On Randomized Online Scheduling

*
Susanne Albers
Freiburg University

ABSTRACT

We study one of the most basic problems in online schedul-
ing. A sequence of jobs has to be scheduled on m identical
parallel machines so as to minimize the makespan. When-
ever a new job arrives, its processing time is known in ad-
vance. The job has to be scheduled immediately on one of
the machines without knowledge of any future jobs. In the
sixties Graham presented the famous List scheduling algo-
rithm which is (2 — -1)-competitive. In the last ten years
deterministic online algorithms with an improved compet-
itiveness have been developed. The first algorithm with a
performance guarantee asymptotically smaller than 2 was
1.986-competitive. The competitive ratio was first improved
to 1.945 and then to 1.923 and 1.9201. Randomized compet-
itive algorithms that are better than (known) deterministic
algorithms were proposed for specific values of m, i.e. for
me{2,...,7}

In this paper we present the first randomized online al-
gorithm that performs better than known deterministic al-
gorithms for general m. The algorithm is a combination of
two deterministic scheduling strategies A; and A». Initially,
when starting the scheduling process, a scheduler chooses
Ai, 1 € {1, 2}, with probability % and then serves the entire
job sequence using the chosen algorithm. The new random-
ized algorithm is 1.916-competitive. We prove that this per-
formance cannot be achieved by a deterministic algorithm
based on analysis techniques that have been used in the liter-
ature so far: Using known techniques (or generalizations) it
is impossible to prove a competitiveness smaller than 1.919
for any deterministic online algorithm. Our results strictly
limit the performance that can be achieved with existing
techniques.

*Institute of Computer Science, Freiburg University,
Georges-Kohler-Allee 79, 79110 Freiburg, Germany. E-mail:
salbers@informatik.uni-freiburg.de. Work supported
by the Deutsche Forschungsgemeinschaft, Project AL 464/3-
1, and by the European Community, Projects APPOL and
APPOL II.

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

STOC'02May 19-21, 2002, Montreal, Quebec, Canada

Copyright 2002 ACM 1-58113-495-9/02/000555.00.

1. INTRODUCTION

We study one of the most basic problems in online schedul-
ing. A job sequence o = Ji,...,J, has to be scheduled on
m identical parallel machines. Whenever a new job J; ar-
rives, its processing time p; is known in advance, 1 <t < n.
The job has to be scheduled immediately on one of the ma-
chines without knowledge of any future jobs. Preemption of
jobs is not allowed and any machine may only process one
job at a time. The goal is to minimize the makespan, which
is the completion time of the last job that finishes in the
schedule. The problem has been the subject of extensive
research, see e.g. [1-13]. Given a job sequence o, let A(o)
be the makespan produced by an online algorithm A and
let OPT (o) be the optimum makespan. Following [15] we
call a deterministic online algorithm c-competitive if A(o) <
¢+ OPT(c), for all o. A randomized online algorithm is c-
competitive against any oblivious adversary if the expected
makespan satisfies E[A(0)] < ¢ OPT (o), for all o.

Previous results: Already in the sixties Graham [9] pre-
sented the famous List scheduling algorithm, which always
assigns an incoming job to the least loaded machine, and
proved that it is (2 — -)-competitive. In the last ten years
deterministic online algorithms with an improved competi-
tiveness have been developed. A (2 — L — ¢,)-competitive
algorithm was given in [7], where €, tends to 0 as m goes
to infinity. Bartal et al. [2] presented the first algorithm
whose performance guarantee is asymptotically smaller than
2. Their algorithm is 1.986-competitive. The competitive
ratio was first improved to 1.945 by Karger et al. [10], and
then to 1.923 and 1.9201, see [1, 6]. Lower bounds on the
performance of deterministic online algorithms were given
in [1, 3, b, 8, 11]. The best bound currently known is
due to Rudin [11], who showed that no deterministic online
scheduling algorithm can be better than 1.88-competitive.
Since the publication of the paper by Bartal et al. [2], there
has always been research interest in developing better ran-
domized online algorithms. Bartal et al. gave a random-
ized algorithm for two machines. The algorithm is (4/3)-
competitive, and this is the best possible performance for
m = 2. Chen et al. [4] and Sgall [14] proved that no random-
ized online algorithm can achieve a competitiveness smaller
than 1/(1 — (1 — 1/m)™). This expression is equal to 4/3
if m = 2 and tends to e/(e — 1) as m — oco. Seiden [12]
presented a randomized algorithm whose competitive ra-
tio is smaller than the best known deterministic ratio for
m € {3,...,7}. The competitiveness is also smaller than the
deterministic lower bound for m = 3,4,5. The algorithms
by Bartal et al. and Seiden have to maintain ¢ schedules

when ¢ jobs have been scheduled. Seiden [13] modified his
algorithm so that it maintains a constant number of sched-
ules. However, the constant is large, i.e. it is equal to 2048,
and the competitive ratio is worse, for m > 4.

Our contribution: In this paper we present the first ran-
domized online algorithm that performs better than known
deterministic algorithms for general m. Our new algorithm,
called Rand, is a combination of two deterministic algo-
rithms A; and A,. Initially, when starting the scheduling
process, Rand chooses A;, ¢ € {1,2}, with probability %
and then serves the entire job sequence using the chosen al-
gorithm. At most two schedules have to be maintained at
any time. Algorithm A; is a conservative strategy that tries
to maintain schedules with a low makespan. On the other
hand, A, is an aggressive strategy that aims at generating
schedules with a high makespan. We prove, as the main
result of this paper, that the combined algorithm Rand is
1.916-competitive.

The improvement over deterministic algorithms may seem
small. We show, however, that a competitiveness of 1.916
cannot be proven for a deterministic algorithm based on the
analysis techniques that have been used in the literature so
far. All the previous analyses of online algorithms only use
the following three lower bounds on the optimum makespan.
(a) The total amount of processing in a given job sequence
divided by m. (b) The largest processing time of any job in
o. (c) Twice the (m+1)-st largest processing time in 0. We
show that using only these three lower bounds on the opti-
mum makespan, it is impossible to prove a competitiveness
smaller than 1.919 on the performance of any deterministic
online algorithm. In fact we prove a stronger statement: Us-
ing only the information (1) “The total amount of process-
ing in a job sequence divided by m” and (2) “The processing
times of the m+1 largest jobs in ¢” it is impossible to prove
a competitive ratio smaller than 1.919. In addition to (1)
and (2) an analysis could consider the processing times of
the (im + 1)-st largest jobs, for i =1,...,[(n —1)/m]. We
show that this does not help much either; it is impossible to
prove a competitiveness smaller than 1.917. These results
strictly limit the performance of deterministic algorithms
that can be achieved using known techniques.

Ideas of this paper: The algorithm Rand uses a num-
ber of new ideas, the most important feature being that two
algorithms A; and A» coordinate their scheduling decisions.
In each scheduling step, the aggressive algorithm As has to
take into account its own schedule, the conservative algo-
rithm’s schedule as well as future schedules that can evolve
from the current configuration. The maximum makespan
that A2 can afford depends on this configuration.

The previous analyses of randomized online scheduling
algorithms for m € {2,...,7} are heavily based on the fact
that if the expected makespan is high, a considerable frac-
tion of the total load in the system resides on the machine
with the highest load. This approach does not work for
general m. Our main contribution in the analysis is that
we simultaneously keep track of the schedules maintained
by Ai and As. On job sequences consisting of small and
medium size jobs, Rand’s expected makespan is small. If
Rand’s makespan is high, many large jobs must have been
scheduled. To identify large jobs, which is essential for prov-
ing a competitiveness below 2 — %, we have to analyze the
combined load vectors of A;1’s and As’s machines at various
points in the scheduling process. Our analysis is quite in-

volved but, unlike some previous analyses, does not rely on
computer proofs.

In our lower bound proofs we construct nemesis sequences
where the number of different job sizes grows with m. Previ-
ous lower bound constructions worked with a bounded num-
ber of sizes.

Organization of the paper: We first present the lower
bounds in Section 2 and then concentrate on the develop-
ment of the randomized online algorithm, which is more in-
volved. A description of the algorithm is given in Section 3.
A detailed analysis follows in Section 4.

