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Abstract

We study network design games wheren self-interested agents have to form a network by purchasing
links from a given set of edges. We consider Shapley cost sharing mechanisms that split the cost of an
edge in a fair manner among the agents using the edge. It is well known that the price of anarchy of these
games is as high asn. Therefore, recent research has focused on evaluating the price of stability, i.e. the
cost of the best Nash equilibrium relative to the social optimum.

In this paper we investigate to which extent coordination among agents can improve the quality of
solutions. We resort to the concept ofstrong Nash equilibria, which were introduced by Aumann and are
resilient to deviations by coalitions of agents. We analyzethe price of anarchy of strong Nash equilibria
and develop lower and upper bounds for unweighted and weighted games in both directed and undirected
graphs. These bounds are tight or nearly tight for many scenarios. It shows that using coordination, the
price of anarchy drops from linear to logarithmic bounds.

We complement these results by also proving the first super-constant lower bound on the price of sta-
bility of standard equilibria (without coordination) in undirected graphs. More specifically, we show a
lower bound ofΩ(log W/ log log W ) for weighted games, whereW is the total weight of all the agents.
This almost matches the known upper bound ofO(log W ). Our results imply that, for most settings, the
worst-case performance ratios of strong coordinated equilibria are essentially always as good as the per-
formance ratios of the best equilibria achievable without coordination. These settings include unweighted
games in directed graphs as well as weighted games in both directed and undirected graphs.
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1 Introduction

Communication networks are pervasive and critical to modern society. Nonetheless, the formation and evolu-
tion of large networks is not well understood, a major reasonbeing that these networks typically are not built
by a central authority but rather by many economic agents that have selfish interests. For this reason, research
on network design has focused on game-theoretic approachesover the past years, see e.g. [2, 3, 5, 6, 7, 8, 9,
11, 14, 22, 23].

We study network design games that have received a lot of attention recently [2, 3, 6, 7, 13, 16] and are
simple, yet powerful enough to capture the two most important objectives of agents: connection establishment
and cost minimization. Consider a directed or undirected graphG where each edgee has a non-negative cost
c(e). There aren agents, each of which has to connect a set of terminals. The agents form a network by
selecting edges. A strategySi of an agenti is a set of edges connecting the desired terminals. The cost of
the edges used by all the agents has to be covered. A fundamental cost sharing mechanism isShapley cost
sharing, which was proposed by Anshelevich et al. [3] for network design games and has been studied with
respect to other networking problems as well [12, 15]. In Shapley cost sharing, the cost of an edge is shared
in a fair manner among the agents using that edge. In anunweighted gameif k agents use an edgee in their
strategies, then each of these agents pays a share ofc(e)/k. In a weighted game, each agenti has a weight
wi and contributes a share ofc(e)wi/We, whereWe is the total weight of agents usinge. We are interested
in stable networks where no agent has the incentive to deviate from its strategy. Stability is modeled by
considering Nash equilibria. A combinationS = (S1, . . . , Sn) of strategies forms a Nash equilibrium if no
agent has a better strategy with a strictly smaller cost if all the other agents adhere to their strategies. A widely
accepted performance measure to evaluate the quality of Nash equilibria is theprice of anarchy[19], which is
the maximum ratio of the total cost incurred by any Nash equilibrium to the cost spent by the social optimum.
Unfortunately, for our network design games, the price of anarchy is as high asn. As an alternative quality
measure, Anshelevich et al. [3] proposed theprice of stabilitywhich is the ratio of the best Nash equilibrium
relative to the social optimum. Anshelevich et al. [3] proved that the price of stability in unweighted network
design games isO(log n).

The scenario described so far assumes that agents are completely non-cooperative, isolated entities. How-
ever for long-term decisions such as network design, given today’s communication infrastructure, this as-
sumption is not entirely realistic. It is more natural that agents will discuss possible strategies and, as in other
economic markets, form coalitions taking strategic actions that are beneficial to all members of the group. In
such cooperative environments we seek again stable solutions. In this context, Aumann [4] in 1959 introduced
the concept ofstrong Nash equilibria, which ensure stability against deviations by every conceivable coalition
of agents. More specifically, no coalition can cooperatively deviate in a way that benefits all its members,
taking the actions of the agents outside the coalition as given. With respect to network design, an important
question is if coordination among agents yields strictly better solutions. Is it possible to achieve significant
improvements? We prove that this is the case. When coordination is allowed, the price of anarchy of strong
Nash equilibria drops fromn to O(log n) in unweighted games. Similar improvements show in weighted
games. Obviously, any strong Nash equilibrium is a standardNash equilibrium, which is immune to devia-
tions of single agents. Hence strong Nash equilibria cannotbe better than the best standard Nash equilibria.
A second natural question is how strong Nash equilibria rankrelative to the best standard Nash equilibrium.
When coordination is allowed, is the worst-case performance of stable states close to that of the best stable
states achievable without cooperation? We answer this question in the affirmative in terms of anarchy and
stability measures. For most settings, the price of anarchyof strong Nash equilibria is essentially always as
good as the corresponding stability bounds of standard equilibria. These settings include unweighted games
in directed graphs as well as weighted games in both directedand undirected graphs.

Previous results: Research on the network design games defined above was initiated by Anshelevich et
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al. [2]. In this first paper the authors considered general cost sharing schemes that are not restricted to Shapley
mechanisms. Anshelevich et al. studied undirected graphs and first addressed scenarios where each agent has
to connect one terminal to a common destination. They designed Nash equilibria whose cost is equal to the
cost of the optimum. Furthermore Ashelevich et al. [2] investigated the general scenario that each agent has
to connect a set of terminals. In this case there are graphs that do not admit Nash equilibria. The authors
therefore studiedα-approximate Nash equilibriain which no agent can improve its cost by a factor of more
thanα, whereα > 1. Anshelevich et al. proved that there always exists a3-approximate Nash equilibrium
whose cost is equal to that of the optimum. Furthermore, theyderived a polynomial time algorithm that gives
a (4.65 + ǫ)-approximate Nash equilibrium whose cost is twice the optimum.

In the following two paragraphs we describe the results known for network design games with Shapley cost
sharing. The setting was introduced in a second paper by Anshelevich et al. [3] who first analyzed unweighted
games. Using elegant potential function arguments based ona potential by Monderer and Shapley [20],
the authors proved that every directed or undirected graph admits a Nash equilibrium and that the price of
stability is upper bounded byH(n). HereH(n) =

∑n
i=1 1/i is thenth Harmonic number, which is closely

approximated by the natural logarithm, i.e.ln(n + 1) ≤ H(n) ≤ ln n + 1. The upper bound ofH(n) on
the price of stability is tight for directed graphs. For undirected graphs Anshelevich et al. [3] showed a lower
bound of 4/3 on the price of stability; the lower bound construction uses two agents that have to establish
a connection to a common destination. Additionally, Anshelevich et al [3] considered weighted games and
showed the existence of Nash equilibria in two-agent games.For directed graphs they gave a lower bound of
Ω(max{n, log W}) on the price of stability, whereW is the total weight of all the agents.

Chen and Roughgarden [7] further investigated weighted games in directed graphs. They showed that
there are graphs that do not admit Nash equilibria. Chen and Roughgarden then demonstrated that, for any
α = Ω(log wmax), α-approximate Nash equilibria do exist and that the price of stability is O((log W )/α).
Herewmax is the maximum weight of any agent. These trade-offs are nearly tight. Further work on unweighted
games was presented by Fiat et al. [13] and Chekuri et al. [6].

All the above results hold for standard Nash equilibria without coordination. The concept of strong Nash
equilibria has been the subject of extensive studies in the game theoretic literature. Recent research in game
theory and economics has also investigated strong Nash equilibria in the context of networking problems.
A survey article presenting literature on network formation in cooperative games was written by van den
Nouweland [21]. More concretely, the existence of networksthat are stable against changes in links by any
coalition is examined in [17]. Furthermore, Andelman et al.[1] analyzed strong equilibria with respect to
scheduling as well as a different class of network creation games in which links may be formed between any
pair of agents. For the latter games, strong Nash equilibriaachieve a constant price of anarchy.

We became aware that, independent of our work, very recentlyEpstein et al. [10] studied strong Nash
equilibria for unweighted network design games in directedgraphs. They assume that each agent has to
connect a pair of terminals and consider Shapley as well as general cost sharing mechanisms. Epstein et
al. observe that strong Nash equilibria do not always exist and then present topological characterizations for
equilibrium existence. They show that if each agent has to connect a terminal to a common destination, each
series parallel graph has a strong Nash equilibrium. If arbitrary terminal pairs are allowed, every extension
parallel graph admits a strong Nash equilibrium when Shapley cost sharing is adopted. Furthermore Epstein
et al. analyze the quality of strong Nash equilibria, showing a bound ofΘ(log n) on the price of anarchy for
Shapley cost sharing and a bound of 1 for general cost sharingschemes when each agent has to connect to a
common destination.

Our contribution: This paper presents an in-depth study of network design games with Shapley cost sharing
when coordination among agents is allowed. We present upperand lower bounds on the price of anarchy
achieved by strong Nash equilibria. We study scenarios withunrestricted coordination, i.e. coalitions of any
size (or weight) may be formed; we also consider settings where the size (or weight) of a coalition is limited.
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The first part of the paper addresses unweighted network design games. We first observe that there are
graphs that do not admit strong Nash equilibria and then givea sufficient existence condition. More specif-
ically, we show thatα-approximate strong Nash equilibria exist in any directed or undirected graph, for any
α ≥ H(c), if coalitions of size up toc are allowed,1 ≤ c ≤ n. Again,H(c) is thecth Harmonic number. An
α-approximate strong Nash equilibrium, forα ≥ 1, is one where no coalition (of prescribed size or weight)
can deviate such that every member of the coalition improvesits cost by a factor of more thanα.

We next prove that the price of anarchy of strong Nash equilibria is upper bounded byH(n) ≈ ln n,
allowing coalitions of any size. This upper bound holds for any directed or undirected graph that admits a
strong Nash equilibrium. Hence, using coordination, we achieve an exponential improvement in terms of the
price of anarchy, compared to non-cooperative environments. We show that the upper bound ofH(n) is tight
in directed graphs. For undirected graphs we develop a lowerbound ofΩ(

√
log n) on the price of anarchy.

These results can be generalized toα-approximate strong Nash equilibria, for anyα ≥ 1. In this case all the
upper and lower bounds multiply by a factor ofα. For the generalized setting that coalitions of size up toc are
allowed,1 ≤ c ≤ n, we prove an upper bound ofαn

c
H(c) on the price of anarchy ofα-approximate strong

Nash equilibria. Again, this bound holds for any directed orundirected graph that admits anα-approximate
strong Nash equilibrium, for someα ≥ 1, and not just for the rangeα ≥ H(c). Suppose thatα = 1. If c = 1,
we obtain the anarchy ratio ofn achieved by standard equilibria. Ifc = n, we obtain the best ratio ofH(n).
SinceH(n) is a lower bound on the price of stability of (standard) Nash equilibria in directed graphs [3], we
conclude that in directed graphs the worst-case performance ratios of strong Nash equilibria are essentially
always as good as the performance ratios achievable by the best standard Nash equilibria.

