
A Study of Integrated Do
umentand Conne
tion Ca
hing?
Susanne Albers1 and Rob van Stee21 Institut f�ur Informatik, Albert-Ludwigs-Universit�at, Georges-K�ohler-Allee, 79110 Freiburg, Germany.salbers�informatik.uni-freiburg.de.2 Centre for Mathemati
s and Computer S
ien
e (CWI), Kruislaan 413, NL-1098 SJ Amsterdam, TheNetherlands. Rob.van.Stee�
wi.nl.

Abstra
t. Do
ument
a
hing and
onne
tion
a
hing are extensively studied problems. Indo
ument
a
hing, one has to maintain
a
hes
ontaining do
uments a

essible in a network.In
onne
tion
a
hing, one has to maintain a set of open network
onne
tions that handledata transfer. Previous work investigated these two problems separately while in pra
ti
ethe problems o

ur together: In order to load a do
ument, one has to establish a
onne
tionbetween network nodes if the required
onne
tion is not already open.In this paper we present the �rst study that integrates do
ument and
onne
tion
a
hing.We �rst
onsider a very basi
 model in whi
h all do
uments have the same size and the
ostof loading a do
ument or establishing a
onne
tion is equal to 1. We present deterministi
and randomized online algorithms that a
hieve nearly optimal
ompetitive ratios unless thesize of the
onne
tion
a
he is extremely small. We then
onsider general settings wheredo
uments have varying sizes. We investigate a Fault model in whi
h the loading
ost of ado
ument is 1 as well as a Bit model in whi
h the loading
ost is equal to the size of thedo
ument.
1 Introdu
tionRe
ently there has been
onsiderable resear
h interest in do
ument
a
hing [5, 7{12℄ and
onne
tion
a
hing [2{4℄ in networks. In do
ument
a
hing, one has to maintain lo
al
a
hes
ontaining do
u-ments available in the network. In
onne
tion
a
hing, one has to maintain a set of open network
onne
tions that handle data transfer. However, previous work investigated these two problemsseparately, while in pra
ti
e they are very
losely related.Consider a
omputer that is
onne
ted to a network. A user working at that
omputer wishesto a

ess and download do
uments from other network sites. A downloaded do
ument
an bestored in lo
al
a
he, so that it does not have to be retransmitted when the user wishes to a

essthat do
ument again. Serving requests to do
uments that are stored lo
ally is mu
h less expensivethan transmitting requested do
uments over the network. Therefore, the lo
al
a
he, whi
h is ofbounded
apa
ity, should be maintained in a
areful manner. The transmission of do
uments in anetwork is performed using proto
ols su
h as TCP (Transmission Control Proto
ol). If a networknode v has to download a do
ument available at node v0, then there has to exist an open (TCP)
onne
tion between v and v0. If the
onne
tion is not already open, it has to be established at a
ost. Most networks, su
h as the Web, today work with persistent
onne
tions, i.e. an established
onne
tion
an be kept open and reused later. However, ea
h network node
an only maintain alimited number of open
onne
tions and the
olle
tion of open
onne
tions
an be viewed as a? Work supported by the Deuts
he Fors
hungsgemeins
haft, Proje
t AL 464/3-1, and by the EuropeanCommunity, Proje
ts APPOL and APPOL II. Work done while the se
ond author was at the Institutf�ur Informatik, Albert-Ludwigs-Universit�at, Freiburg, Germany.

onne
tion
a
he. The goal is to maintain this
a
he so that the
onne
tion establishment
ost isas small as possible.Clearly,
a
hing de
isions made on the do
ument and
onne
tion levels heavily a�e
t ea
hother. Evi
ting a do
ument d from the do
ument
a
he at node v has a very negative e�e
tif the
onne
tion between node v and node v0, where d is originally stored, is already
losed.When d is requested again, one has to pay the
onne
tion establishment
ost in addition to thene
essary do
ument transmission
ost. A similar overhead o

