Page Replacement for General Caching Problems

Susanne Albers*

Abstract

Caching (paging) is a well-studied problem in online al-
gorithms, usually studied under the assumption that all
pages have a uniform size and a uniform fault cost (uni-
form caching). However, recent applications related to the
web involve situations in which pages can be of different
sizes and costs. This general caching problem seems more
intricate than the uniform version. In particular, the of-
fline case itself is NP-hard. Only a few results exist for the
general caching problem [8, 17]. This paper seeks to de-
velop good offline page replacement policies for the general
caching problem, with the hope that any insight gained here
may lead to good online algorithms. Our first main result
is that by using only a small amount of additional mem-
ory, say O(1) times the largest page size, we can obtain an
O(1)-approximation to the general caching problem. Note
that the largest page size is typically a very small fraction
of the total cache size, say 1%. Our second result is that
when no additional memory is allowed, one can obtain an
O(log(M + C))-approximation where M and C denote the
cache size and the largest page fault cost, respectively. Our
results use a new rounding technique for linear programs
which may be of independent interest. We also present a
randomized online algorithm for the Bit Model [8] which
achieves a competitive ratio of O(In(1 + 1/c)) while using
M(1 + ¢) memory.

1 Introduction

When a sequence of memory objects (“pages”) are to
be retrieved from a slow or distant memory, one often
uses a cache —i.e., a fast memory of some small size, say
M— to retain some “frequently-used” pages. Since the
slow memory needs to be accessed only for pages that

~ FMax-Planck-Institut fiir Informatik, Im Stadtwald, 66123
Saarbriicken, Germany. Part of this work was done while visiting
the Freie Universitdt Berlin. Email: albers@mpi-sb.mpg.de.

TCS Department, Princeton University, Princeton, NJ 08544.
Email: arora@cs.princeton.edu. Supported by NSF CAREER
award NSF CCR-9502747, an Alfred Sloan Fellowship, and a
Packard Fellowship. Part of this work was done during a visit
to MPI Informatik.

fDepartment of Fundamental Mathematics Research,
Bell Labs, 700 Mountain Avenue, Murray Hill, NJ
07974. E-mail: sanjeev@research.bell-labs.com. URL:

http://cm.bell-labs.com/who/sanjeev.

Sanjeev Arora '

Sanjeev Khannat

are not in the cache at the moment they are requested
(i.e., when a page fault occurs), the overall access time
for the sequence may be dramatically reduced even with
a fairly small cache. This basic and obvious principle
of system design has proved itself in many situations.
The reduction in total access time depends upon the
page replacement policy, in other words, the method of
deciding upon which cached page(s) to flush whenever
space is needed in the cache for a new page. The online
version of this problem is of particular interest, and has
been extensively studied (see [9], for instance).

When all pages have the same size and cost (the
cost refers to the time delay in bringing the page from
the slow memory), then the optimal offfine policy is
Belady’s Rule [2]: always flush the cached page whose
next request is furthest in the future. The popular
online strategy is LRU: flush the cached page that
was least recently used. The heuristic justification for
LRU is that real-life request sequences often exhibit
the property that the “past predicts the future.” Thus
a page that has not been accessed in the recent past
is unlikely to be accessed in the near future. The
competitive ratio of LRU is M [14], where M is the
the cache size, and no deterministic online strategy can
do any better. Randomized strategies can achieve much
better performance. The randomized marking algorithm
by Fiat et al. [5] has a competitive ratio 2log M against
oblivious adversaries. Algorithms achieving an optimal
ratio of log M were given in [12, 1]. Fur further work on
the uniform paging problem see, e.g., [3, 6, 10, 11, 15,
16].

This paper studies page replacement policies for the
General Caching Problem, when the pages either have
varying sizes, or varying costs, or vary in both size and
costs. This problem arises, among other places, in cache
design for networked file systems or the world-wide web.
For example, HTTP, the current protocol for handling
page requests on the web, treats a web page —be it
an image file or a text file— as an indivisible object.
Similarly, the transmission time for a web page depends
on whether it is on a server in Asia or in America,
and also on transient conditions such as server load
or network congestion. The current paper will make
the simplifying assumption that the cost of obtaining a
page, though arbitrary, is a known quantity.

Irani [8] recently studied special cases of this prob-
lem — the Bit Model and the Fault Model (defined be-
low) — and Young [17] studied deterministic online al-
gorithms for the general problem. Irani points out that
Belady’s rule is not optimal if page sizes and costs differ,
and gives O(log m)-approximation algorithms for the of-
fline case of the Bit and the Fault models, where m is the
ratio of the cache size to the size of the smallest page.
Building on the insight obtained from the offline al-
gorithms, Trani designs O(log? m)-competitive random-
ized online algorithms for these problems. Young [17]
extends this work to design loosely competitive algo-
rithms, whereby the memory used by the algorithm,
M, is somewhat more than M g, the memory used by
the offline optimum. Young’s deterministic online al-
gorithm for the general caching algorithm incurs a cost
M/(M — Mog +1) times the cost of the offline optimum.

Although the online cases of the general caching
problem are of greatest interest, as a first step one may
try to gain insight by designing a good approximation
algorithm for the offline case. Our first main result
here is an O(1)-approximation to the general caching
problem that uses only a small amount of additional
memory—QO(1) times the size of the largest page. (Note
that in practice, the largest page will be a tiny part of
the cache; less than 1%.) This is to be contrasted with
previous results of this flavor which require Q(M) ad-
ditional memory, but achieve a constant factor compet-
itiveness even working in the online setting [17]. Our
second main result here is a technique for efficiently
translating any solution using only a small amount of
additional memory to one that uses no extra memory.
We use this technique to obtain an O(log(M + C))-
approximation to the general caching problem when no
additional memory is allowed, here C' denotes the largest
page cost. To our knowledge, prior to our work no non-
trivial guarantees were known for the general caching
problem in the offline setting.

