
A Study of Integrated Doumentand Connetion Cahing?
Susanne Albers1 and Rob van Stee21 Institut f�ur Informatik, Albert-Ludwigs-Universit�at, Georges-K�ohler-Allee, 79110 Freiburg, Germany.salbers�informatik.uni-freiburg.de.2 Centre for Mathematis and Computer Siene (CWI), Kruislaan 413, NL-1098 SJ Amsterdam, TheNetherlands. Rob.van.Stee�wi.nl.

Abstrat. Doument ahing and onnetion ahing are extensively studied problems. Indoument ahing, one has to maintain ahes ontaining douments aessible in a network.In onnetion ahing, one has to maintain a set of open network onnetions that handledata transfer. Previous work investigated these two problems separately while in pratiethe problems our together: In order to load a doument, one has to establish a onnetionbetween network nodes if the required onnetion is not already open.In this paper we present the �rst study that integrates doument and onnetion ahing.We �rst onsider a very basi model in whih all douments have the same size and the ostof loading a doument or establishing a onnetion is equal to 1. We present deterministiand randomized online algorithms that ahieve nearly optimal ompetitive ratios unless thesize of the onnetion ahe is extremely small. We then onsider general settings wheredouments have varying sizes. We investigate a Fault model in whih the loading ost of adoument is 1 as well as a Bit model in whih the loading ost is equal to the size of thedoument.
1 IntrodutionReently there has been onsiderable researh interest in doument ahing [5, 7{12℄ and onnetionahing [2{4℄ in networks. In doument ahing, one has to maintain loal ahes ontaining dou-ments available in the network. In onnetion ahing, one has to maintain a set of open networkonnetions that handle data transfer. However, previous work investigated these two problemsseparately, while in pratie they are very losely related.Consider a omputer that is onneted to a network. A user working at that omputer wishesto aess and download douments from other network sites. A downloaded doument an bestored in loal ahe, so that it does not have to be retransmitted when the user wishes to aessthat doument again. Serving requests to douments that are stored loally is muh less expensivethan transmitting requested douments over the network. Therefore, the loal ahe, whih is ofbounded apaity, should be maintained in a areful manner. The transmission of douments in anetwork is performed using protools suh as TCP (Transmission Control Protool). If a networknode v has to download a doument available at node v0, then there has to exist an open (TCP)onnetion between v and v0. If the onnetion is not already open, it has to be established at aost. Most networks, suh as the Web, today work with persistent onnetions, i.e. an establishedonnetion an be kept open and reused later. However, eah network node an only maintain alimited number of open onnetions and the olletion of open onnetions an be viewed as a? Work supported by the Deutshe Forshungsgemeinshaft, Projet AL 464/3-1, and by the EuropeanCommunity, Projets APPOL and APPOL II. Work done while the seond author was at the Institutf�ur Informatik, Albert-Ludwigs-Universit�at, Freiburg, Germany.

onnetion ahe. The goal is to maintain this ahe so that the onnetion establishment ost isas small as possible.Clearly, ahing deisions made on the doument and onnetion levels heavily a�et eahother. Eviting a doument d from the doument ahe at node v has a very negative e�etif the onnetion between node v and node v0, where d is originally stored, is already losed.When d is requested again, one has to pay the onnetion establishment ost in addition to theneessary doument transmission ost. A similar overhead ours if a onnetion is losed thatis frequently needed for data transfers. Therefore doument and onnetion ahing algorithmsshould oordinate their deisions. This an onsiderably improve the system's performane, i.e. theuser pereived lateny as well as the network ongestion are redued.In this paper we present the �rst study of integrated doument and onnetion ahing. For-mally, we onsider a network node v. The node has two ahes: one for the douments, also alledpages, and one for the open onnetions urrently maintained to other nodes. A sequene of requestsmust be served. Eah request spei�es a doument d that the user at our network node wishes toaess. If d resides in the doument ahe, then the request an be served at 0 ost. Otherwise afault ours and the request must be served by downloading d into the doument ahe at a ostof ost(d) > 0. Suppose that d is originally stored at network node v0. To load d into the doumentahe, an open onnetion must exist between v and v0. If the onnetion is already open, no ostis inurred. Otherwise the onnetion has to be established at a ost of ost(v; v0). The goal is toserve the request sequene so that the total ost is as small as possible.The integrated doument and onnetion ahing problem is inherently online in that eahrequest must be served without knowledge of future requests. We use ompetitive analysis toanalyze the performane of online algorithms. We denote the ost of an algorithm A on a requestsequene � by A(�). The optimal ost to serve this sequene is denoted by opt(�). The goal ofan online algorithm A is to minimize the ompetitive ratio R(A), whih is de�ned as the smallestvalue R that satis�es A(�) � R � opt(�) + a, for any request sequene � and some onstant aindependent of �.We remark here that a problem similar to that de�ned above arises in distributed databases.There, a user may have a �le/page ahe as well as a ahe with pointers to �les allowing fastaess.
