
New Results on Web Caching with Request Reordering

Susanne Albers�
Abstract

We study web caching with request reordering. The goal is to maintain a cache of web documents so
that a sequence of requests can be served at low cost. To improve cache hit rates, a limited reordering of
requests is allowed. Feder et al. [6], who recently introduced this problem, considered caches of size 1,
i.e. a cache can store one document. They presented an offlinealgorithm based on dynamic programming
as well as online algorithms that achieve constant factor competitive ratios. For arbitrary cache sizes,
Feder et al. [7] gave online strategies that have nearly optimal competitive ratios in several cost models.

In this paper we first present a deterministic online algorithm that achieves an optimal competitive-
ness, for the most general cost model and all cache sizes. We then investigate the offline problem, which
is NP-hard in general. We develop the first polynomial time algorithms that can manage arbitrary cache
sizes. Our strategies achieve small constant factor approximation ratios. The algorithms are based on a
general technique that reduces web caching with request reordering to a problem of computing batched
service schedules.

Our approximation result for the Fault Model also improves upon the best previous approximation
guarantee known for web caching without request reordering.

�Institut für Informatik, Albert-Ludwigs-Universiẗat Freiburg, Georges-K̈ohler-Allee 79, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.de Work supported by the Deutsche Forschungsgemeinschaft, projects AL 464/4-
1, and by the EU, projects APPOL and APPOL II.

1 Introduction

We study web caching, the problem of maintaining a cache of web documents so that a sequence of requests
can be served with low cost. Caches can be built into web browsers or servers. If these local memories
store frequently accessed documents, then requested data does not have to be downloaded from the web.
This leads to improved user response times and lower networkcongestion. There has been considerable
research interest in the design of effective web caching algorithms [2, 3, 5, 6, 7, 11, 14]. Almost all of the
work assumes that requests must be served in the order of arrival. However web requests are essentially
independent and request reordering is a promising approachto improve cache hit rates. Therefore, Feder et
al. [6, 7] recently initiated the study of web caching when a limited reordering of requests is allowed.

Formally, inweb caching with request reorderingwe are given a request sequence� = �(1); : : : ; �(m).
Each request specifies a document to be accessed. Associatedwith each documentd is a size and a cost,
denoted bysize(d) andost(d), respectively. If a requested document is in cache, the request can be served
at0 cost. Otherwise the incurred cost isost(d) and, after the service operation, the missing document may
be loaded into cache at no extra cost. We emphasize here that the loading operation is optional. In web
applications referenced documents are not necessarily brought into cache. At any time we may also load a
documentd not currently requested. Again, the incurred cost isost(d). If a documentd is cache, it takes
up a space ofsize(d) bits. The cache capacity isK, i.e. at any time the cache can store documents with a
total size of at mostK bits. In web caching with request reordering, requests do not have to be served in the
order of arrival. However, it is not desirable to delay the service of a request for too long. Letr be a positive
integer. Request�(j) may be served before�(i) if j� i < r. The goal is to serve the input sequence so that
the total cost is as small as possible. Following [6], we alsocall this framework ther-reordering problem.

We are interested in both online and offline algorithms. In the online scenario, for ther-reordering
problem to make sense, when�(i) is the first unserved request in the sequence, requests�(j) with j� i < r
are known. Requests�(i + r) and beyond are unknown. An online algorithmA is called-competitive
if there exists a constanta such that, for all request sequences�, A(�) � � OPT (�) + a. HereA(�)
andOPT (�) denote the costs incurred byA and by an optimal offline algorithmOPT . In the offline
scenario, the entire request sequence� is known in advance. The generalr-reordering problem is NP-hard.
A polynomial time algorithmA achieves an approximation ratio of if there exists a constanta such thatA(�) � �OPT (�) + a, for all inputs�.

Several cost models are of interest. Unless otherwise stated size(d), for any documentd, is an arbitrary
positive integer.� Uniform Model: All documents have the same size and incur a cost of1 when not available in cache,

i.e. size(d) = s andost(d) = 1, for some positive integers and all documentsd.� Bit Model: For all documentsd, we haveost(d) = size(d), i.e. we measure how many bits are to be
transferred when a referenced document is not in cache.� Fault Model: Hereost(d) = 1, for all d, i.e. we count the number of cache misses.� General Model: For any documentd, ost(d) may be an arbitrary non-negative value.

We note that the Uniform Model is equal to the cost model in standard paging. In web caching, documents
typically have variable sizes and costs. Nevertheless several web caching papers considered the Uniform
Model as it gives insight how to attack the more involved models.

Previous work: We first review the results on web caching without request reordering. In the Uni-
form Model the best competitive ratios of deterministic andrandomized online algorithms arek andHk =Pki=1 1=i, respectively, [1, 9, 12, 13]. Herek is the number of documents that can simultaneously reside in
cache. These bounds hold if requested documents have to be incache. The offline problem can be solved
in polynomial time [4]. Karloff et al. [10] investigated webcaching in the Uniform Model assuming that
documents have expiration times beyond which they are no valid. Web caching in the Bit Model, and hence

1

in the General Model, is NP-hard. For the Bit and the Fault Models, Irani [11] presented polynomial time
offline algorithms that achieve approximation ratios ofO(log k), wherek = K=Dmin andDmin is the size
of the smallest document ever requested. She also developedrandomized online algorithms for both models
that areO(log2 k)-competitive. For the General Model, Young [14] and independently Cao and Irani [5]
gave a deterministick-competitive algorithm. They require that requested documents must be in cache.
Albers et al. [2] presented polynomial time offline algorithms for the Bit, the Fault and the General Model.
The algorithms achieve constant factor approximation ratios but use a slightly larger cache capacity. The
total cache capacity needed is of the formK + bDmax, whereb is a small constant depending on the cost
model andDmax is the size of the largest document ever requested. Bar-Noy et al. [3] have presented a4-approximation algorithm for the General Model that does not need extra space.

