with probability 1� q, where q = 1=2,and then serves the entire job sequen
e using the 
hosen al-gorithm. The two algorithms 
omplement ea
h other. Onsequen
es for whi
h A1 has a high makespan, A2's makespanis low, and vi
e versa. At any time both algorithms keep alist of their ma
hines sorted in non-de
reasing order by 
ur-rent load. The load of a ma
hine is the sum of the pro
essingtimes of the jobs already assigned to it. Consider a job se-quen
e � = J1; : : : ; Jn and let pt be the pro
essing time ofjob Jt, 1 � t � n. Let M ti;j be the ma
hine with the j-thsmallest load in the s
hedule maintained by Ai after t jobshave been s
heduled, i = 1; 2 and j = 1; : : : ;m. Thus M ti;1are the ma
hines with the smallest load and M ti;m are the



ma
hines with the largest load. For simpli
ity, we also re-fer to the ma
hines with the j-th smallest load as the j-thsmallest ma
hines. Let lti;j be the load of M ti;j . Let Lt thesum of the pro
essing times of the �rst t jobs in �, i.e. Lt isthe sum of the loads on the ma
hines in one of the s
hedulesafter t jobs have been assigned.Algorithm Ai, i 2 f1; 2g, tries to keep ki ma
hines lightlyloaded and m � ki ma
hines heavily loaded, where k1 =d 925me and k2 = d 38me. Let �ti be the average load on the kismallest ma
hines of Ai, i.e. �ti = 1ki Pkij=1 lti;j . AlgorithmAi always tries to maintain a s
hedule in whi
h �ti is boundedby �i times the load on the (2ki + 1)-st smallest ma
hine,where �1 and �2 are spe
i�
 
onstants needed in the analysisof the algorithms, i.e. �1 = 1� (k1�b0:074m
)=(2 �0:916k1)and �2 = 0:409=0:909. Formally the algorithms want tomaintain �ti � �ilti;2ki+1. In some 
ases, when several largejobs arrive, it is impossible to maintain the invariant. As
hedule is 
alled 
riti
al if �ti > �ilti;2ki+1.Algorithm Ai, i 2 f1; 2g, always s
hedules an in
omingjob either on the ma
hine with the smallest load or on thema
hine with the (ki + 1)-st smallest load. An algorithmonly 
onsiders s
heduling a job on the (ki + 1)-st smallestma
hine if its s
hedule is 
riti
al. Algorithm A2, whi
h wedes
ribe in detail below, is aggressive. Loosely speaking,it assigns a job Jt to the (k2 + 1)-st smallest ma
hine ifthe resulting makespan is bounded by 
2Lt=m, where 
2 =2. On the other hand A1 is 
onservative; it only s
hedulesa job on the (k1 + 1)-st smallest ma
hine if the resultingmakspan is at most 
1Lt=m, where 
1 = 1:832. Note thatq
1Lt=m + (1 � q)
2Lt=m = 1:916Lt=m, whi
h is at most1.916 times the optimum makespan.Algorithm A1: Set 
1 := 1:832, k1 := d 925me and �1 :=1� (k1 � b0:074m
)=(2 � 0:916k1).S
hedule a new job Jt on the ma
hine with the (k1+1)-stsmallest load if the s
hedule is 
riti
al and lt�11;k1+1 + pt �
1Lt=m. Otherwise s
hedule Jt on the ma
hine with thesmallest load.In some situations A2 
annot a�ord a makespan of 
2Lt=m.Suppose that A1's s
hedule is 
riti
al and that all the ma-
hines have approximately the same load. Then a newlyarriving job 
an for
e a high makespan in A1's s
hedule.A makespan of 
2Lt=m = 2Lt=m in A2's s
hedule is thentoo expensive. Let �t1 = Pmj=k1+1 lt1;j be the total load onma
hines M t1;k1+1; : : : ;M t1;m. We say that A1's s
hedule isbalan
ed if the total load on the k1 smallest ma
hines isat least (
1 � 1) k1m Lt, or equivalently, if �t1 � �Lt where� := 1� (
1 � 1) k1m .To �nd out if A1's s
hedule is balan
ed, algorithm A2always keeps tra
k of the s
hedule that A1 would have 
re-ated. If A1's s
hedule is indeed balan
ed, A2 only pla
es anew job on the (k2 + 1)-st smallest ma
hine if the result-ing makespan does not ex
eed maxf
02Lt=m; 
2��1�t1=mg,where 
02 = 1:885. As we shall show in the later analysis(see Se
tion 4.1), this 
onstraint ensures that the expe
tedmakespan of Rand is always bounded by 1.916 times theoptimum makespan.Algorithm A2: Set 
2 := 2, 
02 := 1:885, k2 := d 38me,�2 := 0:409=0:909 and � := 1� (
1 � 1) k1m .At any time the algorithm keeps tra
k of the s
hedulethat A1 would have 
onstru
ted. When a new job Jt ar-rives, 
onsider A1's s
hedule after Jt was pro
essed by A1.

If A1's s
hedule is balan
ed, then set 
 := maxf
02Lt=m;
2��1�t1=mg. Otherwise set 
 := 
2Lt=m. S
hedule Jt onthe ma
hine with the (k2+1)-st smallest load if the s
hed-ule is 
riti
al and lt�11;k2+1+ pt � 
. Otherwise s
hedule Jton the ma
hine with the smallest load.The main algorithm works as follows.Algorithm Rand: Given a job sequen
e �, with prob-ability q = 1=2 exe
ute A1 and with probability 1 � qexe
ute A2.Theorem 3. The algorithm Rand is 1.916-
ompetitive asm!1.The algorithm Rand with its 
omponents A1 and A2 de-pends on various parameters, all of whi
h have been opti-mized. To obtain a small 
ompetitive ratio, 
1 should be
hosen as small as possible. However, if 
1 is below 1.832,we are not able to always identify large jobs in the input se-quen
e when the s
hedules are 
riti
al; this is 
ru
ial in theanalysis. In parti
ular, k1 and �1 are 
hosen so that we 
anidentify large jobs in A1's s
hedule when Rand 's expe
tedmakespan is above 1:916Lt=m but A2's makespan is low andits s
hedule 
annot be used to identify large jobs. It turnsout that by setting the probability q to a value slightly above1=2, we are able to improve the 
ompetitive ratio. Howeverthe improvement is minor and the modi�ed algorithm doesnot a
hieve a 
ompetitive ratio of at most 1.915. Sin
e wede
ided to optimize up to a value of 1=1000, we work withq = 1=2.
4. THE ANALYSIS OF THE ALGORITHM