In the second part of the paper we extend the above results to weighted network design games. We
first give a sufficient condition for the existence ofα-approximate strong Nash equilibria. We then prove
that in directed and undirected graphs the price of anarchy of strong Nash equilibria is at most1 + ln W if
the formation of coalitions is not restricted. HereW is the sum of the weights of all agents. For directed
graphs we show a matching lower bound ofΩ(log W ). For undirected graphs we prove a lower bound of
Ω(

√
log W ). Again, for anyα ≥ 1, the results extend toα-approximate strong Nash equilibria, where the

lower and upper bounds simply multiply byα. When coordination among agents is limited, we consider two
scenarios: (1) As usual, the number of agents in a coalition might be limited. (2) The sum of the weights of the
agents forming a coalition may be limited so that agents of high weight cannot leave agents of low weight in
costly configurations. For this general setting we present bounds trading the price of anarchy vs. the coalition
size or weight. Furthermore, we prove a lower bound on the price of stability of standard Nash equilibria in
undirected graphs. We construct a family of graphs in which the price of stability isΩ(log W/ log log W ).
No super-constant lower bound was known for undirected graphs, neither for weighted nor for unweighted
games. Our lower bound holds even if every agent has to connect only a pair of terminals. However, individual
terminal pairs are allowed. Together with the known lower bound ofΩ(log W ) for directed graphs [3], we
conclude that, in undirected as well as directed graphs, anarchy bounds of strong Nash equilibria essentially
match the stability bounds of standard Nash equilibria.

We remark that our set of results is mostly disjoint from thatby Epstein et al. [10]. The results provided
in both [10] and this paper are the fact that strong Nash equilibria do not always exist, the upper bound of
n
c
H(c) and the lower bound ofH(n) on the price of anarchy in unweighted games. While the upper bound

proof by Epstein et al. is based on the potential function by Monderer and Shapley, in our paper we use new
combinatorial arguments to establish the result. Generally speaking, our study here is more comprehensive
in that we allow each agent to connect set of terminals, consider directed and undirected graphs as well as
unweighted and weighted games.

Analysis techniques:As mentioned above, our upper bounds on the price of anarchy are achieved using new
combinatorial arguments that do not rely on potential functions: Starting from a strong Nash equilibrium, we
perform a sequence of specific strategy changes for varying size coalitions. For each strategy change there
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exists one unsatisfied agent whose original cost can be bounded relative to the optimum. From a technical point
of view our strongest contribution are the lower bounds for undirected graphs. We present a new recursive
framework for constructing lower bounds in network design games. Applying the recursive construction for
varying parameters, we are able to obtain anarchy as well as stability bounds in both unweighted and weighted
games. The protocol could also be applied to derive bounds for directed graphs but simpler constructions work
in the directed case. While the same recursive framework canbe applied to construct graphs for anarchy and
stability bounds, the analyses of the graphs differ. To establish anarchy bounds we have to prove that no
coalition can deviate, which turns out to be a non-trivial task because all possible coalitions and strategy
changes over the recursive levels must be examined. To establish a stability bound, we have to show that no
better Nash equilibria exist. In fact, we will prove that ourgraphs admit only one Nash equilibrium.

2 Problem statement and definitions

Network design games:Consider a graphG = (V,E, c) with a non-negative cost functionc : E 7→ IR0
+

defined on the edges. GraphG may be directed or undirected as we will study network designin both di-
rected and undirected graphs. Associated withG aren selfish agents, each of which has certain connectivity
requirements. More specifically, letTi ⊆ V be the set of terminals that agenti wishes to connect. IfG is
a directed graph, then for (selected) terminal pairst, t′ ∈ Ti we additionally have to specify which direction
between the pair should be established. A strategy of an agent i consists of a setSi ⊆ E of edges satisfying
the connection requirements. IfG is undirected,Si is in fact a minimal tree connectingTi. A combinationS
of strategies is the vectorS = (S1, . . . , Sn) of individual agent strategies. Edges used by the agents have to
be paid for. We consider Shapley cost sharing mechanisms that split the costc(e) of an edgee in a fair manner
among the agents using that edge. In anunweighted game, if k agents use an edgee, then each of thek agents
pays a share ofc(e)/k for that edge. Thus, for a combinationS of strategies, the total cost of agenti is equal
to costi(S) =

∑

e∈Si
c(e)/|{j : e ∈ Sj}|. In aweighted gameeach agenti has a weightwi and pays a share

proportional to its weight. For any edgee ∈ Si, agenti pays a share ofc(e)wi/We, whereWe =
∑

j:e∈Sj
wj

is the total weight of the agentsj usinge in their strategies. Formally, the cost of agenti in a weighted game
is costi(S) =

∑

e∈Si
c(e)wi/We.

Strong Nash equilibria: We are interested in stable solutions where agents have no incentive to deviate from
their strategies. Previous work has considered Nash equilibria that are resilient to deviations of single agents.
A weakness of Nash equilibria is their vulnerability to deviations by coalitions of agents. To overcome this
problem, Aumann [4] defined the notion ofstrong Nash equilibria. A strong Nash equilibrium is resilient
to deviations of coalitions, i.e. there exists no coalitionof agents that can jointly change strategies such that
every agent in the coalition has a strictly smaller cost. Formally, letI be a non-empty coalition of agents. For
a combinationS of strategies, letSI be the projection ofS on I, i.e. SI are the strategies of agentsi ∈ I.
Similarly, S−I represents the strategies of agentsi /∈ I. For coalitionI, letS ′

I be another choice of strategies.
A combinationS of strategies forms a strong Nash equilibrium if, for no non-empty coalitionI, there exists
a strategy changeS ′

I such thatcosti(S ′
I ,S−I) < costi(S), for all agentsi ∈ I. Note that a standard Nash

equilibrium is a strong Nash equilibrium where only coalitions of size one are allowed. In this spirit one can
consider generalized settings in which coalitions of size at mostc are permitted,1 ≤ c ≤ n. As for weighted
games we will also be interested in scenarios where the totalweight of agents forming a coalition is limited.
This ensures that agents of high weight cannot impose too much control on agents outside a coalition.

As we shall see, strong Nash equilibria do not always exist. For this reason we relax the notion of stabil-
ity, calling a combination of strategies stable if agents cannot improve their cost by a factor of more thanα.
More specifically, for a real valueα ≥ 1, a combinationS of strategies forms anα-approximate strong Nash
equilibrium if, for no non-empty coalitionI, there exists a strategy changeS ′

I such thatcosti(S ′
I ,S−I) <

costi(S)/α, for all agentsi ∈ I. Similarly, we can defineα-approximate Nash equilibria when the size or

4



weight of a coalition is limited. We remark that in the context of α-approximate strong equilibria another defi-
nition seems reasonable. We could call a combination of strategies anα-approximate strong Nash equilibrium
if no coalition can improve itstotal cost by a factor of more thanα, while still requiring that every agent of
the coalition performs strictly better than before. Obviously, anα-approximate Nash equilibrium according
this this second definition is anα-approximate equilibrium under the former definition, but not vice versa.
Thus, our original definition allows for more configurationsrepresenting equilibrium states. For this reason
and because our first definition requires a sufficiently high benefit foreachagent of a coalition to perform a
strategy change, we adopt the original definition in this paper. However, all the results that we will present in
the following sections also hold for the second definition aswell.

Performance measures:We are interested in the performance of strong Nash equilibria relative to the so-
cial optimum. Letcost(S) =

∑n
i=1 costi(S) be the total cost of all the agents and letcost(OPT ) be the

cost of the globally optimal solution. We say that strong Nash equilibria achieve a price of anarchy ofc if
maxS

cost(S)
cost(OPT ) ≤ c, where the maximum is taken over all strong Nash equilibria.The notion can be ex-

tended to (α-approximate) strong Nash equilibria with coalitions of limited size or weight. In this paper we
will also be interested in theprice of stabilityof standard Nash equilibria where coordination among agents is
not allowed. The price of stability isminS

cost(S)
cost(OPT ) , where the minimum is taken over all Nash equilibria.

3 Upper bounds for unweighted games

We study the existence of strong Nash equilibria and then develop upper bounds on the price of anarchy. The
proof of the following proposition is presented in the Appendix.

Proposition 1 There exist directed and undirected graphs that do not admitstrong Nash equilibria.

Theorem 1 In any directed or undirected graph,α-approximate strong Nash equilibria exist, for anyα ≥
H(c), if coalitions of size up toc are allowed.

Proof. We use a classical potential function by Monderer and Shapley [20] to show the existence ofα-
approximate strong Nash equilibria. Given a graphG = (V,E, c) and a combinationS = (S1, . . . , Sn) of
strategies, letne be the number of agents currently using edgee ∈ E in their strategies, i.e.ne = |{i : e ∈ Si}|.
The potential is defined asΦ(S) =

∑

e∈E c(e)H(ne). We will show that whileS does not form anα-
approximate strong Nash equilibrium, when allowing coalitions of size up toc, any α-improvement move
strictly decreases the potential. Anα-improvement move, for a coalitionI with |I| ≤ c, is a strategy changeS ′

I

such thatcosti(S ′
I ,S−I) < costi(S)/α, for any agenti ∈ I. Suppose that we perform a sequence of suchα-

improvement moves starting from the social optimum. As the potential is upper bounded byH(n)cost(OPT )
and lower bounded by 0, the sequence of improvement moves must converge to anα-approximate strong Nash
equilibrium.

We analyze anα-improvement move, performed by a coalitionI with |I| ≤ c. The strategy changeS ′
I

of I can be viewed as being executed in two steps. (1) In a first stepagentsi ∈ I drop all the edges used in
strategiesSi. At this point no agenti ∈ I shares the cost of any edge. (2) In a second step agentsi ∈ I join
the edges they want to use in their new strategiesS ′

I . Let E1 be the set of edges dropped in step (1), and let
E2 be the set of edges added in step (2). These edge sets need not be disjoint. For anye ∈ E, let n1

e be the
number of agents sharinge just after step (1) and letn2

e be the number of agents sharinge after step (2). The
absolute value of the cost reduction experienced byI due to step (1) is

cost− =
∑

e∈E1

c(e)
ne − n1

e

ne

,
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becausee ∈ E1 is dropped byne−n1
e agents that each paid a share ofc(e)/ne. The value of this cost reduction

is equal to the cost ofI in the original configuration, i.e.cost− =
∑

i∈I costi(S), because after step (1) the
cost ofI is 0. The cost increase ofI due to step (2) is

cost+ =
∑

e∈E2

c(e)
n2

e − n1
e

n2
e

,

becausee ∈ E2 is bought byn2
e − n1

e agentsi ∈ I who payc(e)/n2
e each. This cost increase is equal to

the cost ofI in the new configuration, i.e.cost+ =
∑

i∈I costi(S ′
I ,S−I), because the cost ofI was 0 before

step (2) and the strategy change is complete after step (2). Using the definition of anα-improvement move we
have

∑

i∈I costi(S ′
I ,S−I) <

∑

i∈I costi(S)/α and hence

αcost+ − cost− < 0. (1)

Next we consider the potential change∆Φ. The potential change stems from edgese ∈ E1 ∪ E2 where cost
shares change. LetΦ− be the absolute value of the potential drop due to step (1) of the improvement move
and letΦ+ be the potential increase due to step (2). We will show−Φ− ≤ −cost− andΦ+ ≤ αcost+. This
implies∆Φ = −Φ− + Φ+ ≤ −cost− + αcost+ and using (1) we obtain∆Φ < 0, which is to be proven.

To verify −Φ− ≤ −cost− we observe

Φ− =
∑

e∈E1

c(e)(H(ne) − H(n1
e)) ≥

∑

e∈E1

c(e)
ne − n1

e

ne

= cost−.

