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Abstract

We study network design games wherself-interested agents have to form a network by purchasing
links from a given set of edges. We consider Shapley cosirghanechanisms that split the cost of an
edge in a fair manner among the agents using the edge. Itig&mein that the price of anarchy of these
games is as high as Therefore, recent research has focused on evaluatingiteqf stability, i.e. the
cost of the best Nash equilibrium relative to the socialroptin.

In this paper we investigate to which extent coordinatioroagiagents can improve the quality of
solutions. We resort to the conceptsifong Nash equilibriawhich were introduced by Aumann and are
resilient to deviations by coalitions of agents. We analymeprice of anarchy of strong Nash equilibria
and develop lower and upper bounds for unweighted and wesigiames in both directed and undirected
graphs. These bounds are tight or nearly tight for many s@nalt shows that using coordination, the
price of anarchy drops from linear to logarithmic bounds.

We complement these results by also proving the first supestant lower bound on the price of sta-
bility of standard equilibria (without coordination) in dinected graphs. More specifically, we show a
lower bound of2(log W/ log log W) for weighted games, whefi@ is the total weight of all the agents.
This almost matches the known upper bounddfog 7). Our results imply that, for most settings, the
worst-case performance ratios of strong coordinated imjiailare essentially always as good as the per-
formance ratios of the best equilibria achievable withagrdination. These settings include unweighted
games in directed graphs as well as weighted games in batteli and undirected graphs.
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1 Introduction

Communication networks are pervasive and critical to modeciety. Nonetheless, the formation and evolu-
tion of large networks is not well understood, a major redseing that these networks typically are not built
by a central authority but rather by many economic agentshitaee selfish interests. For this reason, research
on network design has focused on game-theoretic approasieeshe past years, see e.g. [2, 3,5, 6, 7, 8, 9,
11, 14, 22, 23].

We study network design games that have received a lot aftitterecently [2, 3, 6, 7, 13, 16] and are
simple, yet powerful enough to capture the two most impamaiectives of agents: connection establishment
and cost minimization. Consider a directed or undirectegplgty where each edgehas a non-negative cost
c(e). There aren agents, each of which has to connect a set of terminals. Témetadorm a network by
selecting edges. A stratedy of an agent is a set of edges connecting the desired terminals. The €ost o
the edges used by all the agents has to be covered. A fundancest sharing mechanism &hapley cost
sharing which was proposed by Anshelevich et al. [3] for networkigiegames and has been studied with
respect to other networking problems as well [12, 15]. Infé#acost sharing, the cost of an edge is shared
in a fair manner among the agents using that edge. naveighted gam# k& agents use an edgan their
strategies, then each of these agents pays a shafe)gk. In aweighted gameeach agent has a weight
w; and contributes a share ofe)w; /W,, whereW. is the total weight of agents usirg We are interested
in stable networks where no agent has the incentive to deWiain its strategy. Stability is modeled by
considering Nash equilibria. A combinatigh= (S, ..., S,) of strategies forms a Nash equilibrium if no
agent has a better strategy with a strictly smaller cost thal other agents adhere to their strategies. A widely
accepted performance measure to evaluate the quality ¢f &tslibria is theprice of anarchy[19], which is
the maximum ratio of the total cost incurred by any Nash dopiiim to the cost spent by the social optimum.
Unfortunately, for our network design games, the price @rahy is as high as. As an alternative quality
measure, Anshelevich et al. [3] proposed piniee of stabilitywhich is the ratio of the best Nash equilibrium
relative to the social optimum. Anshelevich et al. [3] prdtkat the price of stability in unweighted network
design games i© (log n).

The scenario described so far assumes that agents are ¢eljnplen-cooperative, isolated entities. How-
ever for long-term decisions such as network design, gieelay's communication infrastructure, this as-
sumption is not entirely realistic. It is more natural thgeats will discuss possible strategies and, as in other
economic markets, form coalitions taking strategic actitrat are beneficial to all members of the group. In
such cooperative environments we seek again stable swutin this context, Aumann [4] in 1959 introduced
the concept o$trong Nash equilibriawhich ensure stability against deviations by every coratge coalition
of agents. More specifically, no coalition can cooperagivédviate in a way that benefits all its members,
taking the actions of the agents outside the coalition asngiWith respect to network design, an important
question is if coordination among agents yields strictljtdresolutions. Is it possible to achieve significant
improvements? We prove that this is the case. When coordimat allowed, the price of anarchy of strong
Nash equilibria drops from to O(logn) in unweighted games. Similar improvements show in weighted
games. Obviously, any strong Nash equilibrium is a stan8i&sh equilibrium, which is immune to devia-
tions of single agents. Hence strong Nash equilibria cabadietter than the best standard Nash equilibria.
A second natural question is how strong Nash equilibria ratétive to the best standard Nash equilibrium.
When coordination is allowed, is the worst-case perforreanicstable states close to that of the best stable
states achievable without cooperation? We answer thistiqnds the affirmative in terms of anarchy and
stability measures. For most settings, the price of anaoftstrong Nash equilibria is essentially always as
good as the corresponding stability bounds of standardilbdai These settings include unweighted games
in directed graphs as well as weighted games in both diresntddundirected graphs.

Previous results: Research on the network design games defined above waseimhitiy Anshelevich et



al. [2]. In this first paper the authors considered genersi sbaring schemes that are not restricted to Shapley
mechanisms. Anshelevich et al. studied undirected grapth$iist addressed scenarios where each agent has
to connect one terminal to a common destination. They dedigtash equilibria whose cost is equal to the
cost of the optimum. Furthermore Ashelevich et al. [2] iigeged the general scenario that each agent has
to connect a set of terminals. In this case there are gragtisdthnot admit Nash equilibria. The authors
therefore studiedv-approximate Nash equilibrian which no agent can improve its cost by a factor of more
thana, wherea > 1. Anshelevich et al. proved that there always exisBsapproximate Nash equilibrium
whose cost is equal to that of the optimum. Furthermore, tlegived a polynomial time algorithm that gives
a(4.65 + e)-approximate Nash equilibrium whose cost is twice the optim

In the following two paragraphs we describe the results kmfawnetwork design games with Shapley cost
sharing. The setting was introduced in a second paper byeélaghh et al. [3] who first analyzed unweighted
games. Using elegant potential function arguments based jpotential by Monderer and Shapley [20],
the authors proved that every directed or undirected gralphita a Nash equilibrium and that the price of
stability is upper bounded b§f (n). Here H(n) = >"" , 1/i is thenth Harmonic number, which is closely
approximated by the natural logarithm, ile(n + 1) < H(n) < Inn + 1. The upper bound off (n) on
the price of stability is tight for directed graphs. For urdited graphs Anshelevich et al. [3] showed a lower
bound of 4/3 on the price of stability; the lower bound comstiion uses two agents that have to establish
a connection to a common destination. Additionally, Anstieh et al [3] considered weighted games and
showed the existence of Nash equilibria in two-agent gamesdirected graphs they gave a lower bound of
Q(max{n,log W}) on the price of stability, wher® is the total weight of all the agents.

Chen and Roughgarden [7] further investigated weightedegaim directed graphs. They showed that
there are graphs that do not admit Nash equilibria. Chen andjRyarden then demonstrated that, for any
a = Q(log wmax), a-approximate Nash equilibria do exist and that the pricetalbiity is O((log W)/«).
Herew,.x IS the maximum weight of any agent. These trade-offs ardyggint. Further work on unweighted
games was presented by Fiat et al. [13] and Chekuri et al. [6].

All the above results hold for standard Nash equilibria withcoordination. The concept of strong Nash
equilibria has been the subject of extensive studies in #meegtheoretic literature. Recent research in game
theory and economics has also investigated strong Naslibeiguin the context of networking problems.

A survey article presenting literature on network formatio cooperative games was written by van den
Nouweland [21]. More concretely, the existence of netwdHeg are stable against changes in links by any
coalition is examined in [17]. Furthermore, Andelman et[4].analyzed strong equilibria with respect to
scheduling as well as a different class of network creatmes in which links may be formed between any
pair of agents. For the latter games, strong Nash equildmfaeve a constant price of anarchy.

We became aware that, independent of our work, very recé&phtein et al. [10] studied strong Nash
equilibria for unweighted network design games in direcgedphs. They assume that each agent has to
connect a pair of terminals and consider Shapley as well asrgkcost sharing mechanisms. Epstein et
al. observe that strong Nash equilibria do not always exidttaen present topological characterizations for
equilibrium existence. They show that if each agent has tmect a terminal to a common destination, each
series parallel graph has a strong Nash equilibrium. Ifteatyi terminal pairs are allowed, every extension
parallel graph admits a strong Nash equilibrium when Shapbst sharing is adopted. Furthermore Epstein
et al. analyze the quality of strong Nash equilibria, shgranbound 09 (log n) on the price of anarchy for
Shapley cost sharing and a bound of 1 for general cost shacimgmes when each agent has to connect to a
common destination.

Our contribution: This paper presents an in-depth study of network design gaviitk Shapley cost sharing
when coordination among agents is allowed. We present ugpetdiower bounds on the price of anarchy
achieved by strong Nash equilibria. We study scenarios witlestricted coordination, i.e. coalitions of any
size (or weight) may be formed; we also consider settingsavtiee size (or weight) of a coalition is limited.



The first part of the paper addresses unweighted networlgulegimes. We first observe that there are
graphs that do not admit strong Nash equilibria and then gisafficient existence condition. More specif-
ically, we show that-approximate strong Nash equilibria exist in any directediredirected graph, for any
a > H(c), if coalitions of size up te are allowedl < ¢ < n. Again, H(c) is thecth Harmonic number. An
a-approximate strong Nash equilibrium, far> 1, is one where no coalition (of prescribed size or weight)
can deviate such that every member of the coalition impragesst by a factor of more tham.

We next prove that the price of anarchy of strong Nash eqialils upper bounded byi(n) ~ Inn,
allowing coalitions of any size. This upper bound holds foy directed or undirected graph that admits a
strong Nash equilibrium. Hence, using coordination, waeahan exponential improvement in terms of the
price of anarchy, compared to non-cooperative environsiéfe show that the upper bound@fn) is tight
in directed graphs. For undirected graphs we develop a Ibeend ofQ2(y/log n) on the price of anarchy.
These results can be generalizecvtapproximate strong Nash equilibria, for any> 1. In this case all the
upper and lower bounds multiply by a factor®f For the generalized setting that coalitions of size updce
allowed,1 < ¢ < n, we prove an upper bound ofZ H (c) on the price of anarchy af-approximate strong
Nash equilibria. Again, this bound holds for any directedundirected graph that admits arapproximate
strong Nash equilibrium, for some > 1, and not just for the range > H(c). Suppose that = 1. If c = 1,
we obtain the anarchy ratio af achieved by standard equilibria. df= n, we obtain the best ratio df (n).
SinceH (n) is a lower bound on the price of stability of (standard) Naghilkbria in directed graphs [3], we
conclude that in directed graphs the worst-case performaaiios of strong Nash equilibria are essentially
always as good as the performance ratios achievable by thetamdard Nash equilibria.

