
Competitive Online AlgorithmsSusanne Albers�OverviewOver the past ten years, online algorithms have re-ceived considerable research interest. Online problemshad been investigated already in the seventies and earlyeighties but an extensive, systematic study only startedwhen Sleator and Tarjan (1985) suggested comparingan online algorithm to an optimal o�ine algorithm andKarlin, Manasse, Rudolph and Sleator (1988) coined theterm competitive analysis. In this article we give an in-troduction to the theory of online algorithms and surveyinteresting application areas. We present important re-sults and outline directions for future research.IntroductionThe traditional design and analysis of algorithms as-sumes that an algorithm, which generates an output,has complete knowledge of the entire input. However,this assumption is often unrealistic in practical applica-tions. Many of the algorithmic problems that arise inpractice are online. In these problems the input is onlypartially available because some relevant input data willarrive in the future and is not accessible at present.An online algorithm must generate an output withoutknowledge of the entire input. Online problems arisein areas such as resource allocation in operation sys-tems, data-structuring, distributed computing, schedul-ing, and robotics. We give some illustrating examples.Paging: In a two-level memory system, consisting ofa small fast memory and a large slow memory, a pagingalgorithm has to keep actively referenced pages in fastmemory without knowing which pages will be requestedin the future.Distributed data management: A set of �les hasto be distributed in a network of processors, each ofwhich has its own local memory. The goal is to dynam-ically re-allocate �les in the system so that a sequence ofread and write requests can be processed with low com-munication cost. It is unknown which �les a processorwill access in the future.Multiprocessor scheduling: A sequence of jobsmust be scheduled on a given set of machines. Jobs�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123Saarbr�ucken, Germany. E-mail: albers@mpi-sb.mpg.de

arrive one by one and must be scheduled immediatelywithout knowledge of future jobs.Navigation problems in robotics: A robot isplaced in an unknown environment and has to �nd ashort path from a point s to a point t. The robot learnsabout the environment as it travels through the scene.We will address these problems in more detail in thefollowing sections.In recent years, it has been shown that competitiveanalysis is a powerful tool to analyze the performanceof online algorithms. The idea of competitiveness is tocompare the output generated by an online algorithmto the output produced by an o�ine algorithm. An of-ine algorithm is an omniscient algorithm that knowsthe entire input data and can compute an optimal out-put. The better an online algorithm approximates theoptimal solution, the more competitive this algorithmis.Basic conceptsFormally, many online problems can be described asfollows. An online algorithm A is presented with a re-quest sequence � = �(1); �(2); : : : ; �(m). The requests�(t), 1 � t � m, must be served in their order of oc-currence. More speci�cally, when serving request �(t),algorithmA does not know any request �(t0) with t0 > t.Serving requests incurs cost, and the goal is to minimizethe total cost paid on the entire request sequence. Thissetting can also be regarded as a request-answer game:An adversary generates requests, and an online algo-rithm has to serve them one at a time.To illustrate this formal model we re-consider thepaging problem, which is one of the most fundamentalonline problems, and start with a precise de�nition.The paging problem: Consider a two-level mem-ory system that consists of a small fast memory and alarge slow memory. Each request speci�es a page in thememory system. A request is served if the correspond-ing page is in fast memory. If a requested page is not infast memory, a page fault occurs. Then a page must bemoved from fast memory to slow memory so that therequested page can be loaded into the vacated location.A paging algorithm speci�es which page to evict on afault. If the algorithm is online, then the decision whichpage to evict must be made without knowledge of any1