The inequality holds becauseH(ne)− H(n1
e) = 1/(n1

e + 1) + 1/(n1
e + 2) + . . . + 1/ne ≥ (ne − n1

e)/ne. It
remains to proveΦ+ ≤ αcost+. The potential increase is given byΦ+ =

∑

e∈E2
c(e)(H(n2

e)−H(n1
e)). We

show that for anye ∈ E2,

H(n2
e) − H(n1

e) ≤ H(n2
e − n1

e)
n2

e − n1
e

n2
e

. (2)

The desired inequality for the potential increase then follows becausen2
e −n1

e ≤ c as at mostc agents can join
any edge in step (2) andH(c) ≤ α. The expressions in (2) are

H(n2
e) − H(n1

e) =
1

n1
e + 1

+
1

n1
e + 2

+ . . . +
1

n2
e

H(n2
e − n1

e)
n2

e − n1
e

n2
e

= (1 +
1

2
+ . . . +

1

n2
e − n1

e

)
n2

e − n1
e

n2
e

.

We compare thekth terms of these expressions, fork = 1, . . . , n2
e−n1

e, and establish (2) by proving1
n1

e+k
≤ 1

k
·

n2
e−n1

e

n2
e

. This is equivalent to showing0 ≤ n1
e(n

2
2−n1

e)−kn1
e, and this holds becausef(k) = n1

e(n
2
2−n1

e)−kn1
e

is decreasing ink andf(n2
e − n1

e) = 0. 2

Theorem 2 In any directed or undirected graph and for anyα ≥ 1, the price of anarchy ofα-approximate
strong Nash equilibria is upper bounded byαn

c
H(c) if coalitions of size up toc are allowed.

If there are no restrictions on the coalition size and we are interested in true strong Nash equilibria (i.e.α = 1),
we obtain:

Corollary 1 In any directed or undirected graph the price of anarchy of strong Nash equilibria is upper
bounded byH(n).
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Proof of Theorem 2. GetG be a graph that admitsα-approximate strong Nash equilibria, for someα ≥ 1,
and letS = (S1, . . . , Sn) be such an equilibrium state. The basic idea of the proof is toconsider all coalitions
of size exactlyc. For each coalitionI we perform a process consisting of exactlyc steps in which the agents of
I try to buy the edges of the social optimum. At the end of each step exactly one agent will leave the process.
Making use of the fact that inS no coalition of size up toc can improve its cost by a factor of more thanα,
we will be able to upper boundcosti(S) of the agenti leaving the process relative to the cost of the social
optimum. More specifically, we will prove that for any coalition I of size exactlyc,

∑

i∈I

costi(S) ≤ αH(c)cost(OPT ). (3)

Let I be the set of all coalitions of size exactlyc. Summing (3) over all the
(

n
c

)

coalitionsI ∈ I, we obtain
∑

I∈I

∑

i∈I costi(S) ≤ α
(

n
c

)

H(c)cost(OPT ). Any fixed agenti, 1 ≤ i ≤ n, occurs in exactly
(

n−1
c−1

)

coalitionsI ∈ I. Hence
∑

I∈I

∑

i∈I costi(S) =
(

n−1
c−1

)

cost(S). We conclude

cost(S) ≤
(

n
c

)

/
(

n−1
c−1

)

· αH(c)cost(OPT ) =
n

c
· αH(c)cost(OPT ),

which establishes the stated price of anarchy.
Fix an arbitrary coalitionI of size exactlyc. We will prove (3). LetEOPT be the set of edges bought by

the social optimum and, for anyi ∈ I, let EOPT
i be a minimal set of edges necessary to connect the terminals

of agenti within the optimal solution. We now start the process mentioned above. LetI1 := I be the initial
coalition consisting ofc agents. Suppose that we have already performedk − 1 steps of the process, where
initially k = 1, and letIk be the coalition given at the beginning of thekth step, where1 ≤ k ≤ c. Thekth
step proceeds as follows. Starting from initial configurationS, the agents ofIk perform a strategy changeSk

Ik

in which i ∈ Ik buys setEOPT
i . Let Sk = (Sk

Ik
,S−Ik

) be the resulting configuration. The new cost of agent
i ∈ Ik is

costi(Sk) =
∑

e∈EOPT
i

c(e)

|{j ∈ Ik : e ∈ EOPT
j } ∪ {j /∈ Ik : e ∈ Sj}|

≤
∑

e∈EOPT
i

c(e)

|{j ∈ Ik : e ∈ EOPT
j }| .

Since the original configurationS forms anα-approximate strong Nash equilibrium, the strategy change
cannot improve the cost of every agenti ∈ Ik by a factor of more thanα. Thus there must exist an agentik
with costik(Sk) ≥ costik(S)/α and hence

costik(S) ≤ α
∑

e∈EOPT
ik

c(e)

|{j ∈ Ik : e ∈ EOPT
j }| . (4)

This agentik leaves the coalitionIk. If there is more than one agent satisfying the above cost inequality, we
select an arbitrary of them. The new coalition at the end of the step isIk+1 := Ik \ {ik}. The process ends
after exactlyc steps when the coalition is empty. Summing (4) over all thec steps, taking into account that the
sequence of agents leaving the process formsI, we find

∑

i∈I

costi(S) ≤ α
c
∑

k=1

∑

e∈EOPT
ik

c(e)

|{j ∈ Ik : e ∈ EOPT
j }| . (5)

We analyze the right-hand side of the above inequality, which sums edge costsc(e) over edgese ∈ EOPT .
Consider any fixed edgee ∈ EOPT and letne = |{i ∈ I : e ∈ EOPT

i }| be the number of agents inI
usinge in the described strategy changes. The cost ofe contributes to the right-hand side of (5) whenever
one of thene agents leaves the process. Theℓth time this happens, the contribution isc(e)/(ne − ℓ + 1),
for ℓ = 1, . . . , ne. Thus, the cost contribution isc(e)H(ne) ≤ c(e)H(c) and we conclude

∑

i∈I costi(S) ≤
α
∑

e∈EOPT c(e)H(c) = αH(c)cost(OPT ). 2
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4 Lower bounds for unweighted games

We first present a lower bound for directed graphs. This lowerbound implies that if there is no restriction on
the coalition size, our upper bound of Corollary 1 is optimal.

Theorem 3 In directed graphs and for anyα ≥ 1, the price of anarchy ofα-approximate strong Nash equi-
libria is at leastαmax{n/c,H(n)} if coalitions of size at mostc are allowed.

Proof. We modify lower bound graphs that were presented previouslyin the literature [2]. For the bound
of αn/c, consider a simple graph consisting of two verticess andt that are connected by two parallel edges
of costαn and c + ǫ, respectively, see Figure 1(a). Associated with the graph are n agents, all of which
have to connect terminalss andt. An optimal solution will buy the edge of costc + ǫ. On the other hand,
the configuration in which all then agents share the expensive edge of costαn, each one paying a cost of
α, represents anα-approximate strong Nash equilibrium: Any coalition of size up toc, when performing a
strategy change and buying the edge of costc + ǫ, incurs a cost of at least1 + ǫ/c per agent. Hence the agents
of the coalition do not save a factor of more thanα in cost.

(a)

s

t

αn c + ǫ
v1 v2 v3 vn

w

t

· · ·

0

(b)

0

α
3

α
2

00

1 + ǫ

α
n

α

Figure 1: Directed graphs enforcing a high price of anarchy.

In order to establish the lower bound ofαH(n), we use the graph depicted in Figure 1(b). There aren
verticesv1, . . . , vn, wherevi is connected to a vertext via a directed edge(vi, t) of costα/i and to a vertex
w via a directed edge(vi, w) of cost 0. Additionally, there is a directed edge(w, t) of cost1 + ǫ. Associated
with the graph aren agents, where agenti has to connectvi to t. An optimal solution satisfies the connection
requirements by buying the edges of cost 0 and the edge(w, t) of cost1+ ǫ. The configuration in which agent
i connectsvi to t using its private edge(vi, t) of costα/i forms anα-approximate strong Nash equilibrium.
Any coalition of size, sayc, that performs a strategy change and purchases edge(w, t) incurs a cost of(1+ǫ)/c
per agent. However, there is at least one agent in the coalition whose original cost was at mostα/c and to
whom the incentive of changing is not sufficiently high. 2

We next develop a lower bound for undirected networks. Our lower bound construction is quite involved
and we therefore concentrate on the most general scenario where there is no limit on the coalition size.

Theorem 4 For any α ≥ 1, there exists a family of undirected graphs, each admittingan α-approximate
strong Nash equilibrium whose cost isΩ(α

√
log n) times that of the social optimum.

Proof. For ease of exposition we first prove the theorem forα = 1 and then show how to adapt the proof for
anyα > 1. We present a recursive definition of graphsG. Let n be a positive integer such that⌊√log n⌋ ≥ 2.
In this proof logarithms are taken to the base 3. Letdmax = ⌊√log n⌋−1. The recursive construction proceeds
in dmax+1 steps. At the bottom level of the recursion, i.e. at maximum depthdmax, G consists of graphsGdmax
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of orderdmax, cf. Figure 2(a). A graphGdmax is composed of astem edge{v,w} of costsdmax = 1/3dmax and
a bridge{u, v} of orderdmax having costbdmax = 2/32dmax . The bridge and the stem are joined at vertexv.
Verticesu andw are connected via anarc {u,w} of orderdmax having costadmax = 1/3dmax . We callu the
baseandw the tip of Gdmax . Associated withGdmax arendmax = ⌈n/3dmax(dmax+1)⌉ agents of orderdmax,
each having to connect terminalsu andw. By the choice ofdmax we havendmax ≥ 1.

G
d+1
3

G
d+1
2

G
d+1
1

(b)

ud

u

Gdmax

arc
stem

bridge

w

v

(a)

bridge

arc

wd = w3,d+1

(c)

Gd G0

u1,d+1

Figure 2: The recursive construction of graphsGd.

Assume that graphs of orderdmax, dmax − 1, . . . , d + 1 are defined. Then a graphGd of orderd, which
resides a depthd of the recursion, is constructed as follows, see Figure 2(b). GraphGd consists of three graphs
Gd+1

1 , Gd+1
2 andGd+1

3 of orderd + 1 that are attached to each other. More specifically, the tip ofGd+1
1 and

the base ofGd+1
2 are merged, i.e. the two vertices are united, and the tip ofGd+1

2 is merged with the base of
Gd+1

3 . Let u1,d+1 be the base ofGd+1
1 . Attached to this vertex is a bridge{ud, u1,d+1} of orderd having a

cost ofbd = 2/32d. Let w3,d+1 be the tip ofGd+1
3 and setwd := w3,d+1. We callud thebaseandwd the tip

of Gd. Additionally, Gd contains an arc{ud, wd} of orderd connecting the base and the tip. This arc has cost
ad = 1/3d. Associated withGd arend = ⌈n/3d(d+1)⌉ − 3⌈n/3(d+1)(d+2)⌉ agents of orderd, all of which
have to connectud to wd. As we shall see, these agents will govern the connection decisions withinGd. The
bridge will have the effect that in a strong Nash equilibrium, the order-d agents will establish their connections
using the arc of orderd instead of routing through the graphsGd+1

k , 1 ≤ k ≤ 3.
The construction proceeds down to a depthd = 0. Associated with graphG0 are n0 = ⌈n/30⌉ −

3⌈n/32⌉ = n− 3⌈n/32⌉ agents of order 0 that have to connect the outermost verticesof G0. GraphG := G0

is the graph we will work with. A high level sketch ofG = G0 is given in Figure 2(c).
We start with some observations onG = G0. First, all the vertices and terminals of the graph are located

on abackboneconsisting of all the stem edges and bridges. The nested structure ofG0 contains3d subgraphs
of orderd, for any0 ≤ d ≤ dmax.

Proposition 2 The least expensive path connecting the base and the tip of a graphGd using only edges ofGd

has a total edge cost of exactly1/3d, for any0 ≤ d ≤ dmax.