4.1 Analysis of the makespanWe prove Theorem 3 by indu
tion on the number n ofjobs to be s
heduled. Obviously, the theorem holds for jobsequen
es 
onsisting of only n = 1 job. Suppose that itholds for sequen
es of length n�1 and 
onsider any sequen
e� = J1; : : : ; Jn. We have to proveE[Rand(�)℄ = qA1(�) + (1� q)A2(�)= qln1;m + (1� q)ln2;m� 1:916 �OPT (�): (1)Let L = Ln be the total load of all the jobs in �.We �rst note that if A2 s
hedules some job Jt on thema
hine with the (k2+1)-st smallest load, then the resultingload lt�12;k2+1 + pt is bounded by 
2Lt=m. This is obviousif in the s
heduling step 
 = 
2Lt=m or 
 = 
02Lt=m. If
 = 
2��1�t1=m, then �t1 � �Lt be
ause A1's s
hedule isbalan
ed at time t. Hen
e 
 � 
2��1�Lt=m = 
2Lt=m.If at time n the makespan of A1 satis�es ln1;m � 
1L=m,then (1) follows easily: If ln2;m � 
2L=m, then E[Rand(�)℄ �q
1L=m+(1�q)
2L=m = 0:5(1:832+2)L=m = 1:916L=m �1:916 � OPT (�). On the other hand, if ln2;m = (
2 + Æ)L=m,for some Æ > 0, then by the arguments given in the previousparagraph, the last job assigned to ma
hineMn2;m was s
hed-uled on the least loaded ma
hine at the time of the assign-ment and its pro
essing time is at least (
2+Æ)L=m�L=m =(1 + Æ)L=m be
ause the least loaded ma
hine always has aload of at most L=m. Thus E[Rand(�)℄ � q
1L=m + (1 �q)(
2 + Æ)L=m � 1:916(1 + Æ)L=m � 1:916max1�t�n pt �1:916 �OPT (�).



In the following we assume that the makespan of A1 sat-is�es ln1;m > 
1L=m, whi
h implies that the last job onMn1;m was s
heduled on the least loaded ma
hine at thetime of the assignment. If the load on the smallest ma-
hine is ln1;1 � (
1 � 1)L=m, then the analysis is again sim-ple. Let ln1;m = (
1 + Æ1)L=m, for some Æ1 > 0. The lastjob on Mn1;m has a pro
essing time of at least (1 + Æ1)L=m.If ln2;m � 
2L=m, then E[Rand(�)℄ � 1:916(1 + Æ1)L=m �1:916max1�t�n pt � 1:916�OPT (�). If ln2;m = (
2+Æ2)L=m,for some Æ2 > 0, then the last job on Mn2;m has a pro
ess-ing time of at least (1 + Æ2)L=m. We have E[Rand(�)℄ �1:916maxf(1 + Æ1); (1 + Æ2)gL=m � 1:916max1�t�n pt �1:916 � OPT (�).Therefore we 
an restri
t ourselves to ln1;1 > (
1 � 1)L=m.There are two 
ases to 
onsider. (1) The last job of Mn2;mwas s
heduled on the (k2+1)-st smallest ma
hine at the timeof the assignment. This 
ase is analyzed in Se
tion 4.1.1.(2) The last job of Mn2;m was s
heduled on the smallest ma-
hine at the time of the assignment. This 
ase is analyzedin Se
tion 4.1.2.
4.1.1 The last job onMn2;m was scheduled on the(k2+1)-st smallest machineSuppose that the last job onMn2;m was s
heduled at time tand that in this s
heduling step 
 2 f
2Lt=m; 
2��1�t1=mg,whi
h means that the load ln2;m is bounded by that value of
. If 
 = 
2Lt=m, then A1's s
hedule was not balan
ed, i.e.�t1 � �Lt, and thus 
 � 
2��1�t1=m. Sin
e the �1-values
annot de
rease over time, ln2;m � 
2��1�n1 =m. We estimatea 
ombination of the load on the smallest ma
hine in A1'ss
hedule and the largest ma
hine in A2's s
hedule. We haveqln1;1 + (1� q)ln2;m � q(L� �n1 )=k1 + (1� q)
2��1�n1 =mbe
ause ln1;1 
annot be larger than the average load on thek1 smallest ma
hines. In the last expression the total fa
torof �t1, whi
h is �q=k1 + (1 � q)
2��1=m, is positive. Sin
eln1;1 > (
1 � 1)L=m, we have �n1 � �L and hen
eqln1;1 + (1� q)ln2;m � q(L� (1� (
1 � 1)(k1=m))L)=k1+(1� q)
2L=m= q(
1 � 1)L=m+ (1� q)
2L=m= 1:916L=m � qL=m:If E[Rand(�)℄ = (1:916+Æ)L=m, for some stri
tly positive Æ,then the pro
essing time ps of the last job on Mn1;m satis�esps � (1=q)((1:916 + Æ)L=m� ((1� q)ln2;m + qln1;1))� (1=q)((1:916 + Æ)L=m� (1:916L=m � qL=m))= (1 + Æ=q)L=m = (1 + 2Æ)L=mand (1) is established be
ause OPT (�) � (1 + 2Æ)L=m.We still have to 
onsider the 
ase that when the last jobonMn2;m was assigned at time t, 
 = 
02Lt=m. Let 
01 = 1:947and note that q
01+(1�q)
02 = 1.916. If ln1;m = (
01+Æ)L=m,for some Æ > 0, the last job on Mn1;m was s
heduled on theleast loaded ma
hine at that time. The expe
ted makespanby Rand is E[Rand(�)℄ = (1:916 + Æ=2)L=m. We study theload of that ma
hine immediately before the assignment ofthat job. If the load was bounded by (
01 � 1)L=m, then wehave again identi�ed a job of size at least (1 + Æ)L=m and(1) holds again. For the analysis of the 
ase that the loadwas larger than (
01 � 1)L=m, we need the following lemma,whi
h holds for both A1 and A2. The proof is omitted.