We next consider web caching with request reordering. In a first paper, Feder et al. [6] studied the case
that at any time the cache can store only one document, i.e. the cache size is 1. They gave constant compet-
itive online algorithms. Furthermore they developed an offline algorithm based on dynamic programming
that achieves a polynomial running time ifr is logarithmic in the length of the request sequence or if the
number of distinct documents requested is constant. In an extended version [7] of their paper, Feder et al.
also presented online algorithms for arbitrary cache sizes. Suppose that a cache can simultaneously storek
documents. For the Uniform Model, Feder et al. [7] gave deterministic(k+2)-competitive algorithms. For
the Bit and Fault Models, they showed(k + 3)-competitive strategies.

Our contribution: We present improved results on web caching with request reordering. Letk =K=Dmin, whereDmin is the size of the smallest document ever requested. For the online problem we
present a deterministic algorithm that works in the GeneralModel and achieves a competitive ratio ofk+1.
This deterministic competitiveness is optimal, for all cost models and cache sizes. Our algorithm is a simple
modification of Young’s Landlord algorithm [14]. Nevertheless our strategy substantially improves upon
previous results. Recall that, for the General Model, previous algorithms could only handle caches of size1.

Most of our paper is concerned with the offline problem. We present the first polynomial time algo-
rithms for caches of arbitrary size. As the offline problem, in general, is NP-hard, we design approximation
algorithms. Our solutions are based on a new technique that reduces ther-reordering problem to one of
computing batched service schedules. We partition a request sequence into batches of sizer and serve these
batches independently one after the other. In the Uniform Model we devise a2-approximation algorithm.
In the Bit and Fault Models, using LP rounding techniques of [2], we present approximation algorithms that
use some extra space in cache. In the Bit Model we obtain a2-approximation that needs an extra cache
capacity ofDmax. More generally, for any� � 0, we obtain a(2+ �)-approximation usingDmax=(1+ �=2)
extra space. In the Fault Model we derive a4-approximation using an additional memory of2Dmax. Trading
again memory for performance we develop, for any� > 0, a (2 + �)-approximation using(1 + 2=�)Dmax
extra space. In practice the extra space requirements are small asDmax is typically not more than 1–2% of
the cache size. Finally, for the General Model, applying theapproach of Bar-Noy et al. [3], we obtain an8-approximation requiring no extra space in cache.

We remark that in the Fault Model, our results also improve upon the best approximation guarantees
known for web caching without request reordering. In Section 3.4 we present a refined analysis of the
rounding algorithm given in [2] and show a(1+ �)-approximation using(1+1=�)Dmax additional memory.
The previous best bound was a(1 + �)-approximation using(1 + 1=(p1 + �� 1)) extra space.

2 A deterministic online algorithm for the General Model

We present a deterministic online algorithm for ther-reordering problem in the General Model. The algo-
rithm is a modification of Young’s Landlord algorithm [14]. Any documentd has a credit that takes values
between 0 andost(d). Initially, all documents have a credit of 0. Given a requestsequence�, we maintain

2

a sliding windowW that always containsr consecutive requests of�. In each step the following algorithm
is executed.

Algorithm Modified Landlord (MLL)
1. For alld0 2 ahe such thatW contains unserved requests tod0, serve those requests;
2. if first request inW is unservedthen
3. Letd be the document referenced by this first request;
4. Serve all requests tod in W ;
5. Setredit(d) ost(d) andC fdg [fd0 j d0 2 aheg;
6. while

Pd02C size(d0) > K do
7. Let� = mind02C redit(d0)=size(d0);
8. For eachd0 2 C, decreaseredit(d0) by�size(d0);
9. Delete fromC and from the cache any documentd0 with redit(d0) = 0;

10. if redit(d) > 0 then bringd into cache;
11. ShiftW one position to the right;

Figure 1: The Modified Landlord algorithm

Let k = K=Dmin, whereDmin is the size of the smallest document that can be referenced.

Theorem 1 The algorithm MLL is(k + 1)-competitive.

Proof: Consider an arbitrary request sequence� = �(1)�(2) : : : �(m) and letD be the set of documents
referenced in�. We analyze MLL’s performance using a potential function�. At any time letOPT be
the set of documents in OPT’s cache. Furthermore, at any timelet S be the set of documents not stored in
OPT’s cache for which at least one request is already served by OPT but not by MLL. Define� = k Xd02D redit(d0) + (k + 1) Xd02OPT[S(ost(d0)� redit(d0)):
The potential is always non-negative since eachredit(d0) takes values between 0 anost(d0). We assume
that MLL and OPT start with an empty cache so that the initial potential is 0.

Let time t be the point of time when�(t) is the first request inW . We prove that the amortized cost
incurred by MLL betweent andt+ 1 is at mostk+ 1 times the cost paid by OPT during that time interval.
This establishes the theorem. In the analysis we assume thatOPT serves requests first and MLL serves
second. We show the following statement.