2. LOWER BOUNDS

Several online scheduling algorithms have been proposed
in the literature [1, 2, 6, 7, 9, 10, 12]. To evaluate the com-
petitiveness of these algorithms, one has to determine lower
bounds on the makespan produced by an optimal offline al-
gorithm. So far, all the analyses are based on the following
three lower bounds (a—c) on the optimum makespan. Let
o = Ji,...,Jn be a given job sequence and let p; be the
processing time of the ¢-th job, 1 <t < n.

(a) o Sty pe

(b) maxlgtgnpt

(c) Twice the processing time of the (m + 1)-st largest job
in 0.

Theorem 1 implies that using only these three lower bounds

on the optimum makespan, it is impossible to prove a com-

petitiveness smaller than 1.919 on the performance of any

deterministic online algorithm. In fact Theorem 1 is more

general. Suppose that we use the following information to

derive lower bounds on the optimum makespan.

(1) % Z?:l bt

(2) The processing times of the m + 1 largest jobs in o.

Information (2) is more general than (b) and (c) as it con-

tains, in particular, the largest and (m + 1)-st largest pro-

cessing times and can be used to derive additional lower

bounds on the optimum makespan.

THEOREM 1. Let A be a deterministic online scheduling
algorithm. Using only information (1) and (2) to derive
lower bounds on the optimum makespan, it is impossible to
prove a competitive ratio smaller than 1.919 on A’s perfor-
mance.

PROOF. We prove the theorem as m — oco. Given a job
sequence o, what are the strongest lower bounds on the
optimum makespan we can derive from (1) and (2)? In
addition to the lower bounds given in (a) and (b), which
we will refer to as Bl and B2 respectively, the strongest
additional bound that follows from (2) is B3: The sum of the
processing times of the m-th and the (m+1)-st largest jobs.
This bound is stronger than (c). To establish the theorem,
we will show that there exist job sequences o for which A’s
makespan is at least 1.919 max{BZ, B2, B3}. An adversary
constructs a nemesis job sequence in phases. In each of
the first three phases m jobs are presented. Algorithm A
will have to schedule the jobs in each phase on different
machines. In a fourth phase one large job is generated such
that A’s makespan for the constructed sequences o is at least
1.919 - max{B.}, B2, B%}.

Phase 1: The adversary first presents m jobs with a pro-
cessing time of p = 0.05 each. Algorithm A has to schedule

these jobs on different machines since otherwise its compet-
itive ratio would be 2.

Phase 2: The adversary first presents |0.975m] jobs, each
with a processing time of ¢ = 0.369. While these jobs are be-
ing scheduled, B' < Li/m, where L1 = mp + |0.975m]q <
0.41m is the total processing time of all the jobs after the
g-jobs have been presented. Moreover, B? = ¢ and B® =
2p < B?. Here B',B? and B® denote the current lower
bounds for the prefix of o seen so far; we omit the sub-
script 0. The online algorithm has to assign the g-jobs
to different machines. Otherwise its makespan would be
P+ 2q = 0.419 + ¢ > 1.919 max{B", B®}. At this point any
machine containing a g-job has a load of 0.419.

The adversary then generates m — |0.975m| = [0.025m]
jobs with a processing time of ¢' = 0.39. During the schedul-
ing of these jobs, B'< Ls/m, where Ly = L; + [0.025m]q’
is the total load in the system at the end of the phase, and
this value is at least 0.419m and upper bounded by 0.42m
as m — oo. For the other bounds we have B? = ¢’ and
B® < p+¢q. The online algorithm has to schedule the ¢'-
jobs on different machines which do not already have a g-job.
Otherwise the makespan would be p+q+¢ = 0.419 +¢" >
1.919 max{B', B?, B*}. At the end of this phase each ma-
chine in A’s schedule was assigned two jobs and has a load
of at least 0.419.

Phase 3: Define mg = [(1+2-0.919)m/1.919 — 2L,5)]| and
mb = m—ms. As m — oo we have ms < 0.64m. The adver-
sary first creates mgs jobs with a processing time of r = 0.5
each. While these jobs are being scheduled B® = 2¢ = 0.738
and B! < Ls/m, where Ls = Ly + mar is the sum of the
processing times when all the r-jobs are scheduled. We have
Ls < 1.419m/1.919. Also B> = 0.5 < B®. Algorithm A
must schedule the r-jobs on different machines since other-
wise the makespan would be at least 0.419 4+ 2r = 1.419 >
1.919 max{B', B®}.

In each of the following m4 steps the adversary generates
a job whose processing time is so large that an assignment
of the job to a machine containing an r-job would result in
a makespan that is at least 1.919 times the current value
of B. Consider the ¢-th step, 1 < t < mj, and let ly_;
be the total processing time of all the jobs scheduled up to
that step. The adversary generates a job whose processing
time r; satisfies 0.919 + ry > 1.919(lt—1 + ry)/m, i.e. ry =
(2221, 1 — 0.919)/(1 — 222). We first analyze the sum
of the processing times when all the r'-jobs are scheduled
and then show that at any time B' > B? and B' > B®.
This proves that the r'-jobs must be scheduled on different
machines and cannot be assigned to machines containing
any r-job. We show inductively that Iy = (Ls — C’Cm)(l —
%)_t + C’Tm, where ¢ = 1.919 and ¢/ = ¢ — 1. The equation
is satisfied for ¢ = 0. Suppose it holds for ¢t — 1. Then

o= heatr = =)/)
= (Ls—2) (=)™ + 52/ 5) = /(1=)

= (Ls—m)(1-5) "+
Thus, when all the r'-jobs are scheduled, the total processing
time of all the jobs is

' r ’

(Ls — £m)(1 = &)™ 4 £im

c
c'm cmg/m c'm
(L3 — Z™)e + =

Ly

IN

As m — oo we find Ly < 0.999m. The processing times of
the r'-jobs are increasing, the first job having a size of at
least 0.5 because

ri o= (222r; - 0.919)/(1 — L22)
= (2222(L, +0.5m3) — 0.919)/(1 — 1212
> (S22(0+05((1+2-0919)m/1.919 — 2L 1)
~0.919)/(1 — 1219y
= 05.

Thus, for the proof that at any step B* > B?, it is sufficient
to show that (lz—1 + r;)/m = l;/m > ri. This is equivalent
to showing (l¢—1 — ¢')/m > (£l;—1 — '), which in turn is
equivalent to (1 —1/m) > ls—1/m. Since l;—1 < Lg, this
holds as m — co. We still have to argue that at any step
B! > B3. While the first mj — [0.025m] — 1 r'-jobs are
scheduled, B3 <29 =0.738 < L3/m < B! because L3 >
0.739m as m — co. When the last [0.025m] + 1 r'-jobs
are scheduled, B* < ¢ +r = 0.89, whereas B! > (L2 +
(10.9756m| — 1)r)/m > 0.9 as m — oco. At the end of the
phase each machine has a load of at least 0.919.

Phase 4: The adversary presents a final job with a process-
ing time of 1. The online algorithm has a makespan of 1.919.
We have B! < 1 as m — oo and B2 = B® = 1. Thus the
online makespan is 1.919 max{B%, B2, B:}. 0O

What happens if, in addition to (2), we consider a larger
set of jobs? A generalization of the lower bound (c) on page 2
is (d) (¢ + 1) times the processing time of the (im + 1)-st
largest job in o, for ¢ = 2,...,|[(n —1)/m|. We consider
again a generalized set of information.

(3) The processing times of the (7m —1+1)-st to (im + 1)-st
largest jobs in o, for i =2,...,|[(n —1)/m]|.

We show that even with this additional information it is
impossible to prove considerably better competitive ratios.
The proof of the following theorem is omitted is this ex-
tended abstract.

THEOREM 2. Let A be a deterministic online scheduling
algorithm. Using only information (1-8) to derive lower
bounds on the optimum makespan, it is impossible to prove
a competitive ratio smaller than 1.917 on A’s performance.

