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Overview

Over the past ten years, online algorithms have re-
ceived considerable research interest. Online problems
had been investigated already in the seventies and early
eighties but an extensive, systematic study only started
when Sleator and Tarjan (1985) suggested comparing
an online algorithm to an optimal offline algorithm and
Karlin, Manasse, Rudolph and Sleator (1988) coined the
term competitive analysis. In this article we give an in-
troduction to the theory of online algorithms and survey
interesting application areas. We present important re-
sults and outline directions for future research.

Introduction

The traditional design and analysis of algorithms as-
sumes that an algorithm, which generates an output,
has complete knowledge of the entire input. However,
this assumption is often unrealistic in practical applica-
tions. Many of the algorithmic problems that arise in
practice are online. In these problems the input is only
partially available because some relevant input data will
arrive in the future and is not accessible at present.
An online algorithm must generate an output without
knowledge of the entire input. Online problems arise
in areas such as resource allocation in operation sys-
tems, data-structuring, distributed computing, schedul-
ing, and robotics. We give some illustrating examples.

PAGING: In a two-level memory system, consisting of
a small fast memory and a large slow memory, a paging
algorithm has to keep actively referenced pages in fast
memory without knowing which pages will be requested
in the future.

DISTRIBUTED DATA MANAGEMENT: A set of files has
to be distributed in a network of processors, each of
which has its own local memory. The goal is to dynam-
ically re-allocate files in the system so that a sequence of
read and write requests can be processed with low com-
munication cost. It is unknown which files a processor
will access in the future.

MULTIPROCESSOR SCHEDULING: A sequence of jobs
must be scheduled on a given set of machines. Jobs
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arrive one by one and must be scheduled immediately
without knowledge of future jobs.

NAVIGATION PROBLEMS IN ROBOTICS: A robot is
placed in an unknown environment and has to find a
short path from a point s to a point t. The robot learns
about the environment as it travels through the scene.

We will address these problems in more detail in the
following sections.

In recent years, it has been shown that competitive
analysis is a powerful tool to analyze the performance
of online algorithms. The idea of competitiveness is to
compare the output generated by an online algorithm
to the output produced by an offfine algorithm. An of-
fline algorithm is an ommniscient algorithm that knows
the entire input data and can compute an optimal out-
put. The better an online algorithm approximates the
optimal solution, the more competitive this algorithm
is.

Basic concepts

Formally, many online problems can be described as
follows. An online algorithm A is presented with a re-
quest sequence o = o(1),0(2),...,0(m). The requests
a(t), 1 <t < m, must be served in their order of oc-
currence. More specifically, when serving request o(¢),
algorithm A does not know any request o(¢') with ¢’ > ¢.
Serving requests incurs cost, and the goal is to minimize
the total cost paid on the entire request sequence. This
setting can also be regarded as a request-answer game:
An adversary generates requests, and an online algo-
rithm has to serve them one at a time.

To illustrate this formal model we re-consider the
paging problem, which is one of the most fundamental
online problems, and start with a precise definition.

THE PAGING PROBLEM: Consider a two-level mem-
ory system that consists of a small fast memory and a
large slow memory. Each request specifies a page in the
memory system. A request is served if the correspond-
ing page is in fast memory. If a requested page is not in
fast memory, a page fault occurs. Then a page must be
moved from fast memory to slow memory so that the
requested page can be loaded into the vacated location.
A paging algorithm specifies which page to evict on a
fault. If the algorithm is online, then the decision which
page to evict must be made without knowledge of any



future requests. The cost to be minimized is the total
number of page faults incurred on the request sequence.
Sleator and Tarjan [64] suggested evaluating the per-
formance on an online algorithm using competitive anal-
ysis. In a competitive analysis, an online algorithm A is
compared to an optimal offline algorithm. An optimal
offline algorithm knows the entire request sequence in
advance and can serve it with minimum cost. Given a
request sequence o, let C'4(c) denote the cost incurred
by A and let Copr (o) denote the cost incurred by an op-
timal offline algorithm OPT. The algorithm A is called
c-competitive if there exists a constant a such that

Ca(o) <c-Copr(o)+a

for all request sequences o. Here we assume that A is
a deterministic online algorithm. The factor ¢ is also
called the competitive ratio of A.

With respect to the paging problem, there are three
well-known deterministic online algorithms.