Lemma 1. If at any time the least loaded ma
hine of Ai,i 2 f1; 2g, has a load of at least (0:947 + �) Lm , for some �with 0 � � � 0:053, then the job sequen
e s
heduled so far
ontains m jobs with a pro
essing time of at least (0:5 +0:50:916 �) Lm .Obviously, the last job on Mn1;m has pro
essing time of atleast (
1 � 1)L=m � (0:5 + 0:50:916 �)L=m for all � 2 [0; 0:053℄.Thus, if the least loaded ma
hine of A1 before the assign-ment of that job has a load of (
01 � 1 + �)L=m, then usingLemma 1 we have identi�ed m+1 jobs of size at least (0:5+0:50:916 �)L=m, two of whi
h must be s
heduled on the samema
hine in OPT's s
hedule. Hen
e OPT (�) � maxf1 +Æ� �; 1 + �=0:916gL=m � E[Rand(�)℄=1:916; for all possiblevalues of � 2 [0; 0:053℄.
4.1.2 The last job onMn2;m was scheduled on the

smallest machineWe are left with analyzing the s
enario that the last jobson the largest ma
hines Mn1;m and Mn2;m were s
heduled onthe smallest ma
hines at the time of the assignment. Con-sider the last job Jn. We assume that its assignment 
hangesthe makespan in A1's or in A2's s
hedule sin
e otherwise (1)follows from the indu
tion hypothesis. Thus, Jn is s
hed-uled on the smallest ma
hine in one of the s
hedules. Weassume lni;m > 
1L=m, i = 1; 2, sin
e otherwise there is noth-ing to show. Thus Jn has a large pro
essing time of at leastpn � (
1 � 1)L=m.Let ln�11;1 and ln�12;1 be the loads of the smallest ma
hinesimmediately before the assignment of Jn. If the expe
tedload on the smallest ma
hine is qln�11;1 +(1�q)ln�12;1 � 0:916 Lm ,then (1) is easy to prove. If the makespan of Ai's s
hedulesatis�es lni;m � ln�1i;1 +L=m, then E[Rand(�)℄ � 1:916L=m �1:916 � OPT (�). If lni;m = ln�1i;1 + L=m + ÆiL=m, for some iand positive Æi, then � 
ontains a job of size (1 + Æ)L=m,where Æ = maxi=1;2 Æi and E[Rand(�)℄ � (1:916 + Æ)L=m �1:916max1�t�n pt � OPT (�).If the expe
ted load on the smallest ma
hine is greaterthan 0:916L=m, then one of the loads must be greater than0:916L=m. We distinguish two 
ases, depending on whi
hof the two loads is higher.Case 1: ln�12;1 � ln�11;1 and ln�12;1 > 0:916L=m.Case 2: ln�11;1 > ln�12;1 and ln�11;1 > 0:916L=m.Analysis of Case 1: Let ln�12;1 = (0:916 + �)L=m, forsome 0 < � � 0:084, and ln�11;1 > (0:916 � �)L=m. The nextlemma, whi
h we will prove in Se
tion 4.3, is 
ru
ial.Main Lemma 1. Let 0 � � � 0:084. If at time n � 1 theleast loaded ma
hines of A1 and A2 satisfy ln�12;1 = (0:916 +�) Lm and ln�11;1 � maxf0:916 � �; 0:885g Lm , then the job se-quen
e J1; : : : ; Jn�1 
ontains m jobs with a pro
essing timeof at least (0:5 + 0:50:916 �) Lm .If ln�11;1 � 0:885L=m, then Main Lemma 1 and the fa
t thatpn � 0:832L=m imply that � 
ontains m+1 jobs with a pro-
essing time of (0:5+ 0:50:916 �)L=m. Let Æ = maxi=1;2f0; (lni;m�ln�1i;1 � L=m)=(m=L)g. Then E[Rand(�)℄ � (1:916 + � +Æ)L=m � 1:916maxf1+�=0:916; 1+ÆgL=m � 1:916�OPT (�).If ln�11;1 < 0:885L=m, then � > 0:916 � 0:885 = 0:031and E[Rand(�)℄ � (1:916 + (1 � q)(� � 0:031) + Æ)L=m <(1:916 + � + Æ)L=m, with � := � � 0:031 and the same def-inition of Æ as before. Using Lemma 1, we obtain that� 
ontains m + 1 jobs with a pro
essing time of at least



(0:5+ 0:50:916 �)L=m and hen
e OPT (�) � maxf1+�=0:916; 1+ÆgL=m � E[Rand(�)℄=1:916.Analysis of Case 2: Let ln�11;1 = (0:916+�)L=m, for some0 < � � 0:084, and let ln�12;1 > (0:916� �)L=m. We need thefollowing lemma whose proof we sket
h in Se
tion 4.4.Main Lemma 2. Let 0 � � � 0:084, 0 � �0 � minf0:084+�; 0:115g. If at time n�1 the least loaded ma
hines of A1 andA2 satisfy ln�11;1 = (0:916 + �) Lm and ln�12;1 � (maxf0:916 ��; 0:885g+ �0) Lm , then the sequen
e J1; : : : ; Jn�1 
ontains mjobs with a pro
essing time of at least (0:5+ 0:50:916 minf�; �0g) Lm .We �rst assume 0 < � � 0:031. Suppose that ln�12;1 =(0:916 � � + �0)L=m, for some �0 > 0. Note that �0 < 2� be-
ause ln�11;1 > ln�12;1 . Set � = minf�; �0g and de�ne Æ as in theanalysis of Case 1. Then E[Rand(�)℄ � (1:916 + (1� q)�0 +Æ)L=m < (1:916 + � + Æ)L=m and Main Lemma 2 ensuresthat OPT (�) � maxf1 + �=0:916; 1 + ÆgL=m. Equation (1)follows.Now suppose that � > 0:031 and ln�12;1 = (0:885 + �0)L=m.If � � �0, then E[Rand(�)℄ � (1:916 + � + Æ)L=m be
auseln�11;1 > ln�12;1 and Main Lemma 2 ensures that OPT (�) �maxf1 + �=0:916; 1 + ÆgL=m. If � > �0, then E[Rand(�)℄ �(1:916 + q(� � 0:031) + (1 � q)�0 + Æ)L=m � (1:916 + � +Æ)L=m, with � = maxf��0:031; �0g. Main Lemma 2 ensuresthe existen
e of m + 1 jobs of size (0:5 + 0:50:916 �0)L=m andLemma 1 ensures the existen
e of m+ 1 jobs of size (0:5 +0:50:916 (��0:031))L=m. Thus OPT (�) � maxf1+�=0:916; 1+ÆgL=m. The �nal 
ase � > 0:031 and ln�12;1 < 0:885L=m 
anbe handled in the same way as in Case 1.
4.2 Basic properties and conceptsIt remains to prove Main Lemmas 1 and 2. This se
tionpresents important statements and 
on
epts needed in bothof the proofs. The proofs of the lemmas are given in theappendix. In Main Lemmas 1 and 2 we have to investigatejob sequen
es � = J1; : : : ; Jn leading to one of the followings
enarios.(S1) At time n� 1 the least loaded ma
hines of A1 and A2satisfy ln�12;1 = (0:916+�)L=m and ln�11;1 � maxf0:916��; 0:885gL=m, for some � with 0 � � � 0:084.(S2) At time n� 1 the least loaded ma
hines of A1 and A2satisfy ln�11;1 = (0:916+�)L=m and ln�12;1 � (maxf0:916��; 0:885g + �0)L=m, for some � and �0 with 0 � � �0:084 and 0 � �0 � minf0:084 + �; 0:115gGiven a job sequen
e leading to (S1), at a any time t,1 � t � n � 1, a ma
hine of A2 is 
alled full if its loadis at least (0:916 + �) Lm . A ma
hine of A1 is full its loadits load is at least maxf0:916 � �; 0:885g Lm . For sequen
esleading to (S2), the de�nition is similar. A ma
hine of A1 isfull if its load is at least (0:916 + �) Lm , and a ma
hine of A2is full if the load is at least (maxf0:916 � �; 0:885g + �0) Lm .The following lemma implies that the job sequen
es to beinvestigated generate 
riti
al s
hedules.Lemma 2. If the least loaded ma
hine of Ai, i 2 f1; 2g,has a load of at least 0:832L=m, then Ai's s
hedule is 
riti-
al. For i = 1, A1's s
hedule is also balan
ed.In a job sequen
e leading to (S1) or (S2), let t
i , i 2 f1; 2g,be the �rst point in time su
h that at least m�ki ma
hines