urs if a
onne
tion is
losed thatis frequently needed for data transfers. Therefore do
ument and
onne
tion
a
hing algorithmsshould
oordinate their de
isions. This
an
onsiderably improve the system's performan
e, i.e. theuser per
eived laten
y as well as the network
ongestion are redu
ed.In this paper we present the �rst study of integrated do
ument and
onne
tion
a
hing. For-mally, we
onsider a network node v. The node has two
a
hes: one for the do
uments, also
alledpages, and one for the open
onne
tions
urrently maintained to other nodes. A sequen
e of requestsmust be served. Ea
h request spe
i�es a do
ument d that the user at our network node wishes toa

ess. If d resides in the do
ument
a
he, then the request
an be served at 0
ost. Otherwise afault o

urs and the request must be served by downloading d into the do
ument
a
he at a
ostof
ost(d) > 0. Suppose that d is originally stored at network node v0. To load d into the do
ument
a
he, an open
onne
tion must exist between v and v0. If the
onne
tion is already open, no
ostis in
urred. Otherwise the
onne
tion has to be established at a
ost of
ost(v; v0). The goal is toserve the request sequen
e so that the total
ost is as small as possible.The integrated do
ument and
onne
tion
a
hing problem is inherently online in that ea
hrequest must be served without knowledge of future requests. We use
ompetitive analysis toanalyze the performan
e of online algorithms. We denote the
ost of an algorithm A on a requestsequen
e � by A(�). The optimal
ost to serve this sequen
e is denoted by opt(�). The goal ofan online algorithm A is to minimize the
ompetitive ratio R(A), whi
h is de�ned as the smallestvalue R that satis�es A(�) � R � opt(�) + a, for any request sequen
e � and some
onstant aindependent of �.We remark here that a problem similar to that de�ned above arises in distributed databases.There, a user may have a �le/page
a
he as well as a
a
he with pointers to �les allowing fasta

ess.
Previous work: As mentioned above do
ument and
onne
tion
a
hing have separately been thesubje
ts of extensive resear
h. There is a
onsiderable body of work on do
ument
a
hing problems,see e.g [5, 7{12℄. However, the papers ignore that in a network setting, one may have to open a
onne
tion to load a do
ument. If all do
uments have the same size and a loading
ost of 1, whi
h isthe
lassi
al paging problem, the best
ompetitive ratio of deterministi
 online algorithms is equalto k, where k is the number of do
uments that
an be stored simultaneously in
a
he [11℄. This
ompetitiveness is a
hieved by the popular lru (Least Re
ently Used) and fifo (First-In First-Out) repla
ement strategies. On a fault, lru evi
ts the page that was requested least re
ently andfifo evi
ts the page that has been in
a
he longest. Fiat et al. [7℄ presented an elegant randomizedpaging algorithm
alled Mark that is 2Hk-
ompetitive against oblivious adversaries, where Hk isthe k-th Harmoni
 number. More
ompli
ated algorithms that a
hieve an optimal
ompetitivenessofHk were given in [1, 10℄. Irani [9℄ initiated the algorithmi
 study of the do
ument
a
hing problemwhen do
uments have di�erent sizes. She
onsidered a Fault model where the loading
ost of ea
hdo
ument is equal to 1 as well as a Bit model, where the loading
ost is equal to the size of thedo
ument. She presented randomized O(log2 k)-
ompetitive online algorithms for both settings.Young [12℄ gave a deterministi
 k-
ompetitive online algorithm for a general
ost model wherethe loading
ost is an arbitrary non-negative value. Re
ently Feder et al. [5℄ studied a do
ument
a
hing problem where requests
an be reordered. They
on
entrate on the
ase that the
a
he
an

hold one do
ument. Gopalan et al. [8℄ study do
ument
a
hing in the Web when do
uments haveexpiration times. They assume all do
uments have the same size and a loading
ost of 1.Cohen et al. [3, 4℄ introdu
ed the
onne
tion
a
hing problem. The input of the problem is asequen
e of requests for TCP
onne
tions that must be established if not already open. Cohenet al.
onsidered a distributed setting where requests o