1.1 Problem Statement and Results

In what follows, we formally state our problem and give
an overview of our results. The setup for a general
caching problem as follows. We are given a cache
capacity M, a sequence o of page requests, and for each
page p in this sequence a cost, denoted by cosT(p), and
a size, denoted by SIZE(p) are associated. The goal is
to decide on which pages to retain in the cache at every
time step so as to minimize the cost of servicing the
page faults. We denote by OPT(o) the optimal paging
solution as well the cost of the optimal solution, and use
just OPT when the sequence o is clear by the context.
Finally, let S be the largest page size and C be the
largest page fault cost.

The Caching Models: There are four models of
caching which have been studied before.

1. The Bit Model[8]: In the Bit Model, for each
page p, we have cosT(p) = S1ZE(p). (The delay in
bringing the page into memory depends only upon
its size.)

2. The Fault Model[8]: In the Fault Model, for each
page p, we have cOsT(p) = 1 while the sizes can be
arbitrary.

3. The Cost Model: In the Cost Model, for each
page p, we have SIZE(p) = 1 while the costs can
be arbitrary. This problem variant, also known
as weighted caching, is a special instance of the
k-server problem and the offline version can be
optimally solved in polynomial time [4].

4. The General Model: Finally, in the General
Model, for each page p, both the cost and size
can be arbitrary. A loosely competitive online
algorithm with competitive ratio M /(M — Mg +1)
is known [17].

Our first main result is for the case when we
are allowed a small amount of additional memory—
say, O(1) times the size of the largest page. Our
approach is to formulate the caching problems as integer
linear programs and then solve a relaxation to obtain
a fractional optimal solution (see Section 2.1). The
integrality gap of the linear programs is unbounded,
but nevertheless we can show the following result. We
state the Theorem in a very general way using two
parameters, € and 4. Parameter e allows for varying
the approximation ratio whereas § allows for varying
the amount of additional memory.

THEOREM 1.1. For each of the above problems there
is a polynomial-time algorithm that, given any request
sequence, finds a solution of cost ¢; - OPTrp, where
OPTyp is the cost of the fractional solution (with
memory M). The solution uses M + ¢y - S memory,
where S is the size of the largest page in the sequence.
The values of ¢1 and cs are as follows for the various
models. Let € and § be real numbers with € > 0 and
0<d<1.

1. ¢1 =1/6 and ¢y = 0 for the Bit Model,

2.c0=(1+¢€)/d and c2 =5(1 +1/(/1+€—1)) for
the Fault Model,

3. ¢c1=(44¢€)/6 and co =26(1+6/¢€) for the General
Model.

The c¢1,ce values in the above theorem express
trade-offs between the approximation ratio and the ad-
ditional memory needed. For example, in the Bit Model,
we can get a solution with cost OPTy,p using at most S
additional memory. In the Fault model, we can get a so-
lution with cost 4OPTypp using at most 25 additional
memory. The approximation ratio can be made arbi-
trarily close to 1 by using c¢2S additional memory for a
large enough c¢». In the General Model we obtain a solu-
tion of 200PT1p using 2S additional memory, but we
can achieve approximation ratios arbitrarily close to 4.

Our next main result is for the case when no
additional memory is allowed.

THEOREM 1.2. The caching problem in the General
Model has an O(log(M + C'))-approzimation.

Finally in Section 4 we present a randomized online
algorithm for the Bit model that achieves a competitive
ratio of O(In(1 + 1/¢)) while using M (1 + ¢) memory.

1.2 Ideas and Techniques

We mention here two central ideas of our paper. Theo-
rem 1.1 relies on a method to rounding fractional solu-
tions with only a small amount of additional memory.
Some ideas from our rounding procedure may be ap-
plicable to other sequencing problems. Theorem 1.2 is
based on a transformation of the caching problem into
a variant of the set cover problem. This transformation
gives a canonical procedure to convert any caching algo-
rithm that uses some extra memory into one that obeys
the memory constraint strictly, with some degradation
in performance.

1.3 Organization

The remainder of the paper is organized as follows. Sec-
tion 2 describes our techniques for rounding fractional
solution to the caching problem and establishes Theo-
rem 1.1. Section 3 describes our paradigm for mem-
ory reduction and establishes Theorem 1.2. Section 4
describes the randomized online algorithm for the Bit
model. We conclude with some remarks in Section 5.

2 Rounding of Fractional Solutions
2.1 The LP Formulation

Let the request sequence be ¢ = 01, 09, ...,0,. For each
page p and time ¢ when it is accessed (i.e. o; = p), we
define J,; = {t + 1,t+ 2, ...,t' — 1} where ' is the first
time the page p is accessed after time ¢; if such a time '
does not exist then the set Jp+ is empty. It is now easy
to see that the following integer linear program gives us
the optimal paging strategy:

Minimize Y.}, cosT(o¢)(1 — Zo, 1-1)

Subject to:
Tpr = 1 Y p,t such that oy = p
Tpir1l = T3 V p where t € J,;
>, SZE(P)Tp: < M Vi
zpe € {0,1} Vp,t
Tpo = 0 Vp

Replacing the constraint z,; € {0,1} by the con-
straint 0 < z,: < 1, we obtain a linear programming
relaxation that can be solved in polynomial time. From
here on, we denote an optimal LP relaxation solution
by OPTLP.