(1) If OPT serves requests for a documentd and incurs a cost ofost(d), then� increases by at most(k + 1)ost(d). All other actions of OPT cannot increase the potential.

If OPT serves requests for a documentd at a cost, thend is not in OPT’s cache before the service
operation. The document may be loaded into cache or become element ofS, in which case the potential
increases by(k + 1)(ost(d) � redit(d)) � (k + 1)ost(d). If OPT serves requests at no cost, then the
referenced documents are in cache and the potential does notchange. Whenever OPT evicts documents
from cache, the potential can only decrease.

Next we analyze the moves of MLL. The algorithm maintains theproperty that documents not in cache
have credit0. The only exception is the credit of a requested documentd which is set toost(d) in line 5
of the algorithm. If the credit remains positive in the following execution of the while loop, thend is loaded
into cache in line 10. Thus, when we start executing MLL for request�(t), documents not in cache do have
credit0. The execution of line 1 does not incur cost and cannot increase the potential since documentsd0
can only leave the setS. We investigate the case that request�(t) = d is unserved and prove the following
statement.

3

(2) If MLL serves requests for documentd atost(d), then� decreases by at leastost(d).
Immediately before the execution of line 4 of MLL we haved 2 OPT [S because�(t) is already

served by OPT. Moreover,redit(d) = 0. In line 5 of the algorithmredit(d) is set toost(d). Hence the
potential change due to lines 4 and 5 of MLL iskost(d)� (k + 1)ost(d) = �ost(d).

It remains to show that� does not increase during the execution of the while loop. Consider an arbitrary
iteration. For a setX � D, let size(X) =Pd02X size(d0). In line 8 the potential change is�(�ksize(C)+(k + 1)size(C \ (OPT [S))). We haveC \ S = ; because when line 8 is executed, MLL has served
all requests to documentsd0 2 C that are inW and OPT cannot have served requests that are beyondW .
Thus the potential change is�(�ksize(C nOPT)+ size(C \OPT)) � �(�ksize(C nOPT)+K). We
argue thatC n OPT contains at least one document. Ifd =2 OPT , then this is obvious. Ifd 2 OPT , then
there must exist ad0 2 C, d0 6= d, with d0 =2 OPT . OtherwiseC � OPT , which impliessize(C) � K and
the iteration of the while loop would not have started. Each document has a size of at leasts and hence the
potential change is upper bounded by�(�kDmin+K) � 0. Statement (2) now follows because whenever
MLL removes documents fromC and the cache in line 9, their credit is0 and hence the potential does not
change.

Statements (1) and (2) give the desired bound on MLL’s amortized cost. 2
The competitiveness ofk+1 is best possible for deterministic online algorithms that do not have to load

requested documents into cache, see [5, 8].

3 Offline algorithms

We develop polynomial time offline algorithms that achieve constant factor approximation ratios. Our al-
gorithms are based on a general technique that transforms the r-reordering problem into one of computing
batched service schedules. We first present this technique and then use it to develop approximation algo-
rithms for the various cost models.

3.1 Batched processing

As in the previous section we imagine that an algorithm, processing a request sequence, maintains a sliding
windowW that always containsr consecutive requests. Requests to the left ofW are served and request
reordering is feasible within the window. We say that an algorithmA serves a request sequence in batches
if, for any i = 0; 1; : : : ; bm=r, A serves all requests�(ir + 1); �(ir + 2); : : : ; �(minfir + r;mg) when�(ir+ 1) is the leftmost request in the sliding windowW . Requests�(ir+ 1); : : : ; �(minfir+ r;mg) are
also referred to asbatchi. Thus, when�(ir + 1) becomes the leftmost request inW , all requests in batchi are still unserved. The batch is served while the position ofW remains unchanged. ThenW is shifted to�((i+ 1)r + 1) if i < bm=r. For any batchi, letB(i) be the set of documents referenced in that batch.

Lemma 1 LetA be an algorithm that serves a request sequence� at costC in the standardr-reordering
model. Then there exists an algorithmA0 that serves� in batches and incurs a cost of at most2C.

Proof: We transformA into an algorithmA0 with the desired properties. LetSi; 0 � i � bm=r, be the set
of documents stored in the cache maintained byA when�(ir + 1) becomes the leftmost request inW . We
assume w.l.o.g. thatS0 = ;. By Sbm=r+1 we denote the set of documents in the final cache configuration.
LetDi be the set of documents for whichA initiates service operations while processing batchi but which
are neither inSi nor inSi+1. A documentd 2 Di is either loaded into cache but evicted before the end of
the batch is reached or not loaded into cache at all. While processing batchi, algorithmA incurs a cost for

4

serving documentsd 2 Di and andd 2 Si+1 n Si. Thus the total cost ofS is at leastbm=rXi=0
0� Xd2Si+1nSi ost(d) + Xd2Di ost(d)

1A :
Algorithm A0 is now constructed as follows. When�(ir + 1) becomes the leftmost request inW ,

algorithmA0 first serves requests to documentsd 2 Si that are referenced in batchi. These service oper-
ations incur no cost. ThenA0 serves requests to documentsd 2 Si+1 n Si and loads them into cache by
evicting documentsd0 2 Si n Si+1. The cost of these operations is

Pd2Si+1nSi ost(d). AdditionallyA0
schedules service operations for documentsd 2 Di without bringing them into cache. The service cost
is
Pd2Di ost(d). If i > 0, A0 finally schedules service operations for documentsd 2 Di�1 [Si�1 n Si

that are requested in batchi. Again these documents are not brought into cache and the service cost isPd2Di�1 ost(d) +Pd2Si�1nSi ost(d). Since the original algorithmA serves every request in� and, at
any time, can only serve requests that are at mostr requests ahead, every document referenced in batchi
must be inSi [Si+1 [Di or in Si�1 [Di�1 if i > 0. ThusA0 serves every request in�.