of Ai are full and the s
hedule of Ai is 
riti
al throughoutthe time interval [t
i ; n� 1℄. Let tb be the �rst point in timewith t
2 � tb � n � 1 su
h that A1's s
hedule was balan
edat time tb.In our analyses we will often have to analyze the total loadall the ma
hines at some time t > t
i . We present a generallemma that will be helpful in estimating that load. Given as
hedule of Ai, i 2 f1; 2g, in whi
h the (ki + 1)-st smallestma
hine has a load of at least b, de�ne Li(l; b) as the totalload on all ma
hines ex
ept for the load in ex
ess to level bon ma
hines ki + 1; : : : ; ki + l. Figure 1 shows an example;Li(l; b) is shaded grey. On our analyses will use part a)of the lemma for the algorithm A2 with B = 
02��1�t1=m.Part b) of the lemma will be used for A1 with 
 = 
1 andfor A2 with 
 = 
2 or 
 = 
02.
ki 1m

b
ki + l ma
hinesFigure 1: The load 
ounted in Li(l; b)Lemma 3. Consider Ai's s
hedule at time t � t
i and as-sume that exa
tly m� j ma
hines are full.a) Suppose that in the next s
heduling step, a job 
annot bepla
ed in the (ki+1)-st smallest ma
hine if the resultingload ex
eeds B. Then when m�j+1 ma
hines are full,Li(l� 1; b) > Li(l; b) +B � b, for any 1 � l � m� ki.b) Suppose that in the next s
heduling steps, a job 
an-not be pla
ed on the (ki + 1)-st smallest ma
hine ifthe resulting load ex
eeds 
 times the average load onthe ma
hines. If Li(l; b) > X, 1 � l � m � ki, thenwhen exa
tly m� j+h ma
hines are full Li(l�h; b) >(X � bm=
)(1� 
=m)�h + bm=
.Lemma 4. In job sequen
es leading to (S1) or (S2) atleast m� k1 ma
hines of A1 are full at time tb.Lemma 5. Consider a job sequen
e leading to (S1) or(S2) at some time t with t > t
2. If A2 
annot s
heduleJt on the ma
hine with the (k2 + 1)-st smallest load, thenpt � (0:5 + 0:50:916 �) Lm , where � = � for sequen
es leadingto (S1) and � = �0 for sequen
es leading to (S2).

4.3 Proof of Main Lemma 1We show that ea
h time a ma
hine of A2 be
omes full,a job of size at least (0:5 + 0:5�=0:916)L=m is s
heduled.Sin
e m ma
hines are full at time n � 1, Main Lemma 1follows. First 
onsider any time t > t
2. There are at leastm � k2 full ma
hines and hen
e another full ma
hine 
anonly be 
reated by s
heduling a job on the smallest ma
hine.Lemma 5 ensures that the size of the job is at least (0:5 +0:5�=0:916)L=m. Next we 
onsider any time t, 1 � t � t
2,and show that whenever another ma
hine be
omes full, the



job is s
heduled on a ma
hine whose load is smaller than�2(0:916 + �)L=m. Thus the size of the job is pt > (0:916 +�)L=m� �2(0:916 + �)L=m > (0:5 + 0:5�=0:916)L=m:Lemma 6. At time t
2 the average load on the non-fullma
hines of A2 is smaller than �2(0:916 + �)L=m.We �rst �nish the proof of Main Lemma 1 and then proveLemma 6. Let t0, t0 � t
2, be the last point in time whenexa
tly m � k2 ma
hines are full and let t00, t00 � t0, bethe last point in time when exa
tly m � 2k2 ma
hines arefull. At any time t, t0 < t � t
2, a full ma
hine 
an onlybe generated by s
heduling a job on the smallest ma
hine.Lemma 6 ensures that its load is bounded by �2(0:916 +�)L=m. At time t, t00 � t � t0, the s
hedule is not 
riti
albe
ause lt2;2k2+1 � (0:916 + �)L=m and, by Lemma 6, theaverage load on the k2 smallest ma
hines is bounded by �2times this value. Thus jobs are always s
heduled on thesmallest ma
hine. At time t00 the load on the (k2 + 1)-st smallest ma
hine 
annot be larger than the load on thesmallest ma
hine at time t0, whi
h is at most �2(0:916 +�)L=m. Thus at any time t, 1 � t � t00, both ma
hines ajob 
an be assigned to have a low load.The rest of this se
tion is devoted to proving Lemma 6.The proof is by 
ontradi
tion. We assume that at time t
2 theaverage load on the non-full ma
hine is at least �2(0:916 +�)L=m and show that this would imply a load of at leastL at time n � 1. This is a 
ontradi
tion be
ause at time nanother job with non-zero pro
essing time is presented andhen
e Ln�1 < Ln = L.Let b1(�) = maxf0:916��; 0:885gL=m and b2(�) = (0:916+�)L=m. We de�ne several load values L1(�); L2(�); L3(�) andL4(�). Essentially, L1(�) is the minimum load in the systemat time t
2: At least m � k2 ma
hines are full and by as-sumption the average load on the non-full ma
hines is atleast �2(0:916 + �)L=m. Thus the total load is at least(m� k2)b2(�)+k2�2b2(�) = b2(�)m(1+ (�2� 1)k2=m). Thevalue L2(�) is the minimum load in the system when A1has a balan
ed s
hedule. By Lemma 4 at least m� k1 ma-
hines of A1 are full; thus the total load is at least L2(�) =(m � k1)b1(�)��1. We set L3(�) = (
2=
02)L2(�). Intu-itively, this is the load at whi
h the value of 
 
