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1. INTRODUCTIONWe study one of the most basi problems in online shedul-ing. A job sequene � = J1; : : : ; Jn has to be sheduled onm idential parallel mahines. Whenever a new job Jt ar-rives, its proessing time pt is known in advane, 1 � t � n.The job has to be sheduled immediately on one of the ma-hines without knowledge of any future jobs. Preemption ofjobs is not allowed and any mahine may only proess onejob at a time. The goal is to minimize the makespan, whihis the ompletion time of the last job that �nishes in theshedule. The problem has been the subjet of extensiveresearh, see e.g. [1{13℄. Given a job sequene �, let A(�)be the makespan produed by an online algorithm A andlet OPT (�) be the optimum makespan. Following [15℄ weall a deterministi online algorithm -ompetitive if A(�) � � OPT (�), for all �. A randomized online algorithm is -ompetitive against any oblivious adversary if the expetedmakespan satis�es E[A(�)℄ �  �OPT (�), for all �.Previous results: Already in the sixties Graham [9℄ pre-sented the famous List sheduling algorithm, whih alwaysassigns an inoming job to the least loaded mahine, andproved that it is (2� 1m )-ompetitive. In the last ten yearsdeterministi online algorithms with an improved ompeti-tiveness have been developed. A (2� 1m � �m)-ompetitivealgorithm was given in [7℄, where �m tends to 0 as m goesto in�nity. Bartal et al. [2℄ presented the �rst algorithmwhose performane guarantee is asymptotially smaller than2. Their algorithm is 1.986-ompetitive. The ompetitiveratio was �rst improved to 1.945 by Karger et al. [10℄, andthen to 1.923 and 1.9201, see [1, 6℄. Lower bounds on theperformane of deterministi online algorithms were givenin [1, 3, 5, 8, 11℄. The best bound urrently known isdue to Rudin [11℄, who showed that no deterministi onlinesheduling algorithm an be better than 1.88-ompetitive.Sine the publiation of the paper by Bartal et al. [2℄, therehas always been researh interest in developing better ran-domized online algorithms. Bartal et al. gave a random-ized algorithm for two mahines. The algorithm is (4=3)-ompetitive, and this is the best possible performane form = 2. Chen et al. [4℄ and Sgall [14℄ proved that no random-ized online algorithm an ahieve a ompetitiveness smallerthan 1=(1 � (1 � 1=m)m). This expression is equal to 4=3if m = 2 and tends to e=(e � 1) as m ! 1. Seiden [12℄presented a randomized algorithm whose ompetitive ra-tio is smaller than the best known deterministi ratio form 2 f3; : : : ; 7g. The ompetitiveness is also smaller than thedeterministi lower bound for m = 3; 4; 5. The algorithmsby Bartal et al. and Seiden have to maintain t shedules



when t jobs have been sheduled. Seiden [13℄ modi�ed hisalgorithm so that it maintains a onstant number of shed-ules. However, the onstant is large, i.e. it is equal to 2048,and the ompetitive ratio is worse, for m � 4.Our ontribution: In this paper we present the �rst ran-domized online algorithm that performs better than knowndeterministi algorithms for general m. Our new algorithm,alled Rand , is a ombination of two deterministi algo-rithms A1 and A2. Initially, when starting the shedulingproess, Rand hooses Ai, i 2 f1; 2g, with probability 12and then serves the entire job sequene using the hosen al-gorithm. At most two shedules have to be maintained atany time. Algorithm A1 is a onservative strategy that triesto maintain shedules with a low makespan. On the otherhand, A2 is an aggressive strategy that aims at generatingshedules with a high makespan. We prove, as the mainresult of this paper, that the ombined algorithm Rand is1.916-ompetitive.The improvement over deterministi algorithms may seemsmall. We show, however, that a ompetitiveness of 1.916annot be proven for a deterministi algorithm based on theanalysis tehniques that have been used in the literature sofar. All the previous analyses of online algorithms only usethe following three lower bounds on the optimum makespan.(a) The total amount of proessing in a given job sequenedivided by m. (b) The largest proessing time of any job in�. () Twie the (m+1)-st largest proessing time in �. Weshow that using only these three lower bounds on the opti-mum makespan, it is impossible to prove a ompetitivenesssmaller than 1.919 on the performane of any deterministionline algorithm. In fat we prove a stronger statement: Us-ing only the information (1) \The total amount of proess-ing in a job sequene divided bym" and (2) \The proessingtimes of the m+1 largest jobs in �" it is impossible to provea ompetitive ratio smaller than 1.919. In addition to (1)and (2) an analysis ould onsider the proessing times ofthe (im+ 1)-st largest jobs, for i = 1; : : : ; b(n � 1)=m. Weshow that this does not help muh either; it is impossible toprove a ompetitiveness smaller than 1.917. These resultsstritly limit the performane of deterministi algorithmsthat an be ahieved using known tehniques.Ideas of this paper: The algorithm Rand uses a num-ber of new ideas, the most important feature being that twoalgorithms A1 and A2 oordinate their sheduling deisions.In eah sheduling step, the aggressive algorithm A2 has totake into aount its own shedule, the onservative algo-rithm's shedule as well as future shedules that an evolvefrom the urrent on�guration. The maximum makespanthat A2 an a�ord depends on this on�guration.The previous analyses of randomized online shedulingalgorithms for m 2 f2; : : : ; 7g are heavily based on the fatthat if the expeted makespan is high, a onsiderable fra-tion of the total load in the system resides on the mahinewith the highest load. This approah does not work forgeneral m. Our main ontribution in the analysis is thatwe simultaneously keep trak of the shedules maintainedby A1 and A2. On job sequenes onsisting of small andmedium size jobs, Rand 's expeted makespan is small. IfRand 's makespan is high, many large jobs must have beensheduled. To identify large jobs, whih is essential for prov-ing a ompetitiveness below 2� 1m , we have to analyze theombined load vetors of A1's and A2's mahines at variouspoints in the sheduling proess. Our analysis is quite in-

volved but, unlike some previous analyses, does not rely onomputer proofs.In our lower bound proofs we onstrut nemesis sequeneswhere the number of di�erent job sizes grows withm. Previ-ous lower bound onstrutions worked with a bounded num-ber of sizes.Organization of the paper: We �rst present the lowerbounds in Setion 2 and then onentrate on the develop-ment of the randomized online algorithm, whih is more in-volved. A desription of the algorithm is given in Setion 3.A detailed analysis follows in Setion 4.
2. LOWER BOUNDSSeveral online sheduling algorithms have been proposedin the literature [1, 2, 6, 7, 9, 10, 12℄. To evaluate the om-petitiveness of these algorithms, one has to determine lowerbounds on the makespan produed by an optimal o�ine al-gorithm. So far, all the analyses are based on the followingthree lower bounds (a{) on the optimum makespan. Let� = J1; : : : ; Jn be a given job sequene and let pt be theproessing time of the t-th job, 1 � t � n.(a) 1mPnt=1 pt(b) max1�t�n pt() Twie the proessing time of the (m+ 1)-st largest jobin �.Theorem 1 implies that using only these three lower boundson the optimum makespan, it is impossible to prove a om-petitiveness smaller than 1.919 on the performane of anydeterministi online algorithm. In fat Theorem 1 is moregeneral. Suppose that we use the following information toderive lower bounds on the optimum makespan.(1) 1mPnt=1 pt(2) The proessing times of the m+ 1 largest jobs in �.Information (2) is more general than (b) and () as it on-tains, in partiular, the largest and (m + 1)-st largest pro-essing times and an be used to derive additional lowerbounds on the optimum makespan.Theorem 1. Let A be a deterministi online shedulingalgorithm. Using only information (1) and (2) to derivelower bounds on the optimum makespan, it is impossible toprove a ompetitive ratio smaller than 1.919 on A's perfor-mane.Proof. We prove the theorem as m ! 1. Given a jobsequene �, what are the strongest lower bounds on theoptimum makespan we an derive from (1) and (2)? Inaddition to the lower bounds given in (a) and (b), whihwe will refer to as B1� and B2� respetively, the strongestadditional bound that follows from (2) is B3�: The sum of theproessing times of the m-th and the (m+1)-st largest jobs.This bound is stronger than (). To establish the theorem,we will show that there exist job sequenes � for whih A'smakespan is at least 1:919maxfB1�; B2�; B3�g. An adversaryonstruts a nemesis job sequene in phases. In eah ofthe �rst three phases m jobs are presented. Algorithm Awill have to shedule the jobs in eah phase on di�erentmahines. In a fourth phase one large job is generated suhthat A's makespan for the onstruted sequenes � is at least1:919 �maxfB1� ; B2�; B3�g.Phase 1: The adversary �rst presents m jobs with a pro-essing time of p = 0:05 eah. Algorithm A has to shedule