To prove that the cost ofA0 is bounded by twice the cost ofA, it suffices to show thatbm=rXi=1 Xd2Si�1nSi ost(d) � bm=rXi=0 Xd2Si+1nSi ost(d): (1)

Consider a documentd 2 Si�1 nSi. This document is evicted byA during the processing of batchi�1. Letj < i� 1 be the largest index withd 2 Sj+1 n Sj. Match the eviction ofd during batchi� 1 with the most
recent loading operation ofd during batchj. Indexj exists becauseS0 = ;. Since each loading operation
is matched with at most one eviction, inequality (1) follows. 2
3.2 The Uniform Model

We investigate the basic setting that all documents have thesame size and incur a cost of 1 when being served
or loaded into cache. We present a batched version of Belady’s [4] optimum offline paging algorithm MIN,
taking into account that requested documents do not necessarily have to be brought into cache. On a cache
replacement, the algorithm evicts a document whose next unserved request occurs in the highest indexed
batch possible. We use the following notation. Consider an algorithm that serves a request sequence in
batches. At any given time during the processing and for any documentd, let b(d) be the index of the batch
where the next unserved request tod occurs. Ifd is not requested again, letb(d) = bm=r+ 1.

Algorithm BMIN: Serve a request sequence in batches. When the processing of abatch starts, first serve all
requests to documents that are currently in cache. While there is still a documentd with unserved requests
in the batch, execute the following steps. Serve all requests tod and determineb = maxd02S b(d0), whereS
is the set of documents that are currently in cache. Ifb(d) < b, loadd into cache and evict any documentd0
with b(d0) = b.

We will show that BMIN is optimal among algorithms processing request sequences in batches. Lemma 1
then implies that BMIN achieves an approximation ratio of 2.BMIN does not necessarily evict the docu-
ment from cache whose next unserved request�(l) in farthest in the future but evicts any document whose
next unserved reference occurs in the batch of�(l). The following lemma, which we will also need in the
optimality proof, implies that this does not cause any problems.

Lemma 2 Let A be an algorithm that processes a request sequence� in batches. Consider any timet
during the processing. LetS be the set of documents that are currently in cache and letC be the cost
incurred byA after timet until the end of�. Letd 2 S andd0 =2 S be two documents withb(d0) � b(d).

5

Then there exists an algorithmA0 that starts at timet with the same set of served requests asA but cache
configurationS � fdg [fd0g and incurs a cost of at mostC during the rest of the sequence. AlgorithmA0
operates in batches, using the same batch partitioning asA.

Proof: At time t algorithmsA andA0 start with the same set of served requests and the same cache config-
uration except that the configuration ofA0 storesd0 instead ofd. AlgorithmA0 simulatesA until A evictsd
or untilA serves requests tod or d0. In the first case, whenA evictsd, A0 simply evictsd0. AlgorithmA0 is
then in the same configuration asA and proceeds in the same way asA on the remaining request sequence.
The cost ofA0 is equal to that ofA. In the second case we study two scenarios depending on whetherd ord0 is served first.

Suppose thatA first serves requests tod0. At that timeA incurs a cost of 1 whileA can serve the requests
at 0 cost. IfA does not loadd0 into cache, thenA0 loads documentd by evictingd0. The incurred cost is 1. IfA loadsd0 into cache and evicts a documentd 6= d, thenA0 loadd by evictingd. Again the incurred cost ofA0 is equal to 1. Finally, ifA loadsd0 by evictingd, algorithmA0 does not perform a cache replacement. In
any caseA0 is in the same configuration asA and executes the same operations on the rest of the sequence.
The cost ofA0 is bounded by that ofA.

Next suppose thatA first serves requests tod. Sinceb(d0) � b(d), these requests must be in the same
batch as the next unserved requests tod0. We may assume w.l.o.g. that whenA serves the batch, it never
loads a documentd1 that is evicted again until the batch’s processing ends. For, if A evictsd0 to loadd1
and evictsd1 to loadd2, we can modify the algorithm so that it serves the requests tod1 without bringing
the document into cache and evictsd0 to loadd2.

WhenA serves the requests tod, algorithmA0 serves the request tod0 in the current batch. The simula-
tion then proceeds untilA serves requests tod0. At that timeA incurs a cost of 1. We distinguish two cases
depending on whether or notA loadsd0 into cache.

Assume thatd0 is not loaded intoA’s cache. Ifd is still in A’s cache configuration whenA serves the
requests tod0, thenA0 serves its unserved requests tod at a cost of 1 and loadsd into cache by evictingd0.
AlgorithmsA andA0 have incurred the same cost and are again in the same configuration. On the rest of the
sequenceA0 works the same way asA. If d is not anymore inA’s cache configuration and hence has been
evicted in the meantime, then in that evictionA0 dropsd0. Algorithm A0 serves the requests tod without
loading the document into cache. AgainA andA0 incurred the same cost and are in identical configurations
so that they work the same for the rest of the request sequence.