LRU (Least Recently Used): On a fault, evict the
page in fast memory that was requested least recently.

FIFO (First-In First-Out): Evict the page that has
been in fast memory longest.

LFU (Least Frequently Used): Evict the page that
has been requested least frequently.

Let & be the number of memory pages that can si-
multaneously reside in fast memory. Sleator and Tar-
jan [64] showed that the algorithms LRU and FIFO are
k-competitive. Thus, for any sequence of requests, these
algorithms incur at most & times the optimum num-
ber of page faults. Sleator and Tarjan also proved that
no deterministic online paging algorithm can achieve a
competitive ratio smaller than k. Hence, both LRU and
FIFO achieve the best possible competitive ratio. It it
easy to prove that LFU is not competitive for any con-
stant c.

An optimal offline algorithm for the paging problem
was presented by Belady [19]. The algorithm is called
MIN and works as follows.

MIN: On a fault, evict the page whose next request
occurs furthest in the future.

Belady showed that on any sequence of requests, MIN
achieves the minimum number of page faults.

It is worth noting that the competitive ratios shown
for deterministic paging algorithms are not very mean-
ingful from a practical point of view. The performance
ratios of LRU and FIFO become worse as the size of the
fast memory increases. However, in practice, these al-
gorithms perform better the larger the fast memory is.
Furthermore, the competitive ratios of LRU and FIFO
are the same, whereas in practice LRU performs much
better. For these reasons, there has been a study of com-
petitive paging algorithms with locality of reference. We

discuss this issue in the last section.

A natural question is: Can an online algorithm
achieve a better competitive ratio if it is allowed to use
randomization?

The competitive ratio of a randomized online algo-
rithm A is defined with respect to an adversary. The
adversary generates a request sequence o and it also has
to serve 0. When constructing o, the adversary always
knows the description of A. The crucial question is:
When generating requests, is the adversary allowed to
see the outcome of the random choices made by A on
previous requests?

Ben-David et al. [20] introduced three kinds of ad-

versaries.

OBLIVIOUS ADVERSARY: The oblivious adversary
has to generate a complete request sequence in advance,
before any requests are served by the online algorithm.
The adversary is charged the cost of the optimum offline
algorithm for that sequence.

ADAPTIVE ONLINE ADVERSARY: This adversary
may observe the online algorithm and generate the next
request based on the algorithm’s (randomized) answers
to all previous requests. The adversary must serve each
request online, i.e., without knowing the random choices
made by the online algorithm on the present or any fu-
ture request.

ADAPTIVE OFFLINE ADVERSARY: This adversary
also generates a request sequence adaptively. However,
it is charged the optimum offline cost for that sequence.

A randomized online algorithm A is called c-
competitive against any oblivious adversary if there is
a constant a such for all request sequences o generated
by an oblivious adversary, E[C4(0)] < ¢-Copr(c) + a.
The expectation is taken over the random choices made
by A.

Given a randomized online algorithm A and an adap-
tive online (adaptive offline) adversary ADV, let E[C4]
and F[Capv] denote the expected costs incurred by
A and ADV in serving a request sequence generated
by ADV. A randomized online algorithm A is called
c-competitive against any adaptive online (adaptive off-
line) adversary if there is a constant a such that for
all adaptive online (adaptive offline) adversaries ADV,
E[C4] < ¢-E[Capv]+a, where the expectation is taken
over the random choices made by A.

Ben-David et al. [20] investigated the relative
strength of the adversaries and showed the following
statements.

1. If there is a randomized online algorithm that is c-
competitive against any adaptive offline adversary,
then there also exists a c-competitive deterministic
online algorithm.

2. If A is a c-competitive randomized algorithm



against any adaptive online adversary, and if there
is a d-competitive algorithm against any oblivious
adversary, then A is (¢ - d)-competitive against any
adaptive offline adversary.

Statement 1 implies that randomization does not
help against the adaptive offline adversary. An imme-
diate consequence of the two statements above is:

3. If there exists a c-competitive randomized algo-
rithm against any adaptive online adversary, then
there is a c?-competitive deterministic algorithm.

Against oblivious adversaries, randomized online
paging algorithms can considerably improve the ratio
of k shown for deterministic paging. The following al-
gorithm was proposed by Fiat et al. [39].