these jobs on di�erent mahines sine otherwise its ompet-itive ratio would be 2.Phase 2: The adversary �rst presents b0:975m jobs, eahwith a proessing time of q = 0:369. While these jobs are be-ing sheduled, B1 � L1=m, where L1 = mp+ b0:975mq <0:41m is the total proessing time of all the jobs after theq-jobs have been presented. Moreover, B2 = q and B3 =2p < B2. Here B1; B2 and B3 denote the urrent lowerbounds for the pre�x of � seen so far; we omit the sub-sript �. The online algorithm has to assign the q-jobsto di�erent mahines. Otherwise its makespan would bep+ 2q = 0:419 + q > 1:919maxfB1; B2g. At this point anymahine ontaining a q-job has a load of 0.419.The adversary then generates m� b0:975m = d0:025mejobs with a proessing time of q0 = 0:39. During the shedul-ing of these jobs, B1 � L2=m, where L2 = L1 + d0:025meq0is the total load in the system at the end of the phase, andthis value is at least 0:419m and upper bounded by 0:42mas m ! 1. For the other bounds we have B2 = q0 andB3 � p + q. The online algorithm has to shedule the q0-jobs on di�erent mahines whih do not already have a q-job.Otherwise the makespan would be p+ q+ q0 = 0:419 + q0 >1:919maxfB1; B2; B3g. At the end of this phase eah ma-hine in A's shedule was assigned two jobs and has a loadof at least 0.419.Phase 3: De�ne m3 = b(1 + 2 � 0:919)m=1:919 � 2L2) andm03 = m�m3. Asm!1 we havem3 < 0:64m. The adver-sary �rst reates m3 jobs with a proessing time of r = 0:5eah. While these jobs are being sheduled B3 = 2q = 0:738and B1 � L3=m, where L3 = L2 +m3r is the sum of theproessing times when all the r-jobs are sheduled. We haveL3 � 1:419m=1:919. Also B2 = 0:5 < B3. Algorithm Amust shedule the r-jobs on di�erent mahines sine other-wise the makespan would be at least 0:419 + 2r = 1:419 �1:919maxfB1; B3g.In eah of the following m03 steps the adversary generatesa job whose proessing time is so large that an assignmentof the job to a mahine ontaining an r-job would result ina makespan that is at least 1.919 times the urrent valueof B1. Consider the t-th step, 1 � t � m03, and let lt�1be the total proessing time of all the jobs sheduled up tothat step. The adversary generates a job whose proessingtime r0t satis�es 0:919 + r0t � 1:919(lt�1 + r0t)=m, i.e. r0t =( 1:919m lt�1 � 0:919)=(1 � 1:919m ). We �rst analyze the sumof the proessing times when all the r0-jobs are sheduledand then show that at any time B1 � B2 and B1 � B3.This proves that the r0-jobs must be sheduled on di�erentmahines and annot be assigned to mahines ontainingany r-job. We show indutively that lt = (L3 � 0m )(1 �m )�t + 0m ; where  = 1:919 and 0 = � 1. The equationis satis�ed for t = 0. Suppose it holds for t� 1. Thenlt = lt�1 + r0t = (lt�1 � 0)=(1� m )= (L3 � 0m )(1� m )�t + 0m =(1� m )� 0=(1� m )= (L3 � 0m )(1� m )�t + 0m :Thus, when all the r0-jobs are sheduled, the total proessingtime of all the jobs isL4 = (L3 � 0m )(1� m )�m03 + 0m� (L3 � 0m )em03=m + 0m :

As m ! 1 we �nd L4 < 0:999m. The proessing times ofthe r0-jobs are inreasing, the �rst job having a size of atleast 0:5 beauser01 = ( 1:919m L3 � 0:919)=(1 � 1:919m )= ( 1:919m (L2 + 0:5m3)� 0:919)=(1 � 1:919m )� ( 1:919m (L2 + 0:5((1 + 2 � 0:919)m=1:919 � 2L2 � 1))�0:919)=(1 � 1:919m )= 0:5:Thus, for the proof that at any step B1 � B2, it is suÆientto show that (lt�1 + r0t)=m = lt=m � r0t. This is equivalentto showing (lt�1 � 0)=m � ( m lt�1 � 0), whih in turn isequivalent to (1 � 1=m) � lt�1=m. Sine lt�1 � L4, thisholds as m ! 1. We still have to argue that at any stepB1 � B3. While the �rst m03 � d0:025me � 1 r0-jobs aresheduled, B3 � 2q = 0:738 < L3=m � B1 beause L3 >0:739m as m ! 1. When the last d0:025me + 1 r0-jobsare sheduled, B3 � q0 + r = 0:89, whereas B1 � (L2 +(b0:975m � 1)r)=m > 0:9 as m ! 1. At the end of thephase eah mahine has a load of at least 0:919.Phase 4: The adversary presents a �nal job with a proess-ing time of 1. The online algorithm has a makespan of 1.919.We have B1 � 1 as m ! 1 and B2 = B3 = 1. Thus theonline makespan is 1:919maxfB1�; B2�; B3�g.What happens if, in addition to (2), we onsider a largerset of jobs? A generalization of the lower bound () on page 2is (d) (i + 1) times the proessing time of the (im + 1)-stlargest job in �, for i = 2; : : : ; b(n � 1)=m. We onsideragain a generalized set of information.(3) The proessing times of the (im� i+1)-st to (im+1)-stlargest jobs in �, for i = 2; : : : ; b(n � 1)=m.We show that even with this additional information it isimpossible to prove onsiderably better ompetitive ratios.The proof of the following theorem is omitted is this ex-tended abstrat.Theorem 2. Let A be a deterministi online shedulingalgorithm. Using only information (1{3) to derive lowerbounds on the optimum makespan, it is impossible to provea ompetitive ratio smaller than 1.917 on A's performane.
3. THE RANDOMIZED ONLINE

ALGORITHMOur new randomized algorithm, alled Rand , is a ombi-nation of two deterministi algorithms A1 and A2. Initially,when starting the sheduling proess, Rand hooses A1 withprobability q and A2 with probability 1� q, where q = 1=2,and then serves the entire job sequene using the hosen al-gorithm. The two algorithms omplement eah other. Onsequenes for whih A1 has a high makespan, A2's makespanis low, and vie versa. At any time both algorithms keep alist of their mahines sorted in non-dereasing order by ur-rent load. The load of a mahine is the sum of the proessingtimes of the jobs already assigned to it. Consider a job se-quene � = J1; : : : ; Jn and let pt be the proessing time ofjob Jt, 1 � t � n. Let M ti;j be the mahine with the j-thsmallest load in the shedule maintained by Ai after t jobshave been sheduled, i = 1; 2 and j = 1; : : : ;m. Thus M ti;1are the mahines with the smallest load and M ti;m are the