The integrality gap, i.e., OPT/OPTyp, can be
Q(M). For example, in the Bit model, suppose the
sequence consists of repeated requests to 10 pages each
of size M /10 + 1. OPT would be able to fit at most
9 pages into cache and OPTpp would be able to fit
all but 10 units. In this case, note that allowing our
(integral) algorithm just 10 extra units of space would
allow it to lower the cost to OPTyp. Our rounding
scheme suggests that things never get much worse: for
any instance of the general caching problem, allowing
O(S) extra space allows us to get an integral solution
of cost O(OPTyp).

The rounding will only change the value of frac-
tional variables; it will never modify variables that are
0/1. A fractional page is a shorthand for “a page p and
a time interval J,, ; during which x,, ; is neither O nor 1.”
When we say that a fractional page is rounded up (resp.,
rounded down) we mean that z,; is set to 1 (resp., 0)
for the entire interval.

2.2 Rounding for the Bit Model

In this section we describe the rounding algorithm
for the Bit Model. The algorithm uses the fact that
the LP formulation of page replacement has a simple
interpretation in the Bit Model. Specifically, if we
imagine the pages being split into pieces of size € where €
is infinitesimally small, then the LP can be viewed as the
offline page replacement problem for equal-cost pages of
size €. It can be solved by using Belady’s rule on these
small pages. From now on we assume the fractional
optimum is computed this way, whence the following
Lemma is immediate.

LeEMMA 2.1. Suppose pages p and q are requested at
times t and s respectively, and Jy; s C Jpr. If xpr >0
in the optimum solution, then x, sy = 1.

Proof. During the time interval .J, s, page p has a higher
priority of being evicted than ¢ since its next request is
further in the future. Therefore the optimum would

Extra := 0;
Fort =1tondo

If Extra 4+ SIZE(p)(1 — x,,¢) < 05 then
Extra := Extra+ SIZE(p) - (1 — zp,);
Tpt-

else
Extra := Extra — SIZE(p) - Tp;

z,7:=0forallt € Jp;1;

© N oE W=

If page p is accessed at time (t — 1) and 0 < z,,

+ < 1 then

=1forallt € Jy—1; /* Round up p and credit cost savings to Extra */

/* Round down p and charge cost increase to Extra */

Figure 1: The rounding procedure

decrease the portion of p that is in cache before it
decreases the portion of q. |

Our rounding algorithm produces a solution that
may need up to M + §S memory but incurs cost
$OPTyp, for any 0 < § < 1. Consider a fixed 4,
0 < 6 < 1. In a first step, the algorithm rounds down
all fractional variables z,; with z,; < 1 — 4, i.e., each
of these variable is set to 0. This increases the cost of
the solution by at most a factor of 1/4 since at the next
access of any such page p, OPTrp pays at least a cost
of § - cosT(p). Let OPT? 5 be this new solution.

Given OPTI‘ip, we apply a rounding procedure
described in Figure 1. The procedure sweeps over the
fractional z,;’s from time ¢t = 1 to ¢t = n. At each step,
it rounds up a fractional page p if, after the rounding,
the rounded up pages occupy extra memory of no more
than ¢ - S. Otherwise, the page is rounded down.

We first observe that 0 < Extra < §-S always. The
second inequality follows from line 4 of the algorithm.
Note that a page is only rounded down if Extra +
S1ZE(p)(1 —xp) > ¢- S, which is equivalent to Extra >
§-S — size(p)(1 — xp,). Since 1 —z,; < § and
SIZE(p) < S, the first inequality follows.

THEOREM 2.1. For any 0 < 6 < 1, we can con-
struct a rounded solution that incurs a cost of at most
(1/6)OPTLp, and that uses an additional memory of at
most §S.

Proof. Consider the rounded solution obtained by ap-
plying the above rounding procedure to OPT%P. We
first show that at any time the total extra space used
by the rounded solution is at most the value of Extra.
We prove this invariant by induction on time ¢. Suppose
it is true for up to time ¢ — 1. There are two possibilities
to consider at time t.

Extra is incremented at time ¢: Then for some
page p that was accessed at time ¢ — 1, we must have
set the fractional variable xp; to 1. This requires an
extra space of (1 — x, ;) - SIZE(p), which is equal to the

amount by which we increment Extra. The invariant is
maintained.

Extra is decremented at time ¢: Then for some
page ¢ that was accessed at time ¢t — 1, the fractional
variable z,; is set to 0. This frees up a space equal
to x4+ - SIZE(g), and furthermore, this space is available
for the rest of the time interval J, ;. Note that at time
t there may already by rounded-up pages in memory.
However, Lemma, 2.1 implies that all those pages will
next be requested during J, ;. Thus the space freed up
by ¢ can be used by all those pages, and the available
space truly becomes at least Extra+z, ¢ -SIZE(q). Also,
when g is requested next, the rounded-up pages free the
required space again so that ¢ can be loaded into cache.
This completes the induction.

It remains to analyze the cost of the rounded
solution. Let E, be the total value by which Extra
is ever incremented, i.e, F, is the sum of the values
S1ZE(p)(1 — zp,) considering all executions of line 5.
Similarly, let E4 be the total value by which Extra is
ever decremented. Compared to OPTiP, our rounded
solution saves a cost of E,, and incurs an extra cost of
E,;. Since E, — E, is equal to the final value of Extra,
which is non-negative, the total cost of the rounded
solution is bounded by

OPT?p — E, + E4 < (1/8)OPTyp. O

2.3 Rounding for the Fault model

We partition the pages into |log,; S|+1 classes, for some
real number d > 1, such that class C;, 0 < i < |log,; S|,
contains pages p with Sd=/ > s1zr(p) > Sd—(+1) . Let
S; be the size of the largest page and s; be the size of
the smallest page in C;.