Finally assume thatd0 is loaded intoA’s cache. Letd be the document evicted. Ifd = d, thenA0 simply
serves the requests tod without loading the document into cache. Ifd 6= d and if d is still in A’s cache
configuration, thenA0 serves the requests tod and loads it into cache by evictingd. If d 6= d andd has been
evicted in the meantime, then during that evictionA0 first serves requests tod in the current batch at cost 0
and then evictsd. The requests tod are served without bringing the document into cache. In all cases the
cost ofA0 is not higher than that ofA. Both algorithms are in identical configurations and work the same
on the remaining sequence. 2
Theorem 2 For any request sequence�, BMIN incurs the minimum cost among algorithms processing
request sequences in batches.

Proof: Consider an arbitrary sequence� and letA be an algorithm that processes� in batches and incurs
minimum cost among such algorithms. In the following, by aservice operationrefer to an operation where
an algorithm serves requests to a document in the current batch. The operation may or may not involve
a cache replacement. Suppose that the firstl service operations ofA and BMIN are identical but that the(l + 1)-st operation is different in both algorithms. Initiallyl may be 0. We show that there exists an
algorithmA0 for which the firstl + 1 service operations are identical to that of BMIN and whose total cost
is bounded by that ofA. Repetition of this step, for increasingl, yields the lemma.

6

Suppose that the(l+1)-st service operation is part of the processing of batchi. Immediately before the(l + 1)-st operationA has the same cache configuration and the same set of served requests as BMIN. If
during the(l + 1)-st operation BMIN serves requests to a documentd stored in cache, we are easily done.
Up to and including operationl algorithmA0 works in the same way as BMIN. Then it serves requests to
documentd, which does not generated any cost, and proceeds with all theremaining operation ofA.

So suppose that during operationl + 1 algorithm BMIN serves a request to a documentd not in cache.
At that timeA and BMIN have served all requests in the current batch that are to documents stored in cache.
As in the proof of Lemma 2 we may assume that in the remaining processing steps of the batch, algorithmA does not load a document into cache that is evicted again during these steps. Thus the documents being
loaded are different from those being evicted. Since there are no dependencies, it does not matter in which
order the documents to be served are actually being served. Hence we may assume w.l.o.g. that during the(l + 1)-st service operationA also serves documentd. We have to consider three cases.

(1) Both BMIN andA both loadd into cache but the algorithms evict different documents from cache.

(2) Only BMIN loadsd into cache.

(3) OnlyA loadsd into cache.
AlgorithmA0 works as follows. On the firstl service operations it executes the same steps asA and BMIN.
The (l + 1)-st operation is performed in the same way as BMIN. At that point the cache configuration ofA andA0 differ in one document. AlgorithmA has a documentd1 while A0 has a documentd01. We will
show thatb(d01) � b(d1). Lemma 2 then yields the statement to be proven. In case (1) BMIN andA0 evict
a documentd1 while A evicts a documentd01. By the eviction rule of BMIN,b(d1) � b(d01). In case (2),
BMIN andA0 dropd1 while A does not loadd and keepsd1. Setd01 = d. Then, the definition of BMIN
impliesb(d1) > b(d01). Finally, in case (3), BMIN andA0 do not loadd while A evicts a documentd01 to
loadd. Again, by the definition of BMIN we haveb(d1) > b(d01) whered1 = d. 2

Lemma 1 and Theorem 2 yield the following result.

Corollary 1 BMIN achieves an approximation ratio of 2.

3.3 The Bit Model

In this section we consider the Bit Model, i.e.ost(d) = size(d), for any documentd. Again we design
an approximation algorithm that processes a request sequences in batches. The algorithm proceeds in two
steps. First it constructs afractional solution, where documents are allowed to be fractionally in cache. We
say that a documentd is fractionally in cacheif 0 < (d) < size(d), where(d) denotes the number of
bits of d present in cache. In this case the cost of serving requests tod or loading the remainder ofd into
cache is equal toost(d)� (d). In a second step the algorithm rounds the fractional solution to a feasible
integral solution. The strategy for designing fractional solutions is a bitwise implementation of BMIN. For
any documentd and any batchi, let b(d; i) be the smallest indexj, j > i, such that batchj contains requests
to d. If d is not requested again after batchi, thenb(d; i) = bm=r+1, wherem is the length of the request
sequence.

Algorithm BBMIN: Serve the request sequence in batches. For any batchi, first serve the requests to
documents that are fully or fractionally in cache; considerthose documentsd in non-increasing order ofb(d; i) values. Then serve the requests to documents not present in cache. For any requested documentd that
is not fully in cache, execute the following steps after the service operation. Determineb = maxd02S b(d0; i),
whereS is the set of documents that are fully or fractionally in cache. While b(d; i) < b and (d) <size(d), perform two instructions: (1) Evict� = minfsize(d) � (d); (d0)g bits from any documentd0
with b(d0; i) = b. (2) Load� missing bits ofd and recomputeb = maxd02S b(d0; i).

We first argue that, for any request sequence, the cost incurred by BBMIN in the fractional cost model
is a lower bound on the optimum cost in the standard integral cost model when restricting ourselves to

7

algorithms that process sequences in batches. LetBBMIN(�) be the cost incurred by BBMIN on� in
the fractional cost model. Furthermore, letOPTB(�) be the minimum cost achieved by an algorithm that
processes� in batches and produces an integral solution with(d) 2 f0; size(d)g always, for alld.