future requests. The cost to be minimized is the totalnumber of page faults incurred on the request sequence.Sleator and Tarjan [64] suggested evaluating the per-formance on an online algorithm using competitive anal-ysis. In a competitive analysis, an online algorithmA iscompared to an optimal o�ine algorithm. An optimalo�ine algorithm knows the entire request sequence inadvance and can serve it with minimum cost. Given arequest sequence �, let CA(�) denote the cost incurredbyA and letCOPT (�) denote the cost incurred by an op-timal o�ine algorithm OPT. The algorithm A is calledc-competitive if there exists a constant a such thatCA(�) � c �COPT (�) + afor all request sequences �. Here we assume that A isa deterministic online algorithm. The factor c is alsocalled the competitive ratio of A.With respect to the paging problem, there are threewell-known deterministic online algorithms.LRU (Least Recently Used): On a fault, evict thepage in fast memory that was requested least recently.FIFO (First-In First-Out): Evict the page that hasbeen in fast memory longest.LFU (Least Frequently Used): Evict the page thathas been requested least frequently.Let k be the number of memory pages that can si-multaneously reside in fast memory. Sleator and Tar-jan [64] showed that the algorithms LRU and FIFO arek-competitive. Thus, for any sequence of requests, thesealgorithms incur at most k times the optimum num-ber of page faults. Sleator and Tarjan also proved thatno deterministic online paging algorithm can achieve acompetitive ratio smaller than k. Hence, both LRU andFIFO achieve the best possible competitive ratio. It iteasy to prove that LFU is not competitive for any con-stant c.An optimal o�ine algorithm for the paging problemwas presented by Belady [19]. The algorithm is calledMIN and works as follows.MIN: On a fault, evict the page whose next requestoccurs furthest in the future.Belady showed that on any sequence of requests, MINachieves the minimum number of page faults.It is worth noting that the competitive ratios shownfor deterministic paging algorithms are not very mean-ingful from a practical point of view. The performanceratios of LRU and FIFO become worse as the size of thefast memory increases. However, in practice, these al-gorithms perform better the larger the fast memory is.Furthermore, the competitive ratios of LRU and FIFOare the same, whereas in practice LRU performs muchbetter. For these reasons, there has been a study of com-petitive paging algorithms with locality of reference. We

discuss this issue in the last section.A natural question is: Can an online algorithmachieve a better competitive ratio if it is allowed to userandomization?The competitive ratio of a randomized online algo-rithm A is de�ned with respect to an adversary. Theadversary generates a request sequence � and it also hasto serve �. When constructing �, the adversary alwaysknows the description of A. The crucial question is:When generating requests, is the adversary allowed tosee the outcome of the random choices made by A onprevious requests?Ben-David et al. [20] introduced three kinds of ad-versaries.Oblivious Adversary: The oblivious adversaryhas to generate a complete request sequence in advance,before any requests are served by the online algorithm.The adversary is charged the cost of the optimum o�inealgorithm for that sequence.Adaptive Online Adversary: This adversarymay observe the online algorithm and generate the nextrequest based on the algorithm's (randomized) answersto all previous requests. The adversary must serve eachrequest online, i.e., without knowing the random choicesmade by the online algorithm on the present or any fu-ture request.Adaptive Offline Adversary: This adversaryalso generates a request sequence adaptively. However,it is charged the optimum o�ine cost for that sequence.A randomized online algorithm A is called c-competitive against any oblivious adversary if there isa constant a such for all request sequences � generatedby an oblivious adversary, E[CA(�)] � c �COPT (�) + a:The expectation is taken over the random choices madeby A.Given a randomized online algorithmA and an adap-tive online (adaptive o�ine) adversary ADV, let E[CA]and E[CADV ] denote the expected costs incurred byA and ADV in serving a request sequence generatedby ADV. A randomized online algorithm A is calledc-competitive against any adaptive online (adaptive o�-line) adversary if there is a constant a such that forall adaptive online (adaptive o�ine) adversaries ADV,E[CA] � c�E[CADV ]+a, where the expectation is takenover the random choices made by A.Ben-David et al. [20] investigated the relativestrength of the adversaries and showed the followingstatements.1. If there is a randomized online algorithm that is c-competitive against any adaptive o�ine adversary,then there also exists a c-competitive deterministiconline algorithm.2. If A is a c-competitive randomized algorithm2



