
A Combined BIT and TIMESTAMP Algorithm forthe List Update ProblemSusanne Albers, Bernhard von Stengel, Ralph WerchnerInternational Computer Science Institute, 1947 Center Street, Berkeley, CA 94704, USAEmail: falbers, stengel, werchnerg@icsi.berkeley.eduAbstract. A simple randomized on-line algorithm for the list update problemis presented that achieves a competitive factor of 1.6, the best known so far.The algorithm makes an initial random choice between two known algorithmsthat have di�erent worst-case request sequences. The �rst is the BIT algorithmthat, for each item in the list, alternates between moving it to the front of thelist and leaving it at its place after it has been requested. The second is aTIMESTAMP algorithm that moves an item in front of less often requesteditems within the list.Keywords. On-line algorithms, analysis of algorithms, competitive analysis,linear lists, list-update.1. Description of the algorithmThe list update problem is one of the �rst on-line problems that have been studiedwith respect to competitiveness (see [5] and references). The problem is to maintainan unsorted list of items so that access costs are kept small. An initial list of itemsis given. A sequence of requests must be served in that order. A request speci�es anitem in the list. The request is served by accessing the item, incurring a cost equalto the position of the item in the current list. In order to reduce the cost of futurerequests, an item may be moved free of charge further to the front after it has beenrequested. This is called a free exchange. Any other exchange of two consecutiveitems in the list incurs cost one and is called a paid exchange. The goal is to servethe request sequence so that the total cost is as small as possible.An on-line algorithm has to serve requests without knowledge of future re-quests. An optimal o�-line algorithm knows the entire sequence � of requesteditems in advance and can serve it with minimum cost OPT (�). We are interestedin the competitiveness of an on-line algorithm. Let A(�) be the cost incurred bythe on-line algorithm A for serving the sequence �. Then the algorithm is called1



c-competitive if there is a constant a so that A(�) � c �OPT (�) + a for all requestsequences �. The smallest c with this property is called the competitive factor ofthe algorithm.The best possible deterministic algorithms for the list update problem are 2-competitive [4, 6]. The optimal competitive factor of a randomized on-line algorithmis not yet known. We evaluate its performance against the oblivious adversary [2].The oblivious adversary speci�es a request sequence � in advance and is not allowedto see the random choices made by the on-line algorithm A. Let E[A(�)] denotethe corresponding expected cost. Against the oblivious adversary, the algorithm isc-competitive if there is a constant a so that E[A(�)] � c �OPT (�)+a for all requestsequences �.Usually, the cost of accessing the ith item in the list is i. For simplicity, weassume that cost to be i� 1 instead. Clearly, a c-competitive on-line algorithm forthis `i� 1' cost model is also c-competitive in the original model. With either costmodel, it is known that no randomized on-line algorithm for the list update problemcan be better than 1.5-competitive [7].We will combine two on-line algorithms for the list update problem that storewith each item some information about past requests. Both algorithms use onlyfree exchanges. The �rst is the 1.75-competitive BIT algorithm due to Reingold,Westbrook, and Sleator [5]. The algorithm maintains a bit for each item in the list.Initially, the bit is set at random to 0 or 1 with equal probability so that the bits ofthe items are pairwise independent.Algorithm BIT. Each time an item is requested, its bit is complemented. Whenthe value of the bit changes to 1, the requested item is moved to the front of the list.Otherwise the position of the item remains unchanged.The second algorithm is an instance of the TIMESTAMP algorithm recentlyintroduced by Albers [1].Depending on a parameter p in [0; 1], this algorithm achievesa competitiveness of maxf2 � p; 1 + p(2 � p)g. The optimal choice of p gives a �-competitive algorithm, where � = (1 + p5)=2 � 1:62 is the Golden Ratio. TheTIMESTAMP algorithm maintains for each item the last two times it has beenrequested. An item is treated in one of two ways (which can be determined once atthe beginning by a random experiment, so that the algorithm is barely random asde�ned in [5]). With probability p, the item is moved to the front of the list after ishas been requested. With probability 1� p, it is treated in a di�erent way. We usethe TIMESTAMP algorithm with parameter p = 0, so that it is deterministic. Theresulting 2-competitive algorithm can be formulated as follows.Algorithm TS. After each request, the accessed item x is inserted immediately infront of the �rst item y that precedes x in the list and was requested at most once2