ur at di�erent network nodes. They gavedeterministi
 k-
ompetitive and randomized O(Hk)-
ompetitive online algorithms if all
onne
tionsin
ur the same establishment
ost. Here k is the maximum number of
onne
tions that a networknode
an keep open simultaneously. The
ase that
onne
tions
an have varying establishment
osts was
onsidered in [2℄.Our
ontribution: We investigate do
ument and
onne
tion
a
hing in an integrated manner. Inthe following let k be the number of do
uments that
an be stored in the do
ument
a
he and k0be the number of
onne
tions that
an be kept open. We start by studying a basi
 setting in whi
hall do
uments have the same size and a loading
ost of 1; the
onne
tions have an establishment
ost of 1. We present a deterministi
 online algorithm that a
hieves a
ompetitive ratio of k + 4if k0 � k and a ratio of minf2k � k0 + 4; 2kg if k0 < k. Our algorithm uses lru for the do
ument
a
he and a phase based repla
ement strategy that tries to keep
onne
tions of do
uments thatmay be evi
ted soon. We develop a lower bound on the performan
e of any deterministi
 onlinealgorithm whi
h implies that our algorithm is nearly optimal if k0 is not extremely small. We also
onsider randomized online algorithms and prove that by repla
ing lru by a randomized Markingstrategy we obtain a
ompetitive ratio of 2Hk +minf2Hk; 2(k � k0) + 4g.Additionally we investigate the problem that pages have varying sizes. If all do
uments havea loading
ost of 1, whi
h
orresponds to Irani's Fault model, we a
hieve a
ompetitive ratio of(4k+14)=3 if k0 � k and of 2k�2k0=3+14=3 if k0 < k. Finally we
onsider a Bit model where theloading
ost of a do
ument is equal to the size of the do
ument and the
onne
tion establishment
ost is
, for some
onstant
. Here we prove a
ompetitiveness of (k+5)(
0+1)=2 if k0 � k, where
0 =
=s and s is the size of the smallest do
ument ever requested. If k0 < k, the
ompetitivenessis (2k � k0 + 5)(
0 + 1)=2.Finally we
onsider a distributed s
enario, where requests
an o

ur at di�erent network nodes.We show that no deterministi
 online algorithm
an in general be better than 2k-
ompetitive, wherek is the maximum number of do
uments that
an be stored at any network node. A
ompetitiveratio of 2k is easily a
hieved by an online algorithm that uses a k-
ompetitive paging algorithmfor the do
ument
a
he and any repla
ement strategy for the
onne
tion
a
he.
2 Algorithms for the basi
 modelIn this se
tion we study a very basi
 s
enario where all do
uments have the same size. Loading amissing do
ument
osts 1 and establishing a
onne
tion also
osts 1.2.1 Deterministi
 algorithmsWe present a deterministi
 online algorithm alg for our basi
 setting. alg works in phases. Ea
hphase is de�ned as a maximal subsequen
e of requests to k distin
t pages, whi
h starts after theprevious phase �nishes (the �rst phase starts with the �rst request). Within ea
h phase alg worksas follows.At the beginning of ea
h phase, evi
t all
onne
tions that were not used in the previous phase.On a page fault, use lru to determine whi
h page to evi
t from the page
a
he.On a
onne
tion fault, if there is a free slot in the
a
he, use it;otherwise, use mru (Most Re
ently Used) to determine whi
h
onne
tion to evi
t.