against any adaptive online adversary, and if thereis a d-competitive algorithm against any obliviousadversary, then A is (c � d)-competitive against anyadaptive o�ine adversary.Statement 1 implies that randomization does nothelp against the adaptive o�ine adversary. An imme-diate consequence of the two statements above is:3. If there exists a c-competitive randomized algo-rithm against any adaptive online adversary, thenthere is a c2-competitive deterministic algorithm.Against oblivious adversaries, randomized onlinepaging algorithms can considerably improve the ratioof k shown for deterministic paging. The following al-gorithm was proposed by Fiat et al. [39].Marking: The algorithm processes a request se-quence in phases. At the beginning of each phase, allpages in the memory system are unmarked. Whenevera page is requested, it is marked. On a fault, a page ischosen uniformly at random from among the unmarkedpages in fast memory, and this pages is evicted. A phaseends when all pages in fast memory are marked and apage fault occurs. Then, all marks are erased and a newphase is started.Fiat et al. [39] analyzed the performance of theMarking algorithm and showed that it is 2Hk-competitive against any oblivious adversary, whereHk = Pki=1 1=i is the k-th Harmonic number. Notethat Hk is roughly lnk.Fiat et al. [39] also proved that no randomized onlinepaging algorithm against any oblivious adversary canbe better than Hk-competitive. Thus the Marking al-gorithm is optimal, up to a constant factor. More com-plicated paging algorithms achieving an optimal com-petitive ratio of Hk were given in [57, 1].Self-organizing data structuresThe list update problem is one of the �rst online prob-lems that were studied with respect to competitiveness.The problem is to maintain a set of items as an un-sorted linear list. We are given a linear linked list ofitems. As input we receive a request sequence �, whereeach request speci�es one of the items in the list. Toserve a request a list update algorithm must access therequested item, i.e., it has to start at the front of thelist and search linearly through the items until the de-sired item is found. Serving a request to the item thatis stored at position i in the list incurs a cost of i. Whileprocessing a request sequence, a list update algorithmmay rearrange the list. Immediately after an access,the requested item may be moved at no extra cost toany position closer to the front of the list. These ex-changes are called free exchanges. Using free exchanges,

the algorithm can lower the cost on subsequent requests.At any time two adjacent items in the list may be ex-changed at a cost of 1. These exchanges are called paidexchanges.With respect to the list update problem, we requirethat a c-competitive online algorithm has a performanceratio of c for all size lists. More precisely, a deterministiconline algorithm for list update is called c-competitiveif there is a constant a such that for all size lists and allrequest sequences �, CA(�) � c �COPT (�) + a:Linear lists are one possibility to represent a set ofitems. Certainly, there are other data structures suchas balanced search trees or hash tables that, dependingon the given application, can maintain a set in a moree�cient way. In general, linear lists are useful whenthe set is small and consists of only a few dozen items.Recently, list update techniques have been applied verysuccessfully in the development of data compression al-gorithms [21, 28].There are three well-known deterministic online al-gorithms for the list update problem.Move-To-Front: Move the requested item to thefront of the list.Transpose: Exchange the requested item with theimmediately preceding item in the list.Frequency-Count: Maintain a frequency countfor each item in the list. Whenever an item is requested,increase its count by 1. Maintain the list so that theitems always occur in nonincreasing order of frequencycount.Sleator and Tarjan [64] proved that Move-To-Front is2-competitive. Karp and Raghavan [48] observed thatno deterministic online algorithm for list update canhave a competitive ratio smaller than 2. This impliesthat Move-To-Front achieves the best possible compet-itive ratio. Sleator and Tarjan also showed that Trans-pose and Frequency-Count are not c-competitive for anyconstant c independent of the list length. Thus, in termsof competitiveness, Move-To-Front is superior to Trans-pose and Frequency-Count.Next we address the problem of randomization in thelist update problem. Against adaptive adversaries, norandomized online algorithm for list update can be bet-ter than 2-competitive, see [20, 62]. Thus we concen-trate on algorithms against oblivious adversaries.We present the two most important algorithms.Reingold et al. [62] gave a very simple algorithm, calledBit.Bit: Each item in the list maintains a bit that iscomplemented whenever the item is accessed. If an ac-cess causes a bit to change to 1, then the requested itemis moved to the front of the list. Otherwise the list re-mains unchanged. The bits of the items are initialized3