3. THE RANDOMIZED ONLINE
ALGORITHM

Our new randomized algorithm, called Rand, is a combi-
nation of two deterministic algorithms A; and As. Initially,
when starting the scheduling process, Rand chooses A; with
probability ¢ and A, with probability 1 — ¢, where ¢ = 1/2,
and then serves the entire job sequence using the chosen al-
gorithm. The two algorithms complement each other. On
sequences for which A; has a high makespan, As’s makespan
is low, and vice versa. At any time both algorithms keep a
list of their machines sorted in non-decreasing order by cur-
rent load. The load of a machine is the sum of the processing
times of the jobs already assigned to it. Consider a job se-
quence o = Ji,...,J, and let p: be the processing time of
job Ji, 1 <t < n. Let M{; be the machine with the j-th
smallest load in the schedule maintained by A; after ¢ jobs
have been scheduled, i = 1,2 and j = 1,...,m. Thus M,
are the machines with the smallest load and Mf’m are the

machines with the largest load. For simplicity, we also re-
fer to the machines with the j-th smallest load as the j-th
smallest machines. Let I{ ; be the load of M/ ;. Let L* the
sum of the processing times of the first ¢ jobs in o, i.e. L* is
the sum of the loads on the machines in one of the schedules
after ¢t jobs have been assigned.

Algorithm A;, ¢ € {1, 2}, tries to keep k; machines lightly
loaded and m — k; machines heavily loaded, where k1 =

[sm] and ks = [3m]. Let p! be the average load on the k;
smallest machines of A;, i.e. puj = 7 Z;“":l I} ;. Algorithm
A, always tries to maintain a schedule in which pf is bounded
by a; times the load on the (2k; + 1)-st smallest machine,
where a1 and a» are specific constants needed in the analysis
of the algorithms, i.e. a3 =1— (k1 —[0.074m])/(2-0.916k1)
and a2 = 0.409/0.909. Formally the algorithms want to
maintain pf < ailf,z,cl._,_l. In some cases, when several large
jobs arrive, it is impossible to maintain the invariant. A
schedule is called critical if ut > ailf,zkiﬂ-

Algorithm A;, 1 € {1,2}, always schedules an incoming
job either on the machine with the smallest load or on the
machine with the (k; + 1)-st smallest load. An algorithm
only considers scheduling a job on the (k; + 1)-st smallest
machine if its schedule is critical. Algorithm As, which we
describe in detail below, is aggressive. Loosely speaking,
it assigns a job J; to the (k2 + 1)-st smallest machine if
the resulting makespan is bounded by cht/m, where cs =
2. On the other hand A; is conservative; it only schedules
a job on the (ki + 1)-st smallest machine if the resulting
makspan is at most c1 L'/m, where c1 = 1.832. Note that
garLt/m + (1 — q)eaLt/m = 1.916L* /m, which is at most
1.916 times the optimum makespan.

Algorithm A;: Set ¢; := 1.832, k1 := f%m] and o :=

1— (k1 —[0.074m])/(2 - 0.916k1).

Schedule a new job J; on the machine with the (k1 +1)-st

smallest load if the schedule is critical and li;lﬁl +pt <

clLt/m. Otherwise schedule J; on the machine with the
smallest load.

In some situations A» cannot afford a makespan of c2 Lt /m.

Suppose that A;’s schedule is critical and that all the ma-
chines have approximately the same load. Then a newly
arriving job can force a high makespan in A;’s schedule.
A makespan of cht/m = 2Lt/m in As’s schedule is then
too expensive. Let \{ = Z;":le l’i,j be the total load on
machines Mf,klﬂ, .. .,Mlt,m. We say that A;’s schedule is
balanced if the total load on the k; smallest machines is
at least (c1 — 1)%Lt, or equivalently, if \{ < BL! where
Bi=1—(c1 —1)k.

To find out if Ai’s schedule is balanced, algorithm As
always keeps track of the schedule that A; would have cre-
ated. If Ay’s schedule is indeed balanced, A» only places a
new job on the (k2 + 1)-st smallest machine if the result-
ing makespan does not exceed max{chL’/m,c2B87 ' \{/m},
where ¢, = 1.885. As we shall show in the later analysis
(see Section 4.1), this constraint ensures that the expected
makespan of Rand is always bounded by 1.916 times the
optimum makespan.

Algorithm As: Set cy := 2, ¢, := 1.885, ks := [%m],
az = 0.409/0.909 and B := 1 — (c1 — 1)%L.

At any time the algorithm keeps track of the schedule
that A; would have constructed. When a new job J; ar-
rives, consider A;’s schedule after J; was processed by A;.

If Ay’s schedule is balanced, then set v := max{cyL*/m,
c27 AL /m}. Otherwise set v := coL*/m. Schedule J; on
the machine with the (k2+1)-st smallest load if the sched-
ule is critical and lﬁglﬁ_l + pt < 7. Otherwise schedule J;
on the machine with the smallest load.

The main algorithm works as follows.

Algorithm Rand: Given a job sequence o, with prob-
ability ¢ = 1/2 execute A; and with probability 1 — ¢
execute As.

THEOREM 3. The algorithm Rand is 1.916-competitive as
m — 00.

The algorithm Rand with its components A; and A» de-
pends on various parameters, all of which have been opti-
mized. To obtain a small competitive ratio, ¢; should be
chosen as small as possible. However, if c¢; is below 1.832,
we are not able to always identify large jobs in the input se-
quence when the schedules are critical; this is crucial in the
analysis. In particular, k1 and «; are chosen so that we can
identify large jobs in Ai’s schedule when Rand’s expected
makespan is above 1.916Lf /m but A»’s makespan is low and
its schedule cannot be used to identify large jobs. It turns
out that by setting the probability ¢ to a value slightly above
1/2, we are able to improve the competitive ratio. However
the improvement is minor and the modified algorithm does
not achieve a competitive ratio of at most 1.915. Since we
decided to optimize up to a value of 1/1000, we work with

qg=1/2.
4. THE ANALYSISOF THE ALGORITHM
4.1 Analysisof the makespan

We prove Theorem 3 by induction on the number n of
jobs to be scheduled. Obviously, the theorem holds for job
sequences consisting of only n = 1 job. Suppose that it
holds for sequences of length n—1 and consider any sequence
oc=1Ji,...,Jn. We have to prove

E[Rand(o)] gAi(o) + (1 — q)As(o)
< 1.916-OPT(o). (1)

Let L = L™ be the total load of all the jobs in o.
We first note that if Az schedules some job J:; on the

machine with the (k2+1)-st smallest load, then the resulting
load l;jklzﬂ + p: is bounded by cht/m. This is obvious

AN

if in the scheduling step v = c2L*/m or v = c4L*/m. If
v = a7 A, /m, then X, < BL* because A:’s schedule is
balanced at time t. Hence v < c28™ 'L /m = ¢ Lt /m.

If at time n the makespan of A; satisfies I7,, < c1L/m,
then (1) follows easily: If I3, < c2L/m, then E[Rand(o)] <
geaL/m+(1—q)caL/m = 0.5(1.8324+2)L/m = 1.916L/m <
1.916 - OPT(c). On the other hand, if I, = (c2 + §)L/m,
for some § > 0, then by the arguments given in the previous
paragraph, the last job assigned to machine M3, was sched-
uled on the least loaded machine at the time of the assign-
ment and its processing time is at least (c2+d)L/m—L/m =
(1 + 8)L/m because the least loaded machine always has a
load of at most L/m. Thus E[Rand(c)] < ge1L/m + (1 —
q)(c2 +0)L/m < 1.916(1 + §)L/m < 1.916 maxi<i<n pr <
1.916 - OPT (o).

In the following we assume that the makespan of A; sat-
isfies IT,, > c1L/m, which implies that the last job on
M7, was scheduled on the least loaded machine at the
time of the assignment. If the load on the smallest ma-
chine is T < (e1 — 1)L/m, then the analysis is again sim-
ple. Let I7,, = (c1 + d1)L/m, for some 1 > 0. The last
job on M7, has a processing time of at least (1 + 61)L/m.
If I5,, < c2L/m, then E[Rand(c)] < 1.916(1 + §1)L/m <
1.916 maxi<¢<n pt < 1.916-OPT (o). If 15 ,,, = (ca+02)L/m,
for some d2 > 0, then the last job on M3, has a process-
ing time of at least (1 + d2)L/m. We have E[Rand(c)] <
1.916 max{(1 + 1), (1 + d2)}L/m < 1.916 maxi<i<npt <
1.916 - OPT (o).