mahines with the largest load. For simpliity, we also re-fer to the mahines with the j-th smallest load as the j-thsmallest mahines. Let lti;j be the load of M ti;j . Let Lt thesum of the proessing times of the �rst t jobs in �, i.e. Lt isthe sum of the loads on the mahines in one of the shedulesafter t jobs have been assigned.Algorithm Ai, i 2 f1; 2g, tries to keep ki mahines lightlyloaded and m � ki mahines heavily loaded, where k1 =d 925me and k2 = d 38me. Let �ti be the average load on the kismallest mahines of Ai, i.e. �ti = 1ki Pkij=1 lti;j . AlgorithmAi always tries to maintain a shedule in whih �ti is boundedby �i times the load on the (2ki + 1)-st smallest mahine,where �1 and �2 are spei� onstants needed in the analysisof the algorithms, i.e. �1 = 1� (k1�b0:074m)=(2 �0:916k1)and �2 = 0:409=0:909. Formally the algorithms want tomaintain �ti � �ilti;2ki+1. In some ases, when several largejobs arrive, it is impossible to maintain the invariant. Ashedule is alled ritial if �ti > �ilti;2ki+1.Algorithm Ai, i 2 f1; 2g, always shedules an inomingjob either on the mahine with the smallest load or on themahine with the (ki + 1)-st smallest load. An algorithmonly onsiders sheduling a job on the (ki + 1)-st smallestmahine if its shedule is ritial. Algorithm A2, whih wedesribe in detail below, is aggressive. Loosely speaking,it assigns a job Jt to the (k2 + 1)-st smallest mahine ifthe resulting makespan is bounded by 2Lt=m, where 2 =2. On the other hand A1 is onservative; it only shedulesa job on the (k1 + 1)-st smallest mahine if the resultingmakspan is at most 1Lt=m, where 1 = 1:832. Note thatq1Lt=m + (1 � q)2Lt=m = 1:916Lt=m, whih is at most1.916 times the optimum makespan.Algorithm A1: Set 1 := 1:832, k1 := d 925me and �1 :=1� (k1 � b0:074m)=(2 � 0:916k1).Shedule a new job Jt on the mahine with the (k1+1)-stsmallest load if the shedule is ritial and lt�11;k1+1 + pt �1Lt=m. Otherwise shedule Jt on the mahine with thesmallest load.In some situations A2 annot a�ord a makespan of 2Lt=m.Suppose that A1's shedule is ritial and that all the ma-hines have approximately the same load. Then a newlyarriving job an fore a high makespan in A1's shedule.A makespan of 2Lt=m = 2Lt=m in A2's shedule is thentoo expensive. Let �t1 = Pmj=k1+1 lt1;j be the total load onmahines M t1;k1+1; : : : ;M t1;m. We say that A1's shedule isbalaned if the total load on the k1 smallest mahines isat least (1 � 1) k1m Lt, or equivalently, if �t1 � �Lt where� := 1� (1 � 1) k1m .To �nd out if A1's shedule is balaned, algorithm A2always keeps trak of the shedule that A1 would have re-ated. If A1's shedule is indeed balaned, A2 only plaes anew job on the (k2 + 1)-st smallest mahine if the result-ing makespan does not exeed maxf02Lt=m; 2��1�t1=mg,where 02 = 1:885. As we shall show in the later analysis(see Setion 4.1), this onstraint ensures that the expetedmakespan of Rand is always bounded by 1.916 times theoptimum makespan.Algorithm A2: Set 2 := 2, 02 := 1:885, k2 := d 38me,�2 := 0:409=0:909 and � := 1� (1 � 1) k1m .At any time the algorithm keeps trak of the shedulethat A1 would have onstruted. When a new job Jt ar-rives, onsider A1's shedule after Jt was proessed by A1.

If A1's shedule is balaned, then set  := maxf02Lt=m;2��1�t1=mg. Otherwise set  := 2Lt=m. Shedule Jt onthe mahine with the (k2+1)-st smallest load if the shed-ule is ritial and lt�11;k2+1+ pt � . Otherwise shedule Jton the mahine with the smallest load.The main algorithm works as follows.Algorithm Rand: Given a job sequene �, with prob-ability q = 1=2 exeute A1 and with probability 1 � qexeute A2.Theorem 3. The algorithm Rand is 1.916-ompetitive asm!1.The algorithm Rand with its omponents A1 and A2 de-pends on various parameters, all of whih have been opti-mized. To obtain a small ompetitive ratio, 1 should behosen as small as possible. However, if 1 is below 1.832,we are not able to always identify large jobs in the input se-quene when the shedules are ritial; this is ruial in theanalysis. In partiular, k1 and �1 are hosen so that we anidentify large jobs in A1's shedule when Rand 's expetedmakespan is above 1:916Lt=m but A2's makespan is low andits shedule annot be used to identify large jobs. It turnsout that by setting the probability q to a value slightly above1=2, we are able to improve the ompetitive ratio. Howeverthe improvement is minor and the modi�ed algorithm doesnot ahieve a ompetitive ratio of at most 1.915. Sine wedeided to optimize up to a value of 1=1000, we work withq = 1=2.
4. THE ANALYSIS OF THE ALGORITHM

4.1 Analysis of the makespanWe prove Theorem 3 by indution on the number n ofjobs to be sheduled. Obviously, the theorem holds for jobsequenes onsisting of only n = 1 job. Suppose that itholds for sequenes of length n�1 and onsider any sequene� = J1; : : : ; Jn. We have to proveE[Rand(�)℄ = qA1(�) + (1� q)A2(�)= qln1;m + (1� q)ln2;m� 1:916 �OPT (�): (1)Let L = Ln be the total load of all the jobs in �.We �rst note that if A2 shedules some job Jt on themahine with the (k2+1)-st smallest load, then the resultingload lt�12;k2+1 + pt is bounded by 2Lt=m. This is obviousif in the sheduling step  = 2Lt=m or  = 02Lt=m. If = 2��1�t1=m, then �t1 � �Lt beause A1's shedule isbalaned at time t. Hene  � 2��1�Lt=m = 2Lt=m.If at time n the makespan of A1 satis�es ln1;m � 1L=m,then (1) follows easily: If ln2;m � 2L=m, then E[Rand(�)℄ �q1L=m+(1�q)2L=m = 0:5(1:832+2)L=m = 1:916L=m �1:916 � OPT (�). On the other hand, if ln2;m = (2 + Æ)L=m,for some Æ > 0, then by the arguments given in the previousparagraph, the last job assigned to mahineMn2;m was shed-uled on the least loaded mahine at the time of the assign-ment and its proessing time is at least (2+Æ)L=m�L=m =(1 + Æ)L=m beause the least loaded mahine always has aload of at most L=m. Thus E[Rand(�)℄ � q1L=m + (1 �q)(2 + Æ)L=m � 1:916(1 + Æ)L=m � 1:916max1�t�n pt �1:916 �OPT (�).