independently and uniformly at random.Reingold et al. [62] proved that Bit is 1.75-competitive against oblivious adversaries. The best ran-domized algorithm currently known is a combination ofthe Bit algorithm and a deterministic 2-competitive on-line algorithm called Timestamp proposed in [2].Timestamp (TS): Insert the requested item, say x,in front of the �rst item in the list that precedes x andthat has been requested at most once since the last re-quest to x. If there is no such item or if x has not beenrequested so far, then leave the position of x unchanged.As an example, consider a list of six items being inthe order L : x1 ! x2 ! x3 ! x4 ! x5 ! x6. Supposethat algorithm TS has to serve the second request to x5in the request sequence � = : : : x5; x2; x2; x3; x1; x1; x5.Items x3 and x4 were requested at most once since thelast request to x5, whereas x1 and x2 were both re-quested twice. Thus, TS will insert x5 immediately infront of x3 in the list.A combination of Bit and TS was proposed by [5].Combination: With probability 4/5 the algorithmserves a request sequence using Bit, and with probabil-ity 1/5 it serves a request sequence using TS.This algorithm is 1.6-competitive against obliviousadversaries [5]. The best lower bound currently knownis due to Teia [67]. He showed that if a randomizedlist update algorithm is c-competitive against obliviousadversaries, then c � 1:5.An interesting open problem is to give tight boundson the competitive ratio that can be achieved by ran-domized online algorithms against oblivious adversaries.Many of the concepts shown for self-organizing linearlists can be extended to binary search trees. The mostpopular version of self-organizing binary search trees arethe splay trees introduced by Sleator and Tarjan [65].In a splay tree, after each access to an element x in thetree, the node storing x is moved to the root of the treeusing a special sequence of rotations that depends onthe structure of the access path. This reorganization ofthe tree is called splaying.Sleator and Tarjan [65] analyzed splay trees andproved a series of interesting results. They showed thatthe amortized asymptotic time of access and update op-erations is as good as the corresponding time of balancedtrees. More formally, in an n-node splay tree, the amor-tized time of each operation is O(logn). It was alsoshown [65] that on any sequence of accesses, a splaytree is as e�cient as the optimum static search tree.Moreover, Sleator and Tarjan [65] presented as series ofconjectures, some of which have been resolved or par-tially resolved [31, 32, 33, 66]. On the other hand, thefamous splay tree conjecture is still open: It is conjec-tured that on any sequence of accesses splay trees areas e�cient as any dynamic binary search tree.

The k-server problemThe k-server problem is one of the most fundamentaland extensively studied online problems. In the k-serverproblem we are given a metric space S and k mobileservers that reside on points in S. Each request speci�esa point x 2 S. To serve a request, one of the k serversmust be moved to the requested point unless a server isalready present. Moving a server from point x to point yincurs a cost equal to the distance between x and y. Thegoal is to serve a sequence of requests so that the totaldistance traveled by all servers is as small as possible.The k-server problem contains paging as a specialcase. Consider a metric space in which the distance be-tween any two points in 1; each point in the metric spacerepresents a page in the memory system and the pagescovered by servers are those that reside in fast memory.The k-server problem also models more general cachingproblems, where the cost of loading an item into fastmemory depends on the size of the item. Such a sit-uation occurs, for instance, when font �les are loadedinto the cache of a printer. More generally, the k-serverproblem can also be regarded as a vehicle routing prob-lem.The k-server problem was introduced by Manasse etal. [56] in 1988 who also showed a lower bound for deter-ministic k-server algorithms: Let A be a deterministiconline k-server algorithm in a arbitrary metric space. IfA is c-competitive, then c � k.Manasse et al. also conjectured that there exists adeterministic