
Revisiting the COUNTER Algorithms for List UpdateSusanne Albers� Michael MitzenmacheryAbstractCOUNTER algorithms, a family of randomized algorithms for the list update problem, wereintroduced by Reingold, Westbrook, and Sleator [7]. They showed that for any � > 0, thereexist COUNTER algorithms that achieve a competitive ratio of p3 + �. In this paper weuse a mixture of two COUNTER algorithms to achieve a competitiveness of 12=7, which isless than p3. Furthermore, we demonstrate that it is impossible to prove a competitive ratiosmaller than 12=7 for any mixture of COUNTER algorithms using the type of potential functionargument that has been used so far. We also provide new lower bounds for the competitivenessof COUNTER algorithms in the standard cost model, including a 1.625 lower bound for thevariant BIT and a matching 12/7 lower bound for our algorithm.Keywords: List update; On-line algorithms; Randomized algorithms; Data structures.1 IntroductionThe list update problem, a fundamental and extensively studied on-line problem, is to maintain anunsorted linear linked list so as to minimize the total cost of accesses on a sequence of requests. (Theformal de�nition of the problem is given in the next section.) List update algorithms are usefulfor maintaining small dictionaries and can be used as subroutines in adaptive data compressionschemes. For more information, see, for example, [4] or [2].The best competitive ratio that can be achieved by deterministic on-line algorithms is 2. Sleatorand Tarjan [8] proved that the Move-To-Front rule is 2-competitive, and Karp and Raghavan [5]observed that this is the best achievable competitive ratio for any deterministic on-line algorithm forthe problem. More recent work has focused on randomized list update algorithms. Here we consideralgorithms against the oblivious adversary, see [3]. Against adaptive adversaries, no randomizedon-line algorithm for list update can be better than 2-competitive.Reingold et al. [7] developed an elegant family of so-called COUNTER algorithms. On each requestto an item in the list, these algorithms either move the item to the front of the list or leave it whereit is. The decision whether to move or not depends on the value of a counter that is initializedrandomly. For any positive �, there are algorithms in this family that achieve a competitive ratioof p3 + � � 1:73 + �. Randomized algorithms achieving a better competitive ratio were presentedin [1]. A drawback of these algorithms is that, in a straightforward implementation, a secondpass through the list is required after each request to an item. In some applications, such as data�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. E-mail: albers@mpi-sb.mpg.deyDigital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301. E-mail:michaelm@pa.dec.com 1

compression, this may not be of concern; however, in other applications, the simplicity and ease ofimplementation of COUNTER algorithms may be preferable.This paper is motivated by the goal of �nding improved simple randomized list update algorithms.In particular we reconsider the COUNTER algorithms and show that, by properly mixing variantsof these algorithms, one can achieve a competitive ratio of 127 , which is less than p3. Furthermore,we demonstrate that it is impossible to prove a competitive ratio smaller than 127 for any mixtureof COUNTER algorithms using the type of potential function argument that has been used so far.Next, we develop new lower bounds on the competitive ratio of COUNTER algorithms in thestandard model that are very close to the upper bounds developed by Reingold et al. [7]. Ourresults demonstrate that BIT, the simplest and most well-known member of the COUTNER family,is not better than 1.625-competitive. Also, it demonstrates that our analysis of the 127 -competitivemixed algorithm is tight.Finally, we brie
