New Results on Web Caching with Request Reordering

Susanne Albefs

Abstract

We study web caching with request reordering. The goal isdimtain a cache of web documents so
that a sequence of requests can be served at low cost. Tovenpaohe hit rates, a limited reordering of
requests is allowed. Feder et al. [6], who recently intrediihis problem, considered caches of size 1,
i.e. acache can store one document. They presented an affjiorethm based on dynamic programming
as well as online algorithms that achieve constant factorpaditive ratios. For arbitrary cache sizes,
Feder et al. [7] gave online strategies that have nearlyrgbttompetitive ratios in several cost models.

In this paper we first present a deterministic online alganithat achieves an optimal competitive-
ness, for the most general cost model and all cache sizehaférvestigate the offline problem, which
is NP-hard in general. We develop the first polynomial tingodathms that can manage arbitrary cache
sizes. Our strategies achieve small constant factor appation ratios. The algorithms are based on a
general technique that reduces web caching with requesteBog to a problem of computing batched
service schedules.

Our approximation result for the Fault Model also improvesmithe best previous approximation
guarantee known for web caching without request reordering

*Institut fir Informatik, Albert-Ludwigs-Universitt Freiburg, Georgesdtler-Allee 79, 79110 Freiburg, Germany.
sal bers@nformati k. uni - frei burg. de Work supported by the Deutsche Forschungsgemeinschajieais AL 464/4-
1, and by the EU, projects APPOL and APPOL II.

1 Introduction

We study web caching, the problem of maintaining a cache bfdeeuments so that a sequence of requests
can be served with low cost. Caches can be built into web l@mswsr servers. If these local memories
store frequently accessed documents, then requested @zgandt have to be downloaded from the web.
This leads to improved user response times and lower neteanmgestion. There has been considerable
research interest in the design of effective web cachingrahgns [2, 3, 5, 6, 7, 11, 14]. Almost all of the
work assumes that requests must be served in the order wdlarHowever web requests are essentially
independent and request reordering is a promising apptodoiprove cache hit rates. Therefore, Feder et
al. [6, 7] recently initiated the study of web caching wheimated reordering of requests is allowed.

Formally, inweb caching with request reorderimge are given a request sequence: o(1),...,0(m).
Each request specifies a document to be accessed. Assogititezhch document is a size and a cost,
denoted byize(d) andcost(d), respectively. If a requested document is in cache, theestquan be served
at0 cost. Otherwise the incurred costdasst(d) and, after the service operation, the missing document may
be loaded into cache at no extra cost. We emphasize herehth&gading operation is optional. In web
applications referenced documents are not necessariyghtinto cache. At any time we may also load a
documentd not currently requested. Again, the incurred costoi& (d). If a document is cache, it takes
up a space ofize(d) bits. The cache capacity Is, i.e. at any time the cache can store documents with a
total size of at mosk bits. In web caching with request reordering, requests ddae to be served in the
order of arrival. However, it is not desirable to delay thesgee of a request for too long. Letbe a positive
integer. Request(j) may be served before(7) if j —¢ < r. The goal is to serve the input sequence so that
the total cost is as small as possible. Following [6], we abbthis framework the-reordering problem

We are interested in both online and offline algorithms. la ¢imline scenario, for the-reordering
problem to make sense, whefx) is the first unserved request in the sequence, reqaégtsvith j —i < r
are known. Requests(i + r) and beyond are unknown. An online algoritiMnis calledc-competitive
if there exists a constant such that, for all request sequenegsA(o) < ¢- OPT (o) + a. Here A(o)
and OPT (o) denote the costs incurred by and by an optimal offline algorithr®@ PT'. In the offline
scenario, the entire request sequemée known in advance. The generateordering problem is NP-hard.
A polynomial time algorithmA achieves an approximation ratio off there exists a constaatsuch that
A(o) < c¢-OPT(o) + a, for all inputso.

Several cost models are of interest. Unless otherwisedstéte(d), for any documend, is an arbitrary
positive integer.

e Uniform Model All documents have the same size and incur a co$twahen not available in cache,
i.e. size(d) = s andcost(d) = 1, for some positive integerand all documents.

e Bit Model For all documentd, we havecost(d) = size(d), i.e. we measure how many bits are to be
transferred when a referenced document is not in cache.

e Fault Model Herecost(d) = 1, for all d, i.e. we count the number of cache misses.
¢ General Model For any document, cost(d) may be an arbitrary non-negative value.

We note that the Uniform Model is equal to the cost model ind#ad paging. In web caching, documents
typically have variable sizes and costs. Neverthelesgaeweb caching papers considered the Uniform
Model as it gives insight how to attack the more involved mesde

Previous work: We first review the results on web caching without requestdexing. In the Uni-
form Model the best competitive ratios of deterministic aaddomized online algorithms akeand Hy, =
Zle 1/i, respectively, [1, 9, 12, 13]. Hefeis the number of documents that can simultaneously reside in
cache. These bounds hold if requested documents have tochehe. The offline problem can be solved
in polynomial time [4]. Karloff et al. [10] investigated weataching in the Uniform Model assuming that
documents have expiration times beyond which they are nd.WAkeb caching in the Bit Model, and hence

in the General Model, is NP-hard. For the Bit and the Fault 8edirani [11] presented polynomial time
offline algorithms that achieve approximation ratioslog k), wherek = K/Dy,in and Dy IS the size

of the smallest document ever requested. She also develapédmized online algorithms for both models
that areO(log? k)-competitive. For the General Model, Young [14] and indefmaily Cao and Irani [5]
gave a deterministi&-competitive algorithm. They require that requested dasnts must be in cache.
Albers et al. [2] presented polynomial time offline algonith for the Bit, the Fault and the General Model.
The algorithms achieve constant factor approximatiorosatiut use a slightly larger cache capacity. The
total cache capacity needed is of the foR+ bD,,.x, Whereb is a small constant depending on the cost
model andD,,.x is the size of the largest document ever requested. Bar-Nay 8] have presented a
4-approximation algorithm for the General Model that doesneed extra space.