Previous work: As mentioned above doument and onnetion ahing have separately been thesubjets of extensive researh. There is a onsiderable body of work on doument ahing problems,see e.g [5, 7{12℄. However, the papers ignore that in a network setting, one may have to open aonnetion to load a doument. If all douments have the same size and a loading ost of 1, whih isthe lassial paging problem, the best ompetitive ratio of deterministi online algorithms is equalto k, where k is the number of douments that an be stored simultaneously in ahe [11℄. Thisompetitiveness is ahieved by the popular lru (Least Reently Used) and fifo (First-In First-Out) replaement strategies. On a fault, lru evits the page that was requested least reently andfifo evits the page that has been in ahe longest. Fiat et al. [7℄ presented an elegant randomizedpaging algorithm alled Mark that is 2Hk-ompetitive against oblivious adversaries, where Hk isthe k-th Harmoni number. More ompliated algorithms that ahieve an optimal ompetitivenessofHk were given in [1, 10℄. Irani [9℄ initiated the algorithmi study of the doument ahing problemwhen douments have di�erent sizes. She onsidered a Fault model where the loading ost of eahdoument is equal to 1 as well as a Bit model, where the loading ost is equal to the size of thedoument. She presented randomized O(log2 k)-ompetitive online algorithms for both settings.Young [12℄ gave a deterministi k-ompetitive online algorithm for a general ost model wherethe loading ost is an arbitrary non-negative value. Reently Feder et al. [5℄ studied a doumentahing problem where requests an be reordered. They onentrate on the ase that the ahe an

hold one doument. Gopalan et al. [8℄ study doument ahing in the Web when douments haveexpiration times. They assume all douments have the same size and a loading ost of 1.Cohen et al. [3, 4℄ introdued the onnetion ahing problem. The input of the problem is asequene of requests for TCP onnetions that must be established if not already open. Cohenet al. onsidered a distributed setting where requests our at di�erent network nodes. They gavedeterministi k-ompetitive and randomized O(Hk)-ompetitive online algorithms if all onnetionsinur the same establishment ost. Here k is the maximum number of onnetions that a networknode an keep open simultaneously. The ase that onnetions an have varying establishmentosts was onsidered in [2℄.Our ontribution: We investigate doument and onnetion ahing in an integrated manner. Inthe following let k be the number of douments that an be stored in the doument ahe and k0be the number of onnetions that an be kept open. We start by studying a basi setting in whihall douments have the same size and a loading ost of 1; the onnetions have an establishmentost of 1. We present a deterministi online algorithm that ahieves a ompetitive ratio of k + 4if k0 � k and a ratio of minf2k � k0 + 4; 2kg if k0 < k. Our algorithm uses lru for the doumentahe and a phase based replaement strategy that tries to keep onnetions of douments thatmay be evited soon. We develop a lower bound on the performane of any deterministi onlinealgorithm whih implies that our algorithm is nearly optimal if k0 is not extremely small. We alsoonsider randomized online algorithms and prove that by replaing lru by a randomized Markingstrategy we obtain a ompetitive ratio of 2Hk +minf2Hk; 2(k � k0) + 4g.Additionally we investigate the problem that pages have varying sizes. If all douments havea loading ost of 1, whih orresponds to Irani's Fault model, we ahieve a ompetitive ratio of(4k+14)=3 if k0 � k and of 2k�2k0=3+14=3 if k0 < k. Finally we onsider a Bit model where theloading ost of a doument is equal to the size of the doument and the onnetion establishmentost is , for some onstant . Here we prove a ompetitiveness of (k+5)(0+1)=2 if k0 � k, where0 = =s and s is the size of the smallest doument ever requested. If k0 < k, the ompetitivenessis (2k � k0 + 5)(0 + 1)=2.Finally we onsider a distributed senario, where requests an our at di�erent network nodes.We show that no deterministi online algorithm an in general be better than 2k-ompetitive, wherek is the maximum number of douments that an be stored at any network node. A ompetitiveratio of 2k is easily ahieved by an online algorithm that uses a k-ompetitive paging algorithmfor the doument ahe and any replaement strategy for the onnetion ahe.