Proof. The statement holds ford = dmax as the arc ofGdmax has costadmax = 1/3dmax while the path
crossing the bridge has costbdmax + sdmax = 2/32dmax +1/3dmax . Suppose that the statement holds for depths
dmax, . . . , d + 1. In Gd the arc of orderd has costad = 1/3d while, using the inductive hypothesis, any path
using the bridge of orderd has a cost of at leastbd + 3 · 1/3d+1 = 2/32d + 1/3d > 1/3d. 2
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The total number of agents associated withG0 and all of its subgraphs is equal to

N0 =

dmax−1
∑

d=0

3d(⌈n/3d(d+1)⌉ − 3⌈n/3(d+1)(d+2)⌉) + 3dmax⌈n/3dmax(dmax+1)⌉

= n − 3dmax⌈n/3dmax(dmax+1)⌉ + 3dmax⌈n/3dmax(dmax+1)⌉
= n.

More generally, inG = G0 the total number of agents associated with all the order-d graphsGd and the
subgraphs therein is, for anyd with 0 ≤ d ≤ dmax,

Nd =

dmax−1
∑

i=d

3i(⌈n/3i(i+1)⌉ − 3⌈n/3(i+1)(i+2)⌉) + 3dmax⌈n/3dmax(dmax+1)⌉ = 3d⌈n/3d(d+1)⌉,

which is equal ton/3d2
when ignoring ceilings.

The social optimum inG buys the backbone of the graph. As there are3dmax graphs of orderdmax, the total
cost of the stem edges is3dmaxsdmax = 3dmax · 1/3dmax = 1. There are3d graphs of orderd, 0 ≤ d ≤ dmax,
and hence the total cost of order-d bridges is3dbd = 3d · 2/32d = 2/3d. Summing over alld we find that the
total cost of the bridges is

∑dmax
d=0 2/3d ≤ 3. We conclude that the cost of the social optimum is bounded by4.

Consider the configurationS in which, for any graphGd within G, any order-d agent associated with this
graphGd establishes its required connection via the correspondingarc of orderd. That is,S buys all the arcs.
As we will show in the remainder of this proof,S forms a strong Nash equilibrium. We evaluate the cost of
S. As there are3d graphs of orderd, the total cost of order-d arcs is3dad = 3d · 1/3d = 1, for any fixedd
with 0 ≤ d ≤ dmax. Summing over alld, we obtaincost(S) = dmax + 1 ≥ ⌊

√
log n⌋, and this establishes

the desired performance ratio.
It remains to show thatS is indeed a strong Nash equilibrium. To this end we have to show that no coalition

I of agents has animprovement move. We will always consider non-empty coalitions. An improvement move,
for a coalitionI, is a strategy changeS ′

I such thatcosti(S ′
I ,S−I) < costi(S), for any agenti ∈ I. In our

graphG, as all the agents have to connect pairs of terminals, a strategy of an agent is a simple path connecting
the desired vertices. The property that there exists no improvement move follows from Lemma 1, which we
prove in the sequel.

Lemma 1 For d = 0, . . . , dmax, no coalition involving agents of orderd has an improvement move.

For the proof of Lemma 1 we need Lemma 2 which we prove first.

Lemma 2 Consider a fixedd, 0 ≤ d ≤ dmax, and suppose that no coalition involving agents of order smaller
thand has an improvement move. Furthermore, assume that no coalition I involving agents of orderd has an
improvement move in which an order-d agenti ∈ I associated with a graphGd(i) chooses a path containing
edges outsideGd(i). Then no coalition involving agents of orderd has an improvement move.

Proof of Lemma 2. Let I be a coalition that involves agents of orderd. We have to show thatI has no
improvement move. Based on the assumptions of the lemma, we can restrict ourselves to coalitionsI that do
not contain agents of order smaller thand. Furthermore, based on the assumptions, we only have to consider
strategy changes where each order-d agenti ∈ I establishes the required connection within its graphGd(i).
Let I ′ ⊆ I be any maximal sub-coalition of order-d agents that are associated with the same graphGd(I ′).
We will show that any strategy changeS ′

I′ that consists in choosing connection paths withinGd(I ′) leads to a
strictly higher cost for that sub-coalition, i.e. at least one agenti ∈ I ′ has a strictly higher cost and the strategy
change is no improvement move.
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GraphGd(I ′) hasnd order-d agents associated with it. Letf be the fraction defecting, i.e.f = |I ′|/nd.
In the original configurationS, when routing through the arc of orderd, sub-coalitionI ′ paid a cost offad =
f/3d. When changing strategy and choosing a different connection route withinGd(I ′), eachi ∈ I ′ selects
a pathPi that crosses the bridge of orderd and then, ifd = dmax, traverses the stem edge ofGdmax(I ′) (see
Fig. 2(a)). Ifd < dmax, pathPi then traverses the order-(d + 1) graphsGd+1

k (I ′), 1 ≤ k ≤ 3, located within
Gd(I ′) (see Fig. 2(b)). Ifd = dmax, then the total cost of edges onPi is bdmax + sdmax ≥ (1 + 2/3d)/3d.
If d < dmax, then the total cost is at leastbd + 3 · 1/3d+1 ≥ (1 + 2/3d)/3d because, by Proposition 2, the
least expensive path traversing an order-(d + 1) graph has cost1/3d+1. In both cases we have the same lower
bound on the cost, expressed in terms ofd. The cost ofPi is not shared by agents of order smaller thand,
as they are not part of the original coalitionI, nor is the cost shared by order-d agents associated with other
graphsGd 6= Gd(I ′). The cost ofPi can only be shared by agents of order larger thand, and there existNd+1

such agents ifd < dmax. If d = dmax, the cost is not shared by other agents.
If d = dmax, we are done because the new cost ofI ′ is (1 + 2/3d)/3d, while the original cost was

f/3d ≤ 1/3d. If d < dmax, then at best all theNd+1 agents of order larger thand support the edges traversed
by I ′ and the new cost ofI ′ is at leastcost′I′ ≥

fnd

fnd+Nd+1
(1 + 2

3d ) 1
3d . We will to show thatcost′I′ is higher

than the original cost off/3d, which is equivalent to proving nd

fnd+Nd+1
(1 + 2

3d ) > 1. Since0 < f ≤ 1 it
suffices to show

nd

nd + Nd+1
(1 +

2

3d
) > 1.

Using the definition ofnd, eliminating ceilings, we find

nd > n/3d(d+1) − n/3(d+1)2+d − 3 =
n3d

3(d+1)2

(

3 − 1

32d
− 3d2+d+2

n

)

≥ n3d

3(d+1)2

(

2 − 3(d+1)(d+2)

n

)

≥ n3d

3(d+1)2
.

The second inequality holds because1/32d ≤ 1. For the third inequality note thatd < dmax anddmax =
⌊
√

log n⌋ − 1 imply (d + 1)(d + 2) ≤ log n and hence3(d+1)(d+2) ≤ n. Moreover, we haveNd+1 <
2n/3(d+1)2 . We conclude

nd

nd + Nd+1
(1 +

2

3d
) >

3d

3d + 2
(1 +

2

3d
) =

3d

3d + 2
· 3d + 2

3d
= 1.

2

Proof of Lemma 1. We prove the lemma inductively for increasing values ofd. For d = 0, the statement
follows immediately from Lemma 2 as the assumptions of that lemma are trivially satisfied: There are no
agents of order smaller than 0 and an agent of order 0 cannot connect its terminals using edges outsideG0.
Suppose that the statement of Lemma 1 holds for depth0, . . . , d − 1. We prove that no coalitionI involving
order-d agents has an improvement move in which an order-d agenti ∈ I associated with a graphGd(i)
chooses a path using edges outsideGd(i). The inductive step then follows from Lemma 2.

So consider a coalitionI involving agents of orderd and a corresponding strategy changeS ′
I in which at

least one order-d agent chooses edges outside its order-d graph to connect the desired terminals. We show
that the strategy change is not an improvement move. By the inductive hypothesis, we can restrict ourselves
to coalitionsI not involving agents of order smaller thand. ThusI only contains agents of orderd or larger.
Let I ′ ⊆ I be the maximum sub-coalition of order-d agentsi choosing connection paths outside their graph
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Gd(i). As d ≥ 1, each such graph belongs to a graphGd−1 in the nested structure ofG0. Consider all graphs
of orderd − 1 containing at least oneGd(i), i ∈ I ′, and number these order-(d − 1) graphs in an arbitrary
way. LetJ be the resulting index set. Each graphGd−1,j , j ∈ J , contains three graphsGd,j

1 , Gd,j
2 , Gd,j

3 of
orderd. Fork = 1, 2, 3, let f j

k be the fraction of the order-d agents associated withGd,j
k that are member of

I ′, i.e. f j
k = |{i ∈ I ′ : i is order-d agent associated withGd,j

k }|/nd. Recall thatnd is the number of agents
associated with an order-d graph. We have0 ≤ f j

k ≤ 1 andf j
1 + f j

2 + f j
3 > 0.

In the original configurationS, coalition I ′ pays a total cost ofcostI′ =
∑

j∈J

∑3
k=1 f j

kad because the

order-d arcs are bought. This expression holds even if some of thef j
k are zero. We show in the following that

the new costcost′I′ of I ′ is strictly higher thancostI′ . Hence at least one agent inI ′ does not improve its cost
and the strategy change is no improvement move.

In order to estimatecost′I′ consider an agenti ∈ I ′ and letGd−1,j , with j ∈ J , be the graph wherei’s

graphGd(i) is located. First suppose thatGd(i) = Gd,j
1 , cf. Figure 3(a). After the strategy change,i connects

the base and the tip ofGd,j
1 on a pathPi that uses edges outsideGd,j

1 . Since strategies are simple paths, all the
edges ofPi are outsideGd,j

1 . Starting at the base ofGd,j
1 , pathPi has to traverse the bridge of orderd − 1 in

Gd−1,j . To reach the tip ofGd,j
1 , pathPi has to travel to the tip ofGd−1,j . This can be done using the arc of

orderd− 1 or using another subpath outsideGd−1,j . After having reached the tip ofGd−1,j , pathPi traverses
Gd,j

3 andGd,j
2 , reaching the desired terminal. Ignoring edges visited between the base and the tip ofGd−1,j ,

agenti has to pay a share for the order-(d − 1) bridge and for the subpaths ofPi within Gd,j
2 andGd,j

3 . The
total cost of edges traversed within graphGd,j

k , k ∈ {2, 3}, is at least1/3d by Proposition 2. The cost may be
shared with other agents.

(a)

G
d,j
3

G
d,j
2

G
d,j
1

Pi

Gd−1,j

Pi

(b)

G
d,j
3

G
d,j
2

G
d,j
1

Gd−1,j

(c)

G
d,j
3

G
d,j
2

G
d,j
1

Pi

Gd−1,j

G
d,j
3

G
d,j
2

G
d,j
1

Gd−1,j

(d)

Pi′

Figure 3: The paths traversed after strategy change.

If Gd(i) = Gd,j
2 or Gd(i) = Gd,j

3 , the situation is similar, see Figures 3(b) and (c), respectively. In the first
case,Pi has to traverseGd,j

1 and the order-(d − 1) bridge. From there it has to travel to the tip ofGd−1,j and
pass throughGd,j

3 . Edges used within a graphGd,j
k , k ∈ {1, 3}, have a total cost of at least1/3d; cost sharing

may occur. IfGd(i) = Gd,j
3 , pathPi passes throughGd,j

2 andGd,j
1 . After traversing the bridge of orderd − 1

it connects to the tip ofGd−1,j , which is also the tip ofGd,j
3 representing the desired terminal.