In the following we assume that the makespan of A1 sat-is�es ln1;m > 1L=m, whih implies that the last job onMn1;m was sheduled on the least loaded mahine at thetime of the assignment. If the load on the smallest ma-hine is ln1;1 � (1 � 1)L=m, then the analysis is again sim-ple. Let ln1;m = (1 + Æ1)L=m, for some Æ1 > 0. The lastjob on Mn1;m has a proessing time of at least (1 + Æ1)L=m.If ln2;m � 2L=m, then E[Rand(�)℄ � 1:916(1 + Æ1)L=m �1:916max1�t�n pt � 1:916�OPT (�). If ln2;m = (2+Æ2)L=m,for some Æ2 > 0, then the last job on Mn2;m has a proess-ing time of at least (1 + Æ2)L=m. We have E[Rand(�)℄ �1:916maxf(1 + Æ1); (1 + Æ2)gL=m � 1:916max1�t�n pt �1:916 � OPT (�).Therefore we an restrit ourselves to ln1;1 > (1 � 1)L=m.There are two ases to onsider. (1) The last job of Mn2;mwas sheduled on the (k2+1)-st smallest mahine at the timeof the assignment. This ase is analyzed in Setion 4.1.1.(2) The last job of Mn2;m was sheduled on the smallest ma-hine at the time of the assignment. This ase is analyzedin Setion 4.1.2.
4.1.1 The last job onMn2;m was scheduled on the(k2+1)-st smallest machineSuppose that the last job onMn2;m was sheduled at time tand that in this sheduling step  2 f2Lt=m; 2��1�t1=mg,whih means that the load ln2;m is bounded by that value of. If  = 2Lt=m, then A1's shedule was not balaned, i.e.�t1 � �Lt, and thus  � 2��1�t1=m. Sine the �1-valuesannot derease over time, ln2;m � 2��1�n1 =m. We estimatea ombination of the load on the smallest mahine in A1'sshedule and the largest mahine in A2's shedule. We haveqln1;1 + (1� q)ln2;m � q(L� �n1 )=k1 + (1� q)2��1�n1 =mbeause ln1;1 annot be larger than the average load on thek1 smallest mahines. In the last expression the total fatorof �t1, whih is �q=k1 + (1 � q)2��1=m, is positive. Sineln1;1 > (1 � 1)L=m, we have �n1 � �L and heneqln1;1 + (1� q)ln2;m � q(L� (1� (1 � 1)(k1=m))L)=k1+(1� q)2L=m= q(1 � 1)L=m+ (1� q)2L=m= 1:916L=m � qL=m:If E[Rand(�)℄ = (1:916+Æ)L=m, for some stritly positive Æ,then the proessing time ps of the last job on Mn1;m satis�esps � (1=q)((1:916 + Æ)L=m� ((1� q)ln2;m + qln1;1))� (1=q)((1:916 + Æ)L=m� (1:916L=m � qL=m))= (1 + Æ=q)L=m = (1 + 2Æ)L=mand (1) is established beause OPT (�) � (1 + 2Æ)L=m.We still have to onsider the ase that when the last jobonMn2;m was assigned at time t,  = 02Lt=m. Let 01 = 1:947and note that q01+(1�q)02 = 1.916. If ln1;m = (01+Æ)L=m,for some Æ > 0, the last job on Mn1;m was sheduled on theleast loaded mahine at that time. The expeted makespanby Rand is E[Rand(�)℄ = (1:916 + Æ=2)L=m. We study theload of that mahine immediately before the assignment ofthat job. If the load was bounded by (01 � 1)L=m, then wehave again identi�ed a job of size at least (1 + Æ)L=m and(1) holds again. For the analysis of the ase that the loadwas larger than (01 � 1)L=m, we need the following lemma,whih holds for both A1 and A2. The proof is omitted.

Lemma 1. If at any time the least loaded mahine of Ai,i 2 f1; 2g, has a load of at least (0:947 + �) Lm , for some �with 0 � � � 0:053, then the job sequene sheduled so farontains m jobs with a proessing time of at least (0:5 +0:50:916 �) Lm .Obviously, the last job on Mn1;m has proessing time of atleast (1 � 1)L=m � (0:5 + 0:50:916 �)L=m for all � 2 [0; 0:053℄.Thus, if the least loaded mahine of A1 before the assign-ment of that job has a load of (01 � 1 + �)L=m, then usingLemma 1 we have identi�ed m+1 jobs of size at least (0:5+0:50:916 �)L=m, two of whih must be sheduled on the samemahine in OPT's shedule. Hene OPT (�) � maxf1 +Æ� �; 1 + �=0:916gL=m � E[Rand(�)℄=1:916; for all possiblevalues of � 2 [0; 0:053℄.
4.1.2 The last job onMn2;m was scheduled on the

smallest machineWe are left with analyzing the senario that the last jobson the largest mahines Mn1;m and Mn2;m were sheduled onthe smallest mahines at the time of the assignment. Con-sider the last job Jn. We assume that its assignment hangesthe makespan in A1's or in A2's shedule sine otherwise (1)follows from the indution hypothesis. Thus, Jn is shed-uled on the smallest mahine in one of the shedules. Weassume lni;m > 1L=m, i = 1; 2, sine otherwise there is noth-ing to show. Thus Jn has a large proessing time of at leastpn � (1 � 1)L=m.Let ln�11;1 and ln�12;1 be the loads of the smallest mahinesimmediately before the assignment of Jn. If the expetedload on the smallest mahine is qln�11;1 +(1�q)ln�12;1 � 0:916 Lm ,then (1) is easy to prove. If the makespan of Ai's shedulesatis�es lni;m � ln�1i;1 +L=m, then E[Rand(�)℄ � 1:916L=m �1:916 � OPT (�). If lni;m = ln�1i;1 + L=m + ÆiL=m, for some iand positive Æi, then � ontains a job of size (1 + Æ)L=m,where Æ = maxi=1;2 Æi and E[Rand(�)℄ � (1:916 + Æ)L=m �1:916max1�t�n pt � OPT (�).If the expeted load on the smallest mahine is greaterthan 0:916L=m, then one of the loads must be greater than0:916L=m. We distinguish two ases, depending on whihof the two loads is higher.Case 1: ln�12;1 � ln�11;1 and ln�12;1 > 0:916L=m.Case 2: ln�11;1 > ln�12;1 and ln�11;1 > 0:916L=m.Analysis of Case 1: Let ln�12;1 = (0:916 + �)L=m, forsome 0 < � � 0:084, and ln�11;1 > (0:916 � �)L=m. The nextlemma, whih we will prove in Setion 4.3, is ruial.Main Lemma 1. Let 0 � � � 0:084. If at time n � 1 theleast loaded mahines of A1 and A2 satisfy ln�12;1 = (0:916 +�) Lm and ln�11;1 � maxf0:916 � �; 0:885g Lm , then the job se-quene J1; : : : ; Jn�1 ontains m jobs with a proessing timeof at least (0:5 + 0:50:916 �) Lm .If ln�11;1 � 0:885L=m, then Main Lemma 1 and the fat thatpn � 0:832L=m imply that � ontains m+1 jobs with a pro-essing time of (0:5+ 0:50:916 �)L=m. Let Æ = maxi=1;2f0; (lni;m�ln�1i;1 � L=m)=(m=L)g. Then E[Rand(�)℄ � (1:916 + � +Æ)L=m � 1:916maxf1+�=0:916; 1+ÆgL=m � 1:916�OPT (�).If ln�11;1 < 0:885L=m, then � > 0:916 � 0:885 = 0:031and E[Rand(�)℄ � (1:916 + (1 � q)(� � 0:031) + Æ)L=m <(1:916 + � + Æ)L=m, with � := � � 0:031 and the same def-inition of Æ as before. Using Lemma 1, we obtain that� ontains m + 1 jobs with a proessing time of at least