k-competitive online k-server algorithm.Only recently, Koutsoupias and Papadimitriou [52]showed that there is a (2k � 1)-competitive algorithm.Before, k-competitive algorithms were known for specialmetric spaces (e.g. trees [30] and resistive spaces [34])and special values of k (k = 2 and k = n � 1, wheren is the number of points in the metric space [56]). Itis worthwhile to note that the greedy algorithm, whichalways moves the closest server to the requested point,is not competitive.The algorithm analyzed by Koutsoupias and Pa-padimitriou is the Work Function algorithm. LetX be a con�guration of the servers. Given a requestsequence � = �(1); : : : ; �(t), the work function w(X) isthe minimal cost of serving � and ending in con�gura-tion X.Work Function: Suppose that the algorithm hasserved � = �(1); : : : ; �(t � 1) and that a new requestr = �(t) arrives. Let X be the current con�gurationof the servers and let xi be the point where server si,1 � i � k, is located. Serve the request by movingthe server si that minimizes w(Xi) + dist(xi; r); whereXi = X � fxig+ frg.Koutsoupias and Papadimitriou [52] proved that theWork Function algorithm is (2k � 1)-competitive in4



an arbitrary metric space. An interesting open problemis to show that the Work Function algorithm is in-deed k-competitive or to develop an other deterministiconline k-server algorithm that achieves a competitiveratio of k.An elegant randomized rule for moving servers wasproposed by Raghavan and Snir [61].Harmonic: Suppose that there is a new request atpoint r and that server si, 1 � i � k, is currently atpoint xi. Move server si with probabilitypi = 1=dist(xi; r)Pkj=1 1=dist(xj; r)to the request.Intuitively, the closer a server is to the request, thehigher the probability that it will be moved. Grove [42]proved that the Harmonic algorithm has a competitiveratio of c � 54k � 2k � 2k. The competitiveness of Har-monic is not better than k(k + 1)=2, see [58]. An openproblem is to develop tight bounds on the competitiveratio achieved by Harmonic.Recently Bartal et al. [14] presented a randomizedonline algorithm that achieves a competitive ratio ofO(c6 log6 k) on metric spaces consisting of k+ c points.The main open problem in the area of the k-server prob-lem is to develop randomized online algorithms thathave a competitive ratio of c < k in an arbitrary metricspace.Distributed data managementIn distributed data management the goal is dynami-cally re-allocate memory pages in a network of proces-sors, each of which has its own local memory, so thata sequence of read and write requests to memory pagescan be served with low total cost. The con�guration ofthe system can be changed by migrating and replicatinga memory page, i.e., a page is moved resp. copied fromone local memory to another.More formally, page allocation problems can be de-scribed as follows. We are given a weighted undirectedgraph G. Each node in G corresponds to a processorand the edges represent the interconnection network.We generally concentrate on one particular page in thesystem. We say that a node v has the page if the pageis contained in v's local memory. A request at a nodev occurs if v wants to read or write an address fromthe page. Immediately after a request, the page may bemigrated or replicated from a node holding the page toanother node in the network. We use the cost modelintroduced by Bartal et al. [18] and Awerbuch et al. [8].(1) If there is a read request at v and v does not havethe page, then the incurred cost is dist(u; v), where uis the closest node with the page. (2) The cost of a

write request at node v is equal to the cost of commu-nicating from v to all other nodes with a page replica.(3) Migrating or replicating a page from node u to nodev incurs a cost of d � dist(u; v), where d is the page sizefactor. (4) A page replica may be erased at 0 cost. Inthe following we only consider centralized migration al-gorithms, i.e., each node always knows where the closestnode holding the page is located in the network.Bartal et al. [18] and Awerbuch et al. [8] presenteddeterministic and randomized online algorithms achiev-ing an optimal competitive ratio of O(logn), where nis the number of nodes in the graph. We describe therandomized solution [18].Coinflip: If there is a read request at node v and vdoes not have the page, then with probability 1d , repli-cate the page to v. If there is a write request at nodev, then with probability 1p3d , migrate the page to v anderase all other page replicas.The page migration problem is a restricted problemwhere we keep only one copy of each page in the entiresystem. If a page is writable, this