We first modify the optimal LP relaxation solution
so that Lemma 2.1 holds for pages from the same class.
For every class C; we sweep over the fractional variables
x¢p of pages from C;. Whenever we encounter a variable
Tptt1, 0 < zprr1 < 1, such that p was requested
at time t, we check if there are variables z, 41, with

g € C; and 0 < z4,541 < 1, such that ¢ was requested
at time s and J,,s C Jp;. If so, we increase the value
Zq,s+1 and decrease the value of z, ;11 until 4541 =1
or zp+1 = 0. To maintain the second constraint of
our linear program we also increase the other z, 5, with
5 € Jy,s, and decrease the other x, 7, with ¢ € Jj, 4.

More specifically, let min{(l -
Tg,5+1)SIZE(q), Tp 1 +1S1ZE(p)}. We increase z,3 by
€/s1ze(g), for all 5 € J,s, and decrease z,7 by
€/s1zE(p), for all t € J,;. Clearly, this modification
does not need any additional space because J, s C Jp¢.
The cost of the solution decreases by €/S17E(¢q) and
increases by €/S1ZE(p) < de - S1zE(q). The net increase
is at most (d — 1)e/s1zZE(q). Note that the optimal LP
relaxation solution incurs a cost of €/SI1ZE(q) in loading
an amount of € of page ¢ into cache on request o(s’),
where s’ is the time of the next request to g after s.
We conclude that overall modified solution is feasible
and incurs a cost of at most dOPTr,p.

Given this modified solution, we apply the rounding
algorithm described in the previous section separately
for each class ;. First we round down all z,; with
Zpi < 1—4, for afixed 0 < § < 1. Let OPT¢p be
the resulting solution. Then we execute the rounding
procedure in Figure 1 for each class C;, where in line 4
of the code S is replaced by 45S;.

€ =

THEOREM 2.2. For any ¢ > 0 and 0 < 6 < 1, we can
construct a rounded solution that incurs a cost of at

most 1g‘EOPTLp and uses an additional memory of at

most §(1+1/(v/1+¢€—1))S.

Proof. Consider the rounded solution obtained by ap-
plying the rounding algorithm to OPTI{P for each class
C;. Asin the previous section we can show that, for each
C;, 0 < Extra < §-.5; always and the total extra space
needed by the algorithm in rounding pages from class
C; is no more than Extra. Thus, the total extra space
required is no more than) ,.,5; <§-SY . ,d 7 <
0dS/(d —1). B B

We show that the total cost of the rounded solution
is at most dOPT? 5. Since OPT{p < (d/8)OPTyp, the
theorem then follows by setting d = /1 + €. Consider
a fixed class C;. Let OPTI{’;, be the cost the solution
OPTY{}, incurs in serving requests to pages from class
Ci;. Let E! be the total value by which Extra is
ever incremented i.e, E! is the sum of the values
SIZE(p) (1 — zp,+) considering all executions of line 5 for
class C;. Similarly, let E} be the total value by which
Extra is ever decremented. The total cost incurred by
the rounded solution in serving requests to pages from
C; is at most

(2.1) OPTYL — EL/S; + Ei/s;

< OPTY. - E!/S; +dE}/S;
< OPTYL 4+ (d—1)EL/S;
< dOPTY.

The second inequality follows because E! > Eé. The
third inequality holds because OPT, > E!/S;. The
desired bound follows by summing (2.1) for all classes.
O

2.4 Rounding for the General Model

Let OPTpp denote the fractional optimum (using mem-
ory M). We show how to round the optimum fractional
solution so that, for any € > 0 and 0 < § < 1, the re-
sulting integral solution uses at most 265 (1+6/¢) extra
space, where S is the size of the largest page, and in-
curs a cost of at most, 4}'6 OPTprp. Thus we can achieve
an approximation factor arbitrarily close to 4. Fix a
0 < 6 < 1. We first modify the fractional solution so
that all fractional z,;’s are at least 1 — J; any variable
that is at less than 1 — ¢ is rounded down to 0. This
increases the cost of the solution by at most a factor 1/4
We note that Lemma, 2.1 is false for the general case,
and so the rounding relies on a more global view of the
optimum solution, namely an updown sequence.

DEFINITION 2.1. For any pair of positive reals ¢y, ca,
with ¢1 < ¢, an (c¢1,c2)-updown sequence in the
fractional solution is a pair of disjoint subsequences
(A, B) of fractional pages such that if every page in A is
rounded up and every page in B is rounded down, then
for some fized ¢, ¢; < ¢ < cq, and every instant t, one
of the following is true.

1. The total extra space needed by A is between ¢y and
¢, and the total extra space created by B is at least
c and at most cs.

2. The total extra space needed by A is less than cq,
and that created by B zero.

LEMMA 2.2. Let (A, B) be any (c1, co)-updownsequence
in the fractional optimum. Let ug be the cost saved by
rounding up A and dp be the cost incurred by rounding
down B. Then dp < (¢a/c1)ua.

Proof. We use the fact that if the fractional solution
is optimum, then any “perturbations” to it will never
decrease the cost. Imagine the following perturbation,
where ¢ > 0 is infinitesimally small. For each page
in A, if z is the fraction allocated to any page in A,
then reduce x by ze/e¢;. The additional cost incurred is
ua€/ci. For each page in B, if y is its allocation then
increase y by ye/ca. The cost saved is dpe/ca. By the
definition of an updown sequence, at every time step

one of the two must happen: (i) The space requirement
for A reduces by between € and ce/e; > e. The space
requirement for B increases by between ce/cy < € and e.
(ii) The space requirement for A reduces by some vy < ¢
but the space requirement for B does not increase.

In both cases, the perturbed solution does not need
any new space, so it is feasible. Hence we have

(additional cost incurred) — (cost saved) > 0,

thus implying

use dpe
A TBC 5
C1 C2
Hence dg/co <wua/cy. O

Now we are ready to describe our Rounding Algo-
rithm. Our algorithm is based on the following lemma
whose proof appears later.