(0:5+ 0:50:916 �)L=m and hene OPT (�) � maxf1+�=0:916; 1+ÆgL=m � E[Rand(�)℄=1:916.Analysis of Case 2: Let ln�11;1 = (0:916+�)L=m, for some0 < � � 0:084, and let ln�12;1 > (0:916� �)L=m. We need thefollowing lemma whose proof we sketh in Setion 4.4.Main Lemma 2. Let 0 � � � 0:084, 0 � �0 � minf0:084+�; 0:115g. If at time n�1 the least loaded mahines of A1 andA2 satisfy ln�11;1 = (0:916 + �) Lm and ln�12;1 � (maxf0:916 ��; 0:885g+ �0) Lm , then the sequene J1; : : : ; Jn�1 ontains mjobs with a proessing time of at least (0:5+ 0:50:916 minf�; �0g) Lm .We �rst assume 0 < � � 0:031. Suppose that ln�12;1 =(0:916 � � + �0)L=m, for some �0 > 0. Note that �0 < 2� be-ause ln�11;1 > ln�12;1 . Set � = minf�; �0g and de�ne Æ as in theanalysis of Case 1. Then E[Rand(�)℄ � (1:916 + (1� q)�0 +Æ)L=m < (1:916 + � + Æ)L=m and Main Lemma 2 ensuresthat OPT (�) � maxf1 + �=0:916; 1 + ÆgL=m. Equation (1)follows.Now suppose that � > 0:031 and ln�12;1 = (0:885 + �0)L=m.If � � �0, then E[Rand(�)℄ � (1:916 + � + Æ)L=m beauseln�11;1 > ln�12;1 and Main Lemma 2 ensures that OPT (�) �maxf1 + �=0:916; 1 + ÆgL=m. If � > �0, then E[Rand(�)℄ �(1:916 + q(� � 0:031) + (1 � q)�0 + Æ)L=m � (1:916 + � +Æ)L=m, with � = maxf��0:031; �0g. Main Lemma 2 ensuresthe existene of m + 1 jobs of size (0:5 + 0:50:916 �0)L=m andLemma 1 ensures the existene of m+ 1 jobs of size (0:5 +0:50:916 (��0:031))L=m. Thus OPT (�) � maxf1+�=0:916; 1+ÆgL=m. The �nal ase � > 0:031 and ln�12;1 < 0:885L=m anbe handled in the same way as in Case 1.
4.2 Basic properties and conceptsIt remains to prove Main Lemmas 1 and 2. This setionpresents important statements and onepts needed in bothof the proofs. The proofs of the lemmas are given in theappendix. In Main Lemmas 1 and 2 we have to investigatejob sequenes � = J1; : : : ; Jn leading to one of the followingsenarios.(S1) At time n� 1 the least loaded mahines of A1 and A2satisfy ln�12;1 = (0:916+�)L=m and ln�11;1 � maxf0:916��; 0:885gL=m, for some � with 0 � � � 0:084.(S2) At time n� 1 the least loaded mahines of A1 and A2satisfy ln�11;1 = (0:916+�)L=m and ln�12;1 � (maxf0:916��; 0:885g + �0)L=m, for some � and �0 with 0 � � �0:084 and 0 � �0 � minf0:084 + �; 0:115gGiven a job sequene leading to (S1), at a any time t,1 � t � n � 1, a mahine of A2 is alled full if its loadis at least (0:916 + �) Lm . A mahine of A1 is full its loadits load is at least maxf0:916 � �; 0:885g Lm . For sequenesleading to (S2), the de�nition is similar. A mahine of A1 isfull if its load is at least (0:916 + �) Lm , and a mahine of A2is full if the load is at least (maxf0:916 � �; 0:885g + �0) Lm .The following lemma implies that the job sequenes to beinvestigated generate ritial shedules.Lemma 2. If the least loaded mahine of Ai, i 2 f1; 2g,has a load of at least 0:832L=m, then Ai's shedule is riti-al. For i = 1, A1's shedule is also balaned.In a job sequene leading to (S1) or (S2), let ti , i 2 f1; 2g,be the �rst point in time suh that at least m�ki mahines

of Ai are full and the shedule of Ai is ritial throughoutthe time interval [ti ; n� 1℄. Let tb be the �rst point in timewith t2 � tb � n � 1 suh that A1's shedule was balanedat time tb.In our analyses we will often have to analyze the total loadall the mahines at some time t > ti . We present a generallemma that will be helpful in estimating that load. Given ashedule of Ai, i 2 f1; 2g, in whih the (ki + 1)-st smallestmahine has a load of at least b, de�ne Li(l; b) as the totalload on all mahines exept for the load in exess to level bon mahines ki + 1; : : : ; ki + l. Figure 1 shows an example;Li(l; b) is shaded grey. On our analyses will use part a)of the lemma for the algorithm A2 with B = 02��1�t1=m.Part b) of the lemma will be used for A1 with  = 1 andfor A2 with  = 2 or  = 02.
ki 1m

b
ki + l mahinesFigure 1: The load ounted in Li(l; b)Lemma 3. Consider Ai's shedule at time t � ti and as-sume that exatly m� j mahines are full.a) Suppose that in the next sheduling step, a job annot beplaed in the (ki+1)-st smallest mahine if the resultingload exeeds B. Then when m�j+1 mahines are full,Li(l� 1; b) > Li(l; b) +B � b, for any 1 � l � m� ki.b) Suppose that in the next sheduling steps, a job an-not be plaed on the (ki + 1)-st smallest mahine ifthe resulting load exeeds  times the average load onthe mahines. If Li(l; b) > X, 1 � l � m � ki, thenwhen exatly m� j+h mahines are full Li(l�h; b) >(X � bm=)(1� =m)�h + bm=.Lemma 4. In job sequenes leading to (S1) or (S2) atleast m� k1 mahines of A1 are full at time tb.Lemma 5. Consider a job sequene leading to (S1) or(S2) at some time t with t > t2. If A2 annot sheduleJt on the mahine with the (k2 + 1)-st smallest load, thenpt � (0:5 + 0:50:916 �) Lm , where � = � for sequenes leadingto (S1) and � = �0 for sequenes leading to (S2).

4.3 Proof of Main Lemma 1We show that eah time a mahine of A2 beomes full,a job of size at least (0:5 + 0:5�=0:916)L=m is sheduled.Sine m mahines are full at time n � 1, Main Lemma 1follows. First onsider any time t > t2. There are at leastm � k2 full mahines and hene another full mahine anonly be reated by sheduling a job on the smallest mahine.Lemma 5 ensures that the size of the job is at least (0:5 +0:5�=0:916)L=m. Next we onsider any time t, 1 � t � t2,and show that whenever another mahine beomes full, the



job is sheduled on a mahine whose load is smaller than�2(0:916 + �)L=m. Thus the size of the job is pt > (0:916 +�)L=m� �2(0:916 + �)L=m > (0:5 + 0:5�=0:916)L=m:Lemma 6. At time t2 the average load on the non-fullmahines of A2 is smaller than �2(0:916 + �)L=m.We �rst �nish the proof of Main Lemma 1 and then proveLemma 6. Let t0, t0 � t2, be the last point in time whenexatly m � k2 mahines are full and let t00, t00 � t0, bethe last point in time when exatly m � 2k2 mahines arefull. At any time t, t0 < t � t2, a full mahine an onlybe generated by sheduling a job on the smallest mahine.Lemma 6 ensures that its load is bounded by �2(0:916 +�)L=m. At time t, t00 � t � t0, the shedule is not ritialbeause lt2;2k2+1 � (0:916 + �)L=m and, by Lemma 6, theaverage load on the k2 smallest mahines is bounded by �2times this value. Thus jobs are always sheduled on thesmallest mahine. At time t00 the load on the (k2 + 1)-st smallest mahine annot be larger than the load on thesmallest mahine at time t0, whih is at most �2(0:916 +�)L=m. Thus at any time t, 1 � t � t00, both mahines ajob an be assigned to have a low load.The rest of this setion is devoted to proving Lemma 6.The proof is by ontradition. We assume that at time t2 theaverage load on the non-full mahine is at least �2(0:916 +�)L=m and show that this would imply a load of at leastL at time n � 1. This is a ontradition beause at time nanother job with non-zero proessing time is presented andhene Ln�1 < Ln = L.Let b1(�) = maxf0:916��; 0:885gL=m and b2(�) = (0:916+�)L=m. We de�ne several load values L1(�); L2(�); L3(�) andL4(�). Essentially, L1(�) is the minimum load in the systemat time t2: At least m � k2 mahines are full and by as-sumption the average load on the non-full mahines is atleast �2(0:916 + �)L=m. Thus the total load is at least(m� k2)b2(�)+k2�2b2(�) = b2(�)m(1+ (�2� 1)k2=m). Thevalue L2(�) is the minimum load in the system when A1has a balaned shedule. By Lemma 4 at least m� k1 ma-hines of A1 are full; thus the total load is at least L2(�) =(m � k1)b1(�)��1. We set L3(�) = (2=02)L2(�). Intu-itively, this is the load at whih the value of  hanges inthe sheduling proess. While the load in the system issmaller than L3(�), the value  = 2��1�t1=m dominates = 02Lt=m. Afterwards the latter value dominates. Fi-nally, we set L4(�) = L. This is the �nal value we want toreah. L1(�) = b2(�)m(1 + (�2 � 1)k2=m)L2(�) = (m� k1)b1(�)��1L3(�) = (2=02)L1(�)L4(�) = LMoreover, we de�ne values n1(�); n2(�) and n3(�). Given aload of Li(�), ni(�) is the maximum number of large jobs weneed to reah a load of Li+1(�), for i = 1; 2; 3.n1(�) = � logB �L2(�)� b2(�)m=2L1(�)� b2(�)m=2�with base B = (1� 2=m)n2(�) = (L3(�)� L2(�))=(2L2(�)m � b2(�))n3(�) = � logB0 �L4(�)� b2(�)m=02L3(�)� b2(�)m=02�with base B0 = (1� 02=m)