avoids the problemof keeping multiple copies of a page consistent. For thisproblem, constant competitive algorithms are known.More speci�cally, there are deterministic online migra-tion algorithms that achieve competitive ratios of 7 and4:1, respectively, see [8, 16]. We describe an elegantrandomized algorithm due to Westbrook [69].Counter: The algorithmmaintains a global counterC that takes integer values in [0; k], for some positive in-teger k. Counter C is initialized uniformly at random toan integer in [1; k]. On each request, C is decrementedby 1. If C = 0 after the service of the request, then thepage is moved to the requesting node and C is reset tok. Westbrook showed that the Counter algorithm isc-competitive, where c = maxf2+ 2dk ; 1+ k+12d g. He alsodetermined the best value of k and showed that, as dincreases, the best competitive ratio decreases and tendsto 1 + �, where � = (1 +p5)=2 � 1:62 is the GoldenRatio.All of the above solutions assume that the local mem-ories of the processors have in�nite capacity. Bartal etal. [18] showed that if the local memories have �nite ca-pacity, then no online algorithm for page allocation canbe better than 
(m)-competitive, where m is the to-tal number of pages that can be accommodated in thesystem.Scheduling and load balancingThe general situation in online scheduling is as fol-lows. We are given a set of m machines. A sequence ofjobs � = J1; J2; : : : ; Jn arrives online. Each job Jk hasa processing pk time that may or may not be known5



in advance. As each job arrives, it has to be sched-uled immediately on of the m machines. The goal isto optimize a given objective function. There are manyproblem variants, e.g., we can study various machinetypes and various objective functions.We consider one of the most basic settings introducedby Graham [41] in 1966. Suppose that we are given midentical machines. As each job arrives, its processingtime is known in advance. The goal is to minimize themakespan, i.e., the completion time of the last job that�nishes.Graham [41] proposed the Greedy algorithm andshowed that it is (2 � 1m )-competitive.Greedy: Always assign a new job to the least loadedmachine.In recent years, research has focused on �nding algo-rithms that achieve a competitive ratio c, c < 2, for allvalues ofm. In 1992, Bartal et al. [17] gave an algorithmthat is 1:986-competitive. Karger et al. [46] generalizedthe algorithm and proved an upper bound of 1.945. Thebest algorithm known so far achieves a competitive ratioof 1.923, see [3].Next we discuss some extensions of the schedulingproblem above.Identical machines, restricted assignment:We have a set of m identical machines, but each job canonly be assigned to one of a subset of admissible ma-chines. Azar et al. [12] showed that the Greedy algo-rithm, which always assigns a new job to the least loadedmachine among the admissible machines, is O(logm)-competitive.Related machines: Each machine i has a speedsi, 1 � i � m. The processing time of job Jk on ma-chine i is equal to pk=si. Aspnes et al. [6] showed thatthe Greedy algorithm, that always assigns a new job toa machine so that the load after the assignment in mini-mized, is O(logm)-competitive. They also presented analgorithm that is 8-competitive.Unrelated machines: The processing time of jobJk on machine i is pk;i, 1 � k � n, 1 � i � m. Aspneset al. [6] showed that Greedy is only m-competitive.However, they also gave an algorithm that is O(logm)-competitive.In online load balancing we have again a set of mmachines and a sequence of jobs � = J1; J2; : : : ; Jn thatarrive online. However, each job Jk has a weight w(k)and an unknown duration. For any time t, let li(t) de-note the load of machine i, 1 � i � m, at time t, whichis the sum of the weights of the jobs present on machinei at time t. The goal is to minimize the maximum loadthat occurs during the processing of �.We refer the reader to [9] for an excellent survey ononline load balancing and briey mention a few basicresults. We concentrate again on settings with m iden-

tical machines. Azar and Epstein [9] showed that theGreedy algorithm is (2 � 1m )-competitive. The loadbalancing problem becomes more complicated with re-stricted assignments, i.e., each job can only be assignedto a subset of admissible machines. Azar et al. [10]proved that Greedy achieves a competitive ratio ofm2=3(1 + o(1)). They also proved that no online al-gorithm can be better than 