We next consider web caching with request reordering. Irsag@per, Feder et al. [6] studied the case
that at any time the cache can store only one document, éeatthe size is 1. They gave constant compet-
itive online algorithms. Furthermore they developed ariradfhlgorithm based on dynamic programming
that achieves a polynomial running timerifis logarithmic in the length of the request sequence or if the
number of distinct documents requested is constant. In tand®&d version [7] of their paper, Feder et al.
also presented online algorithms for arbitrary cache si@appose that a cache can simultaneously gtore
documents. For the Uniform Model, Feder et al. [7] gave deit@istic (k + 2)-competitive algorithms. For
the Bit and Fault Models, they showék + 3)-competitive strategies.

Our contribution: We present improved results on web caching with requestiegimly. Letk =
K /Dpin, Where Dy, is the size of the smallest document ever requested. Forrtleegproblem we
present a deterministic algorithm that works in the Gendiedel and achieves a competitive ratiokof 1.
This deterministic competitiveness is optimal, for alltom®dels and cache sizes. Our algorithm is a simple
modification of Young's Landlord algorithm [14]. Nevertlsk our strategy substantially improves upon
previous results. Recall that, for the General Model, mresialgorithms could only handle caches of dize

Most of our paper is concerned with the offline problem. Wespnt the first polynomial time algo-
rithms for caches of arbitrary size. As the offline problemgéneral, is NP-hard, we design approximation
algorithms. Our solutions are based on a new technique ¢idlaices the-reordering problem to one of
computing batched service schedules. We partition a réegagsence into batches of sizand serve these
batches independently one after the other. In the Uniforndéiave devise &-approximation algorithm.

In the Bit and Fault Models, using LP rounding techniqguepfjve present approximation algorithms that
use some extra space in cache. In the Bit Model we obt&rapproximation that needs an extra cache
capacity ofD,,.x. More generally, for any > 0, we obtain &2 + €)-approximation usindmax/(1 + €/2)
extra space. In the Fault Model we derivé-approximation using an additional memory2dd,,,,. Trading
again memory for performance we develop, for any 0, a (2 + ¢)-approximation usingl + 2/¢) Dpax
extra space. In practice the extra space requirements albasW,,.. is typically not more than 1-2% of
the cache size. Finally, for the General Model, applyingapproach of Bar-Noy et al. [3], we obtain an
8-approximation requiring no extra space in cache.

We remark that in the Fault Model, our results also improverufhe best approximation guarantees
known for web caching without request reordering. In SecBo4 we present a refined analysis of the
rounding algorithm given in [2] and show(&+ ¢)-approximation usingl + 1/¢) D,.x additional memory.
The previous best bound wag B+ €)-approximation usingl + 1/(y/1 + € — 1)) extra space.

2 A deterministic online algorithm for the General Model

We present a deterministic online algorithm for theeordering problem in the General Model. The algo-
rithm is a modification of Young’s Landlord algorithm [14].n% documentl has a credit that takes values
between 0 andost(d). Initially, all documents have a credit of 0. Given a requeesiuence, we maintain

a sliding windowW that always contains consecutive requests af In each step the following algorithm
is executed.

Algorithm Modified Landlord (MLL)
1. Foralld’' € cache such thaf¥ contains unserved requestsffoserve those requests;
2. if first request i/ is unservedhen
3. Letd be the document referenced by this first request;
Serve all requests tbin W;
Setcredit(d) < cost(d) andC « {d} U{d' | d' € cache};
while 3~ ¢ size(d’) > K do
LetA = ming ¢ credit(d’)/size(d');
For eachl’ € C, decreaseredit(d') by Asize(d');
Delete fromC' and from the cache any documehwith credit(d’) = 0;
10. if credit(d) > 0 then bringd into cache;
11. ShiftW one position to the right;

©o~NOOR

Figure 1: The Modified Landlord algorithm

Letk = K/Dmnin, WhereDy,, is the size of the smallest document that can be referenced.
Theorem 1 The algorithm MLL ik + 1)-competitive.

Proof: Consider an arbitrary request sequeace o(1)o(2)...0(m) and letD be the set of documents
referenced inr. We analyze MLL's performance using a potential functibn At any time letOPT be
the set of documents in OPT'’s cache. Furthermore, at anylétrfebe the set of documents not stored in
OPT's cache for which at least one request is already serw@MPT but not by MLL. Define

o=k Z credit(d') + (k + 1) Z (cost(d') — credit(d')).
d'eD d'€eOPTUS

The potential is always non-negative since eaelfdit(d') takes values between 0 anst(d’). We assume
that MLL and OPT start with an empty cache so that the initiéptial is O.