Note that (L1(�)�b2(�)m=2)(1�2=m)�n1(�)+b2(�)m=2 =L2(�). If we have a load of at least L2(�) and a job an-not be sheduled on the (k2 + 1)-st smallest mahine inA2's shedule, then the proessing time of the job mustbe at least 2L2(�)=m � b2(�). Thus after at most n2(�)large jobs, a load of L3(�) is reahed. Finally (L3(�) �b2(�)m=02)(1 � 02=m)�n3(�) + b2(�)m=02 = L4(�) = L. LetNi(�) = Pij=1 dnj(�)e, for j = 1; 2; 3. Analyzing the �rstderivatives of the funtions ni(�), 1 � i � 3, we an showthat N3(�) is non-inreasing in �. The expression n1(�) isa onave dereasing funtion, whereas n2(�) and n2(�) areonvex inreasing funtions. For 0 � � � 0:031, the gradientof n1(�) is smaller than �2:3. The sum n2(�) + n3(�) anbe bounded by a linear funtion whose gradient is boundedby 1:8. Thus N3(�) is non-inreasing. For � � 0:031 thegradient values hanges slightly beause b1(�) is onstant.Here the gradient of n1(�) is smaller than �2:5 and n2(�) +n3(�) an be bounded by a linear funtion whose gradient issmaller than 0:37. Again, N3(�) is non-inreasing. Evaluat-ing the funtion for � = 0, we �nd that N3(0) � 38m � k2.To prove that the total load in A2's shedule at time n � 1is at least L, we de�ne a non-dereasing funtion f withf(N3(�)) � L. Claim 1 below states that, at any time t � t2,when exatly m�k2+ i mahines of A2 are full, 0 � i � k2,the load L2(k2 � i; b2(�)) � f(i). This shows that when mmahines are full Ln�1 � L2(0; b2(�)) � f(k2) � f(N3(�)) �L.f(i) = 8>>>>>>>>><>>>>>>>>>:
minf(L1(�)� b2(�)m2 )(1� 2m )�i + b2(�)m2 ; L2(�)gfor 0 � i � N1(�)minfL2(�) + (i �N1(�))(2 L2(�)m � b2(�)); L3(�)gfor N1(�) < i � N2(�)minf(L3(�)� b2(�)m02 )(1� 02m )N2(�)�i + b2(�)m02 ; Lgfor N2(�) < iClaim 1. Consider a time t, t � t2. If exatly m�k2+ imahines of A2 are full, 0 � i � k2, then L2(k2� i; b2(�)) �f(i).Proof. Suppose that at time t2 exatly m� k2 + i0 ma-hines of A2 are full, 0 � i0 � k2. Below we will show thatthe load of the shedule satis�es L2(k2 � i0; b2(�)) � f(i0).Given this fat, we �rst prove indutively that when ex-atly m � k2 + i mahines of A2 are full, i � i0, thenL2(k2 � i; b2(�)) � f(i). This establishes the laim.So suppose that L2(k2 � i; b2(�)) � f(i) and onsider thenext sheduling step when another mahine beomes full.The job is sheduled on the smallest mahine while the algo-rithm would prefer to assign the job to the (k2+1)-st small-est mahine beause A2's shedule is ritial after shedulingstep. We distinguish ases depending on the value of i.Case 1: 0 � i < N1(�) If the shedule of A1 is notbalaned, then A2 sets  = 2Lt=m. Lemma 3 part b) andthe indution hypothesis implyL2(k2 � (i + 1); b2(�))= L2(k2 � i � 1; b2(�))� (L2(k2 � i; b2(�))� b2(�)m=2)=(1� 2=m)+b2(�)m=2� (L1(�)� b2(�)m=2)=(1� 2=m)�(i+1) + b2(�)m=2� f(i + 1):



If the shedule of A1 is balaned, then  � 2��1�t1 �2L2(�) beause by Lemma 4 at least m�k1 mahines of A1are full and have a load of b1(�). Thus, by Lemma 3 part a),L2(k� (i+1); b2(�))�L2(k2� i; b2(�)) � 2L2(�)=m� b2(�).We show that f(i + 1) � f(i) � 2L2(�)=m � b2(�). Ifi = N1(�)� 1, thenf(i + 1)� f(i)� L2(�)� ((L1(�)� b2(�)m=2)(1� 2=m)�N1(�)+1+b2(�)m=2)� L2(�)� ((L2(�)� b2(�)m=2)(1� 2=m) + b2(�)m=2)= 2L2(�)=m� b2(�):If i < N1(�)� 1, thenf(i + 1)� f(i)� (L1(�)� b2(�)m=2)(1� 2=m)�i((1� 2=m)�1 � 1)= (L1(�)� b2(�)m=2)(1� 2=m)�(i+1) 2m� ((L1(�)� b2(�)m=2)(1� 2=m)�n1(�) + b2(�)m=2�b2(�)m=2) 2m= (L2(�)� b2(�)m=2) 2m= 2L2(�)=m� b2(�):Case 2: N1(�) � i < N2(�) By indution hypothesis weknow L2(k � i; b2(�)) � L2(�). If the shedule of A1 is notbalaned, then  = 2Lt=m � 2L2(�)=m. If the shedule ofA1 is balaned, then  = 2��1�t1=m � 2L2(�)=m. Thusby Lemma 3 part b, L2(k� (i+1); b2(�))�L2(k� i; b2(�)) � � b2(�) � 2L2(�)=m� b2(�) and f(i+1)� f(i) is at mostthis value.Case 3: N2(�) � i By indution hypothesis, f(N2(�)) �L3(�). In eah of A2's sheduling steps  � 02Lt=m. The in-dutive step now follows immediately from Lemma 3 part b).It remains to show that at time t2, L2(k2 � i0; b2(�)) �f(i0), where m� k2 + i0 is the number of full mahines. Byassumption, the non-full mahines have an average load ofat least �2b2(�). Thus the average load on the k2 small-est mahines is at least (i0b2(�) + (k2 � i0)�2b2(�))=k2 =b2(�)(1+(k2� i0)(�2�1)=k2). The shedule was not ritialat time t2 � 1 and hene the load on mahine (2k2 + 1) isasymptotially at least 1=�2 times this value. Thus L2(k2�i0; b2(�)) � L2(k2; b2(�)) is at least g(i0) whereg(i) =b2(�)(1 + (k2 � i)(�2 � 1)=k2)(k2 + (m� 2k2)=�2)+k2b2(�):We show g(i) � f(i) for all 0 � i � k2. For i = 0 we haveg(0) = b2(�)k2�2 + (m� k2)b2(�)= b2(�)m(1 + (�2 � 1)k2=m))= L1(�)= f(0):In eah step the funtion g inreases by b2(�)(1��2)(1+(m � 2k2)=(�2k2)) > 1:2L=m. We show that the funtionf inreases by at most this value in eah step. As shownin Case 1 above, f(i + 1) � f(i) � 2L2(�)=m � b2(�) �1:1L=m if i � N1(�) � 1. The same alulation holds ifN1(�) � i < N2(�). For i � N2(�) we an show as in Case 1,f(i + 1) � f(i) � 02L4(�)=m � b2(�) and this expression isbounded by L=m.