For ease of exposition, we �rst
onsider the
ase where the size of the
onne
tion
a
he is atleast the same size as the page
a
he, i.e. k0 � k. We then extend our analysis to the
ase k0 < k.Theorem 1. If k0 � k, then R(alg) � k + 4.Proof. Consider a request sequen
e �. We �rst study the
ase that k0 = k. Suppose there areN + 1 phases, numbered 0; 1; : : : ; N . For phase i, denote the number of page requests that
ausea page fault by fi; the number of page requests that do not
ause a page fault by pi (these pageswere requested in the previous phase by de�nition of lru); the number of mru faults mi, and thenumber of holes
reated by hi (i. e. the number of
onne
tions evi
ted at the start of phase i).De�ne F = PNi=1 fi, M = PNi=1mi, H = PNi=2 hi and P = PNi=1 pi. (We ignore phase 0.) Noteh1 = 0 and fi + pi = k for ea
h phase i.Ea
h hole that is
reated, is �lled at most on
e, and this happens on a
onne
tion fault. (It ispossible that some holes are never �lled.) Thus the number of
onne
tion faults that
ause holesto be �lled is at most H. Furthermore, the remaining
onne
tion faults are exa
tly the
onne
tionfaults where mru is applied; this happens M times. Thusalg(�) � F +M +H = kN +M +H � P: (1)Note that our algorithm is de�ned in su
h a way that the number of page faults is independentof the number of
onne
tion faults or the de
isions as to whi
h
onne
tions are evi
ted. The page
a
he is simply maintained by lru. By de�nition of lru, there must be one opt page fault in ea
hphase. Thus opt(�) � N: (2)Ea
h phase
an be visualized as follows. The
onne
tion
a
he is at all times divided into twosets, Previous and Current. Here Previous
ontains the
onne
tion slots that were not (yet)used in this phase, while Current
ontains the
onne
tion slots that were used in the
urrentphase. At the start of ea
h phase, Current is empty and Previous
ontains all k slots. Notethat some of these slots may
ontain holes, in
ase a
onne
tion was evi
ted that was not used inthe previous phase.For ea
h page fault in a phase, there are two possibilities:1. No
onne
tion fault:(a) A not yet used
onne
tion slot is used for the �rst time in this phase (this
onne
tion wasalso used in the previous phase);(b) A
onne
tion slot already used in the
urrent phase is used again (two or more pages areat the same node).2. Conne
tion fault o

urs:(a) A hole is �lled: a not yet used
onne
tion slot is used for the �rst time in this phase;(b) A
onne
tion slot already used in the
urrent phase is used again by mru;(
) (spe
ial
ase) A
onne
tion slot not yet used in the
urrent phase is used by mru.Case 2.(
)
an only o

ur if the very �rst page fault in a phase
auses a
onne
tion fault; for alater page fault that also
auses a
onne
tion fault, mru always uses a slot that was already usedin the
urrent phase. From this list we have that only in
ases 1.(a), 2.(a) and 2.(
), a
onne
tionslot moves from the set Previous to the set Current.Consider a phase i > 0. Suppose Case 2.(
) does not o

ur, and there are mi > 0 mru faultsin phase i. Then at least mi times, a
onne
tion slot already in Current is used again. Hen
e atmost fi �mi times a
onne
tion slot moves from Previous to Current. Therefore, at the endof phase i, there are at least k � fi +mi
onne
tion slots still in Previous.The pages requested in phase i
an be divided into four groups:

1. pages that did not
ause a page fault (pi);2. pages that
aused a page fault, but no
onne
tion fault;3. pages that
aused a hole in the
onne
tion
a
he to be �lled;4. pages that
aused a
onne
tion slot to be used again by mru (mi).Every
onne
tion slot that at some point in phase i
ontains a
onne
tion to a page in group2 or 3 (note that this may
hange later in the phase due to the use of mru), is in Current atthe end of the phase. The other
onne
tion slots
ontain
onne
tions to pages that were eithernot requested in phase i (but were requested in phase i � 1, or they would have been evi
tedbefore), or that did not
ause a fault. This last possibility o

urs pi times, so there are at leastk � fi +mi � pi = mi pages that are not requested again. This implies there are at least k +midistin
t pages requested in phase i and phase i� 1. Therefore opt has at least mi faults in phasesi� 1 and i.If Case 2.(
) does o

ur, then there were no holes at the start of phase i. Then the
onne
tionsto the pages requested in phase i � 1 must all be distin
t, mi�1 = 0 and hi = 0. At the start ofphase i, a
onne
tion slot moves from Previous to Current using mru. Case 2.(
) does not o