y describe how the technique of mixing COUNTER algorithms can be also usedto improve similar counter-based on-line algorithms for page migration from [9].2 The list update problem and COUNTER algorithmsWe formally de�ne the list update problem. Consider n items stored in an unsorted linear linkedlist. A list update algorithm receives a sequence of requests, where each request speci�es one item inthe list. To serve a request, the algorithm must access the requested item, i.e. it starts at the frontof the list and proceeds linearly through the items until the desired item is found. In the standardmodel, serving an access to the item at position i in the list incurs a cost of i. Immediately afteran access, the accessed item may be moved at no extra cost to any position closer to the front ofthe list. These exchanges are called free exchanges. At any time two adjacent items in the listmay also be exchanged at a cost of 1; these exchanges are called paid exchanges. The goal is toserve a sequence of requests so that the total cost is as small as possible. A list update algorithmtypically works on-line, i.e., when serving a present request, the algorithm has no knowledge offuture requests.A randomized list update algorithm A is c-competitive against any oblivious adversary if thereexists a constant a such that, for all list sizes and all request sequences �,E[CA(�)] � c �COPT (�) + a:Here E[CA(�)] denotes the expected cost incurred by A, and COPT (�) denotes the cost incurred byan optimal o�ine algorithm on �. An optimal o�ine algorithm knows the entire request sequencein advance and can serve it with minimum cost.In [7], Reingold et al. �rst presented an elegant randomized algorithm, called BIT. For each itemx in the list, BIT maintains a bit b(x). These bits are initialized independently and uniformly atrandom. Whenever an item x is accessed, its bit is complemented. If the bit changes to 0, the itemis moved to the front of the list; otherwise the position of the item remains unchanged. Reingoldet al. [7] showed that BIT is 1.75-competitive. 2

The COUNTER algorithms are a generalization of the BIT algorithm. Let s be a positive inte-ger, which we shall call the counter size, and let S be a nonempty subset of f0; : : : ; s � 1g. ACOUNTER(s; S) algorithm maintains a counter modulo s for each item in the list. The countersare initialized independently and uniformly at random to a value in f0; : : : ; s� 1g. On each accessto an item x, the counter of x is decremented by 1, and x is moved to the front of the list if thecounter value is in S. Reingold et al. [7] showed that for any � > 0, there is a (p3+ �)-competitiveCOUNTER algorithm. Note that COUNTER algorithms are barely random, which means thatthey use only a constant number of random bits (for the initialization of the counters) regardlessof the number of requests. Reingold et al. [7] also demonstrate a p3-competitive algorithm that isnot barely random, based on the similar family of RANDOM RESET algorithms.3 Improved COUNTER algorithmsIn this section, we show how to mix COUNTER algorithms to achieve a better competitive ratio of127 . We �rst extend the notation to include mixtures of COUNTER algorithms. If Pki=1 qi = 1, welet COUNTER(s1; S1; q1; : : : ; sk; Sk; qk) be the randomized on-line algorithm that uses the algorithmCOUNTER(si; Si) with probability qi. Note that, if all the si are distinct, this is equivalent tochoosing the counter size randomly.Given a particular COUNTER algorithm and a sequence � = �(1); �(2); : : : ; �(m) of accesses,let CCT (�(t)) and COPT (�(t)) denote the actual costs incurred by COUNTER and OPT on �(t),1 � t � m. In [6], it was shown that there exists an optimal o�ine algorithm that only uses paidexchanges to move items in the list; we will implicitly use this in what follows. Reingold et al. [7]analyzed list update algorithms using potential functions.De�nition 1 Given a sequences of accesses � and a non-negative potential function �, aCOUNTER(s1; S1; q1; : : : ; sk; Sk; qk) algorithm is calleda) c1-competitive on accesses if for every access �(t) in �, E[CCT(�(t))]+E[��]� c1COPT (�(t)).Here E[��] is the expected change in potential during the operation.b) c2-competitive on paid exchanges if E[��] � c2 for any paid exchange made by OPT.The bounds of [7] are obtained by noting that if a COUNTER(s; S) algorithm is c1-competitive onaccesses and c2-competitive on paid exchanges, then it is maxfc1; c2g-competitive. We improve onthis by taking mixtures of COUNTER algorithms.We introduce a key proposition, taken from Theorem 3.5 in [7], that describes the competitivenessof COUNTER(s; S) algorithms on accesses and paid exchanges. For a COUNTER(s; S) algorithm,let pj be the probability that an item will next move to the front after j accesses. (For example, inthe BIT algorithm, p1 = p2 = 12 .)Proposition 2 COUNTER(s; S) is �1 + p1Psj=1 jpj�-competitive on accesses and �Psj=1 jpj�-competitive on paid exchanges. 3