4.4 Proof of Main Lemma 2Due to spae limitations, we only give a sketh of theproof. We have to onsider job sequenes leading to se-nario (S2). To identify large jobs in the sequene we needthe following lemmas.Lemma 7. a) If 0 � � � 0:007, then at time t2 theaverage load on the non-full mahines of A2 is smallerthan �2(0:916 � �)L=m.b) If � � 0:007, the one of the following statement holds:(i) at time t1 the average load on the non-full mahinesof A1 is smaller than (0:416 + 0:416�=0:916)L=m; or(ii) at time t2 the average load on the non-full ma-hines of A2 is smaller than (0:416 � �)L=m.Lemma 8. If at some time t > t1, the (k1 + 1)-st small-est mahine of A1 has a load of (0:916 + d)L=m, for some0:007 � d � 0:084, and A1 annot shedule Jt on the ma-hine with the (k1 + 1)-st smallest load, then pt � (0:5 +0:50:916d) Lm .Using these two lemmas, the identi�ation of large jobsan be done using the same tehniques as in the proof ofMain Lemma 1. The diÆult part of the analysis is toprove part b) of Lemma 7, where we need arguments not yetseen in this paper. Consider an � with 0:007 � � � 0:084.The proof is again by ontradition. We assume that attime t1, the average load on the non-full mahines of A1is at least (0:416 + 0:416�=0:916)L=m and that at time t2,the average load on the non-full mahines of A2 is at least(0:416 � �)L=m. We show that these assumptions imply aload of at least L at time n � 1.The global struture of the proof is similar to that ofLemma 6, but the tehnial details di�er. Let b1(�) =(0:916 + �)L=m and b2(�) = maxf0:916� �; 0:885gL=m. De-�ne � = minf�; 0:031g. Note that at � = 0:031, b2(�) beomesonstant. Again we de�ne a funtion f that desribes theminimum load in the system when exatly m � k2 + i ma-hines of A2 are full. Again we need a sequene of loadsLi(�), i = 1; : : : ; 4. In the proof of Lemma 6, L1(�) wasthe load in the system when exatly m � k2 mahines ofA2 were full, whih was also the minimum load in the sys-tem when A2's shedule was ritial. For sequenes lead-ing to (S2) these two values are di�erent. Here L1(�) =b2(�)�k2 � 0:5L=m is the minimum load in the system whenexatly m� k2 mahines are full. The minimum load in thesystem when A2's shedule is ritial is L2(�) = b2(�)m(1 +(�2 � 1)k2=m)). The value L3(�) = (m � k1)b1(�)��1 isthe minimum load when A1's shedule is balaned. For� > 0:031 it is suÆient to work with the smaller value �.We do not need the load value (2=02)L3(�) in this analysis.The main di�erene in the de�nitions of the loads is thatL4(�) is not the �nal value L but a smaller value, i.e. L4(�) =L�0:5d(�)L=m where d(�) = d(2:933(� � 0:007) + 0:0083)me:It turns out that when m mahines are full in A2's shedule,the load is not neessarily L but only L4(�) de�ned above.Nonetheless we are able to derive a ontradition. The in-tuition is as follows. At time n� 1, the smallest mahine ofA1 has a higher load than the smallest mahine of A2. Thusduring the sheduling proess it takes longer to generate fullmahines in A1's shedule. In a typial situation after timet2, when i mahines of A2 are full, only i � d(�) mahinesof A1 are full. Thus we get an additional load from jobs



needed to �ll all the mahines of A1. We an show that theritial times satisfy t2 � t1. Lemma 8 then implies thatat any time after t1 when another mahines of A1 beomesfull, a job of size at least 0:5L=m is shedules. We obtain atotal load of at least L at times n � 1 and have the desiredontradition. This idea an be turned into a formal proof;details are presented in the full paper.
5. APPENDIXProof of Lemma 2. Eah mahine of Ai, i 2 f1; 2g, hasa load of at least 0:832L=m. Thus the average load on theki smallest mahines is �i � 0:832L=m. If Ai's shedulewere not ritial, then the load on the (2ki + 1)-st small-est mahine would be at least �i=�i and the total load onall mahines would be at least (m � 2ki)�i=�i + 2ki�i =0:832L + (m � 2ki)(1=�i � 1)0:832L=m > L as m ! 1,whih is a ontradition. For the proof that A1's shedule isbalaned we simply observe that the load on the k1 smallestmahines is at least 0:832k1L=m � (1 � 1)k1Lt=m for any1 � t � n.Proof of Lemma 3. a) Let eki+1 and eki+l be the loadsin exess to b on the (ki + 1)-st and the (ki + l)-th small-est mahines, respetively. Let �l be the total load in theshedule not ounted in Li(l; b). When the next mahinebeomes full, the job to be sheduled has a proessing timep with b + eki+1 + p > B, i.e. p + eki+1 > B � b. Weshow that Li(l � 1; b) � Li(l; b) � p + eki+1. The job issheduled on the smallest mahine in the shedule. The ma-hines are sorted in order of non-dereasing loads after theassignment. If the smallest mahine is among the ki small-est mahines after the assignment, then p is fully ounted inLi(l�1; b) and the �-value dereases by eki+l � eki+1 whengoing from Li(l; b) to Li(l � 1; b). Suppose that the small-est mahine is among the m� ki largest mahines after thesorting, i.e. its load is b+ e for some e > 0. If the mahineis among mahines ki+ l; : : : ; m (more formally, among ma-hines Mi;ki+l; : : : ;Mi;m) after the sorting, then p is fullyounted in Li(l� 1; b) and the �-value drops by eki+1 whenmoving from Li(l; b) to Li(l� 1; b). If the smallest mahineis among mahines ki+1; : : : ; k+ l�1 after the sorting, thenthe �-value drops by eki+1 during the sorting, an amount ofe is not ounted in the proessing time of p but the �-valuedrops by ek+l � e when making the transition from Li(l; b)to Li(l� 1; b).b) We prove the statement by indution on h. For h = 0there is nothing to show. Assume that the statement holdsfor h�1. Consider the point in time when the (m�j+h)-thmahine beomes full and let eki+1 be the load above level bon the (ki+1)-st smallest mahine. Let p be the proessingtime of the new job. Algorithm Ai would prefer to assign thejob to the (ki+1)-st smallest mahine beause the sheduleis ritial. Sine this is impossible b + eki+1 + p > B, i.e.eki+1+p > B�b. The value B is at least  times the averageload on the mahines after the sheduling step, whih meansB � m (Li(l� h+ 1; b) + eki+1 + p)� m (Li(l� h+ 1; b) +B � b):Algebrai manipulations give B � m (Li(l�h+1; b)�b)=(1�m ) and B�b � ( mLi(l�h+1; b)�b)=(1� m ). Using part a)

and the indution hypothesis,Li(l� h; b) � Li(l� h+ 1; b)=(1� =m)� b=(1� =m)= (X � bm=)=(1� =m)h + bm=(1� =m)�b=(1� =m)= (X � bm=)=(1� =m)h + bm=and this onludes the proof.Proof of Lemma 4. We onsider a general setting wherewe an analyze senarios (S1) and (S2) simultaneously. Let� 2 [�0:084; 0:084℄ and set b1(�) = (0:916 � �)L=m andb2(�) = (0:916 + �)L=m. For the analysis of senario (S1),� � 0 and for the analysis of senario (S2), � � 0. We as-sume that less than m � k1 mahines are full and derive aontradition.We �rst analyze the average load �1(�) on the k1 smallestmahines of A1 at time tb. In the shedule of A2, at leastm� k2 mahines are full and the shedule is ritial. Thusthe total load is at leastLtb � (m� k2)b2(�) + k2�2b2(�) = (m+ (�2 � 1)k2)b2(�):Sine the shedule of A1 is balaned, the average load onthe k1 smallest mahines is at least (1 � 1)Ltb=m, i.e.�1(�) = (1 � 1)(1 + (�2 � 1)k2=m)b2(�):When exatly m � k1 mahines of A1 are full, the loadL1(k1; b1(�)) of A1's shedule is at least equal to L0(�) =(m� k1)b1(�) + k1�1(�). For i = 0; : : : ; k1, de�nef(i; �) = (C � L0(�)� b1(�)m=1)(1� 1=m)�i + b1(�)m=1;where C = 0:96. In the above de�nition of f we sale theload L0(�), i.e. we onsider a slightly smaller load.Let t0 be the last point in time when exatly m� k1 ma-hines of A1 are full. If A1's shedule is never non-ritialat time t � t0, then the proof is simple. At time t0 we haveL1(k1; b1(�)) � L0(�) and hene, by Lemma 3 part b), whenall the m mahines are fullLn�1 � L1(k1 � k1; b1(�)) = L1(0; b1(�)) � f(k1; �):We havef(k1; �) � (1� 21m )(C � L0(�)� b1(�)m1 )ek11=m + b1(�)m1 :The last term is dereasing in � and, for � = 0:084, it isstritly greater than L as m!1. Thus, if A1's shedule isnever non-ritial after time t0, then we have a ontradition.If A1's shedule is non-ritial at some time t � t0, thenwe have to analyze more arefully. Suppose that at timet1, exatly m � k1 + i mahines are full, for some 1 � i �k1. We show that at this time the load L1(k1; b1(�)) in theshedule satis�es L1(k1; b1(�)) � f(i; �). Lemma 3 part b)then gives that when all the m mahines are full L1(k1 �(k1 � i); b1(�)) � f(k1; �) and hene Ln�1 � L1(k1 � (k1 �i); b1(�)) � f(k1; �) > L. We have again a ontradition.Thus we have to estimate the load L1(k1; b1(�)) at time t1when exatly m�k1+ i mahines of A1 are full. Among thek1 smallest mahines, i mahines are full and have a load ofb1(�). Whenever one of the smallest k1 mahines beomesfull, a job is assigned to the smallest mahine. Thus theaverage load on the non-full mahines at time t1 annot besmaller than the average load on the k1 smallest mahinesat time tb, whih was �1(�). Hene at time t1, the average