Let timet be the point of time whem (¢) is the first request i#¥’. We prove that the amortized cost
incurred by MLL between andt + 1 is at mostk + 1 times the cost paid by OPT during that time interval.
This establishes the theorem. In the analysis we assum@®®iatserves requests first and MLL serves
second. We show the following statement.

(1) If OPT serves requests for a documdrdand incurs a cost ofost(d), then® increases by at most
(k 4+ 1) cost(d). All other actions of OPT cannot increase the potential.

If OPT serves requests for a documenéat a cost, thenl is not in OPT's cache before the service
operation. The document may be loaded into cache or becammeat ofS, in which case the potential
increases byk + 1)(cost(d) — credit(d)) < (k 4 1)cost(d). If OPT serves requests at no cost, then the
referenced documents are in cache and the potential doahaonge. Whenever OPT evicts documents
from cache, the potential can only decrease.

Next we analyze the moves of MLL. The algorithm maintainsgtaperty that documents not in cache
have credit). The only exception is the credit of a requested docurdemhich is set tocost(d) in line 5
of the algorithm. If the credit remains positive in the foliog execution of the while loop, thehis loaded
into cache in line 10. Thus, when we start executing MLL fajuests (¢), documents not in cache do have
credit0. The execution of line 1 does not incur cost and cannot irser¢lae potential since documents
can only leave the s&t. We investigate the case that requegt) = d is unserved and prove the following
statement.

(2) If MLL serves requests for documedtat cost(d), then® decreases by at leastst(d).

Immediately before the execution of line 4 of MLL we haves OPT U S becauser(t) is already
served by OPT. Moreovetyedit(d) = 0. In line 5 of the algorithneredit(d) is set tocost(d). Hence the
potential change due to lines 4 and 5 of MLLkigost(d) — (k + 1) cost(d) = —cost(d).

It remains to show thab does not increase during the execution of the while loop.stZtem an arbitrary
iteration. ForaseX C D, letsize(X) = >y x size(d’). Inline 8 the potential change iS(—k size(C') +
(k + 1)size(C N (OPT U S))). We haveC N S = () because when line 8 is executed, MLL has served
all requests to documend € C that are inlW and OPT cannot have served requests that are beijyand
Thus the potential changeds(—ksize(C'\ OPT) + size(C N OPT)) < A(—ksize(C'\ OPT) + K). We
argue thatC \ OPT contains at least one documentdl## OPT, then this is obvious. I € OPT, then
there must existd € C, d' # d, withd' ¢ OPT. OtherwiseC' C OPT, which impliessize(C') < K and
the iteration of the while loop would not have started. Easbuinent has a size of at leasand hence the
potential change is upper boundedAy—k D + K) < 0. Statement (2) now follows because whenever
MLL removes documents fror@ and the cache in line 9, their creditisand hence the potential does not
change.

Statements (1) and (2) give the desired bound on MLL's amexitcost. O

The competitiveness @f+ 1 is best possible for deterministic online algorithms thmnhdt have to load
requested documents into cache, see [5, 8].

3 Offline algorithms

We develop polynomial time offline algorithms that achieeastant factor approximation ratios. Our al-
gorithms are based on a general technique that transfoemsréordering problem into one of computing
batched service schedules. We first present this technigii¢h@n use it to develop approximation algo-
rithms for the various cost models.

3.1 Batched processing

As in the previous section we imagine that an algorithm, @ssing a request sequence, maintains a sliding
window W that always contains consecutive requests. Requests to the leff/ore served and request
reordering is feasible within the window. We say that an gthm A serves a request sequence in batches
if, foranyi = 0,1,..., |m/r|, A serves all requests(ir + 1), (ir + 2),...,o(min{ir + r,m}) when
o(ir 4+ 1) is the leftmost request in the sliding winddW. Requests (ir + 1), ..., o(min{ir +r,m}) are
also referred to abatchi. Thus, wherv (ir + 1) becomes the leftmost requestli, all requests in batch

1 are still unserved. The batch is served while the positioWafemains unchanged. Thé# is shifted to
o((i+ 1)r+1)if i < [m/r]. For any batch, let B(i) be the set of documents referenced in that batch.

Lemma 1l Let A be an algorithm that serves a request sequenet costC in the standard--reordering
model. Then there exists an algorittdhthat servesr in batches and incurs a cost of at mast.

Proof: We transformA into an algorithmA’ with the desired properties. L&t,0 < ¢ < |m/r], be the set

of documents stored in the cache maintainedibyheno (ir + 1) becomes the leftmost requestiin. We
assume w.l.0.g. thelp = 0. By S|,, /|11 We denote the set of documents in the final cache configuration
Let D; be the set of documents for whichinitiates service operations while processing batbht which

are neither inS; nor in S; 1. A documentd € D; is either loaded into cache but evicted before the end of
the batch is reached or not loaded into cache at all. Whilegasing batch, algorithmA incurs a cost for

serving documents € D; and andi € S;;1 \ S;. Thus the total cost of is at least

lm/r]
Z (Z cost(d) + Z cost(d)))

1=0 dESi+1\Si deD;