2 Algorithms for the basi modelIn this setion we study a very basi senario where all douments have the same size. Loading amissing doument osts 1 and establishing a onnetion also osts 1.2.1 Deterministi algorithmsWe present a deterministi online algorithm alg for our basi setting. alg works in phases. Eahphase is de�ned as a maximal subsequene of requests to k distint pages, whih starts after theprevious phase �nishes (the �rst phase starts with the �rst request). Within eah phase alg worksas follows.At the beginning of eah phase, evit all onnetions that were not used in the previous phase.On a page fault, use lru to determine whih page to evit from the page ahe.On a onnetion fault, if there is a free slot in the ahe, use it;otherwise, use mru (Most Reently Used) to determine whih onnetion to evit.

For ease of exposition, we �rst onsider the ase where the size of the onnetion ahe is atleast the same size as the page ahe, i.e. k0 � k. We then extend our analysis to the ase k0 < k.Theorem 1. If k0 � k, then R(alg) � k + 4.Proof. Consider a request sequene �. We �rst study the ase that k0 = k. Suppose there areN + 1 phases, numbered 0; 1; : : : ; N . For phase i, denote the number of page requests that ausea page fault by fi; the number of page requests that do not ause a page fault by pi (these pageswere requested in the previous phase by de�nition of lru); the number of mru faults mi, and thenumber of holes reated by hi (i. e. the number of onnetions evited at the start of phase i).De�ne F = PNi=1 fi, M = PNi=1mi, H = PNi=2 hi and P = PNi=1 pi. (We ignore phase 0.) Noteh1 = 0 and fi + pi = k for eah phase i.Eah hole that is reated, is �lled at most one, and this happens on a onnetion fault. (It ispossible that some holes are never �lled.) Thus the number of onnetion faults that ause holesto be �lled is at most H. Furthermore, the remaining onnetion faults are exatly the onnetionfaults where mru is applied; this happens M times. Thusalg(�) � F +M +H = kN +M +H � P: (1)Note that our algorithm is de�ned in suh a way that the number of page faults is independentof the number of onnetion faults or the deisions as to whih onnetions are evited. The pageahe is simply maintained by lru. By de�nition of lru, there must be one opt page fault in eahphase. Thus opt(�) � N: (2)Eah phase an be visualized as follows. The onnetion ahe is at all times divided into twosets, Previous and Current. Here Previous ontains the onnetion slots that were not (yet)used in this phase, while Current ontains the onnetion slots that were used in the urrentphase. At the start of eah phase, Current is empty and Previous ontains all k slots. Notethat some of these slots may ontain holes, in ase a onnetion was evited that was not used inthe previous phase.For eah page fault in a phase, there are two possibilities:1. No onnetion fault:(a) A not yet used onnetion slot is used for the �rst time in this phase (this onnetion wasalso used in the previous phase);(b) A onnetion slot already used in the urrent phase is used again (two or more pages areat the same node).2. Connetion fault ours:(a) A hole is �lled: a not yet used onnetion slot is used for the �rst time in this phase;(b) A onnetion slot already used in the urrent phase is used again by mru;() (speial ase) A onnetion slot not yet used in the urrent phase is used by mru.Case 2.() an only our if the very �rst page fault in a phase auses a onnetion fault; for alater page fault that also auses a onnetion fault, mru always uses a slot that was already usedin the urrent phase. From this list we have that only in ases 1.(a), 2.(a) and 2.(), a onnetionslot moves from the set Previous to the set Current.Consider a phase i > 0. Suppose Case 2.() does not our, and there are mi > 0 mru faultsin phase i. Then at least mi times, a onnetion slot already in Current is used again. Hene atmost fi �mi times a onnetion slot moves from Previous to Current. Therefore, at the endof phase i, there are at least k � fi +mi onnetion slots still in Previous.The pages requested in phase i an be divided into four groups:

1. pages that did not ause a page fault (pi);2. pages that aused a page fault, but no onnetion fault;3. pages that aused a hole in the onnetion ahe to be �lled;4. pages that aused a onnetion slot to be used again by mru (mi).Every onnetion slot that at some point in phase i ontains a onnetion to a page in group2 or 3 (note that this may hange later in the phase due to the use of mru), is in Current atthe end of the phase. The other onnetion slots ontain onnetions to pages that were eithernot requested in phase i (but were requested in phase i � 1, or they would have been evitedbefore), or that did not ause a fault. This last possibility ours pi times, so there are at leastk � fi +mi � pi = mi pages that are not requested again. This implies there are at least k +midistint pages requested in phase i and phase i� 1. Therefore opt has at least mi faults in phasesi� 1 and i.If Case 2.