MARKING: The algorithm processes a request se-
quence in phases. At the beginning of each phase, all
pages in the memory system are unmarked. Whenever
a page is requested, it is marked. On a fault, a page is
chosen uniformly at random from among the unmarked
pages in fast memory, and this pages is evicted. A phase
ends when all pages in fast memory are marked and a
page fault occurs. Then, all marks are erased and a new
phase is started.

Fiat et al. [39] analyzed the performance of the
MARKING algorithm and showed that it is 2Hg-
competitive against any oblivious adversary, where
H, = Zle 1/i is the k-th Harmonic number. Note
that Hy is roughly In k.

Fiat et al. [39] also proved that no randomized online
paging algorithm against any oblivious adversary can
be better than Hj-competitive. Thus the MARKING al-
gorithm is optimal, up to a constant factor. More com-
plicated paging algorithms achieving an optimal com-
petitive ratio of Hy were given in [57, 1].

Self-organizing data structures

The list update problem is one of the first online prob-
lems that were studied with respect to competitiveness.
The problem is to maintain a set of items as an un-
sorted linear list. We are given a linear linked list of
items. As input we receive a request sequence o, where
each request specifies one of the items in the list. To
serve a request a list update algorithm must access the
requested item, i.e., it has to start at the front of the
list and search linearly through the items until the de-
sired item is found. Serving a request to the item that
is stored at position 7 in the list incurs a cost of ¢. While
processing a request sequence, a list update algorithm
may rearrange the list. Immediately after an access,
the requested item may be moved at no extra cost to
any position closer to the front of the list. These ex-
changes are called free exchanges. Using free exchanges,

the algorithm can lower the cost on subsequent requests.
At any time two adjacent items in the list may be ex-
changed at a cost of 1. These exchanges are called paid
exchanges.

With respect to the list update problem, we require
that a e-competitive online algorithm has a performance
ratio of ¢ for all size lists. More precisely, a deterministic
online algorithm for list update is called e-competitive
if there is a constant a such that for all size lists and all
request sequences o, C4(0) < ¢-Copr (o) + a.

Linear lists are one possibility to represent a set of
items. Certainly, there are other data structures such
as balanced search trees or hash tables that, depending
on the given application, can maintain a set in a more
efficient way. In general, linear lists are useful when
the set is small and consists of only a few dozen items.
Recently, list update techniques have been applied very
successfully in the development of data compression al-
gorithms [21, 28].

There are three well-known deterministic online al-
gorithms for the list update problem.

MovE-To-FRONT: Move the requested item to the
front of the list.

TrANSPOSE: Exchange the requested item with the
immediately preceding item in the list.

FREQUENCY-COUNT: Maintain a frequency count
for each item in the list. Whenever an item is requested,
increase its count by 1. Maintain the list so that the
items always occur in nonincreasing order of frequency
count.

Sleator and Tarjan [64] proved that Move-To-Front is
2-competitive. Karp and Raghavan [48] observed that
no deterministic online algorithm for list update can
have a competitive ratio smaller than 2. This implies
that Move-To-Front achieves the best possible compet-
itive ratio. Sleator and Tarjan also showed that Trans-
pose and Frequency-Count are not c-competitive for any
constant ¢ independent of the list length. Thus, in terms
of competitiveness, Move-To-Front is superior to Trans-
pose and Frequency-Count.

Next we address the problem of randomization in the
list update problem. Against adaptive adversaries, no
randomized online algorithm for list update can be bet-
ter than 2-competitive, see [20, 62]. Thus we concen-
trate on algorithms against oblivious adversaries.

We present the two most important algorithms.
Reingold et al. [62] gave a very simple algorithm, called
BiT.

BiT: FEach item in the list maintains a bit that is
complemented whenever the item is accessed. If an ac-
cess causes a bit to change to 1, then the requested item
is moved to the front of the list. Otherwise the list re-
mains unchanged. The bits of the items are initialized



independently and uniformly at random.

Reingold et al. [62] proved that Brr is 1.75-
competitive against oblivious adversaries. The best ran-
domized algorithm currently known is a combination of
the BIT algorithm and a deterministic 2-competitive on-
line algorithm called TIMESTAMP proposed in [2].

TIMESTAMP (TS): Insert the requested item, say x,
in front of the first item in the list that precedes z and
that has been requested at most once since the last re-
quest to x. If there is no such item or if # has not been
requested so far, then leave the position of  unchanged.