Next letCj be the total number of agentsi′ ∈ I ′ that arenotassociated withGd,j
1 , Gd,j

2 or Gd,j
3 but choose

edges of these graphs when performing the strategy change. In order to use such edges, the new pathPi′ of i′

12



must pass through the base and the tip ofGd−1,j , see Figure 3(d). The path between these two vertices crosses
the bridge of orderd − 1 and must consist of subpaths withinGd,j

k , k = 1, 2, 3.
We are ready to lower bound the new costcost′I′ of I ′. To this end we will only consider the cost spent

in graphsGd,j
k , 1 ≤ k ≤ 3 andj ∈ J , and on order-(d − 1) bridges inGd−1,j . Fix a j ∈ J . GraphGd,j

1

is traversed by exactly(f j
2 + f j

3 )nd + Cj agents fromI ′, each using edges of cost at least1/3d. The cost is
shared by at most(f j

2 + f j
3 )nd + Cj + (1− f j

1 )nd + Nd+1 agents. Here(1− f j
1 )nd is the number of order-d

agents associated withGd,j
1 that establish their connection within this graph andNd+1 is the total number of

agents of order larger thand that may participate in the strategy change and reside in theentire coalitionI. If
d = dmax, the we setNd+1 = 0. Thus sub-coalitionI ′ spends a cost of at least

1

3d
· (f j

2 + f j
3 )nd + Cj

(1 − f j
1 + f j

2 + f j
3 )nd + Nd+1 + Cj

in graphGd,j
1 . Similarly, in Gd,j

2 andGd,j
3 the costs are

1

3d
· (f j

1 + f j
3)nd + Cj

(1 − f j
2 + f j

1 + f j
3 )nd + Nd+1 + Cj

and
1

3d
· (f j

1 + f j
2 )nd + Cj

(1 − f j
3 + f j

1 + f j
2 )nd + Nd+1 + Cj

.

Finally the bridge of orderd−1 has costbd−1 = 2/32(d−1), which is shared by(f j
1 +f j

2 +f j
3)nd +Nd+1 +Cj

agents andI ′ incurs a cost of 2
32(d−1) ((f

j
1 + f j

2 + f j
3 )nd + Cj)/((f j

1 + f j
2 + f j

3)nd + Nd+1 + Cj).
Note that for anyk ∈ {1, 2, 3} the other two indices from that set can be expressed ask′ = k mod 3 + 1

andk′′ = (k + 1) mod 3 + 1. We conclude

cost′I′ ≥
∑

j∈J

(

3
∑

k=1

(f j
k′ + f j

k′′)nd + Cj

(1 − f j
k + f j

k′ + f j
k′′)nd + Nd+1 + Cj

· 1

3d

+
(f j

1 + f j
2 + f j

3 )nd + Cj

(f j
1 + f j

2 + f j
3 )nd + Nd+1 + Cj

· 2

32(d−1)

)

.

Ratios of the form(x + c)/(y + c) are increasing inc if x ≤ y. Hence we can drop the termsCj and obtain

cost′I′ ≥
∑

j∈J

(

3
∑

k=1

(f j
k′ + f j

k′′)nd

(1 − f j
k + f j

k′ + f j
k′′)nd + Nd+1

· 1

3d
+

(f j
1 + f j

2 + f j
3 )nd

(f j
1 + f j

2 + f j
3)nd + Nd+1

· 2

32(d−1)

)

,

Reordering the expression in the brackets, by focusing on one particularf j
k in the numerators, we find

cost′I′ ≥
∑

j∈J

3
∑

k=1

((

f j
knd

(1 + f j
k − f j

k′ + f j
k′′)nd + Nd+1

+
f j

knd

(1 + f j
k + f j

k′ − f j
k′′)nd + Nd+1

)

· 1

3d

+
f j

knd

(f j
1 + f j

2 + f j
3)nd + Nd+1

· 2

32(d−1)

)

.

To simplify the last expression we observe that for any real valuesx, y andc inequality 1
x−y+c

+ 1
x+y+c

≥ 2
x+c

holds, which we apply forx = f j
knd andy = (f j

k′ − f j
k′′)nd as well asc = nd + Nd+1. Furthermore,

f j
knd

(f j
1 + f j

2 + f j
3 )nd + Nd+1

≥ f j
knd

(f j
k + 2)nd + Nd+1

≥ 1

2
· f j

knd

(1 + f j
k)(nd + Nd+1)

.
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Hence

cost′I′ ≥
∑

j∈J

(

3
∑

k=1

2f j
knd

(1 + f j
k)nd + Nd+1

· 1

3d
+

f j
knd

(1 + f j
k)(nd + Nd+1)

· 1

32(d−1)

)

>
∑

j∈J

(

3
∑

k=1

2f j
knd

(1 + f j
k)(nd + Nd+1)

(1 +
2

3d
)

1

3d

)

.

As shown at the end of the proof of Lemma 2,nd

nd+Nd+1
(1+ 2

3d ) > 1 if d < dmax. If d = dmax, thenNd+1 = 0
and the inequality is also satisfied. In each case

cost′I′ >
∑

j∈J

3
∑

k=1

2f j
k

1 + f j
k

1

3d
≥
∑

j∈J

3
∑

k=1

f j
k

1

3d

and the new cost ofI ′ is strictly larger than the original cost ofI ′ in configurationS. 2

This completes the proof of Theorem 4 forα = 1. We finally show how to adapt the proof for anyα > 1. In the
construction of the graphsGd only the costs of the arcs change. An arc of orderd now has costαad. All other
costs remain the same. This increases the cost of configuration S by a factor ofα, i.e. cost(S) ≥ α⌊log n⌋
while the cost of the social optimum remains the same. This establishes a performance ratio ofΩ(α

√
log n).

In the statements of Lemmas 1 and 2, the term “improvement move” has to be replaced by “α-improvement
move”. An α-improvement move, for a coalitionI, is a strategy changeS ′

I such thatcosti(S ′
I ,S−I) <

costi(S)/α, for any agenti ∈ I. In the proof of Lemma 2 we considered any coalitionI involving agents
of orderd or larger and investigated strategy changes where order-d agents establish connections with their
respective graph of orderd. We identified a sub-coalitionI ′, with f = |I ′|/nd, incurring a new cost of
cost′I′ > f/3d. This cost inequality still hold in our modified graph as edgecosts did not decrease. Since
cost′I′ > f/3d = (αf/3d)/α andαf/3d is the original cost ofI ′ in the scaled graph, the strategy change is
noα-improvement move.

In the proof of Lemma 2 we studied coalitionsI involving agents of orderd or larger. We analyzed strategy
changes in which order-d agents buy edges outside their graph of orderd and identified a sub-coalitionI ′ of
order-d agents incurring a new total cost ofcost′I′ >

∑

j∈J

∑3
k=1 f j

k/3d, whereGd,j
k were the graphs the

agentsi ∈ I ′ are associated with. Again, when arcs are scaled by a factor of α, this cost inequality still holds.
As the original cost ofI ′ in the scaled graph is

∑

j∈J

∑3
k=1 αf j

k/3d, the strategy change is noα-improvement
move. 2

5 Weighted games

In this section we study weighted network design games whereeach agenti has a positive weightwi. We scale
the weights such that the minimum weight is equal to 1 and hence wi ≥ 1 for all agents. LetW =

∑n
i=1 wi

be the total weight of all the agents.
If agents are allowed to coordinate their strategies, two scenarios are of interest. In a first setting we

assume that coalitions of size up toc are allowed, for any1 ≤ c ≤ n. In this case letW c be the maximum
total weight of any coalition having size at mostc. In a second setting we assume that the total weight of a
coalition is upper bounded so that agents of high weight cannot impose too much control on agents of low
weight. In this case letW c

max be the maximum total weight any coalition may have.
We extend our results shown for unweighted games.
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5.1 Upper bounds

We first give a sufficient condition for the existence of strong Nash equilibria in weighted games and evaluate
their performance in terms of the price of anarchy.

Theorem 5 In any directed or undirected graphα-approximate strong Nash equilibria exist, for anyα ≥
1+ ln(1+W ). HereW = W c if coalitions of size up toc are allowed andW = W c

max if coalitions of weight
up toW c

max are allowed.

Proof. We use again potential function arguments to show the existence ofα-approximate strong Nash equi-
libria but have to work with a more general potential function, compared to that used in unweighted games.
Given a graphG = (V,E, c) and a configurationS = (S1, . . . , Sn), let ES = ∪n

i=1Si be the union of all
edges used by the agents. For anye ∈ ES , let We =

∑

i:e∈Si
wi be the total weight of the agents currently

usinge in their strategies. Define
Φ(S) =

∑

e∈ES

c(e)(1 + ln We).

We show that whileS does not form anα-approximate strong Nash equilibrium, anα-improvement move of a
coalitionI strictly decreases the potential. This ensures that a sequence of improvement moves starting from
the social optimum will converge because, at any time,0 ≤ Φ ≤ (1 + ln W )cost(OPT ).

Consider anα-improvement move of a coalitionI of agents. Again, we view the move as being performed
in two steps. (1) Agentsi ∈ I first drop all the edges of their strategiesSi. Let E1 be this set of edges.
(2) Agentsi ∈ I buy the edges they wish to have in their new strategies. LetE2 be the set of edges involved.
In the following, letcost− be the absolute value of the cost reduction experienced byI due to step (1). Note
that cost− is equal to the cost ofI in configurationS. Let Φ− be the absolute value of the potential drop.
Similarly, let cost+ be the value of the cost increase ofI in step (2) andΦ+ be the corresponding potential
increase. The value ofcost+ is equal to the cost ofI in the new configuration after strategy change. Using
the definition of anα-improvement move, we findαcost+ − cost− < 0. It remains to show thatcost− ≤ Φ−

andΦ+ ≤ αcost+, which implies∆Φ = −Φ− + Φ+ < 0.
For any edgee ∈ E, let W 1

e be the total weight of agents sharinge after step (1). The cost reduction
experienced byI due to edgee ∈ E1 is cost−e = c(e)(We − W 1

e )/We. For anye ∈ E1, let Φ−
e denote the

potential drop caused by this edge. IfW 1
e = 0, thencost−e = c(e) ≤ c(e)(1 + ln We) = Φ−

e . If W 1
e > 0,

thenW 1
e ≥ 1 and

cost−e = c(e)
We − W 1

e

We

≤ c(e)

∫ We

W 1
e

1

z
dz = c(e)(ln We − ln W 1

e ) = Φ−
e .

We concludecost− =
∑

e∈E1
cost−e ≤∑e∈E1

Φ−
e = Φ−.

For anye ∈ E2 let W 2
e be the total weight of agents sharinge after step (2). The cost increase experienced

by I due to edgee ∈ E2 is cost+e = c(e)(W 2
e −W 1

e )/W 2
e because agents inI purchasinge have a total weight

of W 2
e −W 1

e . Let Φ+
e be the potential increase caused bye ∈ E2. If W 1

e = 0, thenΦ+
e = c(e)(1 + ln W 2

e ) ≤
c(e)(1 + ln(1 + W )) ≤ αcost+e . If W 1

e > 0, thenΦ+
e = c(e)(ln W 2

e − ln W 1
e ) = c(e) ln(W 2

e /W 1
e ). To

establishΦ+
e ≤ αcost+e , we prove that

f(W 2
e ) = ln(W 2

e /W 1
e ) − (1 + ln(1 + W ))

W 2
e − W 1

e

W 2
e

is upper bounded by 0, for allW 2
e ≥ W 1

e . This impliesΦ+ =
∑

e∈E2
Φ+

e ≤ ∑

e∈E2
αcost+e = αcost+,

becauseα ≥ 1+ ln(1+W ). Computing the first derivative off we find thatf is decreasing for values ofW 2
e

betweenW 1
e and(1 + ln(1 + W ))W 1

e and increasing for larger values. Sincef(W 1
e ) = 0, we obtain thatf
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is upper bounded by 0 for anyW 2
e with W 1

e ≤ W 2
e ≤ (1 + ln(1 + W ))W 1

e . If W 2
e > (1 + ln(1 + W ))W 1

e ,
thenW 1

e < W 2
e /(1 + ln(1 + W )) and

(1 + ln(1 + W ))(W 2
e − W 1

e )/W 2
e ≥ ln(1 + W ).