LEMMA 2.3. Given any fractional solution and for any
¢ > 0, we can in polynomial time decompose the set
of fractional pages into disjoint (c,4c+ 64S) updownse-
quences (A1, B1),(As, Bs), ..., where S is the size of the
largest page. These sequences also have the following
property. Suppose for some time instant t there is a
j such that the space provided by rounding down pages
in Bj is less than the space required by rounding up the
pages in Aj. Then at that instant t, there are no pages in
Ajt1,Aj42,... and Bji1, Bjyo,. .., and the total space
needed by rounding up pages in Aj, Ajr1,Ajra,..., 18
at most 2¢ + 20S.

The Rounding Algorithm: We use the algorithm of
Lemma, 2.3 to find the disjoint (¢, 4c + 65.5) updownse-
quences (Aj, By), (42, Bs),.... We round up all pages
in the A;’s and round down all pages in the B;’s.

We claim that we finish with an integral solution
of cost at most 4 4+ 64.5/c times the fractional cost we
started with. This is because the cost saved by rounding
up all A;’s is a lower bound on the fractional cost, and
the additional cost incurred by rounding down all the
By’s is at most 4 + 64S/c times larger, see Lemma 2.2.
Since there was a factor 1/4 increase in the cost of
our solution due to rounding down of all variables with
value less than 1—4, the final cost is 4? OPTyp, where
e =605]/c.

We have to analyze the extra space needed by
the new solution. Consider a time instant ¢ and an
index j. If the space provided by rounding down the
pages in B; is at least as large as the space required
by rounding up the pages in A;, then no additional
memory is required in rounding the pages in A; and B;.
Lemma 2.3 assures that if the space provided by pages

in B; is not sufficient, then the total space needed by
the pagesin A;j, Ajy1, Ajq2,...,is also at most 2c+246S.
Substituting ¢ by 645/¢, we obtain an additional space
requirement of 26(1 + 6/¢)S.

Proof of Lemma 2.3. In order to establish Lemma 2.3,
we need to describe a procedure for constructing the
sequences (A;, B;). We need the following two comple-
mentary procedures.

Algorithm Round-up(c): Given a set of fractional
pages, the algorithm tries to produce a subsequence
of pages which, if rounded up, require between ¢ and
2¢ 4+ 20S space. We sweep over the pages from time
t = 0 tot = n. Whenever the space needed by the pages
in the current subsequence is less than ¢, we round up
the page whose next request is farthest in the future.

Algorithm Round-down(c): Given a set of fractional
pages, the algorithm tries to produce a subsequence of
pages which, if rounded down, create between ¢ and
2¢ + 24S space. The algorithm is the same as above,
but pages are rounded down.

Do fori = 1,2, ... until there are no more fractional
pages: Run Round-up(c) and let 4; be the subsequence
produced by it. Remove all pages in A; from the set.
Then run Round-down(2c¢ + 26S) and let B; be the
subsequence produced by it. Remove all pages in B;
from the set. The next lemma shows a useful property
of the above two procedures.

LEMMA 2.4. In a sequence A constructed by Round-
up(c), at any time the space needed by the pages rounded
up is at most 2¢ + 26S. (A similar statement holds for
a sequence B constructed by Round-down(c).)

Proof. While A is constructed, we imagine that a
pointer moves from left to right along the request se-
quence. The pointer is equal to the time step where
Round-up(c) is currently located. Consider any time ¢.
While the pointer is still to the left of ¢, the space needed
at time t by pages rounded up is at most ¢+45. The ad-
ditive term 4.5 is due to the fact that initially, we round
down all fractional pages that are present to an extent
of less than 1 — §; thus for each page rounded up, the
space needed is at most 4.5. We will show that while the
pointer is to the right of ¢, an additional space of at most
¢+4S can be added at time ¢. Assume, on the contrary,
that an additional space of more than ¢ + 4S is added
and let ¢/, t' > t, be the first pointer position when this
happens. At time ¢, Round-up(c) rounds up a page p
that also needs space at time ¢, i.e., p is not requested
between ¢t and t' and, hence, is available for rounding
throughout the interval [¢,¢']. After the rounding of p,
the extra space needed by the rounded up pages at time
t' is no more than ¢+ 4S. Since at time ¢ an additional

space of more than ¢ + §S is needed, there must exist
a page p' that was rounded up at some t", t < t" < #,
such that p’ needs extra space at time ¢ but not at time
t'. Thus p' is requested during [t',#']. This is a con-
tradiction because Round-up(c) always rounds up the
pages whose next request is farthest in the future. That
is, at time #"’ the algorithm would round p instead of p'.
O

To finish the proof of Lemma 2.3, we need to
prove the remaining property of the sequences. By
Lemma 2.4, for any j, the pages rounded up in A; need
an additional space of at most 2¢ + 20S. Suppose j
is such that for some time interval [¢,¢'], pages in B;
provide less than 2¢+ 245 space if rounded down. Then
by the definition of the algorithm Round-down, which is
invoked with parameter 2¢+ 245, the total space needed
by the remaining fractional pages throughout [¢,%'] is
0, i.e., there are no fractional pages in A1, A;42,...
during [t,¢']. Hence 2¢ 4 24S is an upper bound on
the total space required in [t,t'] when rounding up
Aj Ajq,..,0 O

We summarize the main result of this section.
THEOREM 2.3. For any e > 0 and 0 < 6 < 1, we can
construct a rounded solution that incurs a cost of at

most EOPT1p and that uses an additional memory
of at most 20(1 +6/¢)S.