Lemma 3 For any�, BBMIN(�) � OPTB(�).
Proof: Let OPTBF (�) be the minimum cost of an algorithm that processes� in batches and is allowed
to generate a fractional solution. Obviously,OPTBF (�) � OPTB(�). We show that the cost of BBMIN
satisfiesBBMIN(�) = OPTBF (�). To this end consider aFull Bit Model, where the bits of the documents
are viewed as indivisible mini-pages and a request to a document d is viewed assize(d) requests to the
corresponding mini-pages/bits. LetOPTBB(�) be the minimum cost that can be achieved in this model using
an algorithm that serves� in batches. We haveOPTBB(�) � OPTBF (�) because any fractional solution can
be viewed as a solution for the Full Bit Model with the same cost: If the solution serves requests to documentd, then we assume that it, one after the other, serves requeststo the corresponding mini-pages. The service
operation to a mini-page may be accompanied by a cache replacement if the extent to whichd is in cache
increases.

Lemma 2 implies that BMIN achieves a cost ofOPTBB(�). We show that BBMIN constructs the same
solution as an implementation of BMIN, i.e. at the end of eachbatch they have the same bits in cache. Thus
the cost of BBMIN and BMIN is the same and this gives the desired equationBBMIN(�) = OPTBF (�).
Consider any batchi. BMIN does not specify in which order requests to mini-pagesin cache or to mini-
pages not in cache are served. Thus, with respect to the mini-pages in cache, we may assume that BMIN
serves the requests in non-increasing order ofb(d; i)-values,d being the document a mini-pages belongs to;
service operations to mini-pages of the same document are grouped together. We refer to these service steps
aspart 1 of batchi. With respect to the mini-pages not in cache we assume that BMIN first serves requests
to those belonging to documentsd that were already addressed in part 1. The processing proceeds again in
non-increasing order ofb(d; i)-values. Then the service operations to the remaining mini-pages follow. In
these service steps after part 1, which we refer to aspart 2 of batchi, operations to mini-pages of the same
documents are again grouped together. Now consider the documentsd that occur both in part 1 and part 2.
These documents are fractionally in cache at the beginning of the batch. Note that BMIN never evicts bits of
a documentd0 to load bits ofd if b(d0; i) < b(d; i). Thus, when serving requests to mini-pages ofd in part 1,
BMIN can as well serve all the mini-pages ofd at that time since mini-pages evicted ind’s processing of
part 2 will not be served in the rest of part 1. Since the eviction rules of BMIN and BBMIN are the same,
we may assume that their cache configuration at the end of eachbatch is indeed the same. 2

Next we present our rounding algorithm, generating an integral solution from the fractional solution
produced by BBMIN. We extend the notation. For any documentd and any batchi, let (d; i) be the number
of bits of d present in cache when the processing of batchi ends. We first modify the solution of BBMIN
such that the extent to which a document is in cache does not change between two consecutive batches in
which the document is requested. Suppose thatd is referenced in batchi. Documentd’s presence in cache
may decrease during the processing of batchesj = i + 1; : : : ; b(d; i) � 1. The cost of the next references
to d is equal to the number of bits ofd not present in cache when batchb(d; i) � 1 ends, which is equal
to size(d) � (d; b(d; i) � 1). Therefore, for any documentd and batchi such thatd 2 B(i), we set(d; j) = (d; b(d; i)� 1), for j = i; : : : ; b(d; i)� 2. This does not change the cost of the solution and only
frees up space in cache. The solution by BBMIN has an important property that is crucial for the actual
rounding procedure: Consider two batchesi andj with i � j as well as two documentsd 2 B(i) andd0 2 B(j). If b(d0; j) < b(d; i) and(d; l) > 0 for l = i; : : : ; b(d; i) � 1, then(d0; l) = size(d0), forl = j; : : : ; b(d0; j) � 1. This is because BBMIN prefersd overd0 when evicting bits asd’s next request is
farther in the future.

The rounding procedure produces a solution that may need up toK + ÆDmax memory in cache, whereDmax is the size of the largest document ever requested and0 < Æ � 1. Fix aÆ with 0 < Æ � 1. For batches

8

i = 0; : : : ; bm=r the procedure considers the documentsd 2 B(i) with (1�Æ)size(d) < (d; i) < size(d).
Documentd is rounded up if, after the rounding, the rounded-up documents occupy extra memory of no
more thanÆDmax. Otherwise the document is rounded down to(1 � Æ)size(d). Finally, all values(d; i)
with 0 < (d; i) � (1� Æ)size(d) are rounded down to0. The pseudo-code is given in Figure 2 below.

Algorithm Rounding
1. Extra 0;
2. for i 0 to bm=r do
3. for all d 2 B(i) with (1� Æ)size(d) < (d; i) < size(d) do
4. if Extra + size(d)� (d; i) � ÆDmax then
5. Extra Extra + size(d)� (d; i);
6. (d; i) size(d), for j = i: : : : ; b(d; i)� 1;
7. else
8. Extra Extra � ((d; i)� (1� Æ)size(d));
9. (d; i) (1� Æ)size(d), for j = i: : : : ; b(d; i)� 1;

10. for all (d; i) with 0 < (d; i) � (1� Æ)size(d) do
11. (d; i) 0;

Figure 2: The Rounding algorithm.