Hence

f(W 2
e ) ≤ ln(W 2

e /W 1
e ) − ln(1 + W )

= ln(1 +
W 2

e − W 1
e

W 1
e

) − ln(1 + W )

≤ ln(1 + W ) − ln(1 + W ) = 0.

2

Theorem 6 In any directed or undirected graph and for anyα ≥ 1, the price of anarchy ofα-approximate
strong Nash equilibria is upper bounded byαn

c
(1 + ln W c) if coalitions of size up toc are allowed. The price

of anarchy is upper bounded by2αW
W c

max
(1 + ln W c

max) if coalitions of weight up toW c
max are allowed.

If there are no restrictions on the coalitions being formed and forα = 1, we obtain the following corollary.

Corollary 2 In any directed or undirected graph the price of anarchy of strong Nash equilibria is upper
bounded by1 + ln W .

Proof of Theorem 6. We generalize the proof of Theorem 2. Given anα-approximate strong Nash equilib-
rium S = (S1, . . . , Sn), we consider a coalitionI of legal size or weight and show

∑

i∈I

costi(S) ≤ α(1 + lnWI)costi(OPT ), (6)

whereWI it the total weight of agentsi ∈ I. If coalitions of size up toc are allowed, inequality (6) gives
∑

i∈I costi(S) ≤ α(1 + ln W c)cost(OPT ). Summing this inequality over all the
(

n
c

)

coalitions of size
exactlyc, we obtaincost(S) ≤ αn

c
(1 + ln W c)cost(OPT ). If coalitions of weight up toW c

max are allowed,
we partition then agents into maximal possible coalitions of admissible weight. This partitioning consists of
at most2W/W c

max coalitions because only one of these coalitions can have a total weight of at mostW c
max/2

and the total weight of any two coalitions is larger thanW c
max. For each coalition of the partitioning we sum

up (6) an obtaincost(S) ≤ 2αW
W c

max
(1 + lnW c

max)cost(OPT ).
In order to establish (6), for any fixed coalitionI, we perform the same process as in the proof of The-

orem 2, where sub-coalitions ofI change strategy and purchase the edge setEOPT of the social optimum.
For anyi ∈ I, let EOPT

i ⊆ EOPT be a minimal edge set necessary to connect the terminals of agent i in
the optimal solution. The process starts withI1 := I. In thekth step, fork = 1, . . . , |I|, agentsi in the
remaining sub-coalitionIk change strategies and connect their terminals usingEOPT

i . Since the original con-
figurationS is anα-approximate strong Nash equilibrium, there must exist oneagentik whose cost in the
original configurationS is bounded by

costik(S) ≤ α
∑

e∈EOPT
ik

c(e)
wik

W e
Ik

, (7)

whereW e
Ik

is the total weight of agents sharinge, i.e.W e
Ik

=
∑

i∈Ie
k
wi with Ie

k = {i : i ∈ Ik ande ∈ EOPT
i }.

This agentik leaves the process andIk+1 := Ik \ {ik}. Summing (7) over all the|I| steps, we obtain

∑

i∈I

costi(S) ≤ α

|I|
∑

k=1

∑

e∈EOPT
ik

c(e)
wik

W e
Ik

. (8)
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We estimate the contribution ofc(e), for a fixed edgee ∈ EOPT , in the right-hand side expression of (8). A
contribution to the sum occurs whenever an agenti ∈ I with e ∈ EOPT

i leaves the process. Leti1, . . . , iℓ ∈ I
be the agents usinge, i.e.e ∈ EOPT

ij
for j = 1, . . . , ℓ, and assume that these agents are numbered according

to the time when they leave the process of strategy changes. For j = 1, . . . , ℓ, let sj = wij + . . . + wiℓ be the
suffix sum of these agents’ weights. Then edgee contributes a total of

c(e)

(

wi1

wi1 + . . . + wiℓ

+
wi2

wi2 + . . . + wiℓ

+ . . . +
wiℓ

wiℓ

)

≤ c(e)(
ℓ−1
∑

j=1

∫ sj

sj+1

1

z
dz + 1) ≤ c(e)(1 +

∫ s1

sℓ

1

z
dz)

≤ c(e)(1 +

∫ s1

1

1

z
dz) = c(e)(1 + ln s1)

≤ c(e)(1 + lnWI).

The third inequality holds becausesℓ = wℓ ≥ 1. Summing this cost estimate over all edgese ∈ EOPT , we
obtain the desired bound on

∑

i∈I costI(S). 2

5.2 Lower bounds

We develop lower bounds on the performance of strong Nash equilibria in directed and undirected graphs.

Theorem 7 In directed graphs the price of anarchy ofα-approximate strong Nash equilibria is at least
Ω(αmax{n/c, log W}) if coalitions of size at mostc are allowed, and at leastΩ(α max{W/W c

max, log W})
if coalitions of weight up toW c

max are allowed.

Proof. In the setting where coalitions of size up toc are permitted, a lower bound ofαn/c was already shown
for unweighted games in Theorem 3. We first prove the lower bound ofαW/W c

max if coalitions of weight up
to W c

max are feasible. Considern agents with arbitrary weightswi, 1 ≤ i ≤ n. We use the simple network
depicted in Figure 1(a) but change the costs of the two parallel edges. The expensive edge now has costαW
whereas the inexpensive one costsW c

max + ǫ. Recall that all then agents have to connect terminalss andt.
The state in which all the agents establish their connectionusing the expensive edge forms anα-approximate
strong Nash equilibrium: Any legal coalition incurs a cost of at mostαW W c

max
W

= αW c
max on the expensive

edge. Switching to the inexpensive edge results in a cost ofW c
max + ǫ for the coalition, which is not attractive

enough. Obviously, the social optimum routes connections via the inexpensive edge.
We next show a lower bound ofΩ(α log W ) for both scenarios, where either the size or the weight of a

coalition is limited. W.l.o.g. letW be a power of 2 and letn = log2 W + 1. We use the graph of Figure 1(b)
but change the costs of the edges. Each edge(vi, t) now has costα, 1 ≤ i ≤ n, and edge(w, t) has cost2+ ǫ.
The edges(vi, w) still have a cost of 0. Agenti, 1 ≤ i < n, has a weight ofW/2i and wishes to connect
terminalsvi andt. The last agentn has a weight of 1 and has to connectvn to t. The total weight of all then
agents is exactlyW . The state in which every agenti, 1 ≤ i ≤ n, establishes its connection using edge(vi, t)
represents anα-approximate strong Nash equilibrium: In any coalitionI of legal size or weight, the agent
i0 ∈ I of maximum weight inI dominates the other agents inI, i.e. the weight ofi0 is at least as large as the
total weight of all the other agents inI. Hence, whenI changes strategy and purchases edge(w, t), agenti0
has to pay at least1 + ǫ/2, and this is not smaller than anα-fraction of the cost incurred for the private edge
(vi0 , t). The cost of the strong Nash equilibrium isα(1 + log2 W ) while the social optimum incurs a cost of
2 + ǫ. 2

Theorem 8 For any α ≥ 1, there exists a family of undirected graphs, each admittingan α-approximate
strong Nash equilibrium whose cost isΩ(α

√
log W ) times that of the social optimum.
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Proof. We extend the proof of Theorem 4 and first concentrate onα = 1. Let W be a real weight with
⌊√log W ⌋ ≥ 2. Again logarithms are taken to the base 3. As before we construct a graphG = G0 in
a recursive manner, choosingdmax = ⌊√log W ⌋ − 1 in the case of weighted games.. In any graphGd,
0 ≤ d ≤ dmax, the edge costs are the same as those defined in the proof of Theorem 4. However, the number
of associated agents changes. Associated with a graphGdmax is oneagent of orderdmax having a weight of
wdmax = W/3dmax(dmax+1). Associated with a graphGd, 0 ≤ d < dmax, is oneagent of orderd having a
weight of wd = W/3d(d+1) − 3W/3(d+1)(d+2). The total weight of all the agents is exactlyW . The total
weight of all the agents associated with order-d graphsGd and the subgraphs therein isWd = W/3d2

, for any
0 ≤ d ≤ dmax.

As edge costs have not changed, the social optimum is still constant. As usual, letS be the configuration in
which an order-d agent purchases the arc of order-d within its graph. Thencost(S) ≥ dmax +1 ≥ ⌊

√
log W ⌋.

To show thatS forms a strong Nash equilibrium, we can extend Lemmas 1 and 2 in a straightforward way.
In the arguments agent numbers such asnd andNd+1 etc. are to be replaced by weightswd andWd+1. Some
of the arguments and calculations in the proofs simplify because ceilings can be ignored and fractionsf and
f j

k , reflecting portions of order-d agents that defect from routing through their order-d arcs, are now equal to
either 0 or 1. Finally, forα > 1, we again scale the arc costs byα. 2

6 The price of stability in undirected graphs

In this section we address the price of stability of standardNash equilibria in weighted games. Anshelevich
et al. [2] showed a lower bound ofΩ(log W ) for directed graphs. Again,W =

∑n
i=1 wi is the total weight of

all the agents. We prove a lower bound for undirected graphs.No super-constant lower bound was known for
undirected graphs, neither for unweighted nor for weightedgames.

Theorem 9 In undirected graphs the price of stability isΩ(log W/ log log W ). This lower bound holds even
if each agent has to connect only a pair of terminals. Individual terminal pairs are allowed.

Proof. We construct a family of graphs, each admitting only one Nashequilibrium. The cost of this equi-
librium will be Ω(log W/ log log W ) times that of the social optimum. The basic structure of the graphs
is the same as those constructed in the proof of Theorem 4. However the parameters are chosen differ-
ently here. LetW be a positive integer withlog W ≥ 3. Again, logarithms are taken to the base 3. Let
dmax = ⌊log W/(log log W + 1)⌋. Inequalitylog W ≥ 3 impliesdmax ≥ 1.

In the basic graphsGdmax a stem edge has costsdmax = 1/3dmax and the bridge of orderdmax has cost
bdmax = 3/(3dmax log W ). The arc of orderdmax costsadmax = 1/3dmax . Associated withGdmax is one
order-dmax agent of weightwdmax = W/(3 log W )dmax wishing to connect the base and the tip ofGdmax .

For anyd, 0 ≤ d < dmax, in a graphGd of orderd, the bridge of orderd has costbd = 3/(3d log W ) and
the arc of orderd costsad = 1/3d. Associated withGd is one order-d agent of weightwd = W/(3 log W )d−
3W/(3 log W )d+1 having to connect the base and the tip ofGd. The outermost graphG = G0 is the graph
we will work with.

The total weight of agents associated with one order-d graphGd and all the subgraphs therein isWd =
W/(3 log W )d. This holds ford = dmax. Suppose that the property holds for ordersdmax, dmax−1, . . . , d+1.
Since a graph of orderd is composed of three graphs of orderd + 1, the total weight of agents inGd is equal
to

Wd = wd + 3W/(3 log W )d+1 = W/(3 log W )d.

In particular, we obtain that the total weight of agents inG = G0 is exactlyW .