3 A Paradigm for Memory Reduction

In this section we design approximation algorithms that
do not exceed the stated memory. We do this by
pruning our earlier solutions. Note that because of the
unbounded integrality gap mentioned earlier, we have
to compare the cost of the final solution not to OPTyp
(as we did before) but to OPT. In the general model,
we can convert any solution that uses excess memory
to a solution using no extra memory such that the
performance degrades by at most a factor of O(log(M +
()) (in the General Model). We can improve the
guarantee in the special case when the excess memory
used at any time is bounded by a constant number of
memory units; then the cost increase is O(OPT).

3.1 The Basic Framework

Consider an input sequence o = 01,03, ...,0,. Let P be
a paging solution for ¢ obtained via LP rounding (or
in some other manner) that uses some extra pages. For
our purposes, it will be convenient to view the solution
P as a collection of labeled intervals, say {Ji,Jo,...},
where each labeled interval J; is specified as a 3-tuple
of the form J; = (p,t1,t2) indicating that

e page p resides in the memory from time #; through

time to,
® 04,1 =0t,41 =D, and
° O'tgépfOI'tl <t <ts.

We refer to page p as the label of interval J;, and
define the cost of J; to be cosT(p). Let M]Jt] denote
the memory used by the solution P at time ¢ € [1..n];
then M{t] = S1ZE(01) + 32, 4, 1a)e P, 12 <t<t, STZE(P). Let
Elt] = max{M]t] — M,0} denote the excess memory
used by P at time ¢t. We now formally state the memory
reduction problem:

DEFINITION 3.1. (Memory Reduction Problem) Given
a solution P and an excess memory sequence { E[t]}},,
the memory reduction problem is to find a set Y C P of
labeled intervals such that y_ ., 1 vey, ¢ <t<t, STZE(D) >
Elt] for all t € [l.n], and 3, ;. cy COST(p) is
minimized.

The memory reduction problem above can be
viewed as a set covering problem.

DEFINITION 3.2. (Multiset Multicover Problem) An
instance of the multiset multicover problem com-
prises of a ground set U, a family of multisets S =
{51,853, ..., Sm} where each S; is a multiset of U, and
two functions f : U = N and g: S = N. The goal is
to find a subset X C S such that every element u € U
is covered at least f(u) times by the sets in X, and the
cost Y gex 9(S) is minimized.

PROPOSITION 3.1. [13] The multiset multicover prob-
lem has an O(log |U|)-approzimation.

Given our paging solution P, we construct an in-
stance Ip of the multiset multicover problem as follows:

e The ground set U corresponds to time steps
1,2,...,n; define f(t) = E[t] for 1 <t < n.

e For each interval J = (p,t1,t2) in P, there is a set
Sy that comprises of SIZE(p) copies of each element
t that occurs in the set {t | (t; <t < t2)AE[t] > 0}
define g(Sy) = cosT(p).

LeMMA 3.1. Let X be a solution to the instance Ip of
the multiset multicover problem. Then removing all la-
beled intervals J such that S; € X gives a solution of
identical cost to the memory reduction problem. Con-
versely, let Y be a solution to the memory reduction
problem, then the collection of sets Sy such that J €Y,
gives a solution of identical cost to the multiset multi-
cover instance Ip. Thus the cost of optimal solutions
for the two instances is identical.

LEMMA 3.2. Let P be a paging solution for a request
sequence o which may violate the memory constraints at
each time step in an arbitrary manner. Then the cost
of an optimal solution to the memory reduction problem
defined by P is bounded by OPT(c), the cost of the
optimal paging solution on o.

Combining Proposition 3.1 with Lemmas 3.1
and 3.2, we can conclude the following theorem.

THEOREM 3.1. Let P be a paging solution for a request
sequence o which may arbitrarily violate the memory
constraints. Then in polynomial time we can transform
P into a solution P' which never violates the memory
constraint and has cost Cpr < Cp + O(OPT(0)logn)
where n is the length of the request sequence.

While the above theorem yields a nice tool for relat-
ing the cost of memory reduction on an arbitrary solu-
tion to the optimal paging cost, unfortunately, the logn
factor depends on the length of the paging sequence. We
next show how this factor can be improved to an O(1)
factor when the total amount of excess memory used at
any step is O(1), and to an O(log(M + C)) factor in
general.

3.2 O(1) Excess Units of Memory

We now examine the case when at any time step the
total amount of excess memory used is at most « units,
for some constant a. We will show that a simple
dynamic programming approach can solve the memory
reduction problem at a total cost of «OPT (o).

We first describe an optimal procedure to perform
memory reduction when the excess memory used at
any step is at most 1 unit. We maintain an array
S[1..n] where S[t] stores the optimal cost of memory
reduction on solution P restricted to time steps t
through n. Initialize S[n] = 0 and suppose we have
already computed the array entries S[t+1] through S[n].
To compute S[t], we proceed as follows. Let I; denote
all intervals J = (p,t1,t2) € P such that t; <t < ty. If
E[t] = 0 then S[t] = S[t + 1], otherwise

min
(pt1,t2)ELL

S[t] = {cosT(p) + S[t2 + 1]}.

Thus S[1] contains the optimal cost of memory reduc-
tion on the entire sequence o. This computation can
be performed in time O(n?). Finally, in order to obtain
the actual set of pages evicted in the optimal memory
reduction, we maintain an auxiliary array R[1..n]. If
S[t] = S[t + 1], then R[t] = @, otherwise R[t] stores the
page p chosen for eviction at time ¢; this is the page that
yields the least value in the computation of S[t].

Finally, in order to deal with an excess memory of
upto «a units, we can simply invoke the above procedure
a times. This gives us the following theorem.