() does our, then there were no holes at the start of phase i. Then the onnetionsto the pages requested in phase i � 1 must all be distint, mi�1 = 0 and hi = 0. At the start ofphase i, a onnetion slot moves from Previous to Current using mru. Case 2.() does not ourin the rest of the phase. Thus at the end of phase i, we have that there are at least k� fi+mi� 1onnetion slots still in Previous. These slots orrespond to onnetions that were used in theprevious phase but not in this one, implying k�fi+mi�pi�1 = mi�1 pages that were requestedin phase i� 1 but not in i. Then opt has at least mi � 1 faults in phases i� 1 and i. Moreover, ithas at least one fault in phases i� 2 and i� 1, and 1 = mi�1 + 1. By amortizing the ost, we �ndthat opt has at least mi faults for every pair of phases i� 1 and i.Thus opt(�) �Pi oddmi, and opt(�) �Pi evenmi. This implies thatopt(�) � 12Xi>0mi = M2 : (3)
The onnetions still in Previous at the end of phase i are evited and beome hi+1 holes.At most pi of them lead to pages that were requested without a fault. Thus there are at leastk+ hi+1 � pi distint pages requested in phases i and i� 1. This gives another bound for the ostof opt: opt(�) � 12Xi>0(hi+1 � pi) � H � P2 (4)Combining (1), (2), (3) and (4) givesalg(�) � kN +M +H � P � k � opt(�) + 2opt(�) + 2opt(�) = (k + 4)opt(�):This proves the ratio. It an be seen that the proof also holds for k0 > k. �Theorem 2. If k0 < k, then R(alg) � min(k + 4 + (k � k0); 2k).Proof. Clearly, R(alg) � 2k sine alg has at most 2k faults per phase (k onnetion faults and kpage faults). We still have (2) and (4) by the exat same reasoning as in the proof of Theorem 1.For mi, we have again that eah time that mru is applied, no onnetion moves from PrevioustoCurrent (unless Case 2.() ours). So at most fi�mi times a onnetion moves from Previousto Current. Therefore, at the end of the phase, at least k0 � fi + mi onnetions are still inPrevious. At most pi of them refer to pages requested without a fault in phase i, so at leastk0�fi+mi�pi = k0�k+mi pages are requested in phase i�1 but not in phase i. Therefore thereare at least mi+k0 distint pages requested in these two phases, and opt has at least mi� (k�k0)faults.

If Case 2.() ours, there are only at least k0 � (fi� (mi� 1)) = mi� (k� k0)� 1 onnetionsstill in Previous at the end. However, in that ase we have mi�1 � k � k0 sine there were noholes. Therefore mi�1 � (k � k0) � 0 and we an amortize as before.We therefore �nd opt(�) � M � (k � k0)N2 : (5)Using (2), this implies M � 2opt(�) + (k � k0)N � (k � k0 + 2)opt(�). Therefore in this asealg(�) � ((k + 2) + (k � k0 + 2))opt(�) � (2k � k0 + 4)opt(�):This proves the lemma. �2.2 Randomized algorithmsFor the standard paging problem, the randomized algorithm Mark is 2Hk-ompetitive, where Hkis the k-th Harmoni number [7℄. Moreover, no randomized algorithm an have a ompetitive ratioless than Hk. The Mark algorithm proesses a request sequene in phases. At the beginning ofeah phase, all pages in the memory system are unmarked. Whenever a page is requested, it ismarked . On a fault, a page is hosen uniformly at random from among the unmarked pages inahe, and that page is evited. A phase ends when all pages in ahe are marked and a page faultours. Then, all marks are erased and a new phase is started.In our algorithm alg we substitute Mark for Lru to get a randomized algorithm. However,in this ase it is also neessary to evit onnetions less greedily to get a good performane. Inpartiular, at the start of a phase we will not evit any onnetions that are assoiated with pagesrequested in the previous phase. Note that some of these onnetions may not have been used inthat phase, beause the relevant page might not have aused a page fault.Theorem 3. For the randomized version of alg and k0 � k, we have R(alg) � 2Hk + 4. Fork0 < k, we have. R(alg) � 2Hk +min(2Hk; 4 + 2(k � k0)):Proof. We analyze this algorithm very similarly to the original analysis of Mark [7℄ and to theanalysis in Setion 2.1. We de�ne qi as the number of new pages requested in phase i. A page isnew if it is not in the ahe at the start of the phase. We de�ne hi, mi, H and M as before andwrite Q =P qi. Then by [7℄, alg(�) � HkQ+H +M:Moreover, opt(�) � Q=2.Following the proof of the deterministi ase, we now have that every onnetion slot that atsome point in phase i ontains a onnetion to a page in group 1, 2 or 3 (note that this may hangelater in the phase due to the use of mru), is in Current at the end of the phase. Therefore anyonnetions that are still in Previous at that time (whih get evited and form holes) must be topages not requested in the phase. Therefore opt(�) � H=2.Suppose k0 � k. Due to the randomization, we do not know whether or not Case 2.() oursin a phase. However, as observed in the proof of the deterministi algorithm, we an amortize theo�ine faults if 2.() ours to get the bound opt(�) �M=2. Therefore analogously to in the proofof Theorem 1, we have R(alg) � 2Hk + 4:We now onsider the ase k0 < k. The only hange is that the bound opt(�) �M=2 is replaedby opt(�) � M � (k � k0)N2 � M � (k � k0)Q2 ;