Proposition 3 The least expensive path connecting the base and the tip of a graphGd using only edges ofGd

has a total edge cost of exactly1/3d, for any0 ≤ d ≤ dmax.
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Proof. The statement of the proposition holds ford = dmax because the arc ofGdmax has costadmax = 1/3dmax

while the path crossing the bridge has costbdmax + sdmax = 3/(3dmax log W ) + 1/3dmax . Assume that the
statement of the proposition holds for depthsdmax, . . . , d + 1. In Gd the arc of orderd has costad = 1/3d

while, by induction hypothesis, any path using the bridge oforderd has a cost of at leastbd + 3 · 1/3d+1 =
3/(3d log W ) + 1/3d > 1/3d. 2

The social optimum inG buys the backbone consisting of stem edges and bridges. There exist exactly
3dmax subgraphs of orderdmax and hence the total cost of stem edges is3dmaxsdmax = 1. For any fixedd,
0 ≤ d ≤ dmax, graphG = G0 contains3d graphs of orderd, each being equipped with an order-d bridge
of costbd = 3/(3d log W ). Thus the total cost of order-d bridges is3dbd = 3d · 3/(3d log W ) = 3/ log W .
Summing over alld we find that the total cost of bridges is upper bounded by(dmax + 1) · 3/ log W ≤
(2 log W/ log log W )(3/ log W ) ≤ 6/ log log W ≤ 6. Hence the cost of the social optimum is constant.

Consider configurationS in which, for any graphGd within G, the order-d agent associated withGd

purchases the order-d arc in this graph. We will prove in the following thatS is a Nash equilibrium and
that it is the only Nash equilibrium inG. As there are3d graphs of orderd, the total cost of order-d arcs is
3dad = 3d · 1/3d = 1 and summing over alld we obtaincost(S) = dmax + 1 ≥ log W/(log log W + 1),
which gives the stated lower bound on the price of stability.

In the remainder of this proof we show, in a first step, thatS forms a Nash equilibrium and then, in a
second step, thatS is the only equilibrium inG = G0.

We proceed with the proof thatS forms an equilibrium state. Leti be an order-d agent associated with a
graphGd. We show that any strategy change performed byi yields a strictly higher cost. Ifi deviates from its
original strategy inS, it can establish the required connection either (1) by using a path withinGd or (2) by
using a path of edges outsideGd.

In case (1), the pathPi used by agenti to connect its terminal pair has to traverse the order-d bridge
in Gd, which has a cost ofbd = 3/(3d log W ). If d = dmax, pathPi continues on the stem edge of cost
sdmax = 1/3dmax . If d < dmax, thenPi has to traverse three graphs of orderd + 1, the total cost of which is
at least3 · 1/3d+1 = 1/3d. The total weight of agents that can share the cost ofPi is upper bounded byWd.
Thus agenti incurs a cost of at least

wd

Wd

· 1

3d
(1 +

3

log W
).

If d = dmax, thenwd = Wd and the latter expression is larger than the cost of1/3dmax incurred for buying the
order-dmax arc inGdmax . If d < dmax, then we have

wd

Wd

· 1

3d
(1 +

3

log W
) =

W/(3 log W )d − 3W/(3 log W )d+1

W/(3 log W )d
· 1

3d
(1 +

3

log W
)

= (1 − 1

log W
)(1 +

3

log W
)

1

3d
=

log2 W + 2 log W − 3

log2 W
· 1

3d
> 1/3d,

becauselog W ≥ 3. Again, buying the order-d arc of costad = 1/3d is a strictly better strategy.
In case (2), we haved > 0 and the pathPi used by agenti crosses the bridge of orderd − 1 and visits

the base of graphGd−1 containingGd. The structure ofPi is depicted in Figures 3(a–c), which we used in
an earlier proof; the situation is the very same here. To reach the tip ofGd, pathPi must visit the tip of
Gd−1, from where it can continue. PathPi must fully traverse two subgraphs of orderd within Gd−1. Such
a subgraph can be traversed on an arc of orderd, having costad = 1/3d, where the weight of the agent that
bought this arc inS is wd. Thus the cost ofad can be shared among two order-d agents. IfPi does not use
the order-d arc, the total cost of edges traversing an order-d subgraph is at least1/3d and the total weight of
agents sharing the edge cost isWd − wd < wd. Thus, for the traversal of the two order-d subgraphs, agenti
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pays at least

2
wd

2wd

· 1

3d
=

1

3d
.

Since the traversal of the order-(d − 1) bridge has positive cost, pathPi incurs a cost strictly higher than that
of the original strategy ofi in S.

It remains to show thatS is the only Nash equilibrium. To this end we will prove that inany Nash
equilibrium, an order-d agent associated with a given graphGd must buy the corresponding order-d arc inGd.
In other words, an equilibrium state must be equal toS. The desired statement that in any Nash equilibrium an
order-d agent purchases the corresponding order-d arc in its graphGd follows from the next lemma. Loosely
speaking, this lemma says that in a Nash equilibrium connections inG are established locally. We first state
the lemma and then explain its implications.

Lemma 3 Consider a fixed order-d graphGd in G and assume that in any Nash equilibrium all the agents
associated withGd and its subgraphs establish their connections using only edges ofGd. Furthermore,
assume that all agentsnotassociated withGd or its subgraphs donotuse any edges ofGd when routing their
connections. Then in any Nash equilibrium the following twoproperties hold.

(a) The order-d agent associated withGd buys the arc of orderd in Gd.

(b) If d < dmax, then for any of the three order-(d + 1) subgraphsGd+1
k , 1 ≤ k ≤ 3, within Gd, the agents

associated withGd+1
k and its subgraphs establish their connections using only edges ofGd+1

k .

Using this lemma we can finish the proof of our theorem: Ford = 0, trivially, all agents associated with
G = G0 and its subgraphs must establish connections withinG0 and there exist no agents outsideG0 that
could use edges ofG0. Thus the conditions of Lemma 3 are met and we obtain that the order-0 agent buys
the arc of order0 (part (a)) and that, for any of the three subgraphsG1

k, 1 ≤ k ≤ 3, agents associated with
any G1

k and its subgraphs establish connections using only edges ofthis graphG1
k (part (b)). Inductively,

Lemma 3 yields that, for anyd, (a) any order-d agent purchase the order-d arc within its graph and that (b) for
any subgraphGd+1 of orderd + 1, all agents associated withGd+1 at its subgraphs establish the required
connections locally withinGd+1.

Proof of Lemma 3. Part (a): Suppose that in a Nash equilibrium, an order-d agent associated with a graphGd

does not purchase the arc of orderd. Let P be the path used by the agent to connect its terminal pair. Since,
by assumption of the lemma, the agent establishes its connection within Gd, pathP must cross the order-d
bridge, see Figures 2(a) and (b). Ifd = dmax, then the path traverses the stem edge of costsdmax = 1/3dmax

in Gd = Gdmax to reach the tip of the graph. Ifd < dmax, pathP traverses the three subgraphsGd+1
k ,

1 ≤ k ≤ 3, to reach the tip ofGd. When traversing the subgraphs, then by Proposition 3 pathP visits edges
of total cost at least3 · 1/3d+1 = 1/3d. Hence, in any case, the total cost of edges traversed byP is at least
bd + 1/3d = 3/(3d log W ) + 1/3d = (1 + 3/ log W )/3d. By assumption of the lemma, agents not associated
with Gd or its subgraphs do not use edges ofGd. Hence the cost ofP is shared by agents of total weight at
mostWd = W/(3 log W )d that are associated withGd and its subgraphs. Hence the total cost of the order-d
agent is at leastwd

Wd

1
3d (1+ 3

log W
). We argue that this expression is strictly larger thanad = 1/3d, which is the

cost of purchasing the arc of orderd. If d = dmax, thenwd = Wd and we are done. Ifd < dmax, then as on
the previous page we can show we havewd

Wd

1
3d (1 + 3

log W
) > 1

3d .

Part (b): We first prove that any order-(d + 1) agent associated with a graphGd+1
k , 1 ≤ k ≤ 3, establishes

its connection withinGd+1
k . We then show that agents of order larger thand + 1 associated with subgraphs of

Gd+1
k , if such subgraphs exist, also route their connections within Gd+1

k .
In a first step we lower bound the cost incurred by order-(d + 1) agents if they buy edges outside their

graph. In the following, ifd + 1 = dmax, we setWd+2 = 0.
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Claim 1 If the agent of orderd + 1 associated with a graphGd+1
k establishes its connection using edges

outsideGd+1
k , then its total cost is at leastC =

2wd+1

2wd+1+9Wd+2

1
3d+1 (1 + 3

log W
).

Proof. We first show that if the order-(d + 1) agent associated withGd+1
k implements its connection using

edges outsideGd+1
k , then the pathP used by this agent must traverse the bridge of orderd as well as the other

two graphs of orderd+1 within Gd. We consider all possible values ofk and refer the reader to Figures 4(a–c)
for the structure ofP . The situation is the same as that described in Figures 3(a–c); the only difference is that
here the outer graph has orderd instead ofd−1. Recall that strategies are simple paths connecting the desired
terminals. Ifk = 1 (cf. Fig. 4(a)), then the order-(d+1) agent associated withGd+1

1 must traverse the order-d
bridge ofGd. In order to reach the tip ofGd+1

1 , pathP must visit the tip ofGd, from whereP traversesGd+1
3

andGd+1
2 . Similarly, if k = 2 (cf. Fig. 4(b)), then pathP traversesGd+1

1 , crosses the bridge of orderd, travels
to the tip ofGd and visitsGd+1

3 to reach the tip ofGd+1
2 . Finally, if k = 3 (cf. Fig. 4(c)), pathP must traverse

Gd+1
2 andGd+1

1 . The path then crosses the bridge of orderd and travels to the tip ofGd, which is also the tip
of Gd+1

3 .

(a) (b) (c)

P
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1
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Figure 4: The paths taken by an order-(d + 1) agent withinGd
k, 1 ≤ k ≤ 3.

We lower bound the cost incurred by the order-(d+1) agent associated withGd+1
k for pathP . For brevity,

we will denote this agent byik. By the assumptions of the lemma to be proven, agents not associated with
Gd or its subgraphs do not use edges ofGd. GraphGd contains three order-(d + 1) agents of total weight
3wd+1. If d ≤ dmax − 2, thenGd also contains9 graphs of orderd + 2, each hosting agents of total weight
Wd+2. We setWd+2 = 0 if d = dmax − 1. We argued in the last paragraph that pathP must cross the bridge
of orderd, which has a cost ofbd = 3/(3d log W ). This cost is split among agents of total weight at most
3wd+1 + 9Wd+2. Hence, for the bridge of orderd, agentik pay at least

wd+1

3wd+1 + 9Wd+2
· 3

3d log W
≥ 2wd+1

2wd+1 + 9Wd+2
· 3

3d+1 log W
. (9)

Also, as argued in the last paragraph, pathP connecting the terminals ofik has to traverse the other two
subgraphs of orderd + 1 in Gd, which are indexedk′ = k mod 3 + 1 and k′′ = (k + 1) mod 3 + 1.
To traverse one such subgraph, pathP traverses edges of total cost at least1/3d+1. We distinguish cases
depending on whether the order-(d + 1) agents associated withGd+1

k′ andGd+1
k′′ implement their connections

using edges inside or outside their respective graphs. First, assume that the order-(d + 1) agents associated
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with Gd+1
k′ andGd+1

k′′ establish connections within their respective subgraphs.In this case pathP encounters
agents of total weight at mostwd+1 + 9Wd+2 in each of these subgraphs. Thus, the traversal cost ofP is
shared among agents of total weight at most2wd+1 + 9Wd+2. We obtain that agentik incurs a cost of at least

2
wd+1

2wd+1 + 9Wd+2
· 1

3d+1
(10)

for the traversal ofGd+1
k′ andGd+1

k′′ . Next, assume that the order-(d+1) agents associated withGd+1
k′ andGd+1

k′′

establish connections using edges outside their graphs. Inthis case, again, pathP encounters other agents of
total weight at mostwd+1 + 9Wd+2 when traversing any of these subgraphs (inGd+1

k′ the associated order-
(d + 1) agent is not present; the analogous statement holds forGd+1

k′′ ). Hence the cost incurred in traversing
any of the two subgraphsGd+1

k′ andGd+1
k′′ is shared among agents of total weight at most2wd+1 + 9Wd+2

and we obtain the same cost bound as that given in (10). Finally, assume that in exactly one of the subgraphs
amongGd+1

k′ andGd+1
k′′ the associated order-(d + 1) agent establishes its connection within their subgraph.