hanges inthe s
heduling pro
ess. While the load in the system issmaller than L3(�), the value 
 = 
2��1�t1=m dominates
 = 
02Lt=m. Afterwards the latter value dominates. Fi-nally, we set L4(�) = L. This is the �nal value we want torea
h. L1(�) = b2(�)m(1 + (�2 � 1)k2=m)L2(�) = (m� k1)b1(�)��1L3(�) = (
2=
02)L1(�)L4(�) = LMoreover, we de�ne values n1(�); n2(�) and n3(�). Given aload of Li(�), ni(�) is the maximum number of large jobs weneed to rea
h a load of Li+1(�), for i = 1; 2; 3.n1(�) = � logB �L2(�)� b2(�)m=
2L1(�)� b2(�)m=
2�with base B = (1� 
2=m)n2(�) = (L3(�)� L2(�))=(
2L2(�)m � b2(�))n3(�) = � logB0 �L4(�)� b2(�)m=
02L3(�)� b2(�)m=
02�with base B0 = (1� 
02=m)

Note that (L1(�)�b2(�)m=
2)(1�
2=m)�n1(�)+b2(�)m=
2 =L2(�). If we have a load of at least L2(�) and a job 
an-not be s
heduled on the (k2 + 1)-st smallest ma
hine inA2's s
hedule, then the pro
essing time of the job mustbe at least 
2L2(�)=m � b2(�). Thus after at most n2(�)large jobs, a load of L3(�) is rea
hed. Finally (L3(�) �b2(�)m=
02)(1 � 
02=m)�n3(�) + b2(�)m=
02 = L4(�) = L. LetNi(�) = Pij=1 dnj(�)e, for j = 1; 2; 3. Analyzing the �rstderivatives of the fun
tions ni(�), 1 � i � 3, we 
an showthat N3(�) is non-in
reasing in �. The expression n1(�) isa 
on
ave de
reasing fun
tion, whereas n2(�) and n2(�) are
onvex in
reasing fun
tions. For 0 � � � 0:031, the gradientof n1(�) is smaller than �2:3. The sum n2(�) + n3(�) 
anbe bounded by a linear fun
tion whose gradient is boundedby 1:8. Thus N3(�) is non-in
reasing. For � � 0:031 thegradient values 
hanges slightly be
ause b1(�) is 
onstant.Here the gradient of n1(�) is smaller than �2:5 and n2(�) +n3(�) 
an be bounded by a linear fun
tion whose gradient issmaller than 0:37. Again, N3(�) is non-in
reasing. Evaluat-ing the fun
tion for � = 0, we �nd that N3(0) � 38m � k2.To prove that the total load in A2's s
hedule at time n � 1is at least L, we de�ne a non-de
reasing fun
tion f withf(N3(�)) � L. Claim 1 below states that, at any time t � t
2,when exa
tly m�k2+ i ma
hines of A2 are full, 0 � i � k2,the load L2(k2 � i; b2(�)) � f(i). This shows that when mma
hines are full Ln�1 � L2(0; b2(�)) � f(k2) � f(N3(�)) �L.f(i) = 8>>>>>>>>><>>>>>>>>>:
minf(L1(�)� b2(�)m
2 )(1� 
2m )�i + b2(�)m
2 ; L2(�)gfor 0 � i � N1(�)minfL2(�) + (i �N1(�))(
2 L2(�)m � b2(�)); L3(�)gfor N1(�) < i � N2(�)minf(L3(�)� b2(�)m
02 )(1� 
02m )N2(�)�i + b2(�)m
02 ; Lgfor N2(�) < iClaim 1. Consider a time t, t � t
2. If exa
tly m�k2+ ima
hines of A2 are full, 0 � i � k2, then L2(k2� i; b2(�)) �f(i).Proof. Suppose that at time t
2 exa
tly m� k2 + i0 ma-
hines of A2 are full, 0 � i0 � k2. Below we will show thatthe load of the s
hedule satis�es L2(k2 � i0; b2(�)) � f(i0).Given this fa
t, we �rst prove indu
tively that when ex-a
tly m � k2 + i ma
hines of A2 are full, i � i0, thenL2(k2 � i; b2(�)) � f(i). This establishes the 
laim.So suppose that L2(k2 � i; b2(�)) � f(i) and 
onsider thenext s
heduling step when another ma
hine be
omes full.The job is s
heduled on the smallest ma
hine while the algo-rithm would prefer to assign the job to the (k2+1)-st small-est ma
hine be
ause A2's s
hedule is 
riti
al after s
hedulingstep. We distinguish 
ases depending on the value of i.Case 1: 0 � i < N1(�) If the s
hedule of A1 is notbalan
ed, then A2 sets 
 = 
2Lt=m. Lemma 3 part b) andthe indu
tion hypothesis implyL2(k2 � (i + 1); b2(�))= L2(k2 � i � 1; b2(�))� (L2(k2 � i; b2(�))� b2(�)m=
2)=(1� 
2=m)+b2(�)m=
2� (L1(�)� b2(�)m=
2)=(1� 
2=m)�(i+1) + b2(�)m=
2� f(i + 1):