Fig. 1. The upper and lower bound: x-axis is k0=k, y-axis is R=k
where we have used Q � N , whih follows from the fat that there must be at least one new pagein every new phase by de�nition of the phases. This gives usR(alg) � HkQ+H +Mopt(�) � 2Hk + 4 + 2(k � k0):However, sine the number of onnetion faults, H +M , is also upper bounded by the number ofpage faults HkQ, we �nd R(alg) � 2Hk +min(2Hk; 4 + 2(k � k0)): �
3 Lower boundsWe present a lower bound on the performane of any deterministi online algorithm. The lowerbound of Theorem 4 implies that if k0 is not too small, our deterministi algorithm given in thelast setion is nearly optimal. Figure 1 depits the lower as well as the upper bound.Theorem 4. Suppose k0 � 2 and let � = k0=k. Then for any online algorithm A, we haveR(A) � (k + 1)��k � 1�k + 1� �2� �+ 3=k� :Proof. We onstrut a lower bound as follows. We make use of k + 1 pages that are stored atk + 1 distint nodes. Consider an online algorithm A. Eah page request in the sequene is to the(unique) page that A does not have in its ahe. The sequene is divided into phases. In eah phase,we ount the number of distint pages that have been requested in that phase; the �rst request tothe k + 1st distint page is de�ned to be the start of the next phase. Sine the onnetion ahehas size k0, A must have at least k � k0 onnetion faults in eah phase. We de�ne � = k0=k, sothat k0 = �k. We will write the average length of a phase as pk, where p � 1. The o�ine algorithmuses one of the following strategies depending on p.

Strategy 1. (For large p.) The �rst strategy is to always use lfd for the requested pages. We thenount the number of o�ine page faults for eah of the k+1 pages, and put k0�1 onnetions to pageson whih the most o�ine faults our, in the onnetion ahe. This part of the onnetion aheis �xed during the entire proessing of the request sequene. The last slot is used for onnetionfaults on the remaining k + 1� (k0 � 1) = k � k0 + 2 pages.Consider k+1 phases. There are at most k+1 o�ine faults, and on average at most k� k0+2of them are on pages of whih the onnetions are not in the onnetion ahe at all times. Thusthere are on average at most 2k � k0 + 3 o�ine faults on k + 1 phases.Strategy 2. (For small p.) The seond strategy begins by ounting the number of requests to eahpage over the entire request sequene. Then, the k�k0+1 pages that are requested the most often,are put in the page ahe at the beginning, and the k0 onnetions to the remaining pages are putin the onnetion ahe. The entire onnetion ahe is �xed throughout the sequene. The o�inealgorithm now uses lfd on the k0 pages for whih the onnetions are in the onnetion ahe, andonly uses the k0� 1 slots in the page ahe that do not ontain the k� k0+1 most often requestedpages. It has no onnetion faults at all.Consider (k+1)(k0�1) phases. These ontain on average (k+1)(k0�1)pk requests by de�nitionof p. Thus, eah page is requested on average (k0 � 1)pk times. The k0 pages that are requestedthe least overall, must then be requested at most k0(k0 � 1)pk times on average at most. Sine theo�ine algorithm has at most one fault every k0 � 1 requests to this subset of pages, there are k0pko�ine faults.Solving for p, we �nd that these two strategies have the same number of faults ifp = �k � 1�k �2� �+ 3k� : (6)As long as this value is at least 1, we an use the �rst o�ine strategy if p is greater than thethreshold, and the seond strategy otherwise. The number of on-line faults in one phase must beat least pk + (k � k0) on average. This implies a ompetitive ratio of at least(pk + k � k0)(k + 1)(�k � 1)k0pk = (k + 1)��k � 1�k + 1� �2� �+ 3=k� :Note that the threshold in (6) is greater than 1 for k � k0 � 2. �We an show that the analysis of our algorithm alg is asymptotially tight for k0 = 1. Notethat alg behaves exatly like lru in this ase. This implies that even for k0 = 1 it is nontrivial to�nd an algorithm with ompetitive ratio lose to k.Lemma 1. For k0 = 1, we have R(alg) � 2k � 2.Proof. We use a set of pages numbered 1; 2; : : : ; k + 1 and request them ylially. All the oddpages are at some node v1 while the even pages are at another node v2. It an be seen that ouralgorithm has a onnetion fault on every request, thus it has 2k faults per phase.We now desribe an o�-line algorithm to serve this sequene. This algorithm only faults onpages in v1, and eah time evits the page from that node that will be requested the furthest inthe future. All pages in v2 are in the ahe at all times. Suppose k is even, then there are k=2 slotsavailable in the ahe for k=2 + 1 pages. Thus this o�-line algorithm has a fault one every k=2requests to pages in v1.