The following theorems show that a simple mixture of COUNTER algorithms yields a smallercompetitive ratio than any individual COUNTER algorithm under current methods of analysis,and that the mixture we present is currently the best possible:Theorem 3 The algorithm COUNTER(2; f0g; 47 ; 3; f0g; 37) is 127 -competitive.Note that 127 = 1:714::: < p3 = 1:732:::. Moreover, this mixture of COUNTER algorithms is barelyrandom and uses a very small number of random bits and bits of memory per item.Proof: By Proposition 2, COUNTER(2; f0g) is 74-competitive on accesses and 32-competitive onpaid exchanges. Similarly, COUNTER(3; f0g) is 53-competitive on accesses and 2-competitive onpaid exchanges. It is straightforward to check using the linearity of expectations thatCOUNTER(2; f0g; 47 ; 3; f0g; 37) is then 127 -competitive on accesses as well as on paid exchangesand therefore 127 -competitive.Theorem 4 It is impossible to prove a competitive ratio smaller than 127 for any COUNTERalgorithm using only Proposition 2.Proof: The proof is a standard game-theoretical argument; here we use geometry to simplifymatters. If a COUNTER algorithm is c1-competitive on accesses and c2-competitive on paidexchanges by Proposition 2, let us plot its location in the (x; y) plane by (c2; c1). The possiblemixtures of COUNTER algorithms can be represented as convex combinations of these points, andhence lie on the convex hull determined by these points.Any point obtained by Proposition 2 has the form (z; 1 + p1z), where z = Psj=1 jpj . Also notethat p1 � p2 � : : : � ps for any COUNTER algorithm. We now take cases for p1 to show that itis impossible for any point determined by Proposition 2 to lie below the line determined by (32 ; 74)and (2; 53) (given by y = 2� x6). This su�ces to prove the claim.Note that all points we consider are of the form y = 1+ p1x. This intersects the line y = 2� x6 atx = 61+6p1 , and hence, if z � 61+6p1 , the corresponding point lies above the line. We therefore onlyneed to show that Psj=1 jpj = z � 61+6p1 , with equality only when p1 = 12 or p1 = 13 .Note that the minimum value of z for a given value of p1 is obtained by successively setting allp2 = p1; p3 = p1; : : : ; as far as possible, and setting the last pj as large as possible so as to satisfyPsj=1 pj = 1. Using this fact, we now take cases.If 0 � p1 � 16 , then z = sXj=1 jpj � 6Xj=1 jp1 + 7(1� 6p1) = 7� 21p1:One may now easily check that z � 61+6p1 over this interval. Similarly, for 16 � p1 � 13 , z �P3j=1 jp1 + 4(1 � 3p1) = 4 � 6p1, which is at least 61+6p1 over the interval. For 13 � p1 � 12 ,z � 3 � 3p1; and for 12 � p1 � 1, z � 2 � p1. Again, these are both at least 61+6p1 over theappropriate intervals. The proof follows. 4

We note that the lower bound argument of Theorem 4 also applies to the RANDOM RESETalgorithms of [7]. Choosing the counter size randomly can be used to obtain algorithms withmarginally better competitive ratios in the P d model for the list update problem described in [7]as well.4 Lower boundsWe now consider lower bounds on the competitive ratio of COUNTER algorithms in the standardmodel. First we give a general lower bound for COUNTER(s; S) algorithms that is very close tothe upper bounds presented in Proposition 2. Using this general lower bound, we are able to derivea lower bound for BIT. Previous lower bounds for BIT were given by Reingold et al. [7] in the i� 1cost model, in which an access to the i-th item in the list incurs a cost if i � 1 rather than i. Infact, they showed that in this model, BIT is