In the second part of the paper we extend the above resulteighted network design games. We
first give a sufficient condition for the existence @fapproximate strong Nash equilibria. We then prove
that in directed and undirected graphs the price of anarétsgrong Nash equilibria is at mogt+ In W if
the formation of coalitions is not restricted. Héré is the sum of the weights of all agents. For directed
graphs we show a matching lower bound(dflog 1W'). For undirected graphs we prove a lower bound of
Q(ylog W). Again, for anya > 1, the results extend ta-approximate strong Nash equilibria, where the
lower and upper bounds simply multiply lay When coordination among agents is limited, we consider two
scenarios: (1) As usual, the number of agents in a coalitightie limited. (2) The sum of the weights of the
agents forming a coalition may be limited so that agents gif Weight cannot leave agents of low weight in
costly configurations. For this general setting we presennlds trading the price of anarchy vs. the coalition
size or weight. Furthermore, we prove a lower bound on theepof stability of standard Nash equilibria in
undirected graphs. We construct a family of graphs in whieh grice of stability iX2(log W/ log log W).

No super-constant lower bound was known for undirected ligapeither for weighted nor for unweighted
games. Our lower bound holds even if every agent has to coonca pair of terminals. However, individual
terminal pairs are allowed. Together with the known loweut of 2(log 1) for directed graphs [3], we
conclude that, in undirected as well as directed graphschpdounds of strong Nash equilibria essentially
match the stability bounds of standard Nash equilibria.

We remark that our set of results is mostly disjoint from thatEpstein et al. [10]. The results provided
in both [10] and this paper are the fact that strong Nash #gaildo not always exist, the upper bound of
2 H (c) and the lower bound off (n) on the price of anarchy in unweighted games. While the uppant
proof by Epstein et al. is based on the potential function mniierer and Shapley, in our paper we use new
combinatorial arguments to establish the result. Genesgleaking, our study here is more comprehensive
in that we allow each agent to connect set of terminals, denslirected and undirected graphs as well as
unweighted and weighted games.

Analysis techniques:As mentioned above, our upper bounds on the price of anarehgchieved using new
combinatorial arguments that do not rely on potential fioms: Starting from a strong Nash equilibrium, we
perform a sequence of specific strategy changes for varyaegcealitions. For each strategy change there



exists one unsatisfied agent whose original cost can be leduethtive to the optimum. From a technical point

of view our strongest contribution are the lower bounds foditected graphs. We present a new recursive
framework for constructing lower bounds in network desigmgs. Applying the recursive construction for

varying parameters, we are able to obtain anarchy as wehbgity bounds in both unweighted and weighted

games. The protocol could also be applied to derive boundiiriected graphs but simpler constructions work

in the directed case. While the same recursive frameworkbeagpplied to construct graphs for anarchy and
stability bounds, the analyses of the graphs differ. Toldista anarchy bounds we have to prove that no
coalition can deviate, which turns out to be a non-triviaktdoecause all possible coalitions and strategy
changes over the recursive levels must be examined. Tolisktabstability bound, we have to show that no

better Nash equilibria exist. In fact, we will prove that @uaphs admit only one Nash equilibrium.

2 Problem statement and definitions

Network design games:Consider a grapliz = (V, E, ¢) with a non-negative cost function: £ — R9r
defined on the edges. Graghmay be directed or undirected as we will study network desigboth di-
rected and undirected graphs. Associated Withren selfish agents, each of which has certain connectivity
requirements. More specifically, |18 C V be the set of terminals that agentvishes to connect. I¢7 is

a directed graph, then for (selected) terminal paijts € T; we additionally have to specify which direction
between the pair should be established. A strategy of art agemsists of a se$; C F of edges satisfying
the connection requirements. df is undirected,S; is in fact a minimal tree connectirifj. A combinationS

of strategies is the vectd = (51, ..., 5,) of individual agent strategies. Edges used by the agents toav
be paid for. We consider Shapley cost sharing mechanismspliethe cost:(e) of an edge: in a fair manner
among the agents using that edge. Inuaweighted gamef k£ agents use an edgethen each of thé agents
pays a share aof(e) /k for that edge. Thus, for a combinatishof strategies, the total cost of agens equal

to costi(S) = ., cle)/[{J : e € Sj}|. Inaweighted gameach agent has a weighty; and pays a share
proportional to its weight. For any edge= S;, agent; pays a share of(e)w; /W., whereW, = Zj:eesj w;

is the total weight of the agenjsusinge in their strategies. Formally, the cost of ageim a weighted game
is costi(S) = ) .cs, cle)wi/We.

Strong Nash equilibria: We are interested in stable solutions where agents havecreative to deviate from
their strategies. Previous work has considered Nash bgaifihat are resilient to deviations of single agents.
A weakness of Nash equilibria is their vulnerability to d&ions by coalitions of agents. To overcome this
problem, Aumann [4] defined the notion sfrong Nash equilibria A strong Nash equilibrium is resilient
to deviations of coalitions, i.e. there exists no coalit@ragents that can jointly change strategies such that
every agent in the coalition has a strictly smaller costnfaly, let I be a non-empty coalition of agents. For
a combinationS of strategies, letS; be the projection ofS on I, i.e. S; are the strategies of agents: .
Similarly, S_; represents the strategies of agengsI. For coalition, letS; be another choice of strategies.
A combinationS of strategies forms a strong Nash equilibrium if, for no rempty coalition/, there exists

a strategy chang8; such thatcost;(S;,S_r) < cost;(S), for all agentsi € I. Note that a standard Nash
equilibrium is a strong Nash equilibrium where only coailits of size one are allowed. In this spirit one can
consider generalized settings in which coalitions of siz@astc are permitted] < ¢ < n. As for weighted
games we will also be interested in scenarios where thewamht of agents forming a coalition is limited.
This ensures that agents of high weight cannot impose tod maratrol on agents outside a coalition.

As we shall see, strong Nash equilibria do not always exist.tlis reason we relax the notion of stabil-
ity, calling a combination of strategies stable if agentsncd improve their cost by a factor of more than
More specifically, for a real value > 1, a combinationS of strategies forms an-approximate strong Nash
equilibrium if, for no non-empty coalitiod, there exists a strategy chang§é such thatcost;(S},S_1) <
cost;(S)/a, for all agentsi € I. Similarly, we can define--approximate Nash equilibria when the size or



weight of a coalition is limited. We remark that in the coriteka-approximate strong equilibria another defi-
nition seems reasonable. We could call a combination diegfies arv-approximate strong Nash equilibrium
if no coalition can improve it$otal cost by a factor of more tham, while still requiring that every agent of
the coalition performs strictly better than before. Obwlguana-approximate Nash equilibrium according
this this second definition is am-approximate equilibrium under the former definition, bat wice versa.
Thus, our original definition allows for more configuratiorepresenting equilibrium states. For this reason
and because our first definition requires a sufficiently highddit foreachagent of a coalition to perform a
strategy change, we adopt the original definition in thisgpaplowever, all the results that we will present in
the following sections also hold for the second definitionvad.

Performance measures:We are interested in the performance of strong Nash edqiailitetative to the so-
cial optimum. Letcost(S) = >, cost;(S) be the total cost of all the agents and ¢ekt(OPT) be the
cost of the globally optimal solution. We say that strong INaguilibria achieve a price of anarchy ef if
maxg % < ¢, where the maximum is taken over all strong Nash equilibiihe notion can be ex-
tended to {-approximate) strong Nash equilibria with coalitions wohiied size or weight. In this paper we
will also be interested in thgrice of stabilityof standard Nash equilibria where coordination among agient

not allowed. The price of stability isiing %, where the minimum is taken over all Nash equilibria.

3 Upper bounds for unweighted games

We study the existence of strong Nash equilibria and theeldpwpper bounds on the price of anarchy. The
proof of the following proposition is presented in the Apden

Proposition 1 There exist directed and undirected graphs that do not adtruhg Nash equilibria.

Theorem 1 In any directed or undirected grapla-approximate strong Nash equilibria exist, for any>
H(c), if coalitions of size up te are allowed.

Proof. We use a classical potential function by Monderer and Skaj@@] to show the existence af-
approximate strong Nash equilibria. Given a graph= (V, E, ¢) and a combinatios = (S1,...,S,) of
strategies, let. be the number of agents currently using edge E in their strategies, i.e1, = |[{i : e € S;}|.
The potential is defined a&(S) = > cpc(e)H(n.). We will show that whileS does not form an-
approximate strong Nash equilibrium, when allowing caathi$ of size up ta:, any a-improvement move
strictly decreases the potential. AAmprovement move, for a coalitiohwith |I| < ¢, is a strategy chang®}
such thatcost; (S}, S—1) < cost;(S)/«, for any agent € I. Suppose that we perform a sequence of such
improvement moves starting from the social optimum. As thieptial is upper bounded b¥ (n) cost(OPT)
and lower bounded by 0, the sequence of improvement moveilsamugerge to an-approximate strong Nash
equilibrium.