(pm)-competitive. In asubsequent paper, Azar et al. [11] gave a matching up-per bound of O(pm).RoboticsThere are three fundamental online problems in thearea of robotics.Navigation: A robot is placed in an unknown en-vironment and has to �nd a short path from a sourcepoint s to a target t.Exploration: A robot is placed in an unknown en-vironment and has to construct a complete map of thatenvironment using a short path.Localization: The robot has a map of the environ-ment. It \wakes up" at a position s and has to uniquelydetermine its initial position using a short path.In the following we concentrate on the robot naviga-tion problem. We refer the reader to [4, 35, 36, 44] forliterature on the exploration problem, and to [37, 43,51, 63] for literature on the localization problem.Many robot navigation problems were introduced byBaeza-Yates et al. [13] and Papadimitriou and Yan-nakakis [59]. We call an robot navigation A strategyc-competitive, if the length of the path used by A is atmost c times the length of the shortest possible path.First we study a simple setting introduced by Baeza-Yates et al. [13]. Assume that the robot is placed on aline. It starts at some point s and has to �nd a pointt on the line that is a distance of n away. The robot istactile, i.e., it only knows that it has reached the targetwhen it is located on t. Since the robot does not knowwhether t is located to the left or to the right of s, itshould not move a long distance into one direction. Af-ter having traveled a certain distance into one direction,the robot should return to s and move into the other di-rection. For i = 1; 2; : : :, let f(i) be the distance walkedby the robot before the i-th turn since its last visit tos. Baeza-Yates et al. [13] proved that the \doubling"strategy f(i) = 2i is 9-competitive and that this is thebest possible.A more complex navigation problem is as follows. Arobot is placed in a 2-dimensional scene with obstacles.As usual, it starts at some point s and has to �nd a shortpath to a target t. When traveling through the sceneof obstacles, the robot always knows its current positionand the position of t. However, the robot does not know6



the positions and extends of the obstacles in advance. Itlearns about the obstacles as it walks through the scene.Most previous work on this problem has focused onthe case that the obstacles are axis-parallel rectangles.Papadimitriou and Yannakakis [59] gave a lower bound.They showed that no deterministic online navigation al-gorithm in a general scene with n rectangular, axis par-allel obstacles can have a competitive ratio smaller than
(pn). (In fact, the lower bound also holds for a re-laxed problem where the robot only has to reach somepoint a vertical wall.)Blum et al. [25] developed a deterministic online nav-igation algorithm that achieves a tight upper bound ofO(pn), where n is again the number of obstacles. Re-cently, Berman et al. [22] gave a randomized algorithmthat is O(n4=9 logn)-competitive against any obliviousadversary. An interesting open problem is to developimproved randomized online algorithms.Better competitive ratios can be achieved if the rect-angles lie in an n� n square room and the robot has toreach the center of the room. For this problem, Bar-Eli et al. [15] gave tight upper and lower bounds of�(n logn).Further work on navigation has concentrated, for in-stance, on extending results to scenes with convex ob-stacles or to three-dimensional scenes [24, 25].Further online problemsThere are many online problems that we have notaddressed in this survey. Metrical task systems, intro-duced by Borodin et al. [27], can model a wide class ofonline problems. A metrical task system consists of apair (S; d), where S is a set of n states and d is a costmatrix satisfying the triangle inequality. Entry d(i; j)is the cost of changing from state i to state j. A tasksystem must serve a sequence of tasks with low totalcost. The cost of serving a task depends on the stateof the system. Borodin et al. [27] gave a deterministic(2n � 1)-competitive online algorithm. Recently, Bar-tal et al. [14] gave randomized algorithms achieving apolylogarithmic competitive ratio.Online coloring and online matching are two classicalonline problems related to graph theory. In these prob-lems, the vertices of a graph arrive online and must becolored resp. matched immediately. We refer the readerto [50, 49, 55, 68] for some basic literature.Further interesting online problems arise in the areasof �nancial games (e.g. [38, 29]), virtual circuit routing(e.g. [7, 6, 40]), Steiner tree construction (e.g. [23]), ordynamic storage allocation (e.g. [54]).Re�nements of competitive analysisCompetitive analysis is a strong worst-case perfor-mance measure. In some problems, such as paging, the
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