urin the rest of the phase. Thus at the end of phase i, we have that there are at least k� fi+mi� 1
onne
tion slots still in Previous. These slots
orrespond to
onne
tions that were used in theprevious phase but not in this one, implying k�fi+mi�pi�1 = mi�1 pages that were requestedin phase i� 1 but not in i. Then opt has at least mi � 1 faults in phases i� 1 and i. Moreover, ithas at least one fault in phases i� 2 and i� 1, and 1 = mi�1 + 1. By amortizing the
ost, we �ndthat opt has at least mi faults for every pair of phases i� 1 and i.Thus opt(�) �Pi oddmi, and opt(�) �Pi evenmi. This implies thatopt(�) � 12Xi>0mi = M2 : (3)
The
onne
tions still in Previous at the end of phase i are evi
ted and be
ome hi+1 holes.At most pi of them lead to pages that were requested without a fault. Thus there are at leastk+ hi+1 � pi distin
t pages requested in phases i and i� 1. This gives another bound for the
ostof opt: opt(�) � 12Xi>0(hi+1 � pi) � H � P2 (4)Combining (1), (2), (3) and (4) givesalg(�) � kN +M +H � P � k � opt(�) + 2opt(�) + 2opt(�) = (k + 4)opt(�):This proves the ratio. It
an be seen that the proof also holds for k0 > k. �Theorem 2. If k0 < k, then R(alg) � min(k + 4 + (k � k0); 2k).Proof. Clearly, R(alg) � 2k sin
e alg has at most 2k faults per phase (k
onne
tion faults and kpage faults). We still have (2) and (4) by the exa
t same reasoning as in the proof of Theorem 1.For mi, we have again that ea
h time that mru is applied, no
onne
tion moves from PrevioustoCurrent (unless Case 2.(
) o

urs). So at most fi�mi times a
onne
tion moves from Previousto Current. Therefore, at the end of the phase, at least k0 � fi + mi
onne
tions are still inPrevious. At most pi of them refer to pages requested without a fault in phase i, so at leastk0�fi+mi�pi = k0�k+mi pages are requested in phase i�1 but not in phase i. Therefore thereare at least mi+k0 distin
t pages requested in these two phases, and opt has at least mi� (k�k0)faults.

If Case 2.(
) o

urs, there are only at least k0 � (fi� (mi� 1)) = mi� (k� k0)� 1
onne
tionsstill in Previous at the end. However, in that
ase we have mi�1 � k � k0 sin
e there were noholes. Therefore mi�1 � (k � k0) � 0 and we
an amortize as before.We therefore �nd opt(�) � M � (k � k0)N2 : (5)Using (2), this implies M � 2opt(�) + (k � k0)N � (k � k0 + 2)opt(�). Therefore in this
asealg(�) � ((k + 2) + (k � k0 + 2))opt(�) � (2k � k0 + 4)opt(�):This proves the lemma. �2.2 Randomized algorithmsFor the standard paging problem, the randomized algorithm Mark is 2Hk-
ompetitive, where Hkis the k-th Harmoni
 number [7℄. Moreover, no randomized algorithm
an have a
ompetitive ratioless than Hk. The Mark algorithm pro
esses a request sequen
e in phases. At the beginning ofea
h phase, all pages in the memory system are unmarked. Whenever a page is requested, it ismarked . On a fault, a page is
hosen uniformly at random from among the unmarked pages in
a
he, and that page is evi
ted. A phase ends when all pages in
a
he are marked and a page faulto

urs. Then, all marks are erased and a new phase is started.In our algorithm alg we substitute Mark for Lru to get a randomized algorithm. However,in this
ase it is also ne
essary to evi
t
onne
tions less greedily to get a good performan
e. Inparti
ular, at the start of a phase we will not evi
t any
onne
tions that are asso
iated with pagesrequested in the previous phase. Note that some of these
onne
tions may not have been used inthat phase, be
ause the relevant page might not have
aused a page fault.Theorem 3. For the randomized version of alg and k0 � k, we have R(alg) � 2Hk + 4. Fork0 < k, we have. R(alg) � 2Hk +min(2Hk; 4 + 2(k � k0)):Proof. We analyze this algorithm very similarly to the original analysis of Mark [7℄ and to theanalysis in Se
tion 2.1. We de�ne qi as the number of new pages requested in phase i. A page isnew if it is not in the
a
he at the start of the phase. We de�ne hi, mi, H and M as before andwrite Q =P qi. Then by [7℄, alg(�) � HkQ+H +M:Moreover, opt(�) � Q=2.Following the proof of the deterministi