We analyze am-improvement move, performed by a coalitiérwith |I| < c. The strategy changs;
of I can be viewed as being executed in two steps. (1) In a firstagjepts; € I drop all the edges used in
strategiesS;. At this point no agent € [ shares the cost of any edge. (2) In a second step agjenisjoin
the edges they want to use in their new stratediesLet E; be the set of edges dropped in step (1), and let
E, be the set of edges added in step (2). These edge sets neegldisjoint. For any € E, letn! be the
number of agents sharingjust after step (1) and let? be the number of agents sharia@fter step (2). The
absolute value of the cost reduction experienced Hye to step (1) is

1
cost™ = Z c(e)ne ne’

n
ecFEy ¢




because € E is dropped by, —n! agents that each paid a share@f) /n.. The value of this cost reduction
is equal to the cost of in the original configuration, i.ecost™ = )", _; cost;(S), because after step (1) the
cost of is 0. The cost increase éfdue to step (2) is

2 _ 1
n:—n
costt = E cle)—=———=<,

2
n
ecFo €

because: € E, is bought byn? — n! agentsi € I who payc(e)/n? each. This cost increase is equal to
the cost off in the new configuration, i.e:ost™ = 3", ; cost;(S;,S-1), because the cost dfwas 0 before
step (2) and the strategy change is complete after step &Nglthe definition of am-improvement move we
have) ", ; cost;i(S},S_1) < > ;e costi(S)/a and hence

acost™ — cost™ < 0. Q)

Next we consider the potential changeb. The potential change stems from edges F; U E5 where cost

shares change. Ldi~ be the absolute value of the potential drop due to step (IDefrhprovement move

and letd™ be the potential increase due to step (2). We will shetv~ < —cost™ and®™ < acost™. This

impliesA® = —®~ + &+ < —cost™ + acost™ and using (1) we obtaih® < 0, which is to be proven.
To verify —®~ < —cost™ we observe

o~ = (&) (Hne) — Hnl)) > 3 cle)

eckn eckn

The inequality holds becaugé(n.) — H(nl) =1/(nl +1) +1/(nl +2) + ...+ 1/nc > (ne — nl)/ne. It
remains to prové>™ < acostt. The potential increase is given By = > . c(e)(H (n?) — H(n})). We

e
show that for any € Fj,
2 1

Ne — ne. (2)

H(n?) — H(ng) < H(n? —ny)——
ne
The desired inequality for the potential increase therofiedl because? — n! < c as at most agents can join
any edge in step (2) anll (¢) < «. The expressions in (2) are

1 1 1
H(n?)—H(n}!) = et =
2 1 2 1
n,—n 1 1 n,—n
H 2 1\ e _ 1 - o e e
We compare théth terms of these expressions, foe= 1, ..., n2—n!, and establish (2) by provi% < %
% This is equivalent to showin@ < n!(n3—nl)—knl, and this holds becaugék) = nl(n3—nl)—kn!
is decreasing i and f (n? — nl) = 0. i

Theorem 2 In any directed or undirected graph and for any> 1, the price of anarchy of-approximate
strong Nash equilibria is upper bounded 8y H (c) if coalitions of size up te are allowed.

If there are no restrictions on the coalition size and werierésted in true strong Nash equilibria (he= 1),
we obtain:

Corollary 1 In any directed or undirected graph the price of anarchy obrsgj Nash equilibria is upper
bounded by (n).



Proof of Theorem 2. Get(G be a graph that admitg-approximate strong Nash equilibria, for some> 1,
and letS = (S5, ...,S,) be such an equilibrium state. The basic idea of the proof i®tsider all coalitions

of size exactly. For each coalitiod we perform a process consisting of exaetlsteps in which the agents of
1 try to buy the edges of the social optimum. At the end of eagp skactly one agent will leave the process.
Making use of the fact that it§ no coalition of size up t@ can improve its cost by a factor of more than
we will be able to upper boundost;(S) of the agent leaving the process relative to the cost of the social
optimum. More specifically, we will prove that for any coit I of size exactly,

Z costi(S) < aH (c)cost(OPT). (3)
il
Let Z be the set of all coalitions of size exactly Summing (3) over all th¢”) coalitionsI € Z, we obtain
S rer Sier costi(S) < a(")H(c)cost(OPT). Any fixed agenti, 1 < i < n, occurs in exactly(" ")

coalitions € Z. Hence}_ ;.7 3", cost;(S) = (7~}) cost(S). We conclude

cost(S) < (Z)/(Z:ll) -aH(c)cost(OPT) = % -aH/(c)cost(OPT),

which establishes the stated price of anarchy.

Fix an arbitrary coalition/ of size exactlyc. We will prove (3). LetE?"T be the set of edges bought by
the social optimum and, for anye I, let EiOPT be a minimal set of edges necessary to connect the terminals
of agenti within the optimal solution. We now start the process memtabove. Lef; := I be the initial
coalition consisting of: agents. Suppose that we have already perforinedl steps of the process, where
initially £ = 1, and let/, be the coalition given at the beginning of thih step, wherd < k < ¢. Thekth
step proceeds as follows. Starting from initial configuratb, the agents of;, perform a strategy chanﬁ“]c
in whichi € I buys setE?"". LetS* = (S} ,S_r,) be the resulting configuration. The new cost of agent
1€ 1 is

- c(e) c(e)
cost;(S*) = Z |{j€Ik:eGEjOPT}U{jgéIk:eESjH = Z Hje[k:eeEjOPTH.

ee EOPT ec EOPT

Since the original configuratios forms ana-approximate strong Nash equilibrium, the strategy change
cannot improve the cost of every agent [, by a factor of more tham. Thus there must exist an agept
with cost;, (S*) > cost;, (S)/a and hence

cost;, (S) < « Z

OoPT
eEEik

c(e)

. 4
Gl cc BOPTY, @

This agent;, leaves the coalitiod,,. If there is more than one agent satisfying the above coguiéy, we
select an arbitrary of them. The new coalition at the end efdfep isl;.; := I \ {ix}. The process ends
after exactlyc steps when the coalition is empty. Summing (4) over alkitbeps, taking into account that the
sequence of agents leaving the process fafnvge find

- c(e)
Zcosti(S)gaZ Z I GIk:eGEjOPT}\' (5)

icl k=1cepOPT

We analyze the right-hand side of the above inequality, wsiems edge costge) over edges € EOF7,
Consider any fixed edge € E°FT and letn, = |{i € I : e € E?PT}| be the number of agents ih
usinge in the described strategy changes. The cost obntributes to the right-hand side of (5) whenever
one of then. agents leaves the process. Tiie time this happens, the contributiond&)/(n. — ¢ + 1),
for¢ =1,...,n.. Thus, the cost contribution ige) H (n.) < c(e)H(c) and we concludg , ; cost;(S) <
) cporrcle)H(c) = aH(c)cost(OPT). O



4 Lower bounds for unweighted games

We first present a lower bound for directed graphs. This Idvaemd implies that if there is no restriction on
the coalition size, our upper bound of Corollary 1 is optimal

Theorem 3 In directed graphs and for any > 1, the price of anarchy afi-approximate strong Nash equi-
libria is at leasta max{n/c, H(n)} if coalitions of size at mostare allowed.

Proof. We modify lower bound graphs that were presented previousiye literature [2]. For the bound
of an/c, consider a simple graph consisting of two vertiseendt that are connected by two parallel edges
of costan andc + ¢, respectively, see Figure 1(a). Associated with the graphaagents, all of which
have to connect terminalsand¢. An optimal solution will buy the edge of cost+ ¢. On the other hand,
the configuration in which all the agents share the expensive edge of costeach one paying a cost of
a, represents an-approximate strong Nash equilibrium: Any coalition ofesiap toc, when performing a
strategy change and buying the edge of eost, incurs a cost of at least+ ¢/c per agent. Hence the agents
of the coalition do not save a factor of more thain cost.

an c+e

@ (b)

Figure 1: Directed graphs enforcing a high price of anarchy.

In order to establish the lower bound @#/(n), we use the graph depicted in Figure 1(b). Thererare
verticesuy, . .. , v, Wherev; is connected to a vertexvia a directed edgév;, t) of costa/i and to a vertex
w via a directed edgév;, w) of cost 0. Additionally, there is a directed edge, t) of costl + ¢. Associated
with the graph arex agents, where ageinhas to connect; to t. An optimal solution satisfies the connection
requirements by buying the edges of cost 0 and the édge of costl + e. The configuration in which agent
i connecty; to t using its private edgeév;, t) of costa/i forms ana-approximate strong Nash equilibrium.
Any coalition of size, say, that performs a strategy change and purchases(@ddé¢incurs a cost of1+-¢)/c
per agent. However, there is at least one agent in the avalithose original cost was at masfc and to
whom the incentive of changing is not sufficiently high. O

We next develop a lower bound for undirected networks. Oweldbound construction is quite involved
and we therefore concentrate on the most general scenadre\liere is no limit on the coalition size.

Theorem 4 For any o > 1, there exists a family of undirected graphs, each admittingx-approximate
strong Nash equilibrium whose costi$a+/log n) times that of the social optimum.

Proof. For ease of exposition we first prove the theoremdot 1 and then show how to adapt the proof for
anya > 1. We present a recursive definition of gragkisLetn be a positive integer such thay/logn| > 2.
In this proof logarithms are taken to the base 3. &gt = |\/logn| —1. The recursive construction proceeds
iN dmax+1 steps. Atthe bottom level of the recursion, i.e. at maximepthd,,., G consists of graph&/dmax



of orderdy,.x, cf. Figure 2(a). A grapl@?==x is composed of atem edgd v, w} of costsg, . = 1/3%=x and
abridge {u, v} of order d,., having cost,,_ .. = 2/3%m=x, The bridge and the stem are joined at ventex
Verticesu andw are connected via aarc {u,w} of order dy,.x having costug,,, = 1/3%m=. We callu the
baseandw thetip of G%»ax, Associated withG%m=x aren,_ = [n/3%max(dmaxt1)] agents of ordedyay,
each having to connect terminalsandw. By the choice ofl,,., we haven; > 1.

max

G4 GO

Wq = W3,d+1
Gt

deax
d+1
Gy
arc

stem
arc

d+1
G

bridge UL,d+1
bridge

Ud

(a) (b) (©
Figure 2: The recursive construction of graghs.

Assume that graphs of ordéf, .., dmax — 1, ...,d + 1 are defined. Then a gragk of orderd, which
resides a deptt of the recursion, is constructed as follows, see Figure. ZephG consists of three graphs
GIT, G4t and G of orderd + 1 that are attached to each other. More specifically, the tig{of' and
the base oﬁg”l are merged, i.e. the two vertices are united, and the t'(r}gdfl is merged with the base of
GIt1. Letu 441 be the base of/{™. Attached to this vertex is a bridg@:q, u1 4.1} of orderd having a
cost ofby = 2/3%. Letws 441 be the tip ofG4+! and setw, = w3 4.1. We callu, the baseandw, the tip
of G?. Additionally, G* contains an ar¢uy, w,} of orderd connecting the base and the tip. This arc has cost
aqg = 1/3%. Associated withG? areny = [n/34H1D] — 3[n/3(d+1D(@+2)] agents of orded, all of which
have to connect, to wy. As we shall see, these agents will govern the connectioisidas withinG¢. The
bridge will have the effect that in a strong Nash equilibriuhe orderd agents will establish their connections
using the arc of ordet instead of routing through the grapﬁgﬂ, 1<k<3.