Theorem 3 For any� � 0, we can construct a solution that incurs a cost of at most(1+ �)BBMIN(�) and
uses an additional memory of at mostDmax=(1 + �).
Proof: We first observe that0 � Extra � ÆDmax always. The second inequality follows from line 4 of
the Rounding algorithm. If a document is rounded down, thenExtra + size(d)� (d; i) > ÆDmax, which
impliesExtra � ((d; i)� (1� Æ)size(d)) > ÆDmax � Æsize(d) � 0.

We can show that at any time the total extra memory used by the rounded solution is at most the value
of Extra. Details are omitted in this submission. Thus the extra space used by the rounded solution is at
mostÆDmax.

It remains to analyze the cost. During the executions of lines 1 to 9, the value ofExtra is always
equal to the cost savings relative to BBMIN(�). If a documentd is rounded up, then the cost savings
on the next requests tod is size(d) � (d; i). If a documentd is rounded down, the additional cost is(d; i)� (1� Æ)size(d). SinceExtra is always non-negative, immediately before the execution of line 11,
the cost of the rounded solution is bounded by BBMIN(�). In line 11 the cost may increase by a factor of1=Æ. Replacing1=Æ by 1 + �, the theorem follows. 2
Corollary 2 For any request sequence� and any� � 0, we can construct a solution that incurs a cost of at
most2 + � times that of an optimal solution. The extra space required is bounded byDmax=(1 + �=2).
3.4 The Fault Model

We investigate the Fault Model whereost(d) = 1, for all documentsd, and design an approximation
algorithm that processes a given request sequence in batches. As in the previous section, for any documentd and any batchi, let b(d; i) be the smallest indexj > i such that batchj contains requests tod and let(d; i) be the number of bits of documentsd present in cache when the processing of batchi ends. The
number of bits ofd that are in cache initially is denoted by(d;�1). Unfortunately, we know of no simple
combinatorial algorithm for constructing a good fractional solution operating in batches. Therefore, we
formulate the caching problem as a linear program.

W.l.o.g. we may restrict ourselves to solutions in which theextent to which a documentd is in cache does
not change between two consecutive batches referencingd. Thus ifd 2 B(i), then(d; j) = (d; b(d; i)�1),

9

for j = i; : : : ; b(d; i)� 2. The cost for serving requests tod 2 B(i) is equal to the fraction to whichd is not
in cache at the end of the previous batch, which is1 � (d; i � 1)=size(d). The only additional constraint
we have to impose is that the total size of documents in cache may not exceedK. Thus the linear program
is as follows. LetD be the set of documents ever requested.

Minimize bm=rXi=0 Xd2B(i)(1� (d; i� 1)=size(d))
subjet to (d; j) = (d; b(d; i)� 1)) 8d; i; j suh that d 2 B(i)and i � j < b(d; i)� 1Xd2D (d; i) � K 8i(d; i) 2 f0; size(d)g 8i; d

We replace the constraint(d; i) 2 f0; size(d)g by 0 � (d; i) � size(d) so that the linear programming
relaxation can be solved in polynomial time. LetOPTBLP(�) be the cost incurred by the LP relaxation on
input�. Clearly, this is a lower bound on the minimum cost of any integral solution processing� in batches.

Fix an� > 0. We partition the documents intoblog1+�Dmax + 1 classes such that classCk; 0 � k �blog1+�Dmax+1 contains documentsd with Dmax(1+ �)�k � size(d) > Dmax(1+ �)�(k+1). We round
the optimal LP relaxation solution. We first modify the optimal LP relaxation solution such that for any
two batchesi andj with i � j and documentsd 2 B(i) andd0 2 B(j) the following property holds. Ifb(d0; j) < b(d; i) and(d; l) > 0 for l = i; : : : ; b(i; d)�1 then(d0; l) = size(d0), for l = j; : : : ; b(d0; j)�1.
For any classCk we consider the values(d; i) of documentsd 2 Ck. While there exist(d; i) and(d0; j)
with 0 < (d; i) < size(d) and0 < (d0; j) < size(d0) such thatd 2 B(i), d0 2 B(j), i � j andb(d0; j) < b(d; i), we modify the values. We increase(d0; l), for l = j; : : : ; b(d0; j) � 1, and decrease(d; l), for l = i; : : : ; b(d; i) � 1, until the former ones are equal tosize(d0) or the latter ones are0. More
precisely, let = minf(d; i); size(d0) � (d0; j)g. We increase(d0; l) by , for l = j; : : : ; b(d0; j) � 1,
and decrease(d; l) by , for 1 = i; : : : ; b(d; i)� 1. The modification does not need extra space sincei � j
andb(d0; j) < b(d; i). Let OPT� be the solution obtained after all these modifications. Given OPT�, we
apply the Rounding algorithm described in Figure 2 separately for each classCk. We use parameterÆ = 1
and replaceDmax byDkmax, whereDkmax is the size of the largest document inCk.