If the s
hedule of A1 is balan
ed, then 
 � 
2��1�t1 �
2L2(�) be
ause by Lemma 4 at least m�k1 ma
hines of A1are full and have a load of b1(�). Thus, by Lemma 3 part a),L2(k� (i+1); b2(�))�L2(k2� i; b2(�)) � 
2L2(�)=m� b2(�).We show that f(i + 1) � f(i) � 
2L2(�)=m � b2(�). Ifi = N1(�)� 1, thenf(i + 1)� f(i)� L2(�)� ((L1(�)� b2(�)m=
2)(1� 
2=m)�N1(�)+1+b2(�)m=
2)� L2(�)� ((L2(�)� b2(�)m=
2)(1� 
2=m) + b2(�)m=
2)= 
2L2(�)=m� b2(�):If i < N1(�)� 1, thenf(i + 1)� f(i)� (L1(�)� b2(�)m=
2)(1� 
2=m)�i((1� 
2=m)�1 � 1)= (L1(�)� b2(�)m=
2)(1� 
2=m)�(i+1) 
2m� ((L1(�)� b2(�)m=
2)(1� 
2=m)�n1(�) + b2(�)m=
2�b2(�)m=
2) 
2m= (L2(�)� b2(�)m=
2) 
2m= 
2L2(�)=m� b2(�):Case 2: N1(�) � i < N2(�) By indu
tion hypothesis weknow L2(k � i; b2(�)) � L2(�). If the s
hedule of A1 is notbalan
ed, then 
 = 
2Lt=m � 
2L2(�)=m. If the s
hedule ofA1 is balan
ed, then 
 = 
2��1�t1=m � 
2L2(�)=m. Thusby Lemma 3 part b, L2(k� (i+1); b2(�))�L2(k� i; b2(�)) �
 � b2(�) � 
2L2(�)=m� b2(�) and f(i+1)� f(i) is at mostthis value.Case 3: N2(�) � i By indu
tion hypothesis, f(N2(�)) �L3(�). In ea
h of A2's s
heduling steps 
 � 
02Lt=m. The in-du
tive step now follows immediately from Lemma 3 part b).It remains to show that at time t
2, L2(k2 � i0; b2(�)) �f(i0), where m� k2 + i0 is the number of full ma
hines. Byassumption, the non-full ma
hines have an average load ofat least �2b2(�). Thus the average load on the k2 small-est ma
hines is at least (i0b2(�) + (k2 � i0)�2b2(�))=k2 =b2(�)(1+(k2� i0)(�2�1)=k2). The s
hedule was not 
riti
alat time t
2 � 1 and hen
e the load on ma
hine (2k2 + 1) isasymptoti
ally at least 1=�2 times this value. Thus L2(k2�i0; b2(�)) � L2(k2; b2(�)) is at least g(i0) whereg(i) =b2(�)(1 + (k2 � i)(�2 � 1)=k2)(k2 + (m� 2k2)=�2)+k2b2(�):We show g(i) � f(i) for all 0 � i � k2. For i = 0 we haveg(0) = b2(�)k2�2 + (m� k2)b2(�)= b2(�)m(1 + (�2 � 1)k2=m))= L1(�)= f(0):In ea
h step the fun
tion g in
reases by b2(�)(1��2)(1+(m � 2k2)=(�2k2)) > 1:2L=m. We show that the fun
tionf in
reases by at most this value in ea
h step. As shownin Case 1 above, f(i + 1) � f(i) � 
2L2(�)=m � b2(�) �1:1L=m if i � N1(�) � 1. The same 
al
ulation holds ifN1(�) � i < N2(�). For i � N2(�) we 
an show as in Case 1,f(i + 1) � f(i) � 
02L4(�)=m � b2(�) and this expression isbounded by L=m.

4.4 Proof of Main Lemma 2Due to spa
e limitations, we only give a sket
h of theproof. We have to 
onsider job sequen
es leading to s
e-nario (S2). To identify large jobs in the sequen
e we needthe following lemmas.Lemma 7. a) If 0 � � � 0:007, then at time t
2 theaverage load on the non-full ma
hines of A2 is smallerthan �2(0:916 � �)L=m.b) If � � 0:007, the one of the following statement holds:(i) at time t
1 the average load on the non-full ma
hinesof A1 is smaller than (0:416 + 0:416�=0:916)L=m; or(ii) at time t
2 the average load on the non-full ma-
hines of A2 is smaller than (0:416 � �)L=m.Lemma 8. If at some time t > t
1, the (k1 + 1)-st small-est ma
hine of A1 has a load of (0:916 + d)L=m, for some0:007 � d � 0:084, and A1 
annot s
hedule Jt on the ma-
hine with the (k1 + 1)-st smallest load, then pt � (0:5 +0:50:916d) Lm .Using these two lemmas, the identi�
ation of large jobs
an be done using the same te
hniques as in the proof ofMain Lemma 1. The diÆ
ult part of the analysis is toprove part b) of Lemma 7, where we need arguments not yetseen in this paper. Consider an � with 0:007 � � � 0:084.The proof is again by 
ontradi
tion. We assume that attime t
1, the average load on the non-full ma
hines of A1is at least (0:416 + 0:416�=0:916)L=m and that at time t
2,the average load on the non-full ma
hines of A2 is at least(0:416 � �)L=m. We show that these assumptions imply aload of at least L at time n � 1.The global stru
ture of the proof is similar to that ofLemma 6, but the te
hni
al details di�er. Let b1(�) =(0:916 + �)L=m and b2(�) = maxf0:916� �; 0:885gL=m. De-�ne � = minf�; 0:031g. Note that at � = 0:031, b2(�) be
omes
onstant. Again we de�ne a fun
tion f that des
ribes theminimum load in the system when exa
tly m � k2 + i ma-
hines of A2 are full. Again we need a sequen
e of loadsLi(�), i = 1; : : : ; 4. In the proof of Lemma 6, L1(�) wasthe load in the system when exa
tly m � k2 ma
hines ofA2 were full, whi
h was also the minimum load in the sys-tem when A2's s
hedule was 
riti
al. For sequen
es lead-ing to (S2) these two values are di�erent. Here L1(�) =b2(�)�k2 � 0:5L=m is the minimum load in the system whenexa
tly m� k2 ma
hines are full. The minimum load in thesystem when A2's s
hedule is 
riti
al is L2(�) = b2(�)m(1 +(�2 � 1)k2=m)). The value L3(�) = (m � k1)b1(�)��1 isthe minimum load when A1's s
hedule is balan
ed. For� > 0:031 it is suÆ
ient to work with the smaller value �.We do not need the load value (
2=
02)L3(�) in this analysis.The main di�eren
e in the de�nitions of the loads is thatL4(�) is not the �nal value L but a smaller value, i.e. L4(�) =L�0:5d(�)L=m where d(�) = d(2:933(� � 0:007) + 0:0083)me:It turns out that when m ma
hines are full in A2's s
hedule,the load is not ne
essarily L but only L4(�) de�ned above.Nonetheless we are able to derive a 
ontradi
tion. The in-tuition is as follows. At time n� 1, the smallest ma
hine ofA1 has a higher load than the smallest ma
hine of A2. Thusduring the s
heduling pro
ess it takes longer to generate fullma
hines in A1's s
hedule. In a typi
al situation after timet
2, when i ma
hines of A2 are full, only i � d(�) ma
hinesof A1 are full. Thus we get an additional load from jobs