Therefore we can restrict ourselves to IT; > (c1 —1)L/m.
There are two cases to consider. (1) The last job of M3,
was scheduled on the (k2+1)-st smallest machine at the time
of the assignment. This case is analyzed in Section 4.1.1
(2) The last job of M3, was scheduled on the smallest ma-
chine at the time of the assignment. This case is analyzed
in Section 4.1.2

4.1.1 The lastjob on?,, was scheduled on the, +
1)-st smallest machine

Suppose that the last job on M3, was scheduled at time ¢
and that in this scheduling step v € {c2L*/m, c2f~ A} /m},
Wthh means that the load I3, is bounded by that value of

. If y = coL*/m, then A;’s schedule was not balanced, i.e.
)\tl > BLY, and thus v < czﬁfl)fl/m. Since the Ai-values
cannot decrease over time, I3, < c2B7 AT /m. We estimate
a combination of the load on the smallest machine in A;’s
schedule and the largest machine in As’s schedule. We have

gl + (L= q)5 < q(L— A7) /k1 + (1 — q)e2 B AY /m

because [T ; cannot be larger than the average load on the
k1 smallest machines. In the last expression the total factor
of X, which is —q/k1 + (1 — ¢)caB™"/m, is positive. Since
IT1 > (c1 —1)L/m, we have AT < BL and hence

aia+(1=qlzm < gL — (1= (c2—1)(k1/m))L)/ki
+(1 = g)e2L/m
qler =1)L/m + (1 = q)eaL/m
1.916L/m — qL/m.

If E[Rand(c)] = (1.916+6)L/m, for some strictly positive 4,
then the processing time ps of the last job on M7, satisfies

(1/9)((1.916 + 6)L/m — ((1 — @)lz,m + ql1,1))
(1/¢)((1.916 + §)L/m — (1.916L/m — qL/m))
(14+6/q9)L/m = (1+25)L/m

and (1) is established because OPT (o) > (1 4 26)L/m.

We still have to consider the case that when the last job
on M}, was assigned at time ¢,y = chL*/m. Let ¢} = 1.947
and note that qcy + (1 —q)cy = 1.916. If [T, = (¢} +8)L/m,
for some J > 0, the last job on M7, was scheduled on the
least loaded machine at that time. The expected makespan
by Rand is E[Rand(c)] = (1.916 + §/2)L/m. We study the
load of that machine immediately before the assignment of
that job. If the load was bounded by (¢} — 1)L/m, then we
have again identified a job of size at least (1 + §)L/m and
(1) holds again. For the analysis of the case that the load
was larger than (cj — 1)L/m, we need the following lemma,
which holds for both A; and As. The proof is omitted.

Ps

(AVARAY

LEMMA 1. If at any time the least loaded machine of A;,
i € {1,2}, has a load of at least (0.947 + €)X, for some €
with 0 < € < 0.053, then the job sequence scheduled so far
contains m jobs with a processing time of at least (0.5 +
5.616€)m

Obviously, the last job on M7, has processing time of at
least (c1 —1)L/m > (0.5 + 009‘;’6 YL/m for all € € [0, 0.053].
Thus, if the least loaded machine of A; before the assign-
ment of that job has a load of (¢} — 1 + €)L/m, then using
Lemma 1 we have identified m + 1 jobs of size at least (0.5+
5%25€)L/m, two of which must be scheduled on the same
machine in OPT’s schedule. Hence OPT (o) > max{l +
0 —¢,14¢/0.916}L/m > E[Rand(c)]/1.916, for all possible
values of € € [0,0.053].

4.1.2 The last job onvz,, was scheduled on the

smallest machine

We are left with analyzing the scenario that the last jobs
on the largest machines M7, and M3, were scheduled on
the smallest machines at the time of the assignment. Con-
sider the last job J,,. We assume that its assignment changes
the makespan in A1’s or in A»’s schedule since otherwise (1)
follows from the induction hypothesis. Thus, J, is sched-
uled on the smallest machine in one of the schedules. We
assume [7’,,, > c1L/m, i = 1,2, since otherwise there is noth-
ing to show. Thus J, has a large processing time of at least
Pn > (e1 —1)L/m.

Let l?ll and 1311 be the loads of the smallest machines
1mmed1ately before the a551gnment of J,. If the expected
load on the smallest machine is ¢l 7' +(1—¢)l5 7' < 0.916%
then (1) is easy to prove. If the makespan of A;’s schedule
satisfies I3, <II'7 '+ L/m, then E[Rand(c)] < 1.916L/m <
1.916 - OPT (o). If I, = l:ffl + L/m + §;L/m, for some ¢
and positive d;, then o contains a job of size (1 + §)L/m,
where § = max;=1,2 §; and E[Rand(c)] < (1.916 +6)L/m <
1.916 maxi<t<n Pt S OPT(O')

If the expected load on the smallest machine is greater
than 0.916L/m, then one of the loads must be greater than
0.916L/m. We distinguish two cases, depending on which
of the two loads is higher.

Case 1: 137" > 177" and 157" > 0.916L/m.
Case 2: 177" > 157" and 177" > 0.916L/m.
Analysis of Case 1: Let 157! = (0.916 + ¢)L/m, for

some 0 < € < 0.084, and I}, > (0.916 — ¢)L/m. The next
lemma, which we will prove in Section 4.3, is crucial.

MAIN LEMMA 1. Let 0 < e < 0.084. If at time n — 1 the
least loaded machines of A1 and As satisfy l;}l = (0.916 +
e)L and l;’;l > max{0.916 — ¢,0.885} L&, then the job se-
quence Ji,...,Jn— 1 contains m jobs with a processing time
of at least (0. 5 + 5226 L.

If l’f’jl > 0.885L/m, then Main Lemma 1 and the fact that
Prn > 0.832L/m imply that o contains m+1 jobs with a pro-
cessing time of (0.5+ 552z €)L/m. Let § = max;=12{0, (I’,,,—
l;j ' — L/m)/(m/L)}. Then E[Rand(c)] < (1.916 + € +
§)L/m < 1.916 max{1+€/0.916, 1+5}L/m < 1.916-OPT (o).
If l;’ll < 0.885L/m, then € > 0.916 — 0.885 = 0.031
and E[Rand()] < (1.916 + (1 — ¢)(e — 0.031) + 5)L/m <
(1.916 + €+ §)L/m, with € := € — 0.031 and the same def-
inition of & as before. Using Lemma 1, we obtain that
o contains m + 1 jobs with a processing time of at least

(0.5+ ;%5-€)L/m and hence OPT (c) > max{1+€/0.916, 1+
0}L/m > E[Rand(c)]/1.916.

Analysis of Case 2: Let I7;' = (0.916+¢)L/m, for some
0 < € <0.084, and let lg;l > (0.916 — €)L/m. We need the
following lemma whose proof we sketch in Section 4.4.

MAIN LEMMA 2. Let0 < € < 0.084, 0 < € < min{0.084+
€,0.115}. If at ttme n—1 the least loaded machines of A1 and
Ay satisfy 177" = (0916 + €)L and 37" > (max{0.916 —

€,0.885} +e')#, then the sequence Ji,...,Jn—1 contains m

jobs with a processing time of at least (0.5+ 552 min{e,e'}) L.

We first assume 0 < e¢ < 0.031. Suppose that lg;l =
(0.916 — € + €')L/m, for some € > 0. Note that ¢ < 2¢ be-
cause l;’;l > l;’;l. Set € = min{e, €'} and define § as in the
analysis of Case 1. Then E[Rand(c)] < (1.916 + (1 — q)¢’ +
8§)L/m < (1.916 + € + §)L/m and Main Lemma 2 ensures
that OPT (o) > max{1 +€/0.916,1 + ¢} L/m. Equation (1)
follows.