Consider k+1 phases. It ontains k(k+1) requests, exatly k per page. Thus there are 2(k=2+1) = k + 2 o�ine faults in total, giving a ompetitive ratio of2k(k + 1)k + 2 = 2k � 2kk + 2 � 2k � 2:For odd k, there is one o�-line fault per (k� 1)=2 requests to pages in v1. In k� 1 phases there arek(k� 1) requests, thus k(k� 1)=2 requests to pages in v1 and in total k o�ine faults. This gives aratio of exatly 2k � 2. �
4 Generalized modelsIn this setion we study generalized problem settings in whih the douments an have di�erentsizes. For the standard multi-sized paging problem, the algorithm lru is (k + 1)-ompetitive inboth the Bit and the Fault model [6℄. Here k is de�ned as the maximum number of pages thatan �t in the ahe, i.e. k = K=s where K is the size of the ahe (in bits) and s is the size of thesmallest possible page. It is nontrivial to extend the analysis of our algorithm to these models.In both models, a phase is now de�ned as a maximal subsequene of requests to a minimalvolume of distint pages that is larger than K. Thus there are at most k+1 page faults in a phase.
4.1 The Fault ModelFor the Fault model, we need to onsider the number of pages requested in eah phase.Consider a phase i and ompare it to phase i � 1. Denote the set of pages requested in bothphases by Common(i�1; 1). Denote the set of pages requested in phase i�1 but not in phase i byFirst(i; i�1), and the set of pages requested in phase i but not in phase i�1 by Seond(i; i�1).Denote the size of the largest page in First(i; i � 1) by L(i � 1). Denote the ardinality of thesmallest set of pages requested in phase i that have total size at least L(i� 1) by `i.Lemma 2. opt has at least min(jFirst(i; i� 1)j; jSeond(i; i� 1)j) faults in phases i� 1 and i.Proof. Apart from the pages requested in phase i�1, whih have total size more than K, there arejSeond(i; i� 1)j other pages also requested in these two phases. Apart from the pages requestedin phase i there are jFirst(i; i� 1)j pages requested in these two phases.Suppose opt has less than jFirst(i; i � 1)j faults in phase i � 1 and jFirst(i; i � 1)j �jSeond(i; i� 1)j. Then some pages in First(i; i� 1) were already in opt's ahe at the start ofphase i� 1, say x bits. This implies that at least x bits worth of pages in Seond(i; i� 1) was notyet in the ahe, beause there is no room. Furthermore, sine jFirst(i; i�1)j � jSeond(i; i�1)j,the pages in Seond(i; i�1) are on average not larger than the pages in First(i; i�1). Thus opthas at least jFirst(i; i�1)j faults. A similar reasoning holds if opt has less than jSeond(i; i�1)jfaults in the seond phase. �Lemma 3. Suppose jSeond(i; i�1)j > jFirst(i; i�1)j. Then opt has at least max(jFirst(i; i�1)j; `i) faults in phases i� 1 and i.Proof. By Lemma 2, opt has at least jFirst(i; i � 1)j faults. The largest page in First(i; i � 1)will have to be loaded in the ahe at some point during phase i � 1. This implies that at leastL(i � 1) bits of pages requested in phase i are not in the ahe when this page is in the ahe,and they need to be loaded later in phase i� 1 or i. This means at least `i faults will be made, byde�nition of `i. �

Theorem 5. In the fault model, R(alg) � (4k+14)=3 for k0 � k and R(alg) � 2k� 23k0 + 143for k0 < k.Proof. Suppose k0 = k. Denote the number of pages requested in phase i by �i. Write �i =�i � �i�1. We have jSeond(i; i� 1)j � jFirst(i; i� 1)j = �i.If there are mi onnetion faults where mru is applied, then mi times a onnetion slot remainsin Current. Thus at most k+1�mi times a onnetion slot moves from Previous to Current,and at leastmi�1 onnetion slots are still in Previous at the end of the phase. These onnetionslead to at least mi � 1 pages that were requested in phase i� 1 but not in phase i. Thus opt hasat least min(jFirst(i; i� 1)j; jSeond(i; i� 1)j) � min(mi� 1; jSeond(i; i� 1)j) faults in phasesi� 1 and i. We have jSeond(i; i� 1)j = jFirst(i; i� 1)j+�i � mi � 1 +�i. As before, we anignore Case 2().For eah phase i in whih more pages were requested than in the previous phase, we use thatopt has at least mi�1 faults in phases i and i�1. For other phases, we use the bound mi�1+�i.By adding these bounds for even and for odd i, we �ndopt(�) � M �N �D2 ;where D = �Pi2X �i, where i 2 X () less pages were requested in phase i than in phase i� 1(thus D > 0).Similarly, opt has at least min(hi+1 � pi; jSeond(i; i � 1)j) faults in phases i and i � 1, andwe �nd opt(�) � H � P �D2 :Finally we also still have opt � N . It an be seen that the average number of pages requestedin eah phase is at most k + 1�D=N . We havealg(�) � (k + 1)N �D +M +H � P and alg � 2((k + 1)N �D);where the seond inequality follows sine alg has at most one onnetion fault for eah page fault.Thus if D � kN�43 , we �nd that the ompetitive ratio is at most 4k=3 + 14=3. On the otherhand, if D < kN�43 , thenalg(�) � (k + 1)opt(�) + 4opt(�) +D � (k + 5 + k=3� 4=3)opt(�) = 4k + 143 opt(�):This analysis an easily be extended to the ase k0 < k as before, giving R(alg) � 2k � 23k0 + 143 .Details are omitted in this extended abstrat. �
4.2 The Bit modelIn this setion we investigate a Bit model in whih the ost of loading a doument is equal to thesize of the doument. We also assume that the ost of establishing a onnetion is equal to , forsome onstant > 0.Theorem 6. In the Bit model, R(alg) � k+52 (0 + 1) for k0 � k, where 0 = =s is the ostof a onnetion fault divided by the size of the smallest possible page. For k0 < k, R(alg) �2k+5�k02 (0 + 1).

Proof. Denote the average phase length by K + Æ for some Æ > 0. Denote the average number ofmru faults in a phase by m and the average number of bits worth of old pages that are impliedby m0, then m0 � ms. Denote the average number of pages on whih there is no fault in aphase by p and the average number of bits that are requested without fault by p0, then p0 �ps. Finally, denote the average number of holes reated in a phase by h. Denote the ost of asingle onnetion fault by and write 0 = =s. Similarly to in the previous setion, it an beseen that for the average ost in a phase we have alg=s � k + Æ=s + (m + h)=s � p0=s andopt=s � max (max(1; Æ=s);m=2; h� p=2). Here the �rst maximum in the seond equation followsfrom Pimax(Æi; s)=Ns � max(Ns;NÆ)=Ns = max (1; Æ=s) ; where K + Æi is the amount of bitsfrom distint requests requested in phase i.Sine the number of onnetion faults in a phase is bounded from above by the number of pagefaults, we have m+ h � K + Æ � p0s) h � k + Æs � p�m � (k + 1)opts � p�m: (7)We also have h � 2opts +p. Note that 2opts +p = (k+1)opts �p�m) 2p = (k� 1)opt=s�m.Suppose p � ((k � 1)opt=s�m)=2. (The other ase is handled similarly.) Thenalgs � (k + 1)opts +m0 + h0 � p � (k + 1)opts +m0 + 2opts 0 + p(0 � 1)� (k + 1)opts +m0 + 2opts 0 + (0 � 1)((k � 1)opts �m)=2� (k + 1)opts + (0 + 1)m=2 + 2opts 0 + (0 � 1)(k � 1)opt2s� (k + 0 + 2 + 20 + (0 � 1)(k � 1)2)opts = (k + 5)(0 + 1)2 � opts :For k0 < k, we have opt(�)=s � (m�(k�k0))=2 and R(alg) � (2k�k0+5)(0+1)2 ; details are omittedin this extended abstrat. �Hene the ompetitive ratio grows linearly with k and with (0). The reason for this is that weannot identify onnetion faults by opt; it is oneivable that opt never has a onnetion fault.