The construction proceeds down to a degth= 0. Associated with graplt;® areng = [n/3°] —
3[n/3%] = n — 3[n/3?] agents of order 0 that have to connect the outermost verifo68. GraphG := G°
is the graph we will work with. A high level sketch 6f = GV is given in Figure 2(c).

We start with some observations 6h= GV. First, all the vertices and terminals of the graph are ledat
on abackboneconsisting of all the stem edges and bridges. The nestethsteuofGO contains3? subgraphs
of orderd, for any0 < d < dpax-

Proposition 2 The least expensive path connecting the base and the tiprapa ¢ using only edges af*
has a total edge cost of exactly3d, for any0 < d < dpax-

Proof. The statement holds fat = dy.x as the arc ofG4m=x has costa,,,,. = 1/3%=x while the path
crossing the bridge has cdst, + sg4,,., = 2/3%¢max +1/3%max, Suppose that the statement holds for depths
dmax, - - - »d + 1. In G the arc of order! has costi; = 1/3% while, using the inductive hypothesis, any path
using the bridge of ordef has a cost of at leasf + 3 - 1/39! = 2/3%¢ + 1/39 > 1/3¢. m
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The total number of agents associated withand all of its subgraphs is equal to

dmax -1
NO — Z 3d( {n/gd(d‘f‘l)" _ 3 {n/3(d+1)(d+2)-‘ ) + 3dmax (n/?’dmax (drrlax+1)-‘
d=0
= n— 3dmax IVn/3dmax (dmax+1)—| + 3dmax IVn/3dmax (dmax+1)—|
= n.

More generally, inG = G° the total number of agents associated with all the oddgraphsG? and the
subgraphs therein is, for amywith 0 < d < dyyax,

dmax_l
Na= 30 3([n/30] = 3[n /300D g [t G 0] = g [ 38007,
i=d

which is equal tcn/3d2 when ignoring ceilings.

The social optimum ii©? buys the backbone of the graph. As there3drex graphs of orded,,,., the total
cost of the stem edges 3émaxs; = 3dmax . 1/3dmax = 1, There are3? graphs of orderl, 0 < d < dpax,
and hence the total cost of ordébridges is3?b; = 37 - 2/3%¢ = 2/37. Summing over alll we find that the
total cost of the bridges Ejﬁ‘"g‘ 2/3% < 3. We conclude that the cost of the social optimum is boundei by

Consider the configuratioS in which, for any graphG¢ within G, any orderd agent associated with this
graphG¢ establishes its required connection via the corresponaiogf orderd. That is,S buys all the arcs.
As we will show in the remainder of this proa$, forms a strong Nash equilibrium. We evaluate the cost of
S. As there are3? graphs of ordet!, the total cost of orded-arcs is3%aq = 3¢ - 1/3¢ = 1, for any fixedd
with 0 < d < dyax. SUumming over alll, we obtaincost(S) = dmax + 1 > [v/Iogn |, and this establishes
the desired performance ratio.

It remains to show thaf is indeed a strong Nash equilibrium. To this end we have twghat no coalition
1 of agents has amprovement moveNe will always consider non-empty coalitions. An improvammove,
for a coalition, is a strategy chang&; such thatcost;(S;, S—1) < cost;(S), for any agent € I. In our
graphG, as all the agents have to connect pairs of terminals, @&giratf an agent is a simple path connecting
the desired vertices. The property that there exists noargment move follows from Lemma 1, which we
prove in the sequel.

Lemmal Ford =0, ..., dmax, NO coalition involving agents of ordelhas an improvement move.
For the proof of Lemma 1 we need Lemma 2 which we prove first.

Lemma 2 Consider a fixed, 0 < d < d,ax, and suppose that no coalition involving agents of orderlema
thand has an improvement move. Furthermore, assume that noicoaliinvolving agents of orded has an
improvement move in which an ordéragenti ¢ I associated with a grapt?(i) chooses a path containing
edges outsidé&? (7). Then no coalition involving agents of ordéhas an improvement move.

Proof of Lemma 2. Let I be a coalition that involves agents of order We have to show that has no
improvement move. Based on the assumptions of the lemmaameestrict ourselves to coalitiordsthat do
not contain agents of order smaller thanFurthermore, based on the assumptions, we only have tadesns
strategy changes where each ordeagent; ¢ I establishes the required connection within its grégstii).
Let I’ C I be any maximal sub-coalition of ordéragents that are associated with the same gépl’).
We will show that any strategy changg, that consists in choosing connection paths withiit{I") leads to a
strictly higher cost for that sub-coalition, i.e. at lease@gent € I’ has a strictly higher cost and the strategy
change is no improvement move.

10



GraphG?(I') hasn, orderd agents associated with it. Lgtbe the fraction defecting, i.¢. = |I’|/nq.
In the original configuratiorss, when routing through the arc of ordéy sub-coalition/’ paid a cost offaq =
f/3%. When changing strategy and choosing a different connectiate withinG¢(I"), eachi € I’ selects
a pathP; that crosses the bridge of ordérnd then, ifd = d,,.., traverses the stem edge @f==x(I’) (see
Fig. 2(a)). Ifd < dmax, pathP; then traverses the ordéd-+ 1) graphsGi“(I’), 1 < k < 3, located within
G(I") (see Fig. 2(b)). fd = dyax, then the total cost of edges dhis by + sq... > (1 +2/3%)/39
If d < diax, then the total cost is at leasf + 3 - 1/3%+1 > (1 4 2/39) /3 because, by Proposition 2, the
least expensive path traversing an or@er- 1) graph has cost/3%+!. In both cases we have the same lower
bound on the cost, expressed in termsiofThe cost ofP; is not shared by agents of order smaller thian
as they are not part of the original coalitidnnor is the cost shared by ordéragents associated with other
graphsG? # G4(I'). The cost ofP; can only be shared by agents of order larger tthaand there exisi,. |
such agents ifl < dp.x. If d = dmax, the cost is not shared by other agents.

If d = dmax, We are done because the new costfofs (1 + 2/3%)/3¢, while the original cost was
f/34 < 1/3% If d < dmay, then at best all thév,,, agents of order larger thahsupport the edges traversed

by I’ and the new cost of is at leastcost’, > fndii”]@dﬂ(l + 27)37. We will to show thatcost, is higher

than the original cost of /3¢, which is equivalent to proving#]vd“(l + %) > 1. Since0 < f < 11t

suffices to show
ng 2

— 1+ =) > 1.
ng + Ngi1 ( 3d)
Using the definition o4, eliminating ceilings, we find
d d?+d+2
d(d+1 d+1)%+d . n3 1 3
n3d 3(d+1)(d+2)
> —(2—-—
= 3(d+1)? n
> 7n3d :
= 3(d+1)2

The second inequality holds becaus@?? < 1. For the third inequality note that < dp., anddp., =
|VIogn| — 1 imply (d + 1)(d + 2) < logn and hence3(+1(@+2) < p Moreover, we haveV, ; <
2n/3(@+D* We conclude
d d d
" %)>d3_(1+3):3_.w:1,
3 3%+ 2 3d 34 42 3d
m

Proof of Lemma 1. We prove the lemma inductively for increasing valuesiofFor d = 0, the statement
follows immediately from Lemma 2 as the assumptions of thatrha are trivially satisfied: There are no
agents of order smaller than 0 and an agent of order 0 canmoiecbits terminals using edges outsige.
Suppose that the statement of Lemma 1 holds for depth ,d — 1. We prove that no coalitiod involving
orderd agents has an improvement move in which an orbagenti ¢ I associated with a grapti¢ (i)
chooses a path using edges outsifé:). The inductive step then follows from Lemma 2.

So consider a coalitioi involving agents of orded and a corresponding strategy charjein which at
least one ordett agent chooses edges outside its orflgraph to connect the desired terminals. We show
that the strategy change is not an improvement move. By thective hypothesis, we can restrict ourselves
to coalitions/ not involving agents of order smaller than Thus/ only contains agents of ordéror larger.
Let I’ C I be the maximum sub-coalition of ordéragents: choosing connection paths outside their graph
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G?(i). Asd > 1, each such graph belongs to a gragh ! in the nested structure 61°. Consider all graphs
of orderd — 1 containing at least on€“(i), i € I’, and number these ordéd-— 1) graphs in an arbitrary
way. Let.J be the resulting index set. Each grapfi—'7, j € .J, contains three graph&}’/, G2/, G47 of
orderd. Fork = 1,2,3, let f{ be the fraction of the ordef-agents associated Wiﬂﬁi’j that are member of
I ie. fg = |{i € I’ : i is orderd agent associated Witﬁg’j}\/nd. Recall thatn,; is the number of agents
associated with an ordergraph. We have < fg <1 andff + fg + fg > 0.

In the original configuratiors, coalition I’ pays a total cost ofost; = ZjEJ Zizl fgad because the
order< arcs are bought. This expression holds even if some of,ihaee zero. We show in the following that
the new costost’, of I' is strictly higher tharcost;. Hence at least one agentiihdoes not improve its cost
and the strategy change is no improvement move.

In order to estimateost’, consider an agenite I’ and letG¢~1J, with j € .J, be the graph wherés
graphG“(i) is located. First suppose th@t' (i) = G| cf, Figure 3(a). After the strategy changeonnects
the base and the tip «ﬂcf’j on a pathP; that uses edges outsi(ﬁ’j. Since strategies are simple paths, all the
edges ofP; are outsideG‘f’j . Starting at the base «ﬂcf’j , path P; has to traverse the bridge of ordér 1 in
G4-13. To reach the tip of5%/, path P; has to travel to the tip of7¢=14. This can be done using the arc of
orderd — 1 or using another subpath outsi@€—17. After having reached the tip @?~17, path P, traverses
Gg’j anng’j, reaching the desired terminal. Ignoring edges visitesvbeh the base and the tip 6F 1,
agenti has to pay a share for the ordet— 1) bridge and for the subpaths &f within vaj and Gg’j. The

total cost of edges traversed within graﬁﬁ’j, k € {2,3}, is at leastl /3¢ by Proposition 2. The cost may be
shared with other agents.

Gd—1.J Gd-1.J Ga-Lj
~ ~ S~

~

S~

d.j d.j d.j d,j
G3 G3 G3 G3

\
1
1
d,j d,j 1 d,j d,j
GZ,J GZ,J GZ,J : G27]
1

-_m_____

d.j d.j / d.j
Gy Gy Gy

(a) (0) (©) (d)
Figure 3: The paths traversed after strategy change.