Now suppose that € > 0.031 and 15, = (0.885 + ¢')L/m.
If € < ¢, then E[Rand(c)] < (1.916 + € + §)L/m because
l?;l > l;jl and Main Lemma 2 ensures that OPT (o) >
max{1 + ¢/0.916,1 + §}L/m. If € > €, then E[Rand(c)] <
(1.916 + (e — 0.031) + (1 — q)¢' +6)L/m < (1.916 + € +
§)L/m, with € = max{e—0.031,¢'}. Main Lemma 2 ensures
the existence of m + 1 jobs of size (0.5 + j%>€¢')L/m and
Lemma 1 ensures the existence of m + 1 jobs of size (0.5 +
%5 (¢—0.031))L/m. Thus OPT(c) > max{1+€/0.916,1+
0}L/m. The final case € > 0.031 and lg;l < 0.885L/m can
be handled in the same way as in Case 1.

4.2 Basic properties and concepts

It remains to prove Main Lemmas 1 and 2. This section
presents important statements and concepts needed in both
of the proofs. The proofs of the lemmas are given in the
appendix. In Main Lemmas 1 and 2 we have to investigate
job sequences o = Ji,...,J, leading to one of the following
scenarios.

(S1) At time n — 1 the least loaded machines of A; and A»
satisfy [5 7" = (0.916+¢)L/m and [} > max{0.916—
€,0.885}L/m, for some e with 0 < e < 0.084.

(S2) At time n — 1 the least loaded machines of A; and A»

satisfy [7 7" = (0.916+¢)L/m and 5" > (max{0.916—

€,0.885} + ¢')L/m, for some € and €' with 0 < € <
0.084 and 0 < € < min{0.084 + ¢,0.115}

Given a job sequence leading to (S1), at a any time ¢,
1 <t < n—1, a machine of A» is called full if its load
is at least (0.916 + €)Z. A machine of A is full its load
its load is at least max{0.916 — ¢,0.885} . For sequences
leading to (S2), the definition is similar. A machine of A; is
full if its load is at least (0.916 + e)%, and a machine of As
is full if the load is at least (max{0.916 — ¢,0.885} + €¢') <.
The following lemma implies that the job sequences to be
investigated generate critical schedules.

LEMMA 2. If the least loaded machine of A;, 1 € {1,2},
has a load of at least 0.832L/m, then A;’s schedule is criti-
cal. For i =1, A1’s schedule is also balanced.

In a job sequence leading to (S1) or (S2), let ¢, ¢ € {1,2},
be the first point in time such that at least m — k; machines

of A; are full and the schedule of A; is critical throughout
the time interval [t§,n — 1]. Let t° be the first point in time
with ¢§ < t®* < n — 1 such that A;’s schedule was balanced
at time £°.

In our analyses we will often have to analyze the total load
all the machines at some time ¢t > t;. We present a general
lemma that will be helpful in estimating that load. Given a
schedule of A;, 1 € {1,2}, in which the (k; + 1)-st smallest
machine has a load of at least b, define L;(l,b) as the total
load on all machines except for the load in excess to level b
on machines k; + 1,...,k; + (. Figure 1 shows an example;
L;(l,b) is shaded grey. On our analyses will use part a)
of the lemma for the algorithm A» with B = b8~ *\{/m.
Part b) of the lemma will be used for A; with ¢ = ¢1 and
for As with ¢ = c2 or ¢ = ch.

L\—L
‘_‘_\—‘;

m k; +1 k; 1
machines

Figure 1: The load counted in L;(l,b)

LEMMA 3. Consider A;’s schedule at time t > t§ and as-
sume that exactly m — 7 machines are full.

a) Suppose that in the next scheduling step, a job cannot be
placed in the (k;+1)-st smallest machine if the resulting
load exceeds B. Then when m—j+1 machines are full,
L;(l—1,b) > L;(I,b) + B—b, forany 1 <1 <m — k.

b) Suppose that in the next scheduling steps, a job can-
not be placed on the (ki + 1)-st smallest machine if
the resulting load exceeds c times the average load on
the machines. If L;(I,b) > X, 1 <1 < m — ki, then
when ezactly m — j + h machines are full L;(l —h,b) >
(X —bm/c)(1 —c/m)™" +bm/c.

LEMMA 4. In job sequences leading to (S1) or (S2) at
least m — k1 machines of A1 are full at time t°.

LEMMA 5. Consider a job sequence leading to (SI1) or
(S2) at some time t with ¢ > t5. If Az cannot schedule
Ji on the machine with the (k2 + 1)-st smallest load, then
pe > (0.5 + 25 8) L where € = € for sequences leading

0.916 </ m
to (S1) and € =€ for sequences leading to (S2).

4.3 Proof of Main Lemma 1

We show that each time a machine of As becomes full,
a job of size at least (0.5 + 0.5¢/0.916)L/m is scheduled.
Since m machines are full at time n — 1, Main Lemma 1
follows. First consider any time ¢ > t5. There are at least
m — ko full machines and hence another full machine can
only be created by scheduling a job on the smallest machine.
Lemma 5 ensures that the size of the job is at least (0.5 +
0.5¢/0.916)L/m. Next we consider any time ¢, 1 < ¢t < 5,
and show that whenever another machine becomes full, the

job is scheduled on a machine whose load is smaller than
2(0.916 + €)L/m. Thus the size of the job is p; > (0.916 +
e)L/m — a2(0.916 + ¢)L/m > (0.5 + 0.5¢/0.916)L/m.

LEMMA 6. At time t5 the average load on the non-full
machines of Az is smaller than a2(0.916 + €¢)L/m.

We first finish the proof of Main Lemma 1 and then prove
Lemma 6. Let t', ' < t3, be the last point in time when
exactly m — k2 machines are full and let t”, t” < t', be
the last point in time when exactly m — 2k2 machines are
full. At any time ¢, t' < t < t3, a full machine can only
be generated by scheduling a job on the smallest machine.
Lemma 6 ensures that its load is bounded by «@2(0.916 +
e)L/m. At time t, t"" < t < t', the schedule is not critical
because 15 oy, 1 > (0.916 + €)L/m and, by Lemma 6, the
average load on the k> smallest machines is bounded by a»
times this value. Thus jobs are always scheduled on the
smallest machine. At time ¢ the load on the (k2 + 1)-
st smallest machine cannot be larger than the load on the
smallest machine at time ¢', which is at most @2(0.916 +
€)L/m. Thus at any time ¢, 1 < ¢t < ", both machines a
job can be assigned to have a low load.

The rest of this section is devoted to proving Lemma 6.
The proof is by contradiction. We assume that at time ¢5 the
average load on the non-full machine is at least a2(0.916 +
€)L/m and show that this would imply a load of at least
L at time n — 1. This is a contradiction because at time n
another job with non-zero processing time is presented and
hence L"™' < L™ = L.

Let b1(e) = max{0.916—¢, 0.885} L/m and ba2(e) = (0.916+
€)L/m. We define several load values L1 (¢), L2 (€), Ls(€) and
L4(e). Essentially, L1 (e) is the minimum load in the system
at time t5: At least m — k2 machines are full and by as-
sumption the average load on the non-full machines is at
least @2(0.916 + €)L/m. Thus the total load is at least
(m — kz)bz (6) + koaabs (E) = by (e)m(l —+ (Otz — 1)k2/m) The
value Ls(e) is the minimum load in the system when A
has a balanced schedule. By Lemma 4 at least m — k1 ma-
chines of Ay are full; thus the total load is at least La(e) =
(m — k1)bi(e)B™t. We set Lz(e) = (ca/ch)La(e). Intu-
itively, this is the load at which the value of v changes in
the scheduling process. While the load in the system is
smaller than Ls(¢), the value v = c28~'\i/m dominates
v = chLt/m. Afterwards the latter value dominates. Fi-
nally, we set L4(e) = L. This is the final value we want to
reach.

bg(e)m(l —+ (ag — 1)k2/m)
(m — k1)b1(e)8~*

= (cz2/ca)La(e)
Ls(e) = L

h
V)
AN
Lol
I

Moreover, we define values mn1(€),n2(€) and ns(e). Given a
load of L;(€), ni(e) is the maximum number of large jobs we
need to reach a load of L;41(¢), for i = 1,2,3.