THEOREM 3.2. Let P be a paging solution for a request
sequence o which may violate the memory constraints
at each time step by at most o units of memory. Then
in polynomial time we can transform P into another
solution P' which never violates the memory constraint
and has cost Cpr < Cp + aOPT (o).

3.3 The General Model

The logn factor in Theorem 3.1 is a consequence of
the large universe size (an element for every time step)
that results due to the global nature of our construction.
In order to get around this obstacle, we create a more
“localized” reduction where we transform the memory
reduction problem into several instances of multiset
multicover problem, each with a small universe. In
particular, we will partition our input sequence into
blocks of length O((MC)°™M) and create an instance of
the multiset multicover problem for each such block. In
doing so we explicitly use the structure underlying the
LP solution and our rounding scheme, described earlier.

Consider an LP solution; it is specified as a sequence
{zp+}7—, for each page p in the input sequence. To
begin with, we make the simplifying assumption that
each variable z,: satisfies the condition that z,: ¢
(1 — 1/M,1), that is, no fractional variable takes a
value “too close” to 1. We will later show how to
handle the situation when this is not the case. Now
observe that in our rounding algorithms described in
the previous section, the only time ¢ when a memory
violation might be introduced is when we round up some
positive fractional variable z,; (implicitly rounding up
Tpit1, .- Tp—1 where t' is the first time that p is
accessed after time ¢t — 1). Thus we know that the cost
incurred by the LP solution at time #' is cosT(p)(1 —
xpy) > 1/M. Tt will be convenient for our purposes to
imagine this cost being paid at time t itself. Now to
transform our memory reduction problem to a multiset
multicover problem, we only consider all such times ¢
at which our rounding algorithm rounds upwards and
creates a demand for excess memory. Let 7" denote the
set of all such time steps. It is easy to verify that a
sequence of page evictions makes P satisfy the memory
constraints for each ¢ € [1..n] if and only if it does so for
each t € T. Let n’ denote |T| and assume w.l.o.g. that
T =1{1,2,..,n'}. As before, we define M[t] and E[t] for
t € T, and proceed as follows:

1. Partition T into contiguous blocks of length M?2C,
except possibly the last one.

2. Create a multiset multicover instance for each block
as described earlier in Section 3.1.

3. Solve each instance created above and take the
intervals corresponding to the union of the chosen
sets as the final solution.

Since the universe size is bounded by M?2C for each
block, we get an O(log(M + C)) approximation within
each block. On the other hand, observe that solving the
multiset multicover instances independently may lead
to a solution that is potentially much more expensive
than a global optimal solution. This is due to the fact
that a set may cut across many blocks. In particular,
the extra cost incurred due to this partitioning scheme
could be as large as the total cost of pages in the
memory at the moment when a block ends, summed
over all the blocks. However notice that since the total
memory used at any time by our rounding of the LP
is O(M), the extra cost incurred per block due to the
partitioning can be bounded by O(MC). On the other
hand, the LP solution itself incurs a cost of Q(MC)
in each block. Thus this extra cost incurred can be
amortized over the cost of the LP solution (and hence
OPT(0)) itself. This gives us an algorithm that will
perform the desired memory reduction at a total cost of
O(OPT(o)log(MC(C)).

Finally, we need to show how to handle the case
when some fractional variables take values in the open
interval (1 —1/M,1). We start by rounding up all such
variables, and in addition, round down any variables
that have value less than 1/2. The rounding up step cre-
ates a violation of the memory constraint by at most 1
unit of memory at any time ¢t. While the rounding down
increases the cost of our solution by at most a factor of
two. Next we use the dynamic programming algorithm
described in Section 3.2 to create a new solution that
satisfies the memory constraints exactly and any frac-
tional variables remaining satisfy the desired property of
not taking a value in the interval (1—1/M,1). The cost
incurred in this step is O(OPT(c)). We now proceed
as described above. Putting it all together,

THEOREM 3.3. Let P be a paging solution for a request
sequence o which may violate the memory constraints at
each time step in an arbitrary manner. Then in poly-
nomial time we can transform P into another solution
P’ which never violates the memory constraint and has
cost Cpr < Cp + O(OPT (o) log(M + C)).

Combining the above theorem with the rounding
procedure of Section 2.4, we get:

THEOREM 3.4. The caching problem in the General
Model has an O(log(M + C'))-approzimation.

4 A Randomized Online Algorithm for the Bit
Model

In this section we use the intuition derived from our
offline algorithms to derive an online algorithm for the
Bit Model. If OPT denotes the optimum offline cost
using memory Mg, then our online algorithm achieves
cost O(log(1 4+ 1/¢))OPT using excess memory ¢ - M,
as long as ¢- M > S, where S is the size of the largest
page. This matches the best such result known for the
uniform case (Young [15], modifying an analysis of Fiat
et al. [5]).

Our online algorithm for the Bit Model is a modi-
fication of the Marking algorithm due to Fiat et al. [5],
which we review briefly. The original Marking algorithm
works for pages of uniform size and operates in a series
of phases. At the beginning of each phase, all pages are
unmarked. Whenever a page is requested, it is marked.
If there is a request to a page not in cache, the algorithm
chooses a page uniformly at random for among the un-
marked pages in cache and evicts it. A phase ends when
there is a request to a page not in cache and there are
no unmarked pages in cache. At that point all marks
are erased and a new phase is started.

The online algorithm for the Bit Model makes use
of an auxiliary algorithm. This algorithm assumes that
pages consist of infinitesimally small pages of size e that
can be loaded an evicted independently. We refer to
these subpages as e-pages.