since the last request to x. If there is no such item y or if x is requested for the �rsttime, then the position of x remains unchanged.Our new algorithm is a combination of these two algorithms.Algorithm COMB. With probability 4=5 the algorithm serves a request sequenceusing BIT , and with probability 1=5 it serves the sequence using TS.Theorem 1. The on-line algorithm COMB is 1.6-competitive.In the following, we will prove Theorem 1 using a well-known technique [3, 5] ofanalyzing separately the movement of any pair of items in the list. The algorithmsBIT and TS permit such a pairwise analysis.2. Projection on pairs of itemsOur goal is to look only at two items at a time when we consider a request sequence,the list maintained by the on-line algorithm, and the cost of the o�-line algorithm.Let � be a sequence of m requests, and let �(t) be the item requested at time tfor t = 1; : : : ;m. Let L be the set of items of the list. Consider any deterministicalgorithm A that processes �. At time t, requesting �(t) incurs a cost that dependson the current list maintained by A. This cost can be represented as the sumXx2LA(t; x)where A(t; x) is equal to one if item x precedes �(t) in the list at time t, and zerootherwise. The cost A(�) of serving the entire sequence � has then the followingform, using A(t; x) = 0 for x = �(t):A(�) = Xt=1;:::;m Xx2LA(t; x)= Xx2L Xt=1;:::;mA(t; x)= Xx2L Xy2L Xt :�(t)=yA(t; x)= Xfx;yg�L :x6=y Xt :�(t)2fx;yg�A(t; x) +A(t; y)� :With the abbreviationAxy(�) = Xt :�(t)2fx;yg�A(t; x) +A(t; y)� ; (1)we can write this as A(�) = Xfx;yg�L :x6=y Axy(�) : (2)3



Let �xy be the request sequence � with all items other than x or y deleted. Onlythese requests are considered in (1). In the sum there, A(t; x)+A(t; y) is the cost ofaccessing �(t) in the two-element list that consists of the items x and y in the orderof the full list maintained by A. In that way, the term Axy(�) denotes the cost ofthe algorithm `projected' to the unordered pair fx; yg of items.The algorithms BIT and TS are compatible with the projection on pairs. Thatis, when these algorithms serve a request sequence �, then at any time the relativeorder of two items x and y in the list can be told from the projected request sequence�xy and the initial order of x and y. This is obvious for the algorithm BIT whichmoves an item independently of any other item. For the algorithm TS , this followsfrom the following lemma, applied to the request sequence � or any pre�x of it.Lemma 2. In the list obtained after algorithm TS has served the request sequence �,item x precedes item y if and only if the sequence �xy terminates in the subsequencexx, xyx, or xxy, or if x preceded y initially and y was requested at most once in �.Proof. Suppose �xy terminates in xx or xyx. Then at the last request to x, item y isamong the items that have been requested at most once since the preceding requestto x. Since x is inserted in front of the �rst of such items, x precedes y in the �nallist. Let �xy terminate in the subsequence xxy, and let t1, t2, and t3 be the timesof these last three requests to x or y. After the request to x at time t2, item xis moved somewhere in front of y. Suppose that after the request to y at time t3,item y is, contrary to our claim, moved somewhere in front of x. Then y is insertedimmediately in front of an item z that has been requested at most once since thepreceding request to y, which took place before t1. So z precedes x at time t3, butthen clearly z must have been requested twice since t1, a contradiction. Thus xprecedes y in the �nal list as claimed.If �xy terminates in one of the subsequences yy, yxy, or yyx, then by the sameargument with x and y interchanged, y precedes x in the �nal list.The only remaining cases are when both x and y are requested at most oncein �. Then neither item is moved, so their relative order is as in the initial list.By Lemma 2, the relative order of any two items x and y in the list when TSserves � is the same as when TS serves �xy on the two-element list consisting ofx and y. In other words, TSxy(�) = TS (�xy), where TS (�xy) denotes the cost ofTS serving �xy on the two-element list (with x and y always in the same initialorder as in the long list). Similarly, the projected cost of the algorithm BIT ful�llsBITxy(�) = BIT (�xy). Note that this cost is a random variable.For the optimal o�-line algorithm OPT , we work with the inequalityOPTxy(�) � OPT (�xy); (3)4