5 The distributed settingWe �nally study the distributed problem setting where requests an our at various networknodes. Again, eah node has a doument ahe and a onnetion ahe. Here, a request is spei�edby a pair (v; d), indiating that doument d is requested by the user at node v. The ost of servingrequests is the same as before. The ruial di�erene is in the usage of onnetions. An openonnetion between nodes v and v0 an be used for downloading douments from v to v0 as well asfrom v0 to v. However, if one of the nodes of the onnetion deides to lose the onnetion, thenthe onnetion annot be used by the other node either. Hene, the onnetion ahe on�gurationsa�et eah other.Theorem 7. In the distributed problem setting, no deterministi online algorithm an ahieve aompetitive ratio smaller than 2k=(1+ 1=k0), where k is the size of the largest doument ahe andk0 is the maximum number of onnetions that a network node an keep open.Proof. Consider a node v at whih k+ 1 douments are stored. Additionally we have k0 + 1 nodesvi; 1 � i � k0+1, Eah node in the network has a doument ahe of size k and a onnetion ahe

of size k0. Requests are generated as follows. At any time one of the onnetions (v; vi) is losed inthe on�guration of an online algorithm A beause v kan only maintain k0 open onnetions and aonnetion is open only if it is ahed by both of its endpoints. An adversary generates a request atthis node vi for the doument that is urrently not stored in A's doument ahe at vi. Suppose thata request sequene onsists of m requests and that mi requests were generated at vi; 1 � i � k0+1.The online ost is equal to 2m. An optimal o�ine algorithm has at most dmik e doument faults at viand hene no more than mk +k0+1 doument faults in total. Furthermore an optimal algorithm anmaintain the onnetion ahe at v in suh a way that at most d(mk + k0+1)=k0e onnetion faultsour. Thus as m!1, the ratio of the online to o�ine ost tends to 2=(1k + 1kk0) = 2k(1 + 1=k0).�Note that a ompetitive ratio of 2k is ahieved by any ahing algorithm that uses a k-ompetitivepaging strategy for the doument ahe any replaement rule for the onnetion ahe.
6 ConlusionsIn this paper we studied integrated doument and onnetion ahing in a variety of problemsettings. An open question left by our work is to �nd a better algorithm for the ase where theonnetion ahe is very small (relative to k). We onjeture that the true ompetitive ratio forthis problem should be lose to k.
Referenes1. D. Ahlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algorithms.Theoretial Computer Siene, 234:203{218, 2000.2. S. Albers. Generalized onnetion ahing. In Proeedings of the Twelfth ACM Symposium on ParallelAlgorithms and Arhitetures, pages 70{78. ACM, 2000.3. E. Cohen, H. Kaplan, and U. Zwik. Connetion ahing. In Proeedings of the 31st ACM Symposiumon the Theory of Computing, pages 612{621. ACM, 1999.4. E. Cohen, H. Kaplan, and U. Zwik. Connetion ahing under various models of ommuniation. InProeedings of the Twelfth ACM Symposium on Parallel Algorithms and Arhitetures, pages 54{63.ACM, 2000.5. T. Feder, R. Motwani, R. Panigraphy, and A. Zhu. Web ahing with request reordering. In Proeedings13th ACM-SIAM Symposium on Disrete Algorithms, pages 104{105, 2002.6. A. Feldman, R. Karp, M. Luby, and L. A. MGeoh. Personal ommuniation ited in [9℄.7. A. Fiat, R.M. Karp, M. Luby, L.A. MGeoh, D.D. Sleator, and N.E. Young. Competitive pagingalgorithms. Journal of Algorithms, 12(4):685{699, De 1991.8. P. Gopalan, H. Karlo�, A. Mehta, M. Mihail, and N. Vishnoi. Cahing with expiration times. InProeedings 13th ACM-SIAM Symposium on Disrete Algorithms, pages 540{547, 2002.9. S. Irani. Page replaement with multi-size pages and appliations to web ahing. In Proeedings 29thACM Symposium on Theory of Computing, pages 701{710, 1997.10. L. MGeoh and D. Sleator. A strongly ompetitive randomized paging algorithm. J. Algorithms,6:816{825, 1991.11. D. Sleator and R. E. Tarjan. Amortized eÆieny of list update and paging rules. Communiationsof the ACM, 28:202{208, 1985.12. N. Young. On-line �le ahing. In Proeedings 9th ACM-SIAM Symposium on Disrete Algorithms,pages 82{86, 1998.