Algorithm Fractional: Given a request sequence to
the original pages, replace each request to a page p by a
sequence of requests to the corresponding e-pages. Run
the Marking algorithm on that request sequence but
with the following modification: A phase ends when,
for the first time, there is a request to an e-page not
in cache and the size of the page the e-page belongs to,
plus the total size of the marked pages in cache exceeds
the cache capacity. At that time evict pages that were
not requested in the phase and use the free space to load
the first missing pages in the next phase.

The analysis given by Young [15] for the Marking
algorithm implies that if M —S > Mg, then Fractional

. e . M—S
achieves a competitive ratio of 21In Tes—wg t 1 when
#:}SMOH > e and 2 otherwise. Here M and M,z de-

note the cache size of the online and offline algorithms,
respectively.

The integral algorithm for the Bit model divides
the pages into [log; S|+ 1 classes, for some d > 1, such
that class C;, 0 < i < |log,; S|, contains pages p with
Sd~% > size(p) > Sd~(+V. Let S; be the size of the
largest page and s; be the size of the smallest page in
C';. In the following we call a page old if it was requested
in the previous phase but has not been requested in the

10

current phase.

Algorithm Integral: Given a request sequence, the
algorithm executes a marking strategy similar to Frac-
tional. At any point in time the algorithm keeps track
of the moves Fractional would do assuming a cache of
capacity M — %S' If there is a request to a page p not
in cache, the algorithm determines the total amount OF
of old pages from C; that Fractional does not have in
cache when all requests to the e-pages of p are served.
Let O! be the total amount of old pages that Integral
does not have in cache. Integral chooses [(OF —01)/S;]
pages uniformly at random from among the unmarked
(i.e. old) pages in C; that are in cache and loads p.

We can show that the expected cost incurred by
Integral is at most d times the cost incurred by Frac-
tional. Algorithm Integral may need more space than
Fractional run on a cache of size M — d;flS. This
is because, for each class C;, Integral might evict less
than Fractional. However, for each C;, the difference
is no more than S;. Thus, Integral needs at most
Sis0Si = SY50d7t < 7225 more space than Frac-
tional run on a cache of size M — 2. S.

THEOREM 4.1. Letd > 1 and M' = M — (14 74)S If

Mog < M', then Integral achieves a competitive ratio of

2d1n ﬁ + d when ﬁ > e and 2d otherwise.
off off

5 Concluding Remarks

The hardness results for caching problems are very in-
conclusive. The NP-hardness result for the Bit model
uses a reduction from PARTITION, which has pseu-
dopolynomial algorithms. Thus a similar algorithm may
well exist for the Bit model. We do not know whether
the Fault model is NP-hard.

We imagine that the requirement for extra memory
in our O(1)-approximation algorithm for General Model
could be removed. We showed in Section 3 a paradigm
for pruning a solution so as to reduce its memory
requirement. This relies on a special kind of set cover
problem that may well have an O(1)-approximation. If
so, we could start with the trivial solution (keep all
pages in memory as long as they still have a future
reference; possibly exceeding the cache capacity), and
apply the memory reduction technique to get an O(1)-
approximation.

Finally, the structure exposed by our rounding tech-
nique —specifically, the updown sequences — may pro-
vide insight into how to design a good online algorithm.

References

[1] D. Achlioptas, M. Chrobak and J. Noga. Com-
petitive analysis of randomized paging algorithms.

2]

(3]

[4]

[5]

[6]

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Proc. Fourth Annual European Symp. on Algorithms
(ESA), Springer LNCS, Vol. 1136, 419-430, 1996.
L.A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Systems Journal, 5:78-
101, 1966.

A. Borodin, S. Irani, P. Raghavan and B. Schieber.
Competitive paging with locality of reference. Journal
on Computer and System Sciences, 50:244-258, 1995.
M. Chrobak, H. Karloff, T. Paye and S. Vishwanathan.
New results on the server problem. SIAM Journal on
Discrete Mathematics, 4:172-181, 1991.

A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch,
D.D. Sleator and N.E. Young. Competitive paging al-
gorithms. Journal of Algorithms, 12:685-699, 1991.

A. Fiat and Z. Rosen. Experimental studies of access
graph based heuristics: Beating the LRU standard.
Proc. 8th Annual ACM-SIAM Symp. on Discrete Al-
gorithms, 63-72, 1997.

M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
completeness. Freeman, 1979.

S. Irani. Page replacement with multi-size pages and
applications to Web caching. Proc. 29th Annual ACM
Symp. on Theory of Computing, 701-710, 1997.

S. Irani and A.R. Karlin. Online computation. In Ap-
prozimation Algorithms for NP-hard Problems. D. S.
Hochbaum (Editor). PWS, Boston, MA, 1996.

S. Irani, A.R. Karlin and S. Phillips. Strongly compet-
itive algorithms for paging with locality of reference.
SIAM Journal on Computing, 25:477-497, 1996.

A. Karlin, S. Phillips and P. Raghavan. Markov paging.
Proc. 83rd Annual Symp. on Foundations of Computer
Science, 24-27, 1992.

L.A. McGeoch and D.D. Sleator. A strongly competi-
tive randomized paging algorithm. Algorithmica, 6:816-
825, 1991.

S. Rajagopalan and V. Vazirani. Primal-dual RNC
approximation algorithms for (multi)-set (multi)-cover
and covering integer programs. Proc. 34th Annual
Symp. on Foundations of Computer Science, 322-331,
1993.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of
list update and paging rules. Communication of the
ACM, 28:202-208, 1985.

N. Young. On-line caching as cache size varies. Proc.
2nd Annual ACM-SIAM Symp. on Discrete Algo-
rithms, 241-250, 1991.

N. Young. The k-server dual and loose competitiveness
for paging. Algorithmica, 11:525-541, 1994.

N.E. Young. Online file caching. Proc. 9th Annual
ACM-SIAM Symp. on Discrete Algorithms, 82-86,
1998.