which states that the projected cost of OPT processing � is at least as high as theoptimal o�-line cost OPT (�xy) of serving �xy on the two-element list. An optimalo�-line algorithm OPT for only two items can be easily speci�ed, but the corre-sponding moves for all pairs of items may not be implementable on a longer list.The di�erent notation OPT emphasizes that this algorithm may perform betterthan the projection of OPT serving requests on a longer list.A randomized algorithm can be regarded as a probability distribution on deter-ministic algorithms A. Then, (2) carries over to expected values. For the expectedcost of our on-line algorithm COMB we will prove for all pairs fx; yg of items theinequality E[COMBxy(�)] � 1:6 �OPT (�xy) ; (4)which by the preceding discussion implies E[COMB(�)] � 1:6 � OPT (�) and thusshows Theorem 1.3. Competitiveness of the algorithmAs shown in the previous section, the competitiveness of the algorithm COMB canbe analyzed considering only request sequences �xy to the items x and y in a two-element list. We partition �xy into subsequences, each of which is terminated by twoconsecutive requests to the same item. It su�ces to analyze only such subsequences,for the following reason: Whenever an item has been requested twice in a row, wecan assume that it is moved to the front by BIT , TS , and OPT . This holds alwaysfor BIT and TS . It also optimal for OPT to move the item, say x, to the front afterthe �rst of two or more consecutive requests to x, since then the cost of serving theserequests is 1, plus a possible additional cost 1 for the next request to y; if x werekept at the end of the list, the cost would be at least 2. Finally, we disregard the�nal subsequence of �xy, which may not end in a double request, since it is irrelevantfor an asymptotic analysis with very long request sequences.Thus, after a subsequence of �xy ending with xx has been served by BIT ,TS , or OPT , item x is at the front of the list (the same holds for y instead of x).Furthermore, we can treat the remainder of the sequence as a new request sequence,served on an initial list with x in front of y: When algorithm BIT is used, the bitsof some items may have changed, but the expected cost is not a�ected; algorithmTS treats any request to y after the requests xx as if y is requested for the �rsttime.In the initial two-element list, we assume x precedes y. Consecutive requests tox at the beginning of the request sequence incur no cost. After y has been requestedfor the �rst time, we consider the requests until the �rst double request xx or yy.The resulting sequence is of one of three possible forms that we study separately:xlyy, xl(yx)kyy, or xl(yx)kx for some l � 0 and k � 1. The cost for serving thesesequences varies with the algorithm. 5



Lemma 3. In the initial list of two items, let x be in front of y. The following tabledescribes the expected cost for serving the indicated request sequences, where l � 0and k � 1, by the algorithms BIT, TS, and OPT.request sequence BIT TS OPTxlyy 32 2 1xl(yx)kyy 32k + 1 2k k + 1xl(yx)kx 32k + 14 2k � 1 kProof. The initial l requests to x incur no cost for any of the algorithms. Considerthe request sequence xlyy. Since x precedes y before the �rst request to y, the costof serving that request is 1. After that request, algorithm BIT moves item y to thefront with probability 1=2 so that the expected cost for the service by BIT is 3=2.Algorithm TS incurs cost 1 at both requests to y by Lemma 2. Clearly, the optimalo�-line algorithm OPT moves y to the front after the �rst request to y.The sequence xl(yx)kyy is served by BIT as follows: The �rst subsequence yxincurs expected cost 3=2 since the �rst request costs 1, after which y is moved to thefront with probability 1=2. Consider the second and any further request to y whichis preceded by three requests of the form xyx at times t1, t2, and t3, say (or by tworequests yx at times t2 and t3 where at time t2 item x is with certainty in front of y;then the following argument applies as well). We claim that at that second requestto y (at time t4, say), y is at the front of the list if and only if the bit of x is 0 andthe bit of y is 1: Namely, if the bit of x was set to 1 at the last request to x at t3,then x was moved to the front. If x's bit is 0 at time t4, then x's bit was set to 1after the service of x at time t1 so that x is with certainty in front of y at time t2.Thus, y's bit must have been set to 1 after the request to y at time t2 to move yin front. This shows the claim. The bits of both items are independent, so y is infront at time t4 with probability 1=4 and the expected cost of serving y is 3=4. Bythe same argument, all but the �rst two requests to y or x in the subsequence (yx)kincur expected cost 3=4. Of the �nal two requests yy, the �rst request to y also hasexpected cost 3=4. The other is the last request of a subsequence yxyy; it is easy tosee that at that time, y is not in front of x if and only if y's bit is 0 and x's bit is1, which happens with probability 1=4. Thus, the BIT algorithm serves xl(yx)kyywith expected cost 32k + 34 + 14 . By the same reasoning, that cost for the sequencexl(yx)kx is 32k + 14.When algorithm TS serves the sequence xl(yx)kyy, then the �rst two requestsof the form yx incur costs 1 and 0, respectively, since y is left behind x after the�rst request to y. All subsequently requested items are moved to the front of thelist by Lemma 2. The resulting costs are therefore 2k (note k � 1). Similarly, TSserves xl(yx)kx with cost 2k � 1. 6