ase, we now have that every
onne
tion slot that atsome point in phase i
ontains a
onne
tion to a page in group 1, 2 or 3 (note that this may
hangelater in the phase due to the use of mru), is in Current at the end of the phase. Therefore any
onne
tions that are still in Previous at that time (whi
h get evi
ted and form holes) must be topages not requested in the phase. Therefore opt(�) � H=2.Suppose k0 � k. Due to the randomization, we do not know whether or not Case 2.(
) o

ursin a phase. However, as observed in the proof of the deterministi
 algorithm, we
an amortize theo�ine faults if 2.(
) o

urs to get the bound opt(�) �M=2. Therefore analogously to in the proofof Theorem 1, we have R(alg) � 2Hk + 4:We now
onsider the
ase k0 < k. The only
hange is that the bound opt(�) �M=2 is repla
edby opt(�) � M � (k � k0)N2 � M � (k � k0)Q2 ;

Fig. 1. The upper and lower bound: x-axis is k0=k, y-axis is R=k
where we have used Q � N , whi
h follows from the fa
t that there must be at least one new pagein every new phase by de�nition of the phases. This gives usR(alg) � HkQ+H +Mopt(�) � 2Hk + 4 + 2(k � k0):However, sin
e the number of
onne
tion faults, H +M , is also upper bounded by the number ofpage faults HkQ, we �nd R(alg) � 2Hk +min(2Hk; 4 + 2(k � k0)): �
3 Lower boundsWe present a lower bound on the performan
e of any deterministi
 online algorithm. The lowerbound of Theorem 4 implies that if k0 is not too small, our deterministi
 algorithm given in thelast se
tion is nearly optimal. Figure 1 depi
ts the lower as well as the upper bound.Theorem 4. Suppose k0 � 2 and let � = k0=k. Then for any online algorithm A, we haveR(A) � (k + 1)��k � 1�k + 1� �2� �+ 3=k� :Proof. We
onstru
t a lower bound as follows. We make use of k + 1 pages that are stored atk + 1 distin
t nodes. Consider an online algorithm A. Ea
h page request in the sequen
e is to the(unique) page that A does not have in its
a
he. The sequen
e is divided into phases. In ea
h phase,we
ount the number of distin
t pages that have been requested in that phase; the �rst request tothe k + 1st distin
t page is de�ned to be the start of the next phase. Sin
e the
onne
tion
a
hehas size k0, A must have at least k � k0
onne
tion faults in ea
h phase. We de�ne � = k0=k, sothat k0 = �k. We will write the average length of a phase as pk, where p � 1. The o�ine algorithmuses one of the following strategies depending on p.

Strategy 1. (For large p.) The �rst strategy is to always use lfd for the requested pages. We then
ount the number of o�ine page faults for ea
h of the k+1 pages, and put k0�1
onne
tions to pageson whi
h the most o�ine faults o