needed to �ll all the ma
hines of A1. We 
an show that the
riti
al times satisfy t
2 � t
1. Lemma 8 then implies thatat any time after t
1 when another ma
hines of A1 be
omesfull, a job of size at least 0:5L=m is s
hedules. We obtain atotal load of at least L at times n � 1 and have the desired
ontradi
tion. This idea 
an be turned into a formal proof;details are presented in the full paper.
5. APPENDIXProof of Lemma 2. Ea
h ma
hine of Ai, i 2 f1; 2g, hasa load of at least 0:832L=m. Thus the average load on theki smallest ma
hines is �i � 0:832L=m. If Ai's s
hedulewere not 
riti
al, then the load on the (2ki + 1)-st small-est ma
hine would be at least �i=�i and the total load onall ma
hines would be at least (m � 2ki)�i=�i + 2ki�i =0:832L + (m � 2ki)(1=�i � 1)0:832L=m > L as m ! 1,whi
h is a 
ontradi
tion. For the proof that A1's s
hedule isbalan
ed we simply observe that the load on the k1 smallestma
hines is at least 0:832k1L=m � (
1 � 1)k1Lt=m for any1 � t � n.Proof of Lemma 3. a) Let eki+1 and eki+l be the loadsin ex
ess to b on the (ki + 1)-st and the (ki + l)-th small-est ma
hines, respe
tively. Let �l be the total load in thes
hedule not 
ounted in Li(l; b). When the next ma
hinebe
omes full, the job to be s
heduled has a pro
essing timep with b + eki+1 + p > B, i.e. p + eki+1 > B � b. Weshow that Li(l � 1; b) � Li(l; b) � p + eki+1. The job iss
heduled on the smallest ma
hine in the s
hedule. The ma-
hines are sorted in order of non-de
reasing loads after theassignment. If the smallest ma
hine is among the ki small-est ma
hines after the assignment, then p is fully 
ounted inLi(l�1; b) and the �-value de
reases by eki+l � eki+1 whengoing from Li(l; b) to Li(l � 1; b). Suppose that the small-est ma
hine is among the m� ki largest ma
hines after thesorting, i.e. its load is b+ e for some e > 0. If the ma
hineis among ma
hines ki+ l; : : : ; m (more formally, among ma-
hines Mi;ki+l; : : : ;Mi;m) after the sorting, then p is fully
ounted in Li(l� 1; b) and the �-value drops by eki+1 whenmoving from Li(l; b) to Li(l� 1; b). If the smallest ma
hineis among ma
hines ki+1; : : : ; k+ l�1 after the sorting, thenthe �-value drops by eki+1 during the sorting, an amount ofe is not 
ounted in the pro
essing time of p but the �-valuedrops by ek+l � e when making the transition from Li(l; b)to Li(l� 1; b).b) We prove the statement by indu
tion on h. For h = 0there is nothing to show. Assume that the statement holdsfor h�1. Consider the point in time when the (m�j+h)-thma
hine be
omes full and let eki+1 be the load above level bon the (ki+1)-st smallest ma
hine. Let p be the pro
essingtime of the new job. Algorithm Ai would prefer to assign thejob to the (ki+1)-st smallest ma
hine be
ause the s
heduleis 
riti
al. Sin
e this is impossible b + eki+1 + p > B, i.e.eki+1+p > B�b. The value B is at least 
 times the averageload on the ma
hines after the s
heduling step, whi
h meansB � 
m (Li(l� h+ 1; b) + eki+1 + p)� 
m (Li(l� h+ 1; b) +B � b):Algebrai
 manipulations give B � 
m (Li(l�h+1; b)�b)=(1�
m ) and B�b � ( 
mLi(l�h+1; b)�b)=(1� 
m ). Using part a)

and the indu
tion hypothesis,Li(l� h; b) � Li(l� h+ 1; b)=(1� 
=m)� b=(1� 
=m)= (X � bm=
)=(1� 
=m)h + bm=
(1� 
=m)�b=(1� 
=m)= (X � bm=
)=(1� 
=m)h + bm=
and this 
on
ludes the proof.Proof of Lemma 4. We 
onsider a general setting wherewe 
an analyze s
enarios (S1) and (S2) simultaneously. Let� 2 [�0:084; 0:084℄ and set b1(�) = (0:916 � �)L=m andb2(�) = (0:916 + �)L=m. For the analysis of s
enario (S1),� � 0 and for the analysis of s
enario (S2), � � 0. We as-sume that less than m � k1 ma
hines are full and derive a
ontradi
tion.We �rst analyze the average load �1(�) on the k1 smallestma
hines of A1 at time tb. In the s
hedule of A2, at leastm� k2 ma
hines are full and the s
hedule is 
riti
al. Thusthe total load is at leastLtb � (m� k2)b2(�) + k2�2b2(�) = (m+ (�2 � 1)k2)b2(�):Sin
e the s
hedule of A1 is balan
ed, the average load onthe k1 smallest ma
hines is at least (
1 � 1)Ltb=m, i.e.�1(�) = (
1 � 1)(1 + (�2 � 1)k2=m)b2(�):When exa
tly m � k1 ma
hines of A1 are full, the loadL1(k1; b1(�)) of A1's s
hedule is at least equal to L0(�) =(m� k1)b1(�) + k1�1(�). For i = 0; : : : ; k1, de�nef(i; �) = (C � L0(�)� b1(�)m=
1)(1� 
1=m)�i + b1(�)m=
1;where C = 0:96. In the above de�nition of f we s
ale theload L0(�), i.e. we 
onsider a slightly smaller load.Let t0 be the last point in time when exa
tly m� k1 ma-
hines of A1 are full. If A1's s
hedule is never non-
riti
alat time t � t0, then the proof is simple. At time t0 we haveL1(k1; b1(�)) � L0(�) and hen
e, by Lemma 3 part b), whenall the m ma
hines are fullLn�1 � L1(k1 � k1; b1(�)) = L1(0; b1(�)) � f(k1; �):We havef(k1; �) � (1� 
21m )(C � L0(�)� b1(�)m
1 )ek1
1=m + b1(�)m
1 :The last term is de
reasing in � and, for � = 0:084, it isstri
tly greater than L as m!1. Thus, if A1's s
hedule isnever non-
riti
al after time t0, then we have a 
ontradi
tion.If A1's s
hedule is non-
riti
al at some time t � t0, thenwe have to analyze more 
arefully. Suppose that at timet
1, exa
tly m � k1 + i ma
hines are full, for some 1 � i �k1. We show that at this time the load L1(k1; b1(�)) in thes
hedule satis�es L1(k1; b1(�)) � f(i; �). Lemma 3 part b)then gives that when all the m ma
hines are full L1(k1 �(k1 � i); b1(�)) � f(k1; �) and hen
e Ln�1 � L1(k1 � (k1 �i); b1(�)) � f(k1; �) > L. We have again a 
ontradi
tion.Thus we have to estimate the load L1(k1; b1(�)) at time t
1when exa
tly m�k1+ i ma
hines of A1 are full. Among thek1 smallest ma
hines, i ma
hines are full and have a load ofb1(�). Whenever one of the smallest k1 ma
hines be
omesfull, a job is assigned to the smallest ma
hine. Thus theaverage load on the non-full ma
hines at time t
1 
annot besmaller than the average load on the k1 smallest ma
hinesat time tb, whi
h was �1(�). Hen
e at time t
1, the average