If G4(i) = G47 or G(i) = G47, the situation is similar, see Figures 3(b) and (c), respelgt In the first
case,F; has to traversé}jl’j and the ordefd — 1) bridge. From there it has to travel to the tip@f~1/ and
pass througlt?§’. Edges used within a grahi/, k € {1,3}, have a total cost of at leas{3¢; cost sharing
may occur. IfG4(i) = Gg’j, path P; passes througﬁg’j andGil’j. After traversing the bridge of ordetr— 1
it connects to the tip of¥¢~ 17, which is also the tip oGg’j representing the desired terminal.

Next letC be the total number of agentse I’ that arenot associated witli%, Gg’j orGg’j but choose
edges of these graphs when performing the strategy chamgedér to use such edges, the new pathof 7’
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must pass through the base and the tigr6f 17, see Figure 3(d). The path between these two vertices arosse
the bridge of orderl — 1 and must consist of subpaths wnf@jﬁ” k=1,2,3.

We are ready to lower bound the new cestt’, of I’. To this end we will only consider the cost spent
in graphsGZ’j, 1 <k <3andj € J, and on ordefd — 1) bridges inG¢~'J. Fixaj € J. Grathf’j
is traversed by exactlyfg + fg )ng + CJ agents froml’, each using edges of cost at leags?. The cost is
shared by at mostfJ + f1)ng + C7 + (1 — f{)ng+ N4y, agents. Herél — f{)ng is the number of ordet-
agents associated witﬁ‘f’j that establish their connection within this graph awg, ; is the total number of
agents of order larger thahthat may participate in the strategy change and reside iaritiee coalition/. If
d = dpax, the we setV;, 1 = 0. Thus sub-coalitiod’ spends a cost of at least

1 (f3 + f)na+C?
31—+ f+ f)na + Nayr + C9

in graphG$7. Similarly, in G47 andG4” the costs are

1 (A + f)na +C and L. (A + fB)na+C7
3T (1= f + f{ + f)na+ Na1 + CI 30 (1= f+ f + f)na+ Nap1 + CI

Finally the bridge of ordeti — 1 has cosby_; = 2/32(~1), which is shared byf{ + fJ+ f])nq+ Nas1 + C
agents and’ incurs a cost o2 ((f{ + f3 + f)na+ C9)/((f] + £ + f)na + Nap1 + C9).

Note that for anyt € {1, 2,3} the other two indices from that set can be expressdd ask mod 3 + 1
andk” = (k + 1) mod 3 + 1. We conclude

3 ' . ‘
COSt/I/ > Z Z i (f]?;/ + fg//)nd + Y ' i
B je€J \k=1 (1_f]‘z;+f]‘g/+fgu)nd+Nd+1—|—C.7 3d
(A +H+HAma+C) 2
(F1 4 3+ fDng + Ngyy + €3 32D

Ratios of the form(x + ¢)/(y + ¢) are increasing ir if 2 < 5. Hence we can drop the termi¥ and obtain

j/ + j" 1 J J J 2
costys = Z Z Ui T "3 T i j+ z j+ L " 32(d-1) |
jed \k=1 (L= fl+fl+ flna+Nagr 3% (f+ £+ f)nag+Napx 3

Reordering the expression in the brackets, by focusing @rpamticularfg in the numerators, we find

fing fing 1

P fir + fir)na+Nagr  (L+ fi, + fio — fir)na + Napa

fknd 2
T j j " 22d-1) |-
(A +f3+f3)na+Nayr 3
1 2
r— y+c+x+y+c 2 T4c
holds, which we apply fox = fknd andy = (fk, — fk,,)nd as well as: = ng + Ny 1. Furthermore,

To simplify the last expression we observe that for any rellesrz, y andc inequality

f]znd - f,gnd 1 f;znd
A+ B+ )na+Nayr — (fi+2na+Nar — 2 1+ fi)(na+ Nagr)

v
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Hence

3 .
2fInq 1 fina 1
costy > Z <Z "3d + j " 32(d-1)

jeJ \k=1 1+fk nd + Na+1 (1+f1g)(nd+Nd+1)

3 i
- S (T e )

il (1 + f1)(na + Nat1)

As shown at the end of the proof of Lemmaﬁzdur"]@—(m(lJr 3%) > 1if d < dpax. If d = diax, thenNg, 1 =0
and the inequality is also satisfied. In each case

3

, 2ff 1
oty > Yy Loy gL

jed k= 11+fk Jed k=1

and the new cost aF is strictly larger than the original cost @f in configurationS. O

This completes the proof of Theorem 4 o= 1. We finally show how to adapt the proof for any> 1. In the
construction of the graphs? only the costs of the arcs change. An arc of ordeow has costvay. All other
costs remain the same. This increases the cost of configni&itby a factor ofa, i.e. cost(S) > a|logn|
while the cost of the social optimum remains the same. Thabéshes a performance ratio @f ay/Tog n).

In the statements of Lemmas 1 and 2, the term “improvementeiftas to be replaced by “improvement
move”. An a-improvement move, for a coalitio, is a strategy chang&; such thatcost;(S;,S—r) <
cost;(S)/a, for any agent € I. In the proof of Lemma 2 we considered any coalitibimvolving agents
of orderd or larger and investigated strategy changes where af@gents establish connections with their
respective graph of ordet. We identified a sub-coalitiod’, with f = |I’|/ng4, incurring a new cost of
costl, > f/3%. This cost inequality still hold in our modified graph as edgsts did not decrease. Since
costh, > f/3% = (af/3%)/a andaf/3% is the original cost of in the scaled graph, the strategy change is
no a-improvement move.

In the proof of Lemma 2 we studied coalitiohénvolving agents of orded or larger. We analyzed strategy
changes in which ordef-agents buy edges outside their graph of orfland identified a sub-coalitioff of
orderd agents incurring a new total cost ebst), > 3., 1 f]/3%, whereG{’ were the graphs the
agents € I’ are associated with. Again, when arcs are scaled by a fattertbis cost inequality still holds.
As the original cost of" in the scaled graph i5_ 22:1 af,g/?;d, the strategy change is meimprovement
move. O

5 Weighted games

In this section we study weighted network desigh games wéerh agenthas a positive weight;. We scale
the weights such that the minimum weight is equal to 1 andéenc> 1 for all agents. LeW = """ | w;
be the total weight of all the agents.

If agents are allowed to coordinate their strategies, twenados are of interest. In a first setting we
assume that coalitions of size updare allowed, for any < ¢ < n. In this case let¥ ¢ be the maximum
total weight of any coalition having size at mastin a second setting we assume that the total weight of a
coalition is upper bounded so that agents of high weight aaimpose too much control on agents of low
weight. In this case I&iV¢ ... be the maximum total weight any coalition may have.

max

We extend our results shown for unweighted games.
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5.1 Upper bounds

We first give a sufficient condition for the existence of sggdtiash equilibria in weighted games and evaluate
their performance in terms of the price of anarchy.

Theorem 5 In any directed or undirected graph-approximate strong Nash equilibria exist, for any>
1+1In(1+W). HereW = W< if coalitions of size up te are allowed andV = W¢,,,, if coalitions of weight
up toWg,. . are allowed.

max

Proof. We use again potential function arguments to show the existefa-approximate strong Nash equi-
libria but have to work with a more general potential funoticompared to that used in unweighted games.
Given a graphG = (V, E, ¢) and a configuratiols = (51,...,S,), let Es = U}, S; be the union of all
edges used by the agents. For ang Es, let W, = Zz’:eesi w; be the total weight of the agents currently
usinge in their strategies. Define

O(S) = D cle)(1 +InWe).

ecEs

We show that whileS does not form am-approximate strong Nash equilibrium, aAimprovement move of a
coalition I strictly decreases the potential. This ensures that a sequsf improvement moves starting from
the social optimum will converge because, at any ting, ® < (1 + In W)cost(OPT).

Consider am-improvement move of a coalitiohof agents. Again, we view the move as being performed
in two steps. (1) Agents € I first drop all the edges of their strategi§s Let E; be this set of edges.
(2) Agentsi € I buy the edges they wish to have in their new strategies Fkéie the set of edges involved.
In the following, letcost™ be the absolute value of the cost reduction experiencetldue to step (1). Note
that cost™ is equal to the cost of in configurationS. Let &~ be the absolute value of the potential drop.
Similarly, let cost™ be the value of the cost increaseloin step (2) anddb™ be the corresponding potential
increase. The value afost™ is equal to the cost of in the new configuration after strategy change. Using
the definition of am-improvement move, we findcost™ — cost™ < 0. It remains to show thatost~ < ®~
and®™ < acost™, which impliesA® = —®~ + & < 0.

For any edge: € F, let W} be the total weight of agents sharingafter step (1). The cost reduction
experienced by due to edge € E is cost, = c(e)(W, — W2)/W.. For anye € E1, let ®_ denote the
potential drop caused by this edge. ! = 0, thencost, = c(e) < c(e)(1 +InW,) = &, If Wl > 0,
thenW/! > 1 and

1 We
cost, = c(e)u < c(e)/ 1dz =cle)InW, —InW}) =o_.
We Wel z

We concludecost™ = ) p cost; <3 p &7 =&~

For anye € F, let W2 be the total weight of agents shariagfter step (2). The cost increase experienced
by I due to edge € Es is cost} = c(e)(W2—W_}) /W2 because agents inpurchasing: have a total weight
of W2 —W.. Let®} be the potential increase causedeby Es. If W! = 0, then®} = c(e)(1 +In W2) <
c(e)(1 +In(1 +W)) < acostl. If W > 0, then® = c(e)(In W2 —InW}) = c(e) In(W2/W2). To
establish® < acost,, we prove that

WZ—WI

FOWE) = W(We/We) = (14 In(1+ W)=

is upper bounded by 0, for aW? > W/. This implies®* = Y, ®F < 3 g acostt = acost™,
becauser > 1+ In(1+ W). Computing the first derivative of we find thatf is decreasing for values &2

betweeniV! and (1 + In(1 + W))W} and increasing for larger values. Sin¢@V.}) = 0, we obtain thatf
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is upper bounded by 0 for ary’2 with W! < W2 < (1 +In(1 + W)W If W2 > (1 +In(1 + W))W,
thenW}! < W2/(1 +In(1 +W)) and

(1+In(14+W)(W2 - WhH/W2 > In(1+W).