The optimal o�-line cost for serving the sequence xl(yx)kyy is k + 1 since foreach of the k pairs yx of requests, at least one has cost 1, and an extra cost unit iscaused by the �nal double request to y. It is optimal to move y to the front at anytime before the last request to y. The optimal o�-line cost for serving the sequencexl(yx)kx is k. It is optimal to leave x always at the front of the list.The performance of algorithm COMB , which selects BIT with probability 4=5and TS with probability 1=5, follows from Lemma 3. COMB serves the requestsequence xlyy with expected cost 1.6, the sequence xl(yx)kyy with cost 1:6k + 0:8,and the sequence xl(yx)kx with cost 1:6k + 1:6. In each case, this is at most 1.6times the cost of OPT . This proves (4) and thus Theorem 1.The probabilities for deciding between BIT and TS are optimal: The criticalsequences are xlyy and xl(yx)kx (for xl(yx)kyy COMB performs better), were thesimplest cases are yy with expected cost 1.5 for BIT and 2 for TS , and the sequenceyxx with expected cost 1.75 for BIT and 1 for TS . If a randomizing adversarychooses yy with probability 3=5 and yxx with probability 2=5, then both BIT andTS have expected cost 1.6, or 1.6 times the cost of OPT . Thus, by Yao's Theorem[8] (or a simple direct argument), no randomized combination of BIT and TS canhave cost less than 1.6 on both sequences (and their repetitions in longer sequences).4. ConclusionsWe have presented a simple randomized on-line algorithm for the list update problemthat has a competitive factor of 1.6. The best known lower bound for that factoris 1.5 [7]. The remaining gap is small, but the obvious open question is: what is thebest possible competitive factor?Our algorithm uses two known algorithms that already have good competitivefactors. We have used the fact that the worst-case request sequences for these algo-rithms are di�erent. In a similar way, it is possible to construct other 1.6-competitivealgorithms. For example, one can use the original TIMESTAMP algorithm [1] withdi�erent parameters p, determined by a random experiment: With probability 1=10,TIMESTAMP is used with p = 0 (corresponding to our algorithm TS ), with prob-ability 1=15, it is used with p = 1 (yielding the deterministic MOVE-TO-FRONTrule), and with probability 5=6, it is used with p = 2=5. This means that an item isalways moved to the front with probability 2=5, otherwise treated essentially as inalgorithm TS (see [1] for a full description of TIMESTAMP when p is not 0 or 1).However, with probability 1=6 all items are treated in the same manner. This corre-lation reduces the competitive factor of the algorithm from the Golden Ratio (about1.62) to 1.6. The analysis of this algorithm is similar to Lemma 3. However, COMBis simpler and uses with high probability the easily implementable BIT algorithm.7



It may be that the optimal competitive factor is indeed 1.5. There is a 1.5-competitive algorithm for serving requests on a list of up to four items. That al-gorithm is based two-dimensional partial orders, but it is beyond this article todescribe; furthermore, the algorithm cannot be extended to longer lists. Its per-formance can also be compared against OPT , assuming that the optimal o�-linealgorithm projects to pairs. It is conceivable that for longer lists, OPT does notsu�ce to describe the performance of OPT (that is, the inequality in (3) is strict)for certain critical request sequences. In that case, the optimal competitive factormust be analyzed by other tools than the projection to pairs of items, which has sosimpli�ed our analysis.References[1] S. Albers, Improved randomized on-line algorithms for the list update problem, Proc.6th Annual ACM-SIAM Symposium on Discrete Algorithms (1995) 412{419.[2] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power ofrandomization in on-line algorithms, Algorithmica 11 (1994) 2{14.[3] S. Irani, Two results on the list update problem, Information Processing Letters 38(1991) 301{306.[4] R. Karp and P. Raghavan, Personal communication (1990), cited in [5].[5] N. Reingold, J. Westbrook, and D. D. Sleator, Randomized competitive algorithms forthe list update problem, Algorithmica 11 (1994) 15{32.[6] D. D. Sleator and R. E. Tarjan, Amortized e�ciency of list update and paging rules,Communications of the ACM 28 (1985) 202{208.[7] B. Teia, A lower bound for randomized list update algorithms, Information ProcessingLetters 47 (1993) 5{9.[8] A. C. Yao, Probabilistic computations: Towards a uni�ed measure of complexity, Proc.18th Annual IEEE Symposium on Foundations of Computer Science (1977) 222{227.
8