As an example, consider a list of six items being in
the order L :x1 — x9 — x3 — 24 — T5 — xg. SUppose
that algorithm TS has to serve the second request to x5
in the request sequence o = ...x5, 29, X2, T3, L1, L1, T5.
Items x3 and x4 were requested at most once since the
last request to x5, whereas x; and x5 were both re-
quested twice. Thus, TS will insert #5 immediately in
front of z3 in the list.

A combination of BIT and TS was proposed by [5].

CoMBINATION: With probability 4/5 the algorithm
serves a request sequence using BIT, and with probabil-
ity 1/5 it serves a request sequence using T'S.

This algorithm is 1.6-competitive against oblivious
adversaries [5]. The best lower bound currently known
is due to Teia [67]. He showed that if a randomized
list update algorithm is c-competitive against oblivious
adversaries, then ¢ > 1.5.

An interesting open problem is to give tight bounds
on the competitive ratio that can be achieved by ran-
domized online algorithms against oblivious adversaries.

Many of the concepts shown for self-organizing linear
lists can be extended to binary search trees. The most
popular version of self-organizing binary search trees are
the splay trees introduced by Sleator and Tarjan [65].
In a splay tree, after each access to an element x in the
tree, the node storing x is moved to the root of the tree
using a special sequence of rotations that depends on
the structure of the access path. This reorganization of
the tree is called splaying.

Sleator and Tarjan [65] analyzed splay trees and
proved a series of interesting results. They showed that
the amortized asymptotic time of access and update op-
erations is as good as the corresponding time of balanced
trees. More formally, in an n-node splay tree, the amor-
tized time of each operation is O(logn). It was also
shown [65] that on any sequence of accesses, a splay
tree is as efficient as the optimum static search tree.
Moreover, Sleator and Tarjan [65] presented as series of
conjectures, some of which have been resolved or par-
tially resolved [31, 32, 33, 66]. On the other hand, the
famous splay tree conjecture is still open: It is conjec-
tured that on any sequence of accesses splay trees are
as efficient as any dynamic binary search tree.

The k-server problem

The k-server problem is one of the most fundamental
and extensively studied online problems. In the k-server
problem we are given a metric space S and k mobile
servers that reside on points in 5. Each request specifies
a point & € S. To serve a request, one of the &k servers
must be moved to the requested point unless a server is
already present. Moving a server from point z to point y
incurs a cost equal to the distance between x and y. The
goal is to serve a sequence of requests so that the total
distance traveled by all servers is as small as possible.

The k-server problem contains paging as a special
case. Consider a metric space in which the distance be-
tween any two points in 1; each point in the metric space
represents a page in the memory system and the pages
covered by servers are those that reside in fast memory.
The k-server problem also models more general caching
problems, where the cost of loading an item into fast
memory depends on the size of the item. Such a sit-
uation occurs, for instance, when font files are loaded
into the cache of a printer. More generally, the k-server
problem can also be regarded as a vehicle routing prob-
lem.

The k-server problem was introduced by Manasse et
al. [56] in 1988 who also showed a lower bound for deter-
ministic k-server algorithms: Let A be a deterministic
online k-server algorithm in a arbitrary metric space. If
A is c-competitive, then ¢ > k.

Manasse ef al. also conjectured that there exists a
deterministic k-competitive online k-server algorithm.
Only recently, Koutsoupias and Papadimitriou [52]
showed that there is a (2k — 1)-competitive algorithm.
Before, k-competitive algorithms were known for special
metric spaces (e.g. trees [30] and resistive spaces [34])
and special values of & (k = 2 and &k = n — 1, where
n is the number of points in the metric space [56]). Tt
is worthwhile to note that the greedy algorithm, which
always moves the closest server to the requested point,
is not competitive.

The algorithm analyzed by Koutsoupias and Pa-
padimitriou is the WORK FUNCTION algorithm. Let
X be a configuration of the servers. Given a request
sequence o = o(1),...,0(t), the work function w(X) is
the minimal cost of serving ¢ and ending in configura-
tion X.

WOoORK FUNCTION: Suppose that the algorithm has
served ¢ = o(1),...,0(t — 1) and that a new request
r = o(t) arrives. Let X be the current configuration
of the servers and let x; be the point where server s;,
1 < ¢ < k, is located. Serve the request by moving
the server s; that minimizes w(X;) + dist(x;, ), where
X, =X - {l‘l} + {7“}

Koutsoupias and Papadimitriou [52] proved that the
WoRK FuNcTION algorithm is (2k — 1)-competitive in



an arbitrary metric space. An interesting open problem
is to show that the WorK FUNCTION algorithm is in-
deed k-competitive or to develop an other deterministic
online k-server algorithm that achieves a competitive
ratio of k.