Hence
fW) < Wm(W2/W2) —In(1+W)
2
= ln(l—l—%) In(1+ W)
< In(1+W)-In(1+W) =0

|

Theorem 6 In any directed or undirected graph and for any> 1, the price of anarchy ofi-approximate
strong Nash equilibria is upper bounded 8%(1 + In W¢) if coalitions of size up to are allowed. The price
of anarchy is upper bounded t%,*L (1+1InWg,,) if coalitions of weight up taV<,, . are allowed.

max
If there are no restrictions on the coalitions being formed for o = 1, we obtain the following corollary.

Corollary 2 In any directed or undirected graph the price of anarchy obrsgj Nash equilibria is upper
bounded byl + In W

Proof of Theorem 6. We generalize the proof of Theorem 2. Givenaiapproximate strong Nash equilib-

riumS = (S1,...,5,), we consider a coalitior of legal size or weight and show
Z costi(S) < a(l + InWr)cost;(OPT), (6)
el

whereW7 it the total weight of agents € I. If coalitions of size up ta: are allowed, inequality (6) gives
Sier costi(S) < a(l + InW€)cost(OPT). Summing this inequality over all thg!) coalitions of size
exactlyc, we obtaincost(S) < (1 + In W€)cost(OPT). If coalitions of weight up tdVs ., are allowed,
we partition then agents into maximal possible coalitions of admissible Weidhis partitioning consists of
at mosW/W¢,, coalitions because only one of these coalitions can haviaweight of at mosive,,, /2
and the total weight of any two coalitions is larger tHaif,, .. For each coalition of the partitioning we sum
up (6) an obtaircost(S) < 2°‘W (1+InWE,,)cost(OPT).

In order to establish (6) For any fixed coalitidn we perform the same process as in the proof of The-
orem 2, where sub-coalitions dfchange strategy and purchase the edgdZ$€t” of the social optimum.
For anyi € I, let EOPT C EOPT pe a minimal edge set necessary to connect the terminalseot am
the optimal solution. The process starts with:= I. In the kth step, fork = 1,...,|I|, agentsi in the
remaining sub-coalitiord;, change strategies and connect their terminals uEiLﬂﬁT. Since the original con-
figuration S is ana-approximate strong Nash equilibrium, there must exist agenti;, whose cost in the

original configurationS is bounded by

cost;, (S) < « Z c(e) ;/IU;; , (7)
e€ EOPT Tk
Yk

wherelVf is the total weight of agents sharingi.e. Wj = 3=, e wi with If = {i : i € I, ande € EP"T}.
This agent;, leaves the process aigl,; := I, \ {ix}. Summing (7) over all th¢/| steps, we obtain

]

Z cost;(S) < « Z Z wlk . (8)

iel k=1 eeEOPT
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We estimate the contribution efe), for a fixed edge: € E°FT, in the right-hand side expression of (8). A
contribution to the sum occurs whenever an agent/ with e EiOPT leaves the process. Lat, ..., i, € [

be the agents using i.e.e € E9TT for j = 1,...,¢, and assume that these agents are numbered according
to the time when they leave the process of strategy changeg. 1,...,¢, lets; = w;; + ...+ w;, be the
suffix sum of these agents’ weights. Then edg®entributes a total of

C(€)< = - 2 +o+ ﬁ)
Wiy + ...+ wy, Wiy + ..+ wy, Wi,

Z/ —dz—|—1 < c(e)(1—|—/ ld,z)
8J+1 se ?

()(1—1—/1 —dz) = c(e)(1 +Insq)
< cle)(1 +1InWy).

IN

IN

The third inequality holds because = w, > 1. Summing this cost estimate over all edges E°"T, we
obtain the desired bound 9n,_; cost;(S). ]

5.2 Lower bounds
We develop lower bounds on the performance of strong Nastilaéain directed and undirected graphs.

Theorem 7 In directed graphs the price of anarchy afapproximate strong Nash equilibria is at least
Q(amax{n/c,log W}) if coalitions of size at mostare allowed, and at leag® (o max{W/W¢ ., log W})
if coalitions of weight up tdV,, are allowed.

Proof. In the setting where coalitions of size updare permitted, a lower bound ofr/c was already shown
for unweighted games in Theorem 3. We first prove the lowendaf oW /W . if coalitions of weight up
to W¢ ., are feasible. Consider agents with arbitrary weights;, 1 < ¢ < n. We use the simple network
depicted in Figure 1(a) but change the costs of the two ghrediges. The expensive edge now has adkt
whereas the inexpensive one coBtg,,, + . Recall that all the: agents have to connect terminalandt.
The state in which all the agents establish their connectsing the expensive edge forms@approximate
strong Nash equilibrium: Any legal coalition incurs a cosabmostalV/ I;‘;‘X aWe .. on the expensive
edge. Switching to the inexpensive edge results in a cddtQf, + e for the coalition, which is not attractive
enough. Obviously, the social optimum routes connectioashe inexpensive edge.

We next show a lower bound 6i(« log W) for both scenarios, where either the size or the weight of a
coalition is limited. W.l.0.g. leWW be a power of 2 and let = log, W + 1. We use the graph of Figure 1(b)
but change the costs of the edges. Each édge) now has costy, 1 < i < n, and edgéw, t) has cosR + e.

The edgegv;, w) still have a cost of 0. Agent 1 < i < n, has a weight of¥’/2! and wishes to connect
terminalsy; andt. The last agent has a weight of 1 and has to connegtto ¢. The total weight of all the:
agents is exactlyV. The state in which every ageitl < i < n, establishes its connection using edggt)
represents an-approximate strong Nash equilibrium: In any coalitibrof legal size or weight, the agent
19 € I of maximum weight infl dominates the other agentsiini.e. the weight of, is at least as large as the
total weight of all the other agents ih Hence, wher changes strategy and purchases €dge), agenti
has to pay at leadt+ ¢/2, and this is not smaller than anfraction of the cost incurred for the private edge
(viy, t). The cost of the strong Nash equilibriumdg$l + log, W) while the social optimum incurs a cost of
2+ e O

Theorem 8 For any o > 1, there exists a family of undirected graphs, each admittingx-approximate
strong Nash equilibrium whose costa+/log W) times that of the social optimum.
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Proof. We extend the proof of Theorem 4 and first concentratexos 1. Let W be a real weight with
|vIogW | > 2. Again logarithms are taken to the base 3. As before we aactsér graphG' = G° in
a recursive manner, choosinly,., = [v/IogW | — 1 in the case of weighted games.. In any graph
0 < d < dmax, the edge costs are the same as those defined in the proof afefind. However, the number
of associated agents changes. Associated with a grdpir is oneagent of ordel,,., having a weight of
wg,,,, = W/3dmax(dmaxtl) - Associated with a grapti?, 0 < d < day, is ONeagent of order having a
weight of wy = W/34d+1) — 31/3(d+1(d+2)  The total weight of all the agents is exacilly. The total
weight of all the agents associated with ordegraphsG® and the subgraphs thereinlig; = W/3d2, for any
0 <d < dpax-

As edge costs have not changed, the social optimum is stiditaat. As usual, |e§ be the configuration in
which an orderd agent purchases the arc of ordewithin its graph. Therost(S) > dpax+1 > |VIog W .

To show thatS forms a strong Nash equilibrium, we can extend Lemmas 1 anc3iraightforward way.
In the arguments agent numbers suchh@and NV, , etc. are to be replaced by weightg andWW,. ;. Some
of the arguments and calculations in the proofs simplifydnse ceilings can be ignored and fractighand
i, reflecting portions of orded-agents that defect from routing through their ordearcs, are now equal to
either 0 or 1. Finally, forx > 1, we again scale the arc costs by O

6 The price of stability in undirected graphs

In this section we address the price of stability of standéagh equilibria in weighted games. Anshelevich
et al. [2] showed a lower bound 6X(log 1) for directed graphs. Agai}’ = >, w; is the total weight of
all the agents. We prove a lower bound for undirected graNlbssuper-constant lower bound was known for
undirected graphs, neither for unweighted nor for weiglganhes.

Theorem 9 In undirected graphs the price of stability i&log W/ log log W'). This lower bound holds even
if each agent has to connect only a pair of terminals. Indraicterminal pairs are allowed.

Proof. We construct a family of graphs, each admitting only one Newhilibrium. The cost of this equi-
librium will be Q(log W/ loglog W) times that of the social optimum. The basic structure of thaplys

is the same as those constructed in the proof of Theorem 4. etHowthe parameters are chosen differ-
ently here. LetiW be a positive integer witlog W > 3. Again, logarithms are taken to the base 3. Let
dmax = |[log W/(loglog W + 1) ]. Inequalitylog W > 3 impliesdyax > 1.

In the basic graph&'m==x a stem edge has cosf, ., = 1/3%=< and the bridge of orded,,.x has cost
iy, = 3/(3%m=xlog ). The arc of ordem,,,, costsay,,,, = 1/3%=x. Associated withG%m=x is one
orderd,,,, agent of weightv,, .. = W/(3log W)max wishing to connect the base and the tipcsfnex.

For anyd, 0 < d < dmay, in a graphG? of orderd, the bridge of ordetl has cost, = 3/(3%log W) and
the arc of orderl costsay = 1/3%. Associated withG? is one orderd agent of weightvy = W/(3log W)9 —
3W/(31log W)¥*+! having to connect the base and the tip@f. The outermost grapti = G is the graph
we will work with.

The total weight of agents associated with one ortigraphG¢ and all the subgraphs thereinTig; =
W/(3log W)d. This holds ford = dp,.x. Suppose that the property holds for ordérsy, dmax—1, . - ., d+1.
Since a graph of ordet is composed of three graphs of orde# 1, the total weight of agents i is equal
to

Wy = wq + 3W/(3log W)t = W/ (31og W)

In particular, we obtain that the total weight of agent&in= G° is exactlylV.

Proposition 3 The least expensive path connecting the base and the tiprapa ¢¢ using only edges af
has a total edge cost of exactly3d, for any0 < d < dyax-
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Proof. The statement of the proposition holds fo= d,,., because the arc 6t%==x has costiy, , = 1/3%mex
while the path crossing the bridge has chgl,, + s4,.. = 3/(3%>log W) + 1/3%m=x. Assume that the
statement of the proposition holds for depths.y, . ..,d + 1. In G¢ the arc of orderl has costiy = 1/3¢
while, by induction hypothesis, any path using the bridgerdrd has a cost of at leagf; + 3 - 1/3%+! =
3/(3%log W) +1/3% > 1/34. O

The social optimum inG buys the backbone consisting of stem edges and bridges.e Bxest exactly
3dmax subgraphs of ordet,,.x and hence the total cost of stem edge8’is=s, = 1. For any fixedd,
0 < d < dmax, graphG = G° contains3? graphs of orderl, each being equipped with an ordébridge
of costby = 3/(3%log W). Thus the total cost of ordet-bridges is3?b; = 3¢ - 3/(3%log W) = 3/log W.
Summing over alld we find that the total cost of bridges is upper bounded dy.x + 1) - 3/logW <
(2log W/ loglog W)(3/log W) < 6/loglog W < 6. Hence the cost of the social optimum is constant.