Algorithm A’ is now constructed as follows. Wher(ir + 1) becomes the leftmost request i,
algorithm A’ first serves requests to documeiits S; that are referenced in batéh These service oper-
ations incur no cost. TheA’ serves requests to documedts S;;1 \ S; and loads them into cache by
evicting documentd’ € S; \ S;+1. The cost of these operationsS,c, , ,\ g, cost(d). Additionally A’
schedules service operations for documehts D; without bringing them into cache. The service cost
iS - 4ep, cost(d). If i >0, A’ finally schedules service operations for documehts D; 1 U S; 1\ S;
that are requested in batéh Again these documents are not brought into cache and theserost is
> den,_, 0st(d) + X 4es,_,\s, cost(d). Since the original algorithrd serves every request inand, at
any time, can only serve requests that are at masguests ahead, every document referenced in hatch
must be inS; U S;11 UD;orinS; 1 U D; 1ifi> 0. ThusA’ serves every requestin

To prove that the cost od’ is bounded by twice the cost df, it suffices to show that

[m/r] [m/r|
Z Z cost(d) < Z Z cost(d). (1)
=1 deS;_1\S: =0 dGSH_l\Si

Consider a documente S;_1 \ S;. This document is evicted by during the processing of batéh- 1. Let

J <i—1Dbe the largest index withh € S; 1 \ S;. Match the eviction ofl during batchi — 1 with the most
recent loading operation afduring batchy. Index; exists becaus8, = (. Since each loading operation
is matched with at most one eviction, inequality (1) follows |

3.2 The Uniform Model

We investigate the basic setting that all documents havestime size and incur a cost of 1 when being served
or loaded into cache. We present a batched version of Balfdlyoptimum offline paging algorithm MIN,
taking into account that requested documents do not nedgssave to be brought into cache. On a cache
replacement, the algorithm evicts a document whose nexdruad request occurs in the highest indexed
batch possible. We use the following notation. Considerlgoridhm that serves a request sequence in
batches. At any given time during the processing and for aeyhentd, letb(d) be the index of the batch
where the next unserved requestitoccurs. Ifd is not requested again, lefd) = |m/r| + 1.

Algorithm BMIN: Serve a request sequence in batches. When the processibgtohastarts, first serve all
requests to documents that are currently in cache. Whike ikestill a documend with unserved requests
in the batch, execute the following steps. Serve all reguestand determiné = maxy s b(d'), whereS

is the set of documents that are currently in caché(dj < b, loadd into cache and evict any documefit
with b(d') = b.

We will show that BMIN is optimal among algorithms proceggirquest sequences in batches. Lemma 1
then implies that BMIN achieves an approximation ratio oBMIN does not necessarily evict the docu-
ment from cache whose next unserved requégtin farthest in the future but evicts any document whose
next unserved reference occurs in the batch(@f. The following lemma, which we will also need in the
optimality proof, implies that this does not cause any peois.

Lemma 2 Let A be an algorithm that processes a request sequengebatches. Consider any tinte
during the processing. Lef be the set of documents that are currently in cache and’léte the cost
incurred by A after timet until the end olr. Letd € S andd’ ¢ S be two documents with(d') < b(d).

5

Then there exists an algorithal that starts at time with the same set of served requestsdalsut cache
configurationS — {d} U {d'} and incurs a cost of at most during the rest of the sequence. Algoritith
operates in batches, using the same batch partitioning .as

Proof: Attime t algorithmsA and A’ start with the same set of served requests and the same aatfite ¢
uration except that the configuration 4f storesd’ instead ofd. Algorithm A’ simulatesA until A evictsd

or until A serves requests thor d'. In the first case, whed evictsd, A’ simply evictsd'. Algorithm A’ is
then in the same configuration dsand proceeds in the same way4a®n the remaining request sequence.
The cost ofA’ is equal to that ofd. In the second case we study two scenarios depending on eviaiebin

d' is served first.

Suppose thatl first serves requests th. At that timeA incurs a cost of 1 whilel can serve the requests
at 0 cost. IfA does not load’ into cache, therl’ loads document by evictingd’. The incurred costis 1. If
A loadsd’ into cache and evicts a documeh d, thenA’ loadd by evictingd. Again the incurred cost of
A’ is equal to 1. Finally, ifA loadsd’ by evictingd, algorithmA’ does not perform a cache replacement. In
any cased’ is in the same configuration asand executes the same operations on the rest of the sequence.
The cost ofA’ is bounded by that ofl.

Next suppose that first serves requests th Sinceb(d’) < b(d), these requests must be in the same
batch as the next unserved requestd’toWWe may assume w.l.0.g. that whdnserves the batch, it never
loads a document; that is evicted again until the batch’s processing ends, iFar evictsdy to loadd;
and evictsd; to loadds, we can modify the algorithm so that it serves the requesti teithout bringing
the document into cache and evidtsto loadds.

When A serves the requestsdpalgorithmA’ serves the request th in the current batch. The simula-
tion then proceeds until serves requests . At that time A incurs a cost of 1. We distinguish two cases
depending on whether or ndtloadsd’ into cache.

Assume that!’ is not loaded intad’s cache. Ifd is still in A’s cache configuration wheA serves the
requests tal’, then A’ serves its unserved requestsitat a cost of 1 and loadsinto cache by evicting'.
Algorithms A and A’ have incurred the same cost and are again in the same cotifigui@n the rest of the
sequenced’ works the same way a4. If d is not anymore ind’s cache configuration and hence has been
evicted in the meantime, then in that evictidh dropsd’. Algorithm A’ serves the requests éowithout
loading the document into cache. Agalrand A incurred the same cost and are in identical configurations
so that they work the same for the rest of the request sequence

Finally assume that' is loaded intad’s cache. Letl be the document evicted. df= d, thenA’ simply
serves the requests tbwithout loading the document into cache.dlf£ d and if d is still in A’s cache
configuration, themd’ serves the requestsdaand loads it into cache by evicting If d # d andd has been
evicted in the meantime, then during that evictiérfirst serves requests tbin the current batch at cost 0
and then evictg. The requests td are served without bringing the document into cache. Inasdks the
cost of A’ is not higher than that ofi. Both algorithms are in identical configurations and work $ame
on the remaining sequence. O

Theorem 2 For any request sequenee BMIN incurs the minimum cost among algorithms processing
request sequences in batches.