An elegant randomized rule for moving servers was
proposed by Raghavan and Snir [61].

HARMONIC: Suppose that there is a new request at
point r and that server s;, 1 < ¢ < k, is currently at
point x;. Move server s; with probability

1/dist(x;,7)
Pi =
Soioy 1/ dist(xj,7)

to the request.

Intuitively, the closer a server is to the request, the
higher the probability that it will be moved. Grove [42]
proved that the HARMONIC algorithm has a competitive
ratio of ¢ < %k .28 — 2k. The competitiveness of HAR-
MONIC is not better than k(k + 1)/2, see [58]. An open
problem is to develop tight bounds on the competitive
ratio achieved by HARMONIC.

Recently Bartal et al. [14] presented a randomized
online algorithm that achieves a competitive ratio of
O(cb log® k) on metric spaces consisting of k£ + ¢ points.
The main open problem in the area of the k-server prob-
lem is to develop randomized online algorithms that
have a competitive ratio of ¢ < k in an arbitrary metric
space.

Distributed data management

In distributed data management the goal is dynami-
cally re-allocate memory pages in a network of proces-
sors, each of which has its own local memory, so that
a sequence of read and write requests to memory pages
can be served with low total cost. The configuration of
the system can be changed by migrating and replicating
a memory page, i.e., a page is moved resp. copied from
one local memory to another.

More formally, page allocation problems can be de-
scribed as follows. We are given a weighted undirected
graph G. Each node in G corresponds to a processor
and the edges represent the interconnection network.
We generally concentrate on one particular page in the
system. We say that a node v has the page if the page
is contained in v’s local memory. A request at a node
v occurs if v wants to read or write an address from
the page. Immediately after a request, the page may be
migrated or replicated from a node holding the page to
another node in the network. We use the cost model
introduced by Bartal et al. [18] and Awerbuch et al. [8].
(1) If there is a read request at v and v does not have
the page, then the incurred cost is dist(u,v), where u
is the closest node with the page. (2) The cost of a

write request at node v is equal to the cost of commu-
nicating from v to all other nodes with a page replica.
(3) Migrating or replicating a page from node u to node
v incurs a cost of d - dist(u,v), where d is the page size
factor. (4) A page replica may be erased at 0 cost. In
the following we only consider centralized migration al-
gorithms, i.e., each node always knows where the closest
node holding the page is located in the network.

Bartal et al. [18] and Awerbuch et al. [8] presented
deterministic and randomized online algorithms achiev-
ing an optimal competitive ratio of O(logn), where n
is the number of nodes in the graph. We describe the
randomized solution [18].

CoOINFLIP: If there is a read request at node v and v
does not have the page, then with probability %, repli-
cate the page to v. If there is a write request at node
v, then with probability ﬁ, migrate the page to v and
erase all other page replicas.

The page migration problem is a restricted problem
where we keep only one copy of each page in the entire
system. If a page is writable, this avoids the problem
of keeping multiple copies of a page consistent. For this
problem, constant competitive algorithms are known.
More specifically, there are deterministic online migra-
tion algorithms that achieve competitive ratios of 7 and
4.1, respectively, see [8, 16]. We describe an elegant
randomized algorithm due to Westbrook [69].

COoUNTER: The algorithm maintains a global counter
C that takes integer values in [0, k], for some positive in-
teger k. Counter C'is initialized uniformly at random to
an integer in [1, k]. On each request, C' is decremented
by 1. If C' = 0 after the service of the request, then the
page is moved to the requesting node and C' is reset to

k.

Westbrook showed that the COUNTER algorithm is
c-competitive, where ¢ = max{2+ %d, 1+ %ldl} He also
determined the best value of k& and showed that, as d
increases, the best competitive ratio decreases and tends
to 1 4+ @, where & = (1 + \/5)/2 ~ 1.62 1s the Golden
Ratio.

All of the above solutions assume that the local mem-
ories of the processors have infinite capacity. Bartal et
al. [18] showed that if the local memories have finite ca-
pacity, then no online algorithm for page allocation can
be better than Q(m)-competitive, where m is the to-
tal number of pages that can be accommodated in the
system.