load on the k1 smallest mahines is at least (ib1(�) + (k1 �i)�1(�))=k1. The load on eah of the largest m� 2k1 largestmahines is asymptotially at least 1=�1 times this value.Thus at time t1 we have L1(k1; b1(�)) � g(i; �), whereg(i; �) = (ib1(�) + (k1 � i)�1(�))(1 + (m� 2k1)=(k1�1))+k1b1(�):We show that for any �xed �, g(i; �) � f(i; �). This estab-lishes L1(k1; b1(�)) � f(i; �).Both f and g are inreasing in i; f grows exponentiallywhile g grows linearly. If we an show that, for any �xed �,the boundary values satisfy g(0; �) � f(0; �) and g(k1; �) �f(k1; �), then g(i; �) � f(i; �) holds for all i. The �rst in-equality is easy to prove. Obviously f(0; �) � CL0(�) andg(0; �) = k1�1(�)(1 + (m� 2k1)=(k1�1)) + k1b1(�)= k1�1(�) + �1(�)(m� 2k1)=�1 + k1b1(�)> C((m� k1)b1(�) + k1�1(�))= CL0(�):For i = k1,f(k1; �) = (C �L0(�)� b1(�)m=1)(1� 1=m)�k1 + b1(�)m=1and g(k1; �) = 2k1b1(�) + (m� 2k1)b1(�)=�1:Both funtions are linear in �. Thus, to establish g(k1; �) �f(k1; �) for all �, it suÆes to hek the boundary values� = �0:084 and � = 0:084. We have g(k1;�0:084) > 1:21L,f(k1;�0:084) < 1:05L, as well as g(k1; 0:084) > 1:01L,f(k1; 0:084) < 1:01L as m!1.Proof of Lemma 5. We �rst investigate the ase thatA1's shedule is not balaned, whih implies that  = 2Lt=min the sheduling step. Let lt�12;k2+1 = (0:885 + d)L=m, forsome d > 0, be the atual load on the (k2+1)-st smallest ma-hine of A2 immediately before Jt is sheduled. Eah of thelargestm�k2 mahines has a load of at least (0:885+d)L=m.A2's shedule is ritial and thus the average load on the k2smallest mahines is at least �2(0:885 + d)L=m. ThereforeLt � (m� k2)(0:885 + d)L=m+ k2�2(0:885 + d)L=m= (0:885 + d)(1 + (�2 � 1)k2=m)L:Job Jt annot be plaed on the (k2 + 1)-st smallest ma-hine, whih implies pt + lt�12;k2+1 > 2Lt=m and hene pt >2Lt=m� lt�12;k2+1. Thuspt > 20:885(1 + (�2 � 1)k2=m)L=m� 0:885L=m+2d(1 + (�2 � 1)k2=m)L=m� dL=m> (0:5 + 0:58d)L=m > (0:5 + 0:50:916d)L=m:The desired statement follows beause in senario (S1) d � �and in senario (S2) d � �0.Next we study the ase that A1's shedule is balaned. Toanalyze sequenes leading to (S1) and (S2) simultanously,we onsider a more general setting. Let � 2 [�0:084; 0:084℄and set b1(�) = maxf0:916 � �; 0:885gL=m and b2(�) =maxf0:916 + �; 0:885gL=m. For the analysis of of (S1) wehave � � 0 and for the analysis of (S2) we have � � 0. We set�0 = 0 in senario (S1). The shedule of A1 is balaned andhene by Lemma 4 at leastm�k1 mahines of A1 are full, i.e.they have a load of at least b1(�). Thus �t1 � b1(�)(m� k1).

If A2 annot shedule Jt on the mahine with the (k2+1)-stsmallest load, then lt�12;k+1 + pt > , where  = 2��1�t1=m.Thus pt > 2��1�t=m� lt�12;k2+1. The load on the (k2+1)-stsmallest mahine of A2 is bounded bylmax2;k2+1 = (L� k2b2(�)� k2�0L=m)=(m� k2)sine otherwise the total load at time n�1 were greater than(m� k2)lmax2;k2+1 + k2(b2(�) + �0L=m) = L: Henept > 2��1b1(�)(m� k1)=m�(L� k2b2(�)� k2�0L=m)=(m� k2):The last expression is dereasing in � in the range �0:084 �� � 0:031 and inreasing for � � 0:031. Therefore, we eval-uate the expression for � = 0:031. For � = 0:031 we obtainpt > (0:58 + 0:6�0)L=m. In any ase pt > (0:5 + 0:50:916 j�j +0:50:916 �0)L=m for all � 2 [�0:084; 0:084℄.
6. REFERENCES[1℄ S. Albers. Better bounds for online sheduling. SIAMJournal on Computing, 29:459-473, 1999.[2℄ Y. Bartal, A. Fiat, H. Karlo� and R. Vohra. New al-gorithms for an anient sheduling problem. Journal ofComputer and System Sienes, 51:359{366, 1995.[3℄ Y. Bartal, H. Karlo� and Y. Rabani. A better lowerbound for on-line sheduling. Information ProessingLetters, 50:113{116, 1994.[4℄ B. Chen, A. van Vliet and G.J. Woeginger. A lowerbound for randomized on-line sheduling algorithms.Information Proessing Letters, 51:219{222, 1994.[5℄ U. Faigle, W. Kern and G. Turan. On the performaneof on-line algorithms for partiular problems. Ata Cy-bernetia, 9:107{119, 1989.[6℄ R. Fleisher and M. Wahl. Online sheduling revisited.Pro. 8th Annual European Symposium on Algorithms,Springer LNCS, 2000.[7℄ G. Galambos and G. Woeginger. An on-line shedulingheuristi with better worst ase ratio than Graham'slist sheduling. SIAM Journal on Computing, 22:349{355, 1993.[8℄ T. Gormley, N. Reingold, E. Torng and J. Westbrook.Generating adversaries for request-answer games. Pro.11th ACM-SIAM Symposium on Disrete Algorithms,564{565, 2000.[9℄ R.L. Graham. Bounds for ertain multi-proessing anom-alies. Bell System Tehnial Journal, 45:1563{1581, 1966.[10℄ D.R. Karger, S.J. Phillips and E. Torng. A better al-gorithm for an anient sheduling problem. Journal ofAlgorithms, 20:400{430, 1996.[11℄ J.F. Rudin III. Improved bounds for the on-line shedul-ing problem. Ph.D. Thesis. The University of Texas atDallas, May 2001.[12℄ S.S. Seiden. Online randomized multiproessor shedul-ing. Algorithmia, 28:173{216, 2000.[13℄ S.S.Seiden. Barely random algorithms for multiproes-sor sheduling. To appear in Journal of Sheduling .[14℄ J. Sgall. A lower bound for randomized on-line mul-tiproessor sheduling. Information Proessing Letters,63:51{55, 1997.[15℄ D.D. Sleator and R.E. Tarjan. Amortized eÆieny oflist update and paging rules. Communiations of theACM, 28:202{208, 1985.