Proof: Consider an arbitrary sequeneend letA be an algorithm that processesn batches and incurs
minimum cost among such algorithms. In the following, bseavice operatiomefer to an operation where
an algorithm serves requests to a document in the currecl.bdthe operation may or may not involve
a cache replacement. Suppose that the ffisglrvice operations afi and BMIN are identical but that the
(I + 1)-st operation is different in both algorithms. Initiallymay be 0. We show that there exists an
algorithm A’ for which the first/ + 1 service operations are identical to that of BMIN and whosal tmost

is bounded by that ofi. Repetition of this step, for increasihgyields the lemma.

6

Suppose that th@ + 1)-st service operation is part of the processing of bat¢mmediately before the
(I + 1)-st operationA has the same cache configuration and the same set of servebteqs BMIN. If
during the(l + 1)-st operation BMIN serves requests to a docunakestiored in cache, we are easily done.
Up to and including operatiohalgorithm A’ works in the same way as BMIN. Then it serves requests to
document, which does not generated any cost, and proceeds with akéthaining operation oA.

So suppose that during operatibs 1 algorithm BMIN serves a request to a documémiot in cache.
At that time A and BMIN have served all requests in the current batch tieatibedlocuments stored in cache.
As in the proof of Lemma 2 we may assume that in the remaininggssing steps of the batch, algorithm
A does not load a document into cache that is evicted againglthiese steps. Thus the documents being
loaded are different from those being evicted. Since thexea dependencies, it does not matter in which
order the documents to be served are actually being seneaceHve may assume w.l.o.g. that during the
(I + 1)-st service operatiod also serves documetit We have to consider three cases.

(1) Both BMIN andA both loadd into cache but the algorithms evict different documentsifcache.
(2) Only BMIN loadsd into cache.

(3) Only A loadsd into cache.

Algorithm A" works as follows. On the firgtservice operations it executes the same stepsasd BMIN.
The (I 4+ 1)-st operation is performed in the same way as BMIN. At thahptiie cache configuration of
A and A’ differ in one document. Algorithrd has a document; while A’ has a document;. We will
show thath(d}) < b(dy). Lemma 2 then yields the statement to be proven. In case (INBivid A’ evict

a documentl; while A evicts a documend;. By the eviction rule of BMINb(d;) > b(d}). In case (2),
BMIN and A’ dropd; while A does not load! and keepsl;. Setd]; = d. Then, the definition of BMIN
impliesb(d;) > b(d}). Finally, in case (3), BMIN and!’ do not loadd while A evicts a document; to
loadd. Again, by the definition of BMIN we hav&(d;) > b(d}) whered; = d.]

Lemma 1 and Theorem 2 yield the following result.

Corollary 1 BMIN achieves an approximation ratio of 2.

3.3 The Bit Model

In this section we consider the Bit Model, i.enst(d) = size(d), for any documentl. Again we design

an approximation algorithm that processes a request segsiémbatches. The algorithm proceeds in two
steps. First it constructsfeactional solution where documents are allowed to be fractionally in cache. We
say that a document is fractionally in cachedf 0 < ¢(d) < size(d), wherec(d) denotes the number of
bits of d present in cache. In this case the cost of serving requesgtsitdoading the remainder of into
cache is equal teost(d) — c¢(d). In a second step the algorithm rounds the fractional smiut a feasible
integral solution. The strategy for designing fractior@lsions is a bitwise implementation of BMIN. For
any documend and any batch, letb(d, 7) be the smallestindek 5 > ¢, such that batch contains requests
tod. If d is not requested again after batclthenb(d, i) = |[m/r| + 1, wherem is the length of the request
sequence.

Algorithm BBMIN: Serve the request sequence in batches. For any bafobkt serve the requests to
documents that are fully or fractionally in cache; consitterse documentsg in non-increasing order of
b(d, 7) values. Then serve the requests to documents not presetia.d-or any requested documeéttat
is not fully in cache, execute the following steps after thievice operation. Determirie= maxy g b(d’,),
where S is the set of documents that are fully or fractionally in aactWhileb(d,i) < b ande(d) <
size(d), perform two instructions: (1) Evic8 = min{size(d) — ¢(d), ¢(d')} bits from any documend’
with b(d’,7) = b. (2) Load missing bits ofd and recomputé = maxgcg b(d',).

We first argue that, for any request sequence, the cost gatbr BBMIN in the fractional cost model
is a lower bound on the optimum cost in the standard integyal model when restricting ourselves to

7

algorithms that process sequences in batches.BBNIIN(o) be the cost incurred by BBMIN o# in
the fractional cost model. Furthermore, @PT? (o) be the minimum cost achieved by an algorithm that
processes in batches and produces an integral solution with) € {0, size(d)} always, for alld.