load on the k1 smallest ma
hines is at least (ib1(�) + (k1 �i)�1(�))=k1. The load on ea
h of the largest m� 2k1 largestma
hines is asymptoti
ally at least 1=�1 times this value.Thus at time t
1 we have L1(k1; b1(�)) � g(i; �), whereg(i; �) = (ib1(�) + (k1 � i)�1(�))(1 + (m� 2k1)=(k1�1))+k1b1(�):We show that for any �xed �, g(i; �) � f(i; �). This estab-lishes L1(k1; b1(�)) � f(i; �).Both f and g are in
reasing in i; f grows exponentiallywhile g grows linearly. If we 
an show that, for any �xed �,the boundary values satisfy g(0; �) � f(0; �) and g(k1; �) �f(k1; �), then g(i; �) � f(i; �) holds for all i. The �rst in-equality is easy to prove. Obviously f(0; �) � CL0(�) andg(0; �) = k1�1(�)(1 + (m� 2k1)=(k1�1)) + k1b1(�)= k1�1(�) + �1(�)(m� 2k1)=�1 + k1b1(�)> C((m� k1)b1(�) + k1�1(�))= CL0(�):For i = k1,f(k1; �) = (C �L0(�)� b1(�)m=
1)(1� 
1=m)�k1 + b1(�)m=
1and g(k1; �) = 2k1b1(�) + (m� 2k1)b1(�)=�1:Both fun
tions are linear in �. Thus, to establish g(k1; �) �f(k1; �) for all �, it suÆ
es to 
he
k the boundary values� = �0:084 and � = 0:084. We have g(k1;�0:084) > 1:21L,f(k1;�0:084) < 1:05L, as well as g(k1; 0:084) > 1:01L,f(k1; 0:084) < 1:01L as m!1.Proof of Lemma 5. We �rst investigate the 
ase thatA1's s
hedule is not balan
ed, whi
h implies that 
 = 
2Lt=min the s
heduling step. Let lt�12;k2+1 = (0:885 + d)L=m, forsome d > 0, be the a
tual load on the (k2+1)-st smallest ma-
hine of A2 immediately before Jt is s
heduled. Ea
h of thelargestm�k2 ma
hines has a load of at least (0:885+d)L=m.A2's s
hedule is 
riti
al and thus the average load on the k2smallest ma
hines is at least �2(0:885 + d)L=m. ThereforeLt � (m� k2)(0:885 + d)L=m+ k2�2(0:885 + d)L=m= (0:885 + d)(1 + (�2 � 1)k2=m)L:Job Jt 
annot be pla
ed on the (k2 + 1)-st smallest ma-
hine, whi
h implies pt + lt�12;k2+1 > 
2Lt=m and hen
e pt >
2Lt=m� lt�12;k2+1. Thuspt > 
20:885(1 + (�2 � 1)k2=m)L=m� 0:885L=m+
2d(1 + (�2 � 1)k2=m)L=m� dL=m> (0:5 + 0:58d)L=m > (0:5 + 0:50:916d)L=m:The desired statement follows be
ause in s
enario (S1) d � �and in s
enario (S2) d � �0.Next we study the 
ase that A1's s
hedule is balan
ed. Toanalyze sequen
es leading to (S1) and (S2) simultanously,we 
onsider a more general setting. Let � 2 [�0:084; 0:084℄and set b1(�) = maxf0:916 � �; 0:885gL=m and b2(�) =maxf0:916 + �; 0:885gL=m. For the analysis of of (S1) wehave � � 0 and for the analysis of (S2) we have � � 0. We set�0 = 0 in s
enario (S1). The s
hedule of A1 is balan
ed andhen
e by Lemma 4 at leastm�k1 ma
hines of A1 are full, i.e.they have a load of at least b1(�). Thus �t1 � b1(�)(m� k1).

If A2 
annot s
hedule Jt on the ma
hine with the (k2+1)-stsmallest load, then lt�12;k+1 + pt > 
, where 
 = 
2��1�t1=m.Thus pt > 
2��1�t=m� lt�12;k2+1. The load on the (k2+1)-stsmallest ma
hine of A2 is bounded bylmax2;k2+1 = (L� k2b2(�)� k2�0L=m)=(m� k2)sin
e otherwise the total load at time n�1 were greater than(m� k2)lmax2;k2+1 + k2(b2(�) + �0L=m) = L: Hen
ept > 
2��1b1(�)(m� k1)=m�(L� k2b2(�)� k2�0L=m)=(m� k2):The last expression is de
reasing in � in the range �0:084 �� � 0:031 and in
reasing for � � 0:031. Therefore, we eval-uate the expression for � = 0:031. For � = 0:031 we obtainpt > (0:58 + 0:6�0)L=m. In any 
ase pt > (0:5 + 0:50:916 j�j +0:50:916 �0)L=m for all � 2 [�0:084; 0:084℄.
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