_lo LQ(G) - bg(e)m/02
og (0 —seomre)
with base B =

(1 —cs/m)
ma(e) = (Ls(e) ~ La()/(e 22D —o(e))

B 4(6) = ba(m/}
log (Ls(o (e >m/c2)
with base B' = (1 — ¢5/m)

Note that (L1 (e) —ba(e)m/ca)(1—c2/m) " () 4by(e)m/ce =
Ly(e). If we have a load of at least L2(e) and a job can-
not be scheduled on the (k2 + 1)-st smallest machine in
As’s schedule, then the processing time of the job must
be at least caLa(€)/m — b2(e). Thus after at most nz(e)
large jobs, a load of Ls(e) is reached. Finally (Ls(e) —
ba(e)m/ch) (1 — ch/m) "3 4 by(e)m/chy = La(e) = L. Let
Ni(e) = Z;zl [n;(e)], for j = 1,2,3. Analyzing the first
derivatives of the functions n;(e), 1 < ¢ < 3, we can show
that N3(€) is non-increasing in e. The expression ni(e) is
a concave decreasing function, whereas nz(e) and na(e) are
convex increasing functions. For 0 < e < 0.031, the gradient
of ni(e) is smaller than —2.3. The sum nz(€) + ns(e) can
be bounded by a linear function whose gradient is bounded
by 1.8. Thus N3(e) is non-increasing. For e > 0.031 the
gradient values changes slightly because b1(€) is constant.
Here the gradient of nj(e) is smaller than —2.5 and na(e) +
ns(€) can be bounded by a linear function whose gradient is
smaller than 0.37. Again, N3(e) is non-increasing. Evaluat-
ing the function for € = 0, we find that N3(0) < %m < ks.
To prove that the total load in A2’s schedule at time n — 1
is at least L, we define a non-decreasing function f with
f(Ns(e)) > L. Claim 1 below states that, at any time ¢ > ¢5,
when exactly m — ks + i machines of As are full, 0 < i < ko,
the load L2(k2 — 1,b2(¢)) > f(¢). This shows that when m
machines are full L™~' > L2(0,b2(¢)) > f(k2) > f(Na(e)) >

bz(ﬁ)m)(l _

c2

2y 4 alam 1, ()
for 0 < i < Ni(e)
min{Lz(6)+(i—N1(6))(C2LgT() ba(e€)), Lz(e)}
for N1(e) < i < Na(e)
%)Nz(e)fi + bZ(CE,)m,L}
for N;(e) <13

min{(L1(€) —

min{(Ls(e) - 25m)(1 -

Cramv 1. Consider a time t, t > t5. If exactly m —ka +1
machines of A2 are full, 0 <1 < ko, then La(ka —1,b2(€)) >
f@).

PROOF. Suppose that at time t§ exactly m — ka2 + ip ma-
chines of A, are full, 0 < ip < k2. Below we will show that
the load of the schedule satisfies La(k2 — 10,b2(€)) > f(40).
Given this fact, we first prove inductively that when ex-
actly m — k2 + ¢ machines of A, are full, i > o, then
Lo(k2 —i,b2(€)) > f(i). This establishes the claim.

So suppose that La(k2 — 2,b2(€)) > f(z) and consider the
next scheduling step when another machine becomes full.
The job is scheduled on the smallest machine while the algo-
rithm would prefer to assign the job to the (k2 +1)-st small-
est machine because As’s schedule is critical after scheduling
step. We distinguish cases depending on the value of 3.

Case 1: 0 < i < Ni(e) If the schedule of Ay is not
balanced, then Aj sets v = cht/m. Lemma 3 part b) and
the induction hypothesis imply

La(k2 — (i +1),b2(¢))
= Lz(kz -1 — 1ab2(6))

> (L2(k2 —i,b2(€)) — ba(e)m/c2) /(1 — c2/m)
+b2(e)ym/cz

> (Li(e) — ba(e)m/ca) /(1 — ea/m)~ TV 4 ba(e)m/cs

> f@E+1).

If the schedule of A; is balanced, then v > c287'Af >
c2L2(€) because by Lemma 4 at least m — k1 machines of Ay
are full and have a load of b1(¢). Thus, by Lemma 3 part a),
Lg(k — (l =+ 1), bg(e)) — Lg(kz — i, bz(e)) Z CQLQ(C)/m — bg(e).
We show that f(i + 1) — f(i) < c2La(e)/m — ba(e). If
1 = Ni(e) — 1, then

fli+1) = £(3)
< La(e) = ((Li(e) — ba(e)m/ea)(1 — ca/m) M1 (I*
+b2(€)m/c2)
< La(e) = ((L2(e) — b2(e)m/c2)(1 — c2/m) + b2 (€)m/c2)
= caLa(e)/m — ba(e).
If : < Ni(e) — 1, then

fa+1) = f()

< (La(e) —ba(e (1—eca/m) (1 —ea/m)™" = 1)

= (Li(e) —ba(e (1—co/m)~ D2

< ((La(e) = ba()m/ea)(1 — cafm) ™™ 4 ba(e)m/ecs
—bz(e)m/c2) 2
(L2(€) — ba(e)m/c2) 2
caLa(€)/m — ba(e).

Case 2: Ni(e) < i < Nz(e) By induction hypothesis we
know La(k — 4,b2(€)) > L2(e). If the schedule of A is not
balanced, then v = c2L*/m > caLa(€)/m. If the schedule of
A; is balanced, then v = c287 'A% /m > c2La(e)/m. Thus
by Lemma 3 part b, La(k — (:+1),b2(¢)) — La(k — 1, b2(€)) >
v —ba(€) > caLa(e)/m —ba(€) and f(i+ 1) — f(z) is at most
this value.

Case 3: Na(e) < i By induction hypothesis, f(N2(e)) >
Ls(e€). In each of Ay’s scheduling steps v > ch L /m. The in-
ductive step now follows immediately from Lemma 3 part b).

It remains to show that at time ¢35, La(k2 — i0,b2(€)) >
f(i0), where m — ko + 4o is the number of full machines. By
assumption, the non-full machines have an average load of
at least awba(e). Thus the average load on the k2 small-
est machines is at least (iob2(€) + (k2 — i0)a2ba(€))/ka =
b2(€)(1+ (k2 —i0) (a2 —1)/k2). The schedule was not critical
at time ¢§ — 1 and hence the load on machine (2k; + 1) is
asymptotically at least 1/c2 times this value. Thus La (k2 —
10,b2(€)) > La(k2,b2(€)) is at least g(ip) where

g(i) =

b2(€)(1 + (k2 — 1) (a2 — 1) /k2) (k2 + (m — 2k2) /)
+kaba(€).
We show g¢(2) > f(i) for all 0 < i < kz. For i = 0 we have
9(0) = ba(e)kacz + (m — k2)b2(e)
= ba(e)m(1 + (a2 — 1)k2/m))
= L(e)
= f(0).

In each step the function g increases by ba(e)(1 — a2)(1 +
(m — 2k2)/(a2k2)) > 1.2L/m. We show that the function
f increases by at most this value in each step. As shown
in Case 1 above, f(: + 1) — f(i) < c2La(e)/m — ba(e) <
1.1L/m if i < Ni(e) — 1. The same calculation holds if
Ni(e) <14 < Na(e). For i > Na(e) we can show as in Case 1,
f(i +1) — f(i) < chLa(e)/m — b2(e) and this expression is
bounded by L/m. O

4.4 Proof of Main Lemma 2

Due to space limitations, we only give a sketch of the
proof. We have to consider job sequences leading to sce-
nario (S2). To identify large jobs in the sequence we need
the following lemmas.

LEMMA 7. a) If 0 < € < 0.007, then at time t§ the
average load on the non-full machines of As is smaller
than @2(0.916 —¢)L/m.

b) If € > 0.007, the one of the following statement holds:
(i) at time t{ the average load on the non-full machines
of A1 is smaller than (0.416 + 0.416¢/0.916)L/m; or
(ii) at time t5 the average load on the non-full ma-
chines of Aa is smaller than (0.416 — €)L/m.