Lemma 3 For anyo, BBMIN(c) < OPTZ (o).

Proof: Let OPTZ (o) be the minimum cost of an algorithm that processes batches and is allowed
to generate a fractional solution. ObviousBPTZ(s) < OPTZ(s). We show that the cost of BBMIN
satisfies BBMIN(c) = OPTZ2 (o). To this end consider Bull Bit Model, where the bits of the documents
are viewed as indivisible mini-pages and a request to a dentuhis viewed assize(d) requests to the
corresponding mini-pages/bits. LGP TE (o) be the minimum cost that can be achieved in this model using
an algorithm that servesin batches. We ha@PTZ (o) < OPTZ (o) because any fractional solution can
be viewed as a solution for the Full Bit Model with the same clishe solution serves requests to document
d, then we assume that it, one after the other, serves reqodbis corresponding mini-pages. The service
operation to a mini-page may be accompanied by a cache egpéat if the extent to whicH is in cache
increases.

Lemma 2 implies that BMIN achieves a cost@PTZ (o). We show that BBMIN constructs the same
solution as an implementation of BMIN, i.e. at the end of eaatch they have the same bits in cache. Thus
the cost of BBMIN and BMIN is the same and this gives the desiguationrBBMIN(0) = OPTZ(0).
Consider any batch BMIN does not specify in which order requests to mini-paigesache or to mini-
pages not in cache are served. Thus, with respect to thepages in cache, we may assume that BMIN
serves the requests in non-increasing ordeéX @f:)-valuesd being the document a mini-pages belongs to;
service operations to mini-pages of the same document avpgd together. We refer to these service steps
aspart 1 of batchi. With respect to the mini-pages not in cache we assume thahBix&t serves requests
to those belonging to documentishat were already addressed in part 1. The processing meeggin in
non-increasing order df(d, 7)-values. Then the service operations to the remaining pagies follow. In
these service steps after part 1, which we refer tpaas2 of batchi, operations to mini-pages of the same
documents are again grouped together. Now consider therdadsd that occur both in part 1 and part 2.
These documents are fractionally in cache at the beginditigedatch. Note that BMIN never evicts bits of
a document!’ to load bits ofd if b(d', i) < b(d, 7). Thus, when serving requests to mini-pages f part 1,
BMIN can as well serve all the mini-pages éfat that time since mini-pages evicteddis processing of
part 2 will not be served in the rest of part 1. Since the emittules of BMIN and BBMIN are the same,
we may assume that their cache configuration at the end ofldch is indeed the same. |

Next we present our rounding algorithm, generating an malegplution from the fractional solution
produced by BBMIN. We extend the notation. For any docurdeartd any batch, letc(d,) be the number
of bits of d present in cache when the processing of batehds. We first modify the solution of BBMIN
such that the extent to which a document is in cache does aoigehbetween two consecutive batches in
which the document is requested. Supposedhiatreferenced in batch Documentd’s presence in cache
may decrease during the processing of batghesi + 1,...,b(d,i) — 1. The cost of the next references
to d is equal to the number of bits @f not present in cache when batefi, i) — 1 ends, which is equal
to size(d) — ¢(d,b(d,i) — 1). Therefore, for any document and batchi such thatd € B(:), we set
c(d,j) = e(d,b(d,i) — 1), forj =1,...,b(d, i) — 2. This does not change the cost of the solution and only
frees up space in cache. The solution by BBMIN has an impbpeoperty that is crucial for the actual
rounding procedure: Consider two batchieend ;7 with : < ;5 as well as two documents € B(i) and
d € B(j). f b(d',j) < b(d,7) ande(d,l) > 0 forl = 4,...,b(d,i) — 1, thene(d',1) = size(d'), for
Il =43,...,b(d,7) — 1. This is because BBMIN prefetsoverd’ when evicting bits ag’s next request is
farther in the future.

The rounding procedure produces a solution that may need Hp# d Dy, memory in cache, where
Dpax is the size of the largest document ever requestedand < 1. Fix ad with 0 < § < 1. For batches

8

i=0,...,|m/r] the procedure considers the documehts B(i) with (1 —4)size(d) < c(d,i) < size(d).
Documentd is rounded up if, after the rounding, the rounded-up documeocupy extra memory of no
more than Dp,x. Otherwise the document is rounded dowr(1o- §)size(d). Finally, all valuesc(d, ¢)
with 0 < ¢(d,7) < (1 — §)size(d) are rounded down t0. The pseudo-code is given in Figure 2 below.

Algorithm Rounding
1. Extra + O;
2. fori« 0to|m/r]| do
3. forall d € B(i) with (1 — §)size(d) < ¢(d, i) < size(d) do

4. if Extra + size(d) — c(d, i) < 0 Dpax then

5. Eztra < Extra + size(d) — c(d, 1);

6. c(d,i) < size(d), forj =1i....,b(d,i) — 1;

7. else

8. Eztra < Extra — (c(d,i) — (1 — 9)size(d));

9. c(d,i) < (1 —§)size(d), forj =i....,b(d,i) — 1,

10. for all ¢(d, i) with 0 < ¢(d, i) < (1 — 0)size(d) do
11, o(d,i) « O;

Figure 2: The Rounding algorithm.

Theorem 3 For anye > 0, we can construct a solution that incurs a cost of at nfost €)BBMIN (o) and
uses an additional memory of at md3t,.x/(1 + €).