exactly 1:75-competitive. We prove that BIT is nobetter than 1.625-competitive in the standard model. As a second corollary of our general lowerbound, we �nd that COUNTER(2; f0g; 47 ; 3; f0g; 37) is exactly 127 -competitive.Theorem 5 If s is independent of the list size n, then the competitive ratio achieved byCOUNTER(s; S) in the standard model is at least 12 � �1 + p1Psj=1 jpj +Psj=1 jpj�.Note that the lower bound given in Theorem 5 is composed of the average of the terms fromProposition 2.Proof: Consider a list of n items. We assume without loss of generality that COUNTER(s; S)and an optimal o�-line algorithm OPT start with the same initial list, with the items in order1; 2; : : : ; n. Let k � maxf2; sg be a constant and let ik denote a sequence of k consecutive requeststo i. The request sequence generated by an adversary consists of a sequence of rounds. Each roundis a concatenation of two subrounds R1 and R2, whereR1 = 1; 2; 3; : : : ; n; 1k; 2k; 3k; : : : ; nkand R2 is the reverse sequence,R2 = n; n� 1; : : : ; 2; 1; nk; (n� 1)k; : : : ; 2k; 1k:That is, in each subround, every item in the list is �rst requested exactly once and then requestedk times in a row. By generating rounds in this manner, the adversary can construct an in�nitelylong request sequence.We assume without loss of generality that whenever OPT serves at least two consecutive requeststo an item i, it moves i to the front of the list on the �rst of these requests. This cannot incur ahigher cost on the remaining request sequence than moving i part-way to the front or leaving itwhere is was. Thus, at the beginning of each round the items in OPT's list are arranged in theorder 1; 2; 3; : : : ; n. The same is true for COUNTER(s; S)'s list because after k � s consecutiverequests to the same item, COUNTER(s; S) must have that item at the front of its list.We analyze an arbitrary round and �rst show that OPT's cost in each round is 2n(n+k). Considerthe �rst subround R1. When serving the �rst n requests R11 = 1; 2; : : : ; n, OPT does not move the5

items. On the next kn requests R12 = 1k; 2k : : : ; nk, OPT always moves the requested item to thefront of the list on its �rst appearance, giving a total cost of 12n(n+1)+ 12n(n+1)+(k�1)n = n(n+k)for the processing of R1. At the beginning of R2, the items in OPT's list are arranged in the ordern; n� 1; : : : ; 2; 1. Thus, processing R2 incurs again a cost of n(n+ k) to OPT.Next we evaluate COUNTER(s; S)'s cost. Recall again that at the beginning of each round theitems in COUNTER(s; S)'s list are arranged in the order 1; 2; 3; : : : ; n. Within R1, serving the �rstn requests R11 = 1; 2; : : : ; n incurs a cost of 12n(n+1). We have to analyze the expected cost on thefollowing requests R12 = 1k; 2k; : : : ; nk. Within R12, consider k requests ik, 1 � i � n. At the �rstof these requests, i's expected position in the list is i+p1(n� i). This is because (a) all items j withj < i were requested k times since the last request to i and thus precede i in COUNTER(s; S)'slist; (b) the expected number of items j with j > i that were moved to the front of the list duringthe processing of R11 is p1(n� i). Moreover, from this argument, one may deduce that i's positionis in fact independent of how many accesses to i are necessary to move it to the front. Thus, theexpected number of accesses until i is moved to the front is just Psj=1 jpj . Hence, the expectedcost to COUNTER(s; S) on R1 is12n(n + 1) + nXi=1 24(i+ p1(n� i))0@ sXj=1 jpj1A + k � sXj=1 jpj35 =12n(n+ 1) + kn+ 0@ sXj=1 jpj1A nXi=1 (i� 1 + p1(n � i))! =12n(n+ 1) + kn+ 12n(n� 1)(sXj=1 jpj) + 12n(n � 1)(p1 sXj=1 jpj):COUNTER(s; S)'s expected cost on R2 is the same because, at the beginning of R2, the items inCOUNTER(s; S)'s list are arranged in the order n; n� 1; : : : ; 2; 1. The dominant terms in the costto both OPT and COUNTER(s; S) over one round are clearly proportional to n2. Since we maytake n to be arbitrarily large, the theorem now follows by taking the appropriate ratio of theseterms.Corollary 6 The competitive ratio achieved by BIT in the standard model is at least 138 = 1:625.Proof: The corollary follows immediately from Theorem 5, because in the BIT algorithm p1 =p2 = 12 .Based on Theorem 5, we can also show that COUNTER(2; f0g; 47 ; 3; f0g; 37) is exactly 127 -competi-tive.Corollary 7 The competitive ratio achieved by COUNTER(2; f0g; 47 ; 3; f0g; 37) in the standardmodel is exactly 127 .Proof: We consider the request sequence used in the proof of Theorem 5, where each round consistsof subrounds R1 = 1; 2; 3; : : : ; n; 13; 23; 33; : : : ; n36