LEMMA 8. If at some time t > t5, the (ki + 1)-st small-
est machine of A1 has a load of (0.916 + d)L/m, for some
0.007 < d < 0.084, and A1 cannot schedule J; on the ma-
chine with the (k1 + 1)-st smallest load, then py > (0.5 +
o615
Using these two lemmas, the identification of large jobs
can be done using the same techniques as in the proof of
Main Lemma 1. The difficult part of the analysis is to
prove part b) of Lemma 7, where we need arguments not yet
seen in this paper. Consider an e with 0.007 < ¢ < 0.084.
The proof is again by contradiction. We assume that at
time t§, the average load on the non-full machines of Ay
is at least (0.416 + 0.416¢/0.916)L/m and that at time ¢35,
the average load on the non-full machines of A, is at least
(0.416 — €)L/m. We show that these assumptions imply a
load of at least L at time n — 1.

The global structure of the proof is similar to that of
Lemma 6, but the technical details differ. Let bi(e) =
(0.916 +€)L/m and bz (e) = max{0.916 —¢,0.885}L/m. De-
fine € = min{e, 0.031}. Note that at e = 0.031, b2(e) becomes
constant. Again we define a function f that describes the
minimum load in the system when exactly m — k2 + ¢ ma-
chines of A, are full. Again we need a sequence of loads
Li(e), 1 = 1,...,4. In the proof of Lemma 6, Li(e) was
the load in the system when exactly m — k2 machines of
Ay were full, which was also the minimum load in the sys-
tem when As’s schedule was critical. For sequences lead-
ing to (S2) these two values are different. Here Li(e) =
b2(€) — k2 -0.5L/m is the minimum load in the system when
exactly m — k2 machines are full. The minimum load in the
system when A»’s schedule is critical is La(e) = ba(e)m(1 +
(a2 — 1)k2/m)). The value Ls(e) = (m — k1)b1(€)8™" is
the minimum load when A;’s schedule is balanced. For
e > 0.031 it is sufficient to work with the smaller value €.
We do not need the load value (c2/ch)Ls(¢) in this analysis.

The main difference in the definitions of the loads is that
Ly(e) is not the final value L but a smaller value, i.e. Ls(e) =
L—0.5d(€)L/m where d(e) = [(2.933(¢ — 0.007) + 0.0083)m].
It turns out that when m machines are full in A5’s schedule,
the load is not necessarily L but only L4(€) defined above.
Nonetheless we are able to derive a contradiction. The in-
tuition is as follows. At time n — 1, the smallest machine of
Aj has a higher load than the smallest machine of A>. Thus
during the scheduling process it takes longer to generate full
machines in A1’s schedule. In a typical situation after time
t5, when ¢ machines of A, are full, only 7 — d(e) machines
of A, are full. Thus we get an additional load from jobs

needed to fill all the machines of A;. We can show that the
critical times satisfy t5 < t{. Lemma 8 then implies that
at any time after t{ when another machines of A; becomes
full, a job of size at least 0.5L/m is schedules. We obtain a
total load of at least L at times n — 1 and have the desired
contradiction. This idea can be turned into a formal proof;
details are presented in the full paper.

5. APPENDIX

PROOF OF LEMMA 2. Each machine of 4;, ¢ € {1,2}, has
a load of at least 0.832L/m. Thus the average load on the
k; smallest machines is p; > 0.832L/m. If A;’s schedule
were not critical, then the load on the (2k; + 1)-st small-
est machine would be at least u;/a; and the total load on
all machines would be at least (m — 2k;)u;/c; + 2kip; =
0.832L + (m — 2k;)(1/a;i — 1)0.832L/m > L as m — oo,
which is a contradiction. For the proof that A’s schedule is
balanced we simply observe that the load on the k1 smallest
machines is at least 0.832k1L/m > (c1 — 1)k1Lt/m for any
1<t<n O

PROOF OF LEMMA 3. a) Let ey, +1 and e, 4 be the loads
in excess to b on the (k; + 1)-st and the (k; + [)-th small-
est machines, respectively. Let ®; be the total load in the
schedule not counted in L;(l,b). When the next machine
becomes full, the job to be scheduled has a processing time
p with b + ex;41 +p > B, ie. p+ex,41 > B—b. We
show that L;(I — 1,b) — L;(I,b) > p + ex,+1- The job is
scheduled on the smallest machine in the schedule. The ma-
chines are sorted in order of non-decreasing loads after the
assignment. If the smallest machine is among the k; small-
est machines after the assignment, then p is fully counted in
L;(l1—1,b) and the ®-value decreases by ey, +1 > er,+1 when
going from L;(l,b) to L;i(l —1,b). Suppose that the small-
est machine is among the m — k; largest machines after the
sorting, i.e. its load is b + e for some e > 0. If the machine
is among machines k; +1,. .., m (more formally, among ma-
chines M; i, 41,..., M; m) after the sorting, then p is fully
counted in L;(I —1,b) and the ®-value drops by ej;+1 when
moving from L;(l,b) to L;(l — 1,b). If the smallest machine
is among machines k; +1, ...,k +[—1 after the sorting, then
the ®-value drops by ex,+1 during the sorting, an amount of
e is not counted in the processing time of p but the ®-value
drops by ex4; > e when making the transition from L;(l,b)
to L;(l —1,b).

b) We prove the statement by induction on h. For h =0
there is nothing to show. Assume that the statement holds
for h—1. Consider the point in time when the (m—j+h)-th
machine becomes full and let ez, +1 be the load above level b
on the (k; + 1)-st smallest machine. Let p be the processing
time of the new job. Algorithm A; would prefer to assign the
job to the (k; + 1)-st smallest machine because the schedule
is critical. Since this is impossible b + ex;+1 +p > B, i.e.
ek;+1+p > B—b. The value B is at least ¢ times the average
load on the machines after the scheduling step, which means

B > %(Li(l_h+1ab)+eki+1 +p)
> E(Li(l—h+1,b)+B—b).
Algebraic manipulations give B >
)and B—b > (

Z(Li(l—=h+1,b)=b)/(1—
< ZLi(l—h+1,b)—b)/(1—%). Using part a)

and the induction hypothesis,

L;(l—h,b) > Li(l-—h+1,b)/(1—c/m)—0/(1—c/m)
(X —bm/c)/(1 —c/m)"* +bm/c(1 —c/m)
—b/(1 —¢/m)

(X —bm/c)/(1 —c/m)"* +bm/c

and this concludes the proof. [

Proor oF LEMMA 4. We consider a general setting where
we can analyze scenarios (S1) and (S2) simultaneously. Let
e € [—0.084,0.084] and set bi(e) = (0.916 — €)L/m and
b2(€) = (0.916 + €)L/m. For the analysis of scenario (S1),
e > 0 and for the analysis of scenario (S2), € < 0. We as-
sume that less than m — k; machines are full and derive a
contradiction.

We first analyze the average load p1(e€) on the k1 smallest
machines of A; at time ¢t®. In the schedule of As, at least
m — ko machines are full and the schedule is critical. Thus
the total load is at least

L > (m — ko)ba(e) + kacusba(€) = (m + (s — 1)ka)ba(e).

Since the schedule of A; is balanced, the average load on
the k1 smallest machines is at least (c1 — 1)Ltb /m, i.e.

pa(e) = (cr — 1)(1 + (a2 — 1)ka/m)b2(e).

When exactly m — k1 machines of A; are full, the load
Li(k1,b1(€)) of Ai’s schedule is at least equal to Lo(e) =
(m — k1)bi(e) + kipi(e). For i =0,...,k1, define

f(i,€) = (C - Lo(e) — bi(e)m/c1)(1 — c1/m) ™" + ba(e)m/c1,

where C' = 0.96. In the above definition of f we scale the
load Lo(€), i.e. we consider a slightly smaller load.