Proof: We first observe thal < Ezxtra < §Dpax always. The second inequality follows from line 4 of
the Rounding algorithm. If a document is rounded down, tBetra + size(d) — ¢(d, i) > 0 Dymax, Which
implies Eztra — (c¢(d, i) — (1 — §)size(d)) > § Dmax — dsize(d) > 0.

We can show that at any time the total extra memory used byotlveded solution is at most the value
of Extra. Details are omitted in this submission. Thus the extraspesed by the rounded solution is at
Mostd D ax.

It remains to analyze the cost. During the executions ofslingo 9, the value ofExtra is always
equal to the cost savings relative to BBMWN. If a documentd is rounded up, then the cost savings
on the next requests 6 is size(d) — ¢(d,4). If a documentd is rounded down, the additional cost is
c(d,i) — (1 — &)size(d). SinceExtra is always non-negative, immediately before the executidime 11,
the cost of the rounded solution is bounded by BBNHIN In line 11 the cost may increase by a factor of
1/4. Replacingl/é by 1 + ¢, the theorem follows. O

Corollary 2 For any request sequeneeand anye > 0, we can construct a solution that incurs a cost of at
most2 + e times that of an optimal solution. The extra space requisdobunded by ax /(1 + €/2).

3.4 The Fault Model

We investigate the Fault Model wherest(d) = 1, for all documentsi, and design an approximation
algorithm that processes a given request sequence in lsatéhén the previous section, for any document
d and any batch, let b(d, i) be the smallest index > ¢ such that batch contains requests td and let
c(d,) be the number of bits of documenispresent in cache when the processing of batehds. The
number of bits ofl that are in cache initially is denoted byd, —1). Unfortunately, we know of no simple
combinatorial algorithm for constructing a good fractibealution operating in batches. Therefore, we
formulate the caching problem as a linear program.

W.l.0.g. we may restrict ourselves to solutions in whichdhktent to which a documedtis in cache does
not change between two consecutive batches referedcifigus ifd € B(i), thenc(d, j) = ¢(d, b(d,i)—1),

9

forj =1,...,b(d,7) — 2. The cost for serving requestsdas B(:) is equal to the fraction to whictiis not
in cache at the end of the previous batch, which is ¢(d, i — 1)/size(d). The only additional constraint
we have to impose is that the total size of documents in ca@yenot exceeds. Thus the linear program
is as follows. LetD be the set of documents ever requested.

Lm/r]
Minimize Z Z (1 —c(d,i —1)/size(d))
i=0 deB(i)

subject to c(d,j) = ¢(d,b(d,i)—1)) Vd,i,jsuchthatd e B(i)
and ¢ < j < b(d,i) —1
Y e(di) £ K Vi
deD
c(d,) {0, size(d)} Vi, d

We replace the constraiatd, i) € {0, size(d)} by 0 < ¢(d,) < size(d) so that the linear programming
relaxation can be solved in polynomial time. L@PTPZ; (o) be the cost incurred by the LP relaxation on
inputo. Clearly, this is a lower bound on the minimum cost of anygnésolution processing in batches.

Fix ane > 0. We partition the documents intdog; , . Dmax | + 1 classes such that clag%,0 < k <
[log1+ ¢ Diax] + 1 contains documentswith Dyax (1 + €)™* > size(d) > Dpax(1 +¢) =+, We round
the optimal LP relaxation solution. We first modify the opilnh.P relaxation solution such that for any
two batches andj with ¢ < j and documentd € B(i) andd’ € B(j) the following property holds. If
b(d',7) < b(d,i) ande(d,l) > 0forl =1,...,b(i,d)—1thenc(d’, 1) = size(d'), forl = j,...,b(d’, j)—1.
For any clas¥”, we consider the valuegd, ;) of documentsl € Cy. While there exist(d, :) ande(d',)
with 0 < ¢(d,i) < size(d) and0 < ¢(d',j) < size(d’) such thatd € B(i), d € B(j), i« < j and
b(d',7) < b(d,i), we modify the values. We increas@l’,!), forl = j,...,b(d',j) — 1, and decrease
e(d,l),forl =1,...,b(d,7) — 1, until the former ones are equal #&e(d’) or the latter ones ar@ More
precisely, lety = min{c(d, 1), size(d') — ¢(d’, j)}. We increase(d',l) by v, forl = j,...,b(d',j) — 1,
and decreasg(d,) by v, for1 =4,...,b(d, i) — 1. The modification does not need extra space since
andb(d’, j) < b(d,i). Let OPT* be the solution obtained after all these modifications. GW&T*, we
apply the Rounding algorithm described in Figure 2 sepbr&te each clas€,. We use parametér= 1

and replacéD,,.x by D, whereD¥ __is the size of the largest documentdl.

max

m

Theorem 4 For any request sequeneeand for anye > 0, we can construct a solution that processes
batches and incurs a cost of at m@st+ ¢€)OPTE, (o). The additional memory used by the solution is at
MOStDpax (1 + 1/€).

Proof: SolutionOPT* does not use extra space, while the Rounding algorithm udesspace of at most
DEF ., for each clas€y,. The total amount of additional memory is bounded¥)-. o Dmax(1 + €) k<
Dax(1+¢€)/e.