Consider configuratiors in which, for any graphG® within G, the orderd agent associated witG
purchases the ordelr-arc in this graph. We will prove in the following tha is a Nash equilibrium and
that it is the only Nash equilibrium i/, As there are3? graphs of orderl, the total cost of ordet-arcs is
3%aq = 3%-1/3% = 1 and summing over all we obtaincost(S) = dpax + 1 > logW/(loglog W + 1),
which gives the stated lower bound on the price of stability.

In the remainder of this proof we show, in a first step, thatorms a Nash equilibrium and then, in a
second step, tha is the only equilibrium inG' = G°.

We proceed with the proof th& forms an equilibrium state. Létbe an orded agent associated with a
graphG<. We show that any strategy change performed yiglds a strictly higher cost. If deviates from its
original strategy inS, it can establish the required connection either (1) byaisipath withinG? or (2) by
using a path of edges outsid¥'.

In case (1), the patl®; used by agent to connect its terminal pair has to traverse the owlléridge
in G, which has a cost of; = 3/(3d logW). If d = dnax, path P; continues on the stem edge of cost
Sdpay = 1/3%max If d < dyay, thenP; has to traverse three graphs of ordet 1, the total cost of which is
at least3 - 1/39+! = 1/3%. The total weight of agents that can share the cost,a$ upper bounded biy/,.
Thus agent incurs a cost of at least

wg 1 3
W, 310 T g

If d = dmax, thenwy = W, and the latter expression is larger than the codt/8f=ax incurred for buying the
orderd,,x arc inGy If d < dmax, then we have

max "

wq i(1+ 3 - W/ (3log W) — 3W/(3log W)4+1 i( N 3 )
Wy 34 logW’ W/(3log W)d 34 log W
1 3 .1 log? W +2logW —3 1 J
= (1— )= = = >
=g U g3 log? W 5 > /3%

becauséog 1V > 3. Again, buying the ordettarc of costuy = 1/3¢ is a strictly better strategy.

In case (2), we havé > 0 and the pathP; used by agent crosses the bridge of orddr— 1 and visits
the base of grapi’®~! containingG¢. The structure of?; is depicted in Figures 3(a—c), which we used in
an earlier proof; the situation is the very same here. Totrdahe tip of G¢, path P; must visit the tip of
G741, from where it can continue. Paf®} must fully traverse two subgraphs of ordéwithin G¢~'. Such
a subgraph can be traversed on an arc of odgidsaving cosizy = 1/3%, where the weight of the agent that
bought this arc irS is wy. Thus the cost ofi; can be shared among two ordéegents. IfP; does not use
the orderd arc, the total cost of edges traversing an ordsubgraph is at leadt/3? and the total weight of
agents sharing the edge cosi®§ — wy < wy. Thus, for the traversal of the two ordérsubgraphs, agerit
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pays at least
Wy 1 N 1
2wy 34 34
Since the traversal of the ordéi-— 1) bridge has positive cost, pafh) incurs a cost strictly higher than that
of the original strategy of in S.

It remains to show thaf is the only Nash equilibrium. To this end we will prove thatdany Nash
equilibrium, an order agent associated with a given gra@f must buy the corresponding ordéiarc inG<.
In other words, an equilibrium state must be equaf td he desired statement that in any Nash equilibrium an
order agent purchases the corresponding ortlare in its graphG® follows from the next lemma. Loosely
speaking, this lemma says that in a Nash equilibrium commexin G are established locally. We first state
the lemma and then explain its implications.

2

Lemma 3 Consider a fixed ordet-graph G¢ in G' and assume that in any Nash equilibrium all the agents
associated withG? and its subgraphs establish their connections using ontyesfG?. Furthermore,
assume that all agentsot associated witlG¢ or its subgraphs dmot use any edges @#¢ when routing their
connections. Then in any Nash equilibrium the following praperties hold.

(@) The orderd agent associated wit buys the arc of ordet in G°.

(b) If d < dmax, then for any of the three orddet + 1) subgraphsGi“, 1 < k < 3, within G¢, the agents
associated WitFGﬁJrl and its subgraphs establish their connections using or’g;eeabsz*l.

Using this lemma we can finish the proof of our theorem: &oe 0, trivially, all agents associated with
G = GY and its subgraphs must establish connections witfirand there exist no agents outsiG€ that
could use edges @i. Thus the conditions of Lemma 3 are met and we obtain that rither-6 agent buys
the arc of orde® (part (a)) and that, for any of the three subgraplis 1 < k < 3, agents associated with
any G}€ and its subgraphs establish connections using only edgttsisograth}C (part (b)). Inductively,
Lemma 3 yields that, for any, (a) any ordeid agent purchase the ordérarc within its graph and that (b) for
any subgraptG?*! of orderd + 1, all agents associated with?*! at its subgraphs establish the required
connections locally withirG?+1,

Proof of Lemma 3. Part (a): Suppose that in a Nash equilibrium, an ortlagent associated with a gragh
does not purchase the arc of orderLet P be the path used by the agent to connect its terminal paiceSin
by assumption of the lemma, the agent establishes its cbonegithin G¢, path P must cross the ordei-
bridge, see Figures 2(a) and (b).dlif= dy,.x, then the path traverses the stem edge of ggst, = 1/3%max

in G¢ = Gmax to reach the tip of the graph. H < d..., path P traverses the three subgrap@%“,

1 < k < 3, to reach the tip of5?. When traversing the subgraphs, then by Proposition 3 Pattsits edges
of total cost at leas$ - 1/39+! = 1/3%. Hence, in any case, the total cost of edges traverse isyat least
bg+1/3% =3/(3%og W) +1/3% = (1 +3/log W)/3%. By assumption of the lemma, agents not associated
with G or its subgraphs do not use edgesif. Hence the cost oP is shared by agents of total weight at
mostiW, = W/(31log W)4 that are associated withi? and its subgraphs. Hence the total cost of the odder-
agent is at lea fjlg—ld(l + logiW)' We argue that this expression is strictly larger than= 1/3¢, which is the
cost of purchasing the arc of ordér If d = dp,.x, thenwy = W, and we are done. H < d,,.«, then as on

the previous page we can show we haie, (1 + ) > 47

Part (b): We first prove that any ordéi-+ 1) agent associated with a graﬁlj*l, 1 < k < 3, establishes
its connection WithirGg“. We then show that agents of order larger tian 1 associated with subgraphs of
G if such subgraphs exist, also route their connectionsimvith ™.

In a first step we lower bound the cost incurred by ordér 1) agents if they buy edges outside their
graph. In the following, ifd + 1 = dyyax, We set o = 0.
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Claim 1 If the agent of order + 1 associated with a graplﬁlfrl establishes its connection using edges
outsideG¢™™, then its total cost is at leagt = Mfﬂ%#( + o)

Proof. We first show that if the ordefd + 1) agent associated Wiu}f}‘ZJrl implements its connection using
edges outsidé?i“, then the pathP used by this agent must traverse the bridge of oddes well as the other
two graphs of ordetl + 1 within G%. We consider all possible valuesiofind refer the reader to Figures 4(a—c)
for the structure ofP. The situation is the same as that described in Figures B(treconly difference is that
here the outer graph has ordginstead ofi — 1. Recall that strategies are simple paths connecting thieedes
terminals. Ifk = 1 (cf. Fig. 4(a)), then the orddi + 1) agent associated Witﬁcl“rl must traverse the ordef-
bridge of G¢. In order to reach the tip (If;f“, path P must visit the tip ofG?, from whereP traverseGgJrl
anng“. Similarly, if £ = 2 (cf. Fig. 4(b)), then pattP traversesgcf“, crosses the bridge of ordéy travels

to the tip of G and visitngJrl to reach the tip oﬁg”l. Finally, if £ = 3 (cf. Fig. 4(c)), pathP must traverse

GSH andGCf“. The path then crosses the bridge of ordend travels to the tip of:?, which is also the tip
of G3.

d+1 d+1
Gy Gy

d+1 d+1 d+1
Gy € €

_~ e ——— -
N

N e e - ——-

d+1 d+1 d+1
G G G

(a) (0) (c) (d)
Figure 4: The paths taken by an ordér-- 1) agent withinG¢, 1 < k < 3.

We lower bound the cost incurred by the ordér 1) agent associated Witﬁg""l for path P. For brevity,
we will denote this agent by.. By the assumptions of the lemma to be proven, agents notiatswd with
G? or its subgraphs do not use edgesist. GraphG? contains three orded + 1) agents of total weight
3wgir. If d < dmax — 2, thenG? also containg graphs of ordet! + 2, each hosting agents of total weight
Waio. We setWyio = 0if d = diax — 1. We argued in the last paragraph that p&tmust cross the bridge
of orderd, which has a cost df; = 3/(3%log W). This cost is split among agents of total weight at most
3war1 + 9W4io. Hence, for the bridge of ordef, agenti;, pay at least

W1 ' 3 2wgi ‘ 3 )
Bwar1 + Waio 3%logW = 2wgy1 + IWaio 33HllogW'

Also, as argued in the last paragraph, p&tltonnecting the terminals af, has to traverse the other two
subgraphs of orded + 1 in G¢, which are indexed’ = kmod 3 + 1 andk” = (k + 1) mod 3 + 1.