Scheduling and load balancing

The general situation in online scheduling is as fol-
lows. We are given a set of m machines. A sequence of
jobs o = Jy,Ja, ..., J, arrives online. Each job Jy has
a processing pi time that may or may not be known



in advance. As each job arrives, it has to be sched-
uled immediately on of the m machines. The goal is
to optimize a given objective function. There are many
problem variants, e.g., we can study various machine
types and various objective functions.

We consider one of the most basic settings introduced
by Graham [41] in 1966. Suppose that we are given m
tdentical machines. As each job arrives, its processing
time is known in advance. The goal is to minimize the
makespan, i.e., the completion time of the last job that
finishes.

Graham [41] proposed the GREEDY algorithm and
showed that it is (2 — %)—competitive.

GREEDY: Always assign a new job to the least loaded
machine.

In recent years, research has focused on finding algo-
rithms that achieve a competitive ratio ¢, ¢ < 2, for all
values of m. In 1992, Bartal et al. [17] gave an algorithm
that is 1.986-competitive. Karger et al. [46] generalized
the algorithm and proved an upper bound of 1.945. The
best algorithm known so far achieves a competitive ratio
of 1.923, see [3].

Next we discuss some extensions of the scheduling
problem above.

IDENTICAL MACHINES, RESTRICTED ASSIGNMENT:
We have a set of m identical machines, but each job can
only be assigned to one of a subset of admissible ma-
chines. Azar et al. [12] showed that the GREEDY algo-
rithm, which always assigns a new job to the least loaded
machine among the admissible machines, is O(logm)-
competitive.

RELATED MACHINES: Each machine ¢ has a speed
s;, 1 < i < m. The processing time of job J; on ma-
chine ¢ is equal to pi/s;. Aspnes et al. [6] showed that
the GREEDY algorithm, that always assigns a new job to
a machine so that the load after the assignment in mini-
mized, is O(log m)-competitive. They also presented an
algorithm that is 8-competitive.

UNRELATED MACHINES: The processing time of job
Ji on machine ¢ is pr;, 1 <k < n, 1 <¢ < m. Aspnes
et al. [6] showed that GREEDY is only m-competitive.
However, they also gave an algorithm that is O(log m)-
competitive.

In online load balancing we have again a set of m
machines and a sequence of jobs o = Jy, Ja, ..., J, that
arrive online. However, each job J; has a weight w(k)
and an unknown duration. For any time ¢, let /;(¢) de-
note the load of machine 7, 1 <7 < m, at time ¢, which
is the sum of the weights of the jobs present on machine
¢t at time ¢. The goal is to minimize the maximum load
that occurs during the processing of o.

We refer the reader to [9] for an excellent survey on
online load balancing and briefly mention a few basic
results. We concentrate again on settings with m iden-

tical machines. Azar and Epstein [9] showed that the
GREEDY algorithm is (2 — L )-competitive. The load
balancing problem becomes more complicated with re-
stricted assignments, i.e., each job can only be assigned
to a subset of admissible machines. Azar et al. [10]
proved that GREEDY achieves a competitive ratio of
m?/3(1 + o(1)). They also proved that no online al-
gorithm can be better than £(y/m)-competitive. In a
subsequent paper, Azar el al. [11] gave a matching up-

per bound of O(y/m).

Robotics

There are three fundamental online problems in the
area of robotics.

NAVIGATION: A robot is placed in an unknown en-
vironment and has to find a short path from a source
point s to a target ¢.

EXPLORATION: A robot is placed in an unknown en-
vironment and has to construct a complete map of that
environment using a short path.

LocaL1zATION: The robot has a map of the environ-
ment. It “wakes up” at a position s and has to uniquely
determine its initial position using a short path.

In the following we concentrate on the robot naviga-
tion problem. We refer the reader to [4, 35, 36, 44] for
literature on the exploration problem, and to [37, 43,
51, 63] for literature on the localization problem.

Many robot navigation problems were introduced by
Baeza-Yates et al. [13] and Papadimitriou and Yan-
nakakis [59]. We call an robot navigation A strategy
c-competitive, if the length of the path used by A is at
most ¢ times the length of the shortest possible path.