Let t' be the last point in time when exactly m — k1 ma-
chines of A; are full. If A;’s schedule is never non-critical
at time ¢ > t', then the proof is simple. At time ¢’ we have
Li(k1,b1(€)) > Lo(e) and hence, by Lemma 3 part b), when
all the m machines are full

L"™' > Li(k1 — k1,b1(e)) = L1(0,b1(€)) > f(ku,€).
We have
Flk1,€) > (1= L)(C - Lo(e) — L@)ehrer/m . balem,

= m c1

The last term is decreasing in e and, for ¢ = 0.084, it is
strictly greater than L as m — oo. Thus, if A;’s schedule is
never non-critical after time ¢', then we have a contradiction.
If A;’s schedule is non-critical at some time ¢t > ¢, then
we have to analyze more carefully. Suppose that at time
t{, exactly m — k1 + i machines are full, for some 1 < i <
k1. We show that at this time the load Li(k1,b1(¢)) in the
schedule satisfies Li(k1,b1(€)) > f(i,€). Lemma 3 part b)
then gives that when all the m machines are full Lq(k; —
(k1 —14),b1(€)) > f(k1,€) and hence L™ > Ly(k1 — (k1 —
1),b1(€)) > f(k1,e) > L. We have again a contradiction.
Thus we have to estimate the load L1(k1,b1(€)) at time ¢§
when exactly m — k1 + 4 machines of A; are full. Among the
k1 smallest machines, ¢ machines are full and have a load of
bi(e). Whenever one of the smallest k1 machines becomes
full, a job is assigned to the smallest machine. Thus the
average load on the non-full machines at time ¢{ cannot be
smaller than the average load on the k; smallest machines
at time t°, which was p1(e). Hence at time t§, the average

load on the ki smallest machines is at least (ib1(e) + (k1 —
1)p1(€))/k1. The load on each of the largest m — 2k1 largest
machines is asymptotically at least 1/a; times this value.
Thus at time ¢{ we have L1 (k1,b1(€)) > g(i,€), where

g(i,e) = (ibi(e) + (k1 — i)pa(€))(1 + (m — 2k1)/ (k1))
+k1b1 (6)

We show that for any fixed €, g(i,€) > f(i,€). This estab-

lishes L1(k1,b1(6)) Z f(Z, E).

Both f and g are increasing in i; f grows exponentially
while g grows linearly. If we can show that, for any fixed e,
the boundary values satisfy g(0,¢) > f(0,¢) and g(k1,€) >
f(k1,€), then g(i,e) > f(i,¢) holds for all ;. The first in-
equality is easy to prove. Obviously f(0,€) < C'Lo(e) and

9(0,¢) = kipa(e)(1+ (m — 2k1)/(k1aa)) + k1ba(e)
= kipa(e) + p1(e)(m — 2k1) /ar + k1bi(e)
C((m — k1)bi(e) + kipa(€))
CLo(e).

\%

For i = k1,
f(k1,€) = (C-Lo(e) —bi(e)m/c1)(1 —c1/m) ¥ +by(e)m/c
and

g(k‘1,6) = 2k1b1(6) =+ (m — 2k1)b1(e)/a1.

Both functions are linear in €. Thus, to establish g(ki,€) >
f(k1,€) for all €, it suffices to check the boundary values
e = —0.084 and ¢ = 0.084. We have g(k1,—0.084) > 1.21L,
f(k1,—0.084) < 1.05L, as well as g(k1,0.084) > 1.01L,
f(k1,0.084) < 1.01L as m — oo. [

PROOF OF LEMMA 5. We first investigate the case that
Ajy’s schedule is not balanced, which implies that v = c2 Lt/m
in the scheduling step. Let I3, , = (0.885 + d)L/m, for
some d > 0, be the actual load on the (k2+1)-st smallest ma-
chine of As immediately before J; is scheduled. Each of the
largest m—k2 machines has a load of at least (0.885+d)L/m.
Ay’s schedule is critical and thus the average load on the ks
smallest machines is at least a2(0.885 + d)L/m. Therefore

L' > (m—k2)(0.885 + d)L/m + ksa2(0.885 + d)L/m
(0.885 + d)(1 + (a2 — 1)ka/m)L.

Job Ji cannot be placed on the (k2 + 1)-st smallest ma-
chine, which implies p; + l;;lzﬂ > c2L*/m and hence p; >
cht/m — l;;lzﬂ. Thus

pr > ¢20.885(1 + (s — 1)ka/m)L/m — 0.885L/m
+c2d(1l + (a2 — 1)k2/m)L/m — dL/m
> (0.5+0.58d)L/m > (0.5+ 5%zd)L/m.

The desired statement follows because in scenario (S1) d > ¢
and in scenario (S2) d > €.

Next we study the case that A1’s schedule is balanced. To
analyze sequences leading to (S1) and (S2) simultanously,
we consider a more general setting. Let e € [—0.084, 0.084]
and set bi(e) = max{0.916 — ¢,0.885}L/m and bz(e) =
max{0.916 + ¢,0.885} L/m. For the analysis of of (S1) we
have € > 0 and for the analysis of (S2) we have ¢ < 0. We set
¢ =0 in scenario (S1). The schedule of A; is balanced and
hence by Lemma 4 at least m —k1 machines of A; are full, i.e.
they have a load of at least b1 (). Thus A} > b1 (e)(m — k1).

If A> cannot schedule J; on the machine with the (k2 +1)-st
smallest load, then l;;gh_l + p+ > v, where v = czﬁfl)fl/m.
Thus p: > czﬁfl)\t/m — l;;glz_’_l. The load on the (k2 +1)-st
smallest machine of A, is bounded by

2201 = (L — kaba() — ko' Ljm)/(m — k)

since otherwise the total load at time n—1 were greater than
(m — k2)IFR7, | + ka(b2(e) + € L/m) = L. Hence

pe > 2B bi(e)(m —ki)/m
—(L — kzbz(f) — k:ze'L/m)/(m — kz)

The last expression is decreasing in € in the range —0.084 <

€ < 0.031 and increasing for € > 0.031. Therefore, we eval-

uate the expression for ¢ = 0.031. For ¢ = 0.031 we obtain

pt > (0.58 + 0.6¢')L/m. In any case p; > (0.5 + ;%2-|e| +

55oz€)L/m for all € € [—0.084,0.084]. O

6. REFERENCES

[1] S. Albers. Better bounds for online scheduling. STAM
Journal on Computing, 29:459-473, 1999.

[2] Y. Bartal, A. Fiat, H. Karloff and R. Vohra. New al-
gorithms for an ancient scheduling problem. Journal of
Computer and System Sciences, 51:359-366, 1995.

[3] Y. Bartal, H. Karloff and Y. Rabani. A better lower
bound for on-line scheduling. Information Processing
Letters, 50:113-116, 1994.

[4] B. Chen, A. van Vliet and G.J. Woeginger. A lower
bound for randomized on-line scheduling algorithms.
Information Processing Letters, 51:219-222 1994.

[6] U. Faigle, W. Kern and G. Turan. On the performance
of on-line algorithms for particular problems. Acta Cy-
bernetica, 9:107-119, 1989.

[6] R. Fleischer and M. Wahl. Online scheduling revisited.
Proc. 8th Annual European Symposium on Algorithms,
Springer LNCS, 2000.

[7] G. Galambos and G. Woeginger. An on-line scheduling
heuristic with better worst case ratio than Graham’s
list scheduling. STAM Journal on Computing, 22:349—
355, 1993.

[8] T. Gormley, N. Reingold, E. Torng and J. Westbrook.
Generating adversaries for request-answer games. Proc.
11th ACM-SIAM Symposium on Discrete Algorithms,
564-565, 2000.

[9] R.L. Graham. Bounds for certain multi-processing anom-
alies. Bell System Technical Journal, 45:1563-1581, 1966.

[10] D.R. Karger, S.J. Phillips and E. Torng. A better al-
gorithm for an ancient scheduling problem. Journal of
Algorithms, 20:400-430, 1996.

[11] J.F. Rudin III. Improved bounds for the on-line schedul-
ing problem. Ph.D. Thesis. The University of Texas at
Dallas, May 2001.

[12] S.S. Seiden. Online randomized multiprocessor schedul-
ing. Algorithmica, 28:173-216, 2000.

[13] S.S.Seiden. Barely random algorithms for multiproces-
sor scheduling. To appear in Journal of Scheduling.

[14] J. Sgall. A lower bound for randomized on-line mul-
tiprocessor scheduling. Information Processing Letters,
63:51-55, 1997.

[15] D.D. Sleator and R.E. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the
ACM, 28:202-208, 1985.