Theorem 4 For any request sequence� and for any� > 0, we can construct a solution that processes� in
batches and incurs a cost of at most(1 + �)OPTBLP(�). The additional memory used by the solution is at
mostDmax(1 + 1=�).
Proof: SolutionOPT� does not use extra space, while the Rounding algorithm uses extra space of at mostDkmax, for each classCk. The total amount of additional memory is bounded by

Pk�0Dmax(1 + �)�k <Dmax(1 + �)=�.
To analyze the cost we compare the final solution to the optimal LP relaxation solution. If in the final

solution a value(d; i) with d 2 B(i) is by bits higher than in the optimal LP relaxation solution, we say
thatd was rounded up by an amount of. This corresponds to a cost saving of=size(d) when the next
requests tod are served. If the value is by bits smaller, we say thatd was rounded down by an amount of
and this results in an extra cost of=size(d) on the next requests tod. For any classCk, letRuk be the total
amount by which documents fromCk are rounded up and letRdk be the total amount by which documents
fromCk are rounded down. The solutionOPT� and the Rounding algorithm (described in Figure 2) implyRuk � Rdk. The optimal LP relaxation solution incurs a cost ofOPTBLP(�) � Pk�0Ruk=Dkmax: Our final
solution saves a cost of at least

Pk�0Ruk=Dkmax and incurs an extra cost of at most
Pk�0Rdk(1 + �)=Dkmax

since the document sizes in a class differ by a factor of at most 1 + �. This gives at most extra cost of�OPTBLP(Æ). 2
10

Corollary 3 For any request sequence� and any� > 0 we can construct a solution that incurs a cost of at
most2 + � times the optimum cost and uses an extra space of no more than(1 + 2=�)Dmax.
3.5 The General Model

Due to space limitations we describe the following results in the appendix.

Theorem 5 For any�, we can construct a solution that processes� in batches and incurs a cost of at most
4 times that of an optimal solution that serves� in batches. No extra space is required.

Corollary 4 For any�, we can construct a solution that incurs a cost of at most 8 times that of an optimal
solution. No extra space is required.

References

[1] D. Achlioptas, M. Chrobak and J. Noga. Competitive analysis of randomized paging algorithms.The-
oretical Computer Science, 234:203–218, 2000.

[2] S. Albers, S. Arora and S. Khanna. Page replacement for general caching problems.Proc. 10th Annual
ACM-SIAM Symposium Discrete Algorithms, 31–40, 1999.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. Schieber. A unified approach to approximating
resource allocation and scheduling.Journal of the ACM, 48:1069–1090, 2001.

[4] L.A. Belady. A study of replacement algorithms for virtual storage computers.IBM Systems Journal,
5:78-101, 1966.

[5] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms.Proc. USENIX Symposium on Inter-
net Technology and Systems, 193–206, 1997.

[6] T. Feder, R. Motwani, R. Panigrahy and A. Zhu. Web cachingwith request reordering.Proc. 13th
ACM-SIAM Symposium on Discrete Algorithms, 2002.

[7] T. Feder, R. Motwani, R. Panigrahy, S. Seiden, R. van Steeand A. Zhu. Combining request scheduling
with web caching. Extended version of [6], to appear inTheoretical Computer Science.

[8] A. Feldmann, A. Karlin, S. Irani and S. Phillips. Privatecommunication, transmitted through [11],
1996.

[9] A. Fiat, R.M. Karp, L.A. McGeoch, D.D. Sleator and N.E. Young. Competitive paging algorithms.
Journal of Algorithms, 12:685–699, 1991.

[10] P. Gopalan, H.J. Karloff, A. Mehta, M. Mihail and N. Vishnoi. Caching with expiration times.Proc.
13th ACM-SIAM Symposium on Discrete Algorithms, 540-547, 2002

[11] S. Irani. Page replacement with multi-size pages and applications to Web caching.Proc. 29th Annual
ACM Symposium on Theory of Computing, 701–710, 1997.

[12] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging algorithm.Algorithmica,
6:816–825, 1991.

[13] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees.Journal of the ACM, 32:652–686,
1985.

[14] N.E. Young. Online file caching.Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
82–86, 1998.

11

Appendix

In the General Model the service/loading costost(d) can be an arbitrary value, for any documentd. Our
solution for the General Model is based on a approximation algorithm by Bar-Noy et al. [3]. They considered
the following loss minimization problem. Let I be a set of intervalsI = [t1; t2℄, the scheduling of which
requires a resource of bounded availability. Letwidth(t) be the amount of resource available at timet. Each
intervalI 2 I has a widthw(I) as well as a penaltyp(I). The width reflects the amount of resource required
at any timet 2 I if I is scheduled. The penalty represents the cost ifI is not scheduled. The goal is to
find a setS 2 I of intervals being scheduled such that

PI2S w(I) � width(t), for any timet, and the total
penalty

PI2InS p(I) is as small as possible. Bar-Noy et al. showed that the standard web caching problem,
where request reordering is not allowed and documents must be in cache at the time of the reference, can
be formulated as a loss minimization problem. We show here that the problem of constructing a schedule
that processes a given request sequence in batches and does not need to have referenced documents in cache
can also be formulated in the above framework. As usual, for any documentd and any batchi, let b(d; i) be
the smallest indexj > i such that batchj contains requests tod. For anyd andi such that documentd is
requested in batchi, we introduce an intervali = [i; b(d; i)� 1℄ representing the case thatd resides in cache
between the end of batchi and the end of batchb(d; i) � 1. Documentd is brought into cache during the
processing of batchi if it was not already present. If such an intervalI is scheduled, then the requests tod in
batchb(d; i) can be served at 0 cost. Otherwise the cost isost(d) and we set the penalty top(I) = ost(d).
The width isw(I) = size(d), representingd’s space requirements in cache. We havewidth(t) = K. Thus
we can apply the approximation algorithm of Bar-Noy et al. and obtain the results stated in Theorem 5 and
Corollary 4.

12