and R2 = n; n� 1; : : : ; 2; 1; n3; (n� 1)3; : : : ; 23; 13:The proof of Theorem 5 shows that, for every � > 0, there exists an n0 such that for every n � n0,the cost incurred by COUNTER(2; f0g) on this sequence is at least 138 �� times the optimum o�inecost. A similar statement holds for COUNTER(3; f0g) with a ratio of 116 . Hence the combinationis at best 127 -competitive. The corresponding upper bound is proven in Theorem 3.5 Page migration algorithmsChoosing a counter size randomly to obtain algorithms with improved competitive ratios can alsobe applied to the randomized page migration algorithms found in [9], which are similarly basedon simple counters. For example, in the notation of [9], for uniform graphs where the page sizeD = 1, a 2.75-competitive randomized algorithm is given using a modulo 2 counter. This can beimproved to a 2911-competitive algorithm by using an algorithm that randomly chooses an algorithmwith either a modulo 2 counter (with probability 811) or a modulo 3 counter (with probability 311).As D grows to in�nity, however, the improvement obtainable using this method falls to 0.It is interesting to note for uniform graphs the analysis of [9] uses di�erent potential functions foreach possible counter size. This poses no barrier to analyzing mixtures of algorithms, as analyzingmixtures requires knowing how competitive each algorithm is on a request or a move by the optimalalgorithm; it does not matter what potential function is used to obtain the result.We point out that the random resetting and deterministic resetting algorithms suggested in [9] forthe case of general graphs can be improved similarly by choosing the size of the counter randomlywith appropriate weights.6 ConclusionWe have improved bounds for counter-based algorithms on the list update problem, by randomizingthe choice of the counter size. We have also explained that this paradigm can similarly be used toimprove counter based page migration algorithms. Our work thus emphasizes the general principlethat one can often achieve better competitive ratios by choosing a random algorithm within afamily of on-line algorithms.With our lower bounds, we have achieved nearly tight bounds on members of the the COUNTERfamily. We conclude that beating the 1.6-competitive algorithm for list update from [1] will requiredi�erent types of algorithms, although the simple COUNTER algorithms may be more useful inpractice. 7

References[1] S. Albers, B. von Stengel, and R. Werchner. A combined BIT and TIMESTAMP algorithmfor the list update problem. Information Processing Letters, 56:135{139, 1995.[2] R. Bachrach and R. El-Yaniv. Online list accessing algorithms and their applications: RecentEmpirical Evidence. In Proceedings of the 8th Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 53-62, 1997.[3] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the power of ran-domization in on-line algorithms. Algorithmica, 11:2-14,1994.[4] J.L. Bentley, D.S. Sleator, R.E. Tarjan, and V.K. Wei. A locally adaptive data compressionscheme. Communication of the ACM, 29:320{330, 1986.[5] R. Karp and P. Raghavan. From a personal communication cited in [7].[6] N. Reingold and J. Westbrook. Optimum o�-line algorithms for the list update problem. Tech-nical Report YALEU/DCS/TR-805, Yale University, 1990.[7] N. Reingold, J. Westbrook, and D.D. Sleator. Randomized competitive algorithms for the listupdate problem. Algorithmica, 11:15{32, 1994.[8] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules. Commu-nication of the ACM, 28:202{208, 1985.[9] J. Westbrook. Randomized algorithms for multiprocessor page migration. SIAM Journal ofComputing, 23:951{965, 1994.

8