As for the other of the two subgraphs, the associated order-(d+1) agent uses edges outside its graph. W.l.o.g.
let Gd+1

k′ be the graph where connections are made inside and letGd+1
k′′ be the one where connections are

established using edges outside. The other case is symmetric. WhenP traversesGd+1
k′ , agents of total weight

at most2wd+1 + 9Wd+2 are present and cost sharing on edges can be done among agentsof weight at most
3wd+1 + 9Wd+2. WhenP visits Gd+1

k′′ , agents of total weight at most9Wd+2 are present: The order-(d + 1)

agent associated withGd+1
k′ is not present because it uses connections inside its graph,and the order-(d + 1)

agent associated withGd+1
k′′ is not present because it uses a strategy outside its graph. Hence cost sharing

on edges can be done among agents of total weight at mostwd+1 + 9Wd+2 and the cost incurred byik in
traversing the two other order-(d + 1) graphs is at least

(
wd+1

3wd+1 + 9Wd+2
+

wd+1

wd+1 + 9Wd+2
)

1

3d+1
≥ 2

wd+1

2wd+1 + 9Wd+2
· 1

3d+1
,

which is the same expression as (10). Summing the costs incurred for crossing the order-d bridge and for
traversing other order-(d + 1) graphs, see (9) and (10), we conclude that agentik pays at least the cost ofC
stated in the claim. 2

If the order-(d + 1) agent associated withGd+1
k purchases the arc of orderd + 1 within Gd+1

k , its cost
is at mostad+1 = 1/3d+1. A strategy using edges outside the graph incurs a costs of atleastC as stated in
the above claim. We show thatC > ad+1, which proves that in a Nash equilibrium the order-(d + 1) agent
associated withGd+1

k establishes the required connection via the order-(d + 1) arc. If d = dmax − 1, then
Wd+2 = 0 and we are done becauseC = 1

3d+1 (1 + 3
log W

) > 1
3d+1 .

If d ≤ dmax − 2, then

C =
2wd+1

2wd+1 + 9Wd+2

1

3d+1
(1 +

3

log W
) =

(

1/

(

1 +
9Wd+2

2wd+1

))

1

3d+1
(1 +

3

log W
).

It remains to show9Wd+2/(2wd+1) < 3/ log W , which proves the desired inequalityC > 1/3d+1. We have

9Wd+2

2wd+1
=

9W/(3 log W )d+2

2W/(3 log W )d+1 − 6W/(3 log W )d+2
=

3

2 log W − 2
≤ 3

log W
.

The last inequality holds becauselog W ≥ 3.
To finish the proof of part (b) of the lemma we have to show that if d ≤ dmax−2, then any agenti of order

d+ 2 or larger that is associated with a subgraph ofGd+1
k , 1 ≤ k ≤ 3, establishes its connection withinGd+1

k .
Suppose this were not the case. Then agenti chooses a pathP that leavesGd+1

k through its base. Figure 4(d)
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shows a sample path fork = 2. To connect to the desired terminal, pathP must visit the tip ofGd+1
k from

where it can continue on edges insideGd+1
k . SinceP uses edges outsideGd+1

k , it does not use the arc of
orderd + 1 in Gd+1

k and hence must traverse the bridge of orderd in Gd. The cost of this bridge is shared by
agents of total weight at most9Wd+2 because we have shown that all the agents of orderd+1 in Gd establish
connections within their respective subgraphs and the order-d agent associated withGd purchases the arc of
orderd (see part(a)). LetP ′ be the subpath ofP connecting the base and the tip ofGd+1

k . OnP ′ agenti incurs
a cost of at least

cost(P ′) ≥ w(i)

9Wd+2

3

3d log W
,

wherew(i) is the weight of agenti. In the given Nash equilibrium, consider the strategy used by the order-
(d + 1) agent associated withGd+1

k . The cost of this agent is at most1/3d+1 because this is the cost incurred
when buying the order-(d + 1) arc in Gd+1

k , which is always an option. This order-(d + 1) agent has to
connect the base and the tip ofGd+1

k and, as shown in the previous paragraphs, use edges withinGd+1
k . Now,

agenti can replaceP ′ by the strategy used by the order-(d + 1) agent ofGd+1
k , incurring a cost of at most

w(i)/(w(i)+wd+1)·1/3d+1 ≤ w(i)/wd+1 ·1/3d+1. We show that the latter expression is strictly smaller than
the costcost(P ′), contradicting the fact that the configuration in whichi used edges outsideGd+1

k was a Nash
equilibrium. Inequalitycost(P ′) > w(i)/wd+1 · 1/3d+1 is equivalent to showing9Wd+2/wd+1 < 9/ log W .
We have

9Wd+2

wd+1
=

9W/(3 log W )d+2

W/(3 log W )d+1 − 3W/(3 log W )d+2
≤ 3

log W − 1
<

9

log W
,

sincelog W ≥ 3. 2

This completes the proof of the theorem. 2

The lower bound of Theorem 9 is nearly tight. Firstly, the potential function arguments of the proof of
Theorem 5 imply that there exists anα-approximate Nash equilibrium whose cost is at most1 + ln W times
that of the social optimum ifα ≥ 1 + ln(1 + wmax). Herewmax is the maximum weight of any agent.
Secondly, Chen and Roughgarden [7] showed that in directed graphs, for anyα = Ω(log wmax), the price of
stability ofα-approximate Nash equlibria isO((log W )/α). This result can be extended to undirected graphs.

7 Conclusions

In this paper we have investigated the value of coordinationin network design games. We have developed
lower and upper bounds on the price of anarchy attained by strong Nash equilibria in unweighted and weighted
games, considering both undirected and directed graphs. Itshows that strong Nash equilibria achieve much
better performance ratios than standard Nash equilibria and that these ratios are often as good as those of
the best standard equilibrium states. There is still room for improvements. For undirected graphs we have
developed an upper bound ofHn ≈ ln n and a lower bound ofΩ(

√
log n) on the price of anarchy in un-

weighted games. In weighted games the bounds are1 + ln W andΩ(
√

log W ), respectively. An interesting
open problem is to determine the true ratios for undirected graphs.

Furthermore, in this paper we have also devised the first super-constant lower bound on the price of stabil-
ity in unweighted graphs. More specifically we proved a lowerbound ofΩ(log W/ log log W ) for weighted
network design games. A challenging open problem is to determine the price of stability in unweighted games.
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Appendix

Proof of Proposition 1. We prove the result for undirected graphs and then show how todirect edges to
obtain the desired statement for directed networks as well.Consider the graph given in Figure 5. We have a
vertex setV = {v1, v2, v3, w1, w2, w3, t}, where vertexwi is connected tot via amain edge{wi, t} of cost 1,
1 ≤ i ≤ 3. Furthermore, there areauxiliary edges{vi, wi} of cost 1/2 andauxiliary edges{vi, wi mod 3+1} of
cost1/2 + ǫ, 1 ≤ i ≤ 3. Hereǫ > 0 is an arbitrarily small value. Associated with the graph arethree agents,
where agenti has to connect terminalsvi andt, 1 ≤ i ≤ 3. We will consider all possible states and show that
none represents a strong Nash equilibrium. Any state in which all of the three main edges are purchased does

1

1

w3

w2

v2

1

v1v3

w1

t

1/2 + ǫ

1/2

1/2

1/2 + ǫ

1/2 + ǫ

1/2

Figure 5: A graph without a strong Nash equilibrium.

not form a strong Nash equilibrium because two agentsi andi′ = i mod 3 + 1 could team up, sharing main
edge{wi′ , t}. As the original cost of each of the two agents was at least1 + 1/6 = 7/6 and the new cost is at
most1 + ǫ, this yields a cost reduction for each member of the coalition.

Next suppose that there exists a strong Nash equilibrium in which two agents share a main edge{wi, t}
while the third agent buys a second main edge{wj , t}, j 6= i. Then agenti is one of the agents sharing{wi, t}
and connects towi using edge{vi, wi} since otherwise agenti could strictly improve its cost by purchasing a
third of {wi, t}. We now distinguish cases depending on whetherj = i mod 3 + 1 or j = (i + 1) mod 3 + 1.

If j = i mod 3 + 1, then agentj must be the one buying{wj , t} as connectingvj to wi requires the
traversal of three auxiliary edges the cost of which is at least1/2+ ǫ/3. This cost is higher than that of buying
{vj , wj} and hence agentj would prefer to share{wj , t} instead of{wi, t}. Thus agenti′′ = (i+1) mod 3+1
shares main edge{wi, t} and connects towi using edge{vi′′ , wi} of cost1/2 + ǫ because any other path of
auxiliary edges has a strictly higher cost. We conclude thatagentj pays a cost of3/2 and agenti′′ a cost of
1/2 + ǫ + 1/2 = 1 + ǫ. Now agentsj andi′′ can form a coalition, sharing main edge{wi′′ , t}. The new
cost of agentj is 1/2 + ǫ + 1/2 < 3/2 and the new cost of agenti′′ is 1/2 + 1/2 < 1 + ǫ, contradicting the
assumption that the original configuration was a strong Nashequilibrium.

If j = (i + 1) mod 3 + 1, then again agentj buys main edge{wj , t}: If agentj shared{wi, t} and agent
i′ = i mod 3+1 bought{wj , t}, agenti′ would connect towj using edge{vi′ , wj} and agentj would connect
to wi using edge{vj , wi} as other paths of auxiliary edges are strictly more expensive. Both agents pay a cost
of 1/2 + ǫ for these connections. In this situation agentj could strictly improve its cost by connecting towj

and sharing{wj , t} instead of{wi, t}. We conclude that agenti′ shares main edge{wi, t} and connects towi

at a cost of1 + ǫ + 1/4. Now agenti′ can improve its cost by buying edge{vi′ , wj} at a cost of1/2 + ǫ and
sharing edge{wj , t} instead of{wi, t}. We obtain a contradiction to the fact that the original configuration
was a strong Nash equilibrium.

We finally have to investigate the case that a configuration buys only one main edge{wi, t}, the cost of
which is shared among the three agents. Then agenti′′ = (i + 1) mod 3 + 1 connects towi using edge
{vi′′ , wi} and agenti′ = i mod 3 + 1 connects towi using a path of auxiliary edges that results in a cost of at
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least1 + ǫ + 1/4. Hence the total cost ofi′ is at least1 + 1/4 + 1/3 + ǫ > 3/2 and agenti′ can improve its
strategy by buying edges{vi′ , wi′} and{wi′ , t}.

We note that the graph can be extended to any agent numbern by inserting nodesv4, . . . , vn affiliated
with agents numbered4 to n, where agenti wishes to connectvi to t, 4 ≤ i ≤ n. Each suchvi is connected
to t via a private edge.

This concludes the analysis of undirected graphs. To obtainthe result for directed graphs we simply
direct edges towards the destinationt. We havemain edge(wi, t) as well asauxiliary edges(vi, wi) and
(vi, wi mod 3+1), 1 ≤ i ≤ 3. Directing the edges only restricts the set of possible states, while all strategy
changes proposed above can still be performed. 2
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