To traverse one such subgraph, pathraverses edges of total cost at leags?!. We distinguish cases
depending on whether the ordgi-+ 1) agents associated with,”* andG%/* implement their connections
using edges inside or outside their respective graphst, Bssume that the ordéd#-+ 1) agents associated
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with szrl andGz,J,rl establish connections within their respective subgraphthis case patt encounters
agents of total weight at most,; 1 + 9W, .- in each of these subgraphs. Thus, the traversal cost isf
shared among agents of total weight at nivsf, ; + 9W,, 2. We obtain that agerij;, incurs a cost of at least

Wd+1 1
. 10
2way1 + IWayo 3d+1 (10)

for the traversal o4, andG¢,;'. Next, assume that the ordgi-+1) agents associated witt/,* andG¢;!
establish connections using edges outside their graphhbisicase, again, path encounters other agents of
total weight at mostv,1 + 9W,12 when traversing any of these subgraphs(@ifrl the associated order-
(d 4+ 1) agent is not present; the analogous statement hokﬁjbi'). Hence the cost incurred in traversing
any of the two subgraph§g7rl and Ggf,rl is shared among agents of total weight at niasf 1 + 9W,. o

and we obtain the same cost bound as that given in (10). Fiaatbume that in exactly one of the subgraphs
amongGiirl and Gzﬁl the associated ordét + 1) agent establishes its connection within their subgraph.
As for the other of the two subgraphs, the associated difleri) agent uses edges outside its graph. W.l.0.g.
let G be the graph where connections are made inside and(iet be the one where connections are
established using edges outside. The other case is symnmaftien traverseng,*l, agents of total weight

at most2wg1 + 9W4, o are present and cost sharing on edges can be done among @fgeetght at most
3wgr1 + IW4i0. WhenP visits Gi?fl, agents of total weight at mositV,,» are present: The ordét + 1)
agent associated Wi'(ﬁgfrl is not present because it uses connections inside its gaaplthe ordefd + 1)
agent associated witﬁgfrl is not present because it uses a strategy outside its graphcettost sharing
on edges can be done among agents of total weight at most+ 9W,.» and the cost incurred bi. in
traversing the two other ordé€rt + 1) graphs is at least

W1 Wi+1 1 - W1 1
Bwar1 + IWaps  wapr + IWaypo 3 = " 2wayy + IWapp  34HL

which is the same expression as (10). Summing the costsraucéor crossing the ordet-bridge and for
traversing other ordefd + 1) graphs, see (9) and (10), we conclude that ageptys at least the cost ¢f
stated in the claim. O

If the order{d + 1) agent associated wit¥{"! purchases the arc of ordér+ 1 within G{*!, its cost
is at mostay, = 1/3%+1. A strategy using edges outside the graph incurs a costsleastiC' as stated in
the above claim. We show thét > a4.1, which proves that in a Nash equilibrium the ordér+ 1) agent
associated WithGZJrl establishes the required connection via the ofdef- 1) arc. If d = dpax — 1, then
Witz = 0 and we are done because= i (1 + 22w) > 5257

If d < dmax — 2, then

2wgyi1 1 3 Wit 1 3
2wgs1 + IWaio 3d+1( + log W ) < / < + 2wgyi1 3d+1( i log W )

It remains to Show W, »/(2wqy1) < 3/ log W, which proves the desired inequality > 1/3%+1. We have

Wars 9W/(31log W)+2 3 3

= = < .
2wgi1 2W/(3log W)+l — 6W /(3 log W)d+2 2logW —2 = logW

The last inequality holds becaukg W > 3.

To finish the proof of part (b) of the lemma we have to show that< d,,., — 2, then any agentof order
d+ 2 or larger that is associated with a subgrapt@éffl, 1 < k < 3, establishes its connection Witl”([iﬁ“.
Suppose this were not the case. Then agehboses a patRk that Ieave{;frl through its base. Figure 4(d)
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shows a sample path fér = 2. To connect to the desired terminal, pd®must visit the tip oszJrl from
where it can continue on edges insi@é*!. SinceP uses edges outsidg{ !, it does not use the arc of
orderd + 1 in Gz“ and hence must traverse the bridge of ordlér G%. The cost of this bridge is shared by
agents of total weight at mo8iV,, » because we have shown that all the agents of atdet in G? establish
connections within their respective subgraphs and theratdgent associated witfi? purchases the arc of
orderd (see part(a)). LeP’ be the subpath aP connecting the base and the tip(éfl. On P’ agent; incurs

a cost of at least

, w(i) 3
costl) 2 Sy ST Tog W
wherew(i) is the weight of agent. In the given Nash equilibrium, consider the strategy usethb order-
(d + 1) agent associated witi{ ™. The cost of this agent is at most3¢*! because this is the cost incurred
when buying the ordefd + 1) arc in Gﬁ“, which is always an option. This ordéd-+ 1) agent has to
connect the base and the tip((iijfrl and, as shown in the previous paragraphs, use edges \@Igﬁih Now,
agenti can replaceP’ by the strategy used by the ordet-+ 1) agent ong“, incurring a cost of at most
w(i)/(w(i)+wgr)-1/3 < w(i)/wayrr-1/3971. We show that the latter expression is strictly smaller than
the costeost(P’), contradicting the fact that the configuration in whiahsed edges outsia[éfrl was a Nash
equilibrium. Inequalitycost(P’') > w(i)/wqy1 - 1/39T is equivalent to showin@Wy, o /w1 < 9/log W.
We have

Waro W/ (31log W)a+2 _ 3 _ 9

wgrr  W/(3logW)d+l —3W/(3log W)d+2 = logW —1 ~ logW’
sincelog W > 3. O
This completes the proof of the theorem. O

The lower bound of Theorem 9 is nearly tight. Firstly, thegmatal function arguments of the proof of
Theorem 5 imply that there exists arapproximate Nash equilibrium whose cost is at miostIn W times
that of the social optimum & > 1 + In(1 + wpax). Herewnpay is the maximum weight of any agent.
Secondly, Chen and Roughgarden [7] showed that in direatgehg, for anyy = Q(log wmax ), the price of
stability of a-approximate Nash equlibria 3((log W) /). This result can be extended to undirected graphs.

7 Conclusions

In this paper we have investigated the value of coordinaitionetwork design games. We have developed
lower and upper bounds on the price of anarchy attained bygtNash equilibria in unweighted and weighted
games, considering both undirected and directed graptsholts that strong Nash equilibria achieve much
better performance ratios than standard Nash equilibrihthat these ratios are often as good as those of
the best standard equilibrium states. There is still roomrfgorovements. For undirected graphs we have
developed an upper bound &f,, ~ Inn and a lower bound of2(y/logn) on the price of anarchy in un-
weighted games. In weighted games the boundd arén W andQ(y/log W), respectively. An interesting
open problem is to determine the true ratios for undirectegblgs.

Furthermore, in this paper we have also devised the firstrargrestant lower bound on the price of stabil-
ity in unweighted graphs. More specifically we proved a loweund of(2(log W/ log log W) for weighted
network design games. A challenging open problem is to deterthe price of stability in unweighted games.
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Appendix

Proof of Proposition 1. We prove the result for undirected graphs and then show hadwéat edges to
obtain the desired statement for directed networks as Walhsider the graph given in Figure 5. We have a
vertex sefl” = {vy, ve, v3, w1, we, ws, t}, where vertexw; is connected to via amain edge{w;, t} of cost 1,

1 <4 < 3. Furthermore, there auxiliary edges{v;, w; } of cost 1/2 andhuxiliary edges{v;, w; mod 3+1} Of
costl/2 + ¢, 1 < i < 3. Heree > 0 is an arbitrarily small value. Associated with the graphtaree agents,
where agent has to connect terminats andt, 1 < i < 3. We will consider all possible states and show that
none represents a strong Nash equilibrium. Any state inhvailcof the three main edges are purchased does

@)

1/2

Figure 5: A graph without a strong Nash equilibrium.

not form a strong Nash equilibrium because two ageé@isd:’ = ¢ mod 3 + 1 could team up, sharing main
edge{w;, t}. As the original cost of each of the two agents was at [east /6 = 7/6 and the new cost is at
most1 + e, this yields a cost reduction for each member of the coalitio

Next suppose that there exists a strong Nash equilibriumhicimtwo agents share a main edgge;, ¢}
while the third agent buys a second main edige, ¢}, j # i. Then agent is one of the agents sharifa;, ¢}
and connects to; using edg€v;, w; } since otherwise agentcould strictly improve its cost by purchasing a
third of {w;,t}. We now distinguish cases depending on whegjheri mod 3+ 1o0rj = (i+ 1) mod 3+ 1.

If ; = ¢mod 3 + 1, then ageny must be the one buyinguw;,t} as connecting; to w; requires the
traversal of three auxiliary edges the cost of which is atlé#2 + ¢ /3. This cost is higher than that of buying
{vj,w;} and hence agertwould prefer to shar¢w,, t} instead of{ w;, t}. Thus agent” = (i+1) mod 3+1
shares main edgfw;, t} and connects ta; using edge{v;», w;} of costl/2 + e because any other path of
auxiliary edges has a strictly higher cost. We conclude dgant; pays a cost 08/2 and ageni” a cost of
1/2+ e+ 1/2 = 1+ e. Now agentsj andi” can form a coalition, sharing main edge,t}. The new
cost of ageny is 1/2 + e + 1/2 < 3/2 and the new cost of agefitis 1/2 + 1/2 < 1 + ¢, contradicting the
assumption that the original configuration was a strong Naghlibrium.

If j = (¢ + 1) mod 3 + 1, then again agentbuys main edggw;, t}: If agent; shared{w;,t} and agent
i’ = i mod 3+1 bought{wj;, t}, agent’ would connect tav; using edggv;/, w; } and agenj would connect
to w; using edggv;, w; } as other paths of auxiliary edges are strictly more expenddoth agents pay a cost
of 1/2 + € for these connections. In this situation aggwbuld strictly improve its cost by connecting 4g
and sharinwj;, t} instead of{w;, t}. We conclude that agetitshares main edgfw;, ¢} and connects ta;
atacost ofl + ¢+ 1/4. Now agent’ can improve its cost by buying edde;, w,} at a cost ofl /2 + ¢ and
sharing edgqw,, t} instead of{w;,t}. We obtain a contradiction to the fact that the original agufation
was a strong Nash equilibrium.

We finally have to investigate the case that a configuratiors fmnly one main edgéw;, ¢}, the cost of
which is shared among the three agents. Then adert (i + 1) mod 3 + 1 connects taw; using edge
{vyn,w;} and agent’ = i mod 3 + 1 connects tav; using a path of auxiliary edges that results in a cost of at
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leastl + € + 1/4. Hence the total cost af is at leastl + 1/4 + 1/3 + ¢ > 3/2 and agent’ can improve its
strategy by buying edgeg;/, w; } and{w;, t}.

We note that the graph can be extended to any agent numbgrinserting nodes,, . .. , v, affiliated
with agents numbered to n, where agent wishes to connect; to ¢, 4 < ¢ < n. Each suchy; is connected
to ¢ via a private edge.

This concludes the analysis of undirected graphs. To olitenresult for directed graphs we simply
direct edges towards the destinatian We havemain edge(w;, t) as well asauxiliary edges(v;, w;) and
(vi, Wi mod 3+1), 1 < @ < 3. Directing the edges only restricts the set of possibleestathile all strategy
changes proposed above can still be performed. O
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