To analyze the cost we compare the final solution to the optifAaelaxation solution. If in the final
solution a value:(d, 7) with d € B(i) is by bits higher than in the optimal LP relaxation solution, wg sa
thatd was rounded up by an amount@f This corresponds to a cost savingfsize(d) when the next
requests ta are served. If the value is bybits smaller, we say thatwas rounded down by an amountyof
and this results in an extra costpfsize(d) on the next requests tb For any clas€’y, let R} be the total
amount by which documents froi, are rounded up and Igt¢ be the total amount by which documents
from C}, are rounded down. The soluti@PT* and the Rounding algorithm (described in Figure 2) imply
RY > R{. The optimal LP relaxation solution incurs a cost@P T (o) > S k>0 Ri/DE . Our final

k

solution saves a cost of at legs},-., R}/ D¥,,, and incurs an extra cost of at mgs§,.o Rj(1 + €) /D% .

since the document sizes in a class differ by a factor of at hase. This gives at most extra cost of
eOPTE,(6). O

10

Corollary 3 For any request sequeneeand anye > 0 we can construct a solution that incurs a cost of at
most2 + e times the optimum cost and uses an extra space of no moréthaR/e) Dy ax.

3.5 The General Model

Due to space limitations we describe the following resultthe appendix.

Theorem 5 For anyo, we can construct a solution that processes batches and incurs a cost of at most
4 times that of an optimal solution that serwef batches. No extra space is required.

Corollary 4 For anyo, we can construct a solution that incurs a cost of at most &sithat of an optimal
solution. No extra space is required.

References

[1] D. Achlioptas, M. Chrobak and J. Noga. Competitive asalyf randomized paging algorithnihe-
oretical Computer Scien¢@34:203-218, 2000.
[2] S. Albers, S. Arora and S. Khanna. Page replacement foergécaching problem®roc. 10th Annual
ACM-SIAM Symposium Discrete Algorithr38—40, 1999.
[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. SbkereA unified approach to approximating
resource allocation and schedulidgurnal of the ACM48:1069-1090, 2001.
[4] L.A. Belady. A study of replacement algorithms for viailstorage computertBM Systems Journal
5:78-101, 1966.
[5] P. Cao and S. Irani. Cost-aware WWW proxy caching altang.Proc. USENIX Symposium on Inter-
net Technology and System93-206, 1997.
[6] T. Feder, R. Motwani, R. Panigrahy and A. Zhu. Web cachintl request reordering?roc. 13th
ACM-SIAM Symposium on Discrete Algorithr2e02.
[7] T. Feder, R. Motwani, R. Panigrahy, S. Seiden, R. van &tekA. Zhu. Combining request scheduling
with web caching. Extended version of [6], to appeafFieoretical Computer Science
[8] A. Feldmann, A. Karlin, S. Irani and S. Phillips. Privatemmunication, transmitted through [11],
1996.
[9] A. Fiat, R.M. Karp, L.A. McGeoch, D.D. Sleator and N.E. Woy. Competitive paging algorithms.
Journal of Algorithms12:685-699, 1991.
[10] P. Gopalan, H.J. Karloff, A. Mehta, M. Mihail and N. Visbi. Caching with expiration time$roc.
13th ACM-SIAM Symposium on Discrete AlgorithB#0-547, 2002
[11] S. Irani. Page replacement with multi-size pages amdiegtions to Web caching?roc. 29th Annual
ACM Symposium on Theory of Computii§1—-710, 1997.
[12] L.A. McGeoch and D.D. Sleator. A strongly competitiadomized paging algorithmlgorithmicag
6:816—825, 1991.
[13] D.D. Sleator and R.E. Tarjan. Self-adjusting binargrsé treesJournal of the ACM 32:652—686,
1985.
[14] N.E. Young. Online file caching?roc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms
82-86, 1998.

11

Appendix

In the General Model the service/loading costt(d) can be an arbitrary value, for any documentOur
solution for the General Model is based on a approximatigarithm by Bar-Noy et al. [3]. They considered
the followingloss minimization problemlLet Z be a set of intervalg = [t1, 2], the scheduling of which
requires a resource of bounded availability. keétth(t) be the amount of resource available at timEach
intervall € Z has awidtho(I) as well as a penalty(Z). The width reflects the amount of resource required
at any timet € I if I is scheduled. The penalty represents the costisf not scheduled. The goal is to
find a setS € T of intervals being scheduled such thaj s w(I) < width(t), for any timet, and the total
penaltyzlez\sp(f) is as small as possible. Bar-Noy et al. showed that the stdmegizb caching problem,
where request reordering is not allowed and documents neust tache at the time of the reference, can
be formulated as a loss minimization problem. We show heagttte problem of constructing a schedule
that processes a given request sequence in batches andtloesdto have referenced documents in cache
can also be formulated in the above framework. As usual,igdmcument! and any batch, letb(d,) be

the smallest inde} > ¢ such that batch contains requests t For anyd and: such that document is
requested in batch we introduce an interval= [z, b(d, i) — 1] representing the case thatesides in cache
between the end of batehand the end of batch(d,) — 1. Documentd is brought into cache during the
processing of batchif it was not already present. If such an inter¥as scheduled, then the requestgto
batchb(d, i) can be served at 0 cost. Otherwise the costé$(d) and we set the penalty fd1) = cost(d).
The width isw(I) = size(d), representing’s space requirements in cache. We haxéth(t) = K. Thus

we can apply the approximation algorithm of Bar-Noy et all abtain the results stated in Theorem 5 and
Corollary 4.

12