First we study a simple setting introduced by Baeza-
Yates et al. [13]. Assume that the robot is placed on a
line. It starts at some point s and has to find a point
t on the line that is a distance of n away. The robot is
tactile, i.e., it only knows that it has reached the target
when it is located on . Since the robot does not know
whether ¢ is located to the left or to the right of s, it
should not move a long distance into one direction. Af-
ter having traveled a certain distance into one direction,
the robot should return to s and move into the other di-
rection. For ¢ = 1,2,..., let f(i) be the distance walked
by the robot before the i-th turn since its last visit to
s. Baeza-Yates et al. [13] proved that the “doubling”
strategy f(i) = 2% is 9-competitive and that this is the
best possible.

A more complex navigation problem is as follows. A
robot is placed in a 2-dimensional scene with obstacles.
As usual, it starts at some point s and has to find a short
path to a target . When traveling through the scene
of obstacles, the robot always knows its current position
and the position of t. However, the robot does not know



the positions and extends of the obstacles in advance. It
learns about the obstacles as it walks through the scene.

Most previous work on this problem has focused on
the case that the obstacles are axis-parallel rectangles.
Papadimitriou and Yannakakis [59] gave a lower bound.
They showed that no deterministic online navigation al-
gorithm in a general scene with n rectangular, axis par-
allel obstacles can have a competitive ratio smaller than
Q(y/n). (In fact, the lower bound also holds for a re-
laxed problem where the robot only has to reach some
point a vertical wall.)

Blum et al. [25] developed a deterministic online nav-
igation algorithm that achieves a tight upper bound of
O(y/n), where n is again the number of obstacles. Re-
cently, Berman ef al. [22] gave a randomized algorithm
that is O(n*/?log n)-competitive against any oblivious
adversary. An interesting open problem is to develop
improved randomized online algorithms.

Better competitive ratios can be achieved if the rect-
angles lie in an n X n square room and the robot has to
reach the center of the room. For this problem, Bar-
Eli et al. [15] gave tight upper and lower bounds of
O(nlogn).

Further work on navigation has concentrated, for in-
stance, on extending results to scenes with convex ob-
stacles or to three-dimensional scenes [24, 25].

Further online problems

There are many online problems that we have not
addressed in this survey. Metrical task systems, intro-
duced by Borodin et al. [27], can model a wide class of
online problems. A metrical task system consists of a
pair (S,d), where S is a set of n states and d is a cost
matrix satisfying the triangle inequality. Entry d(3, j)
is the cost of changing from state ¢ to state j. A task
system must serve a sequence of tasks with low total
cost. The cost of serving a task depends on the state
of the system. Borodin et al. [27] gave a deterministic
(2n — 1)-competitive online algorithm. Recently, Bar-
tal et al. [14] gave randomized algorithms achieving a
polylogarithmic competitive ratio.

Online coloring and online matching are two classical
online problems related to graph theory. In these prob-
lems, the vertices of a graph arrive online and must be
colored resp. matched immediately. We refer the reader
to [50, 49, 55, 68] for some basic literature.

Further interesting online problems arise in the areas
of financial games (e.g. [38, 29]), virtual circuit routing
(e.g. [7, 6, 40]), Steiner tree construction (e.g. [23]), or
dynamic storage allocation (e.g. [54]).

Refinements of competitive analysis

Competitive analysis is a strong worst-case perfor-
mance measure. In some problems, such as paging, the

competitive ratios of online algorithms are much higher
than the corresponding performance ratios observed in
practice. For this reason, a recent line of research eval-
uated online algorithms on restricted classes of request
sequences. In other words, the power of an adversary is
limited.

In [26, 45], competitive paging algorithms with access
graphs are studied. In an access graph, each node rep-
resents a page in the memory system. Whenever a page
p is requested, the next request can only be to a page
that is adjacent to p in the access graph. Access graphs
can model more realistic request sequences that exhibit
locality of reference. It was shown [26, 45] that, using
access graphs, it is possible to overcome some negative
aspects of conventional competitive paging results.

With respect to online financial games, Raghavan [60]
introduced a statistical adversary: The input generated
by the adversary must satisfy certain statistical assump-
tions. In [29], Chou et al. developed further results in
this model.

More generally, Koutsoupias and Papdimitriou [53]
proposed the diffuse adversary model. An adversary
must generate an input according to a probability dis-
tribution D that belongs to a class A of possible distri-
butions known to the online algorithm.
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