ur, in the
onne
tion
a
he. This part of the
onne
tion
a
heis �xed during the entire pro
essing of the request sequen
e. The last slot is used for
onne
tionfaults on the remaining k + 1� (k0 � 1) = k � k0 + 2 pages.Consider k+1 phases. There are at most k+1 o�ine faults, and on average at most k� k0+2of them are on pages of whi
h the
onne
tions are not in the
onne
tion
a
he at all times. Thusthere are on average at most 2k � k0 + 3 o�ine faults on k + 1 phases.Strategy 2. (For small p.) The se
ond strategy begins by
ounting the number of requests to ea
hpage over the entire request sequen
e. Then, the k�k0+1 pages that are requested the most often,are put in the page
a
he at the beginning, and the k0
onne
tions to the remaining pages are putin the
onne
tion
a
he. The entire
onne
tion
a
he is �xed throughout the sequen
e. The o�inealgorithm now uses lfd on the k0 pages for whi
h the
onne
tions are in the
onne
tion
a
he, andonly uses the k0� 1 slots in the page
a
he that do not
ontain the k� k0+1 most often requestedpages. It has no
onne
tion faults at all.Consider (k+1)(k0�1) phases. These
ontain on average (k+1)(k0�1)pk requests by de�nitionof p. Thus, ea
h page is requested on average (k0 � 1)pk times. The k0 pages that are requestedthe least overall, must then be requested at most k0(k0 � 1)pk times on average at most. Sin
e theo�ine algorithm has at most one fault every k0 � 1 requests to this subset of pages, there are k0pko�ine faults.Solving for p, we �nd that these two strategies have the same number of faults ifp = �k � 1�k �2� �+ 3k� : (6)As long as this value is at least 1, we
an use the �rst o�ine strategy if p is greater than thethreshold, and the se
ond strategy otherwise. The number of on-line faults in one phase must beat least pk + (k � k0) on average. This implies a
ompetitive ratio of at least(pk + k � k0)(k + 1)(�k � 1)k0pk = (k + 1)��k � 1�k + 1� �2� �+ 3=k� :Note that the threshold in (6) is greater than 1 for k � k0 � 2. �We
an show that the analysis of our algorithm alg is asymptoti
ally tight for k0 = 1. Notethat alg behaves exa
tly like lru in this
ase. This implies that even for k0 = 1 it is nontrivial to�nd an algorithm with
ompetitive ratio
lose to k.Lemma 1. For k0 = 1, we have R(alg) � 2k � 2.Proof. We use a set of pages numbered 1; 2; : : : ; k + 1 and request them
y
li
ally. All the oddpages are at some node v1 while the even pages are at another node v2. It
an be seen that ouralgorithm has a
onne
tion fault on every request, thus it has 2k faults per phase.We now des
ribe an o�-line algorithm to serve this sequen
e. This algorithm only faults onpages in v1, and ea
h time evi
ts the page from that node that will be requested the furthest inthe future. All pages in v2 are in the
a
he at all times. Suppose k is even, then there are k=2 slotsavailable in the
a
he for k=2 + 1 pages. Thus this o�-line algorithm has a fault on
e every k=2requests to pages in v1.

Consider k+1 phases. It
ontains k(k+1) requests, exa
tly k per page. Thus there are 2(k=2+1) = k + 2 o�ine faults in total, giving a
ompetitive ratio of2k(k + 1)k + 2 = 2k � 2kk + 2 � 2k � 2:For odd k, there is one o�-line fault per (k� 1)=2 requests to pages in v1. In k� 1 phases there arek(k� 1) requests, thus k(k� 1)=2 requests to pages in v1 and in total k o�ine faults. This gives aratio of exa
tly 2k � 2. �
4 Generalized modelsIn this se
tion we study generalized problem settings in whi
h the do
uments
an have di�erentsizes. For the standard multi-sized paging problem, the algorithm lru is (k + 1)-
ompetitive inboth the Bit and the Fault model [6℄. Here k is de�ned as the maximum number of pages that
an �t in the
a
he, i.e. k = K=s where K is the size of the
a
he (in bits) and s is the size of thesmallest possible page. It is nontrivial to extend the analysis of our algorithm to these models.In both models, a phase is now de�ned as a maximal subsequen
e of requests to a minimalvolume of distin
t pages that is larger than K. Thus there are at most k+1 page faults in a phase.
4.1 The Fault ModelFor the Fault model, we need to
onsider the number of pages requested in ea
h phase.Consider a phase i and
ompare it to phase i � 1. Denote the set of pages requested in bothphases by Common(i�1; 1). Denote the set of pages requested in phase i�1 but not in phase i byFirst(i; i�1), and the set of pages requested in phase i but not in phase i�1 by Se
ond(i; i�1).Denote the size of the largest page in First(i; i � 1) by L(i � 1). Denote the
ardinality of thesmallest set of pages requested in phase i that have total size at least L(i� 1) by `i.Lemma 2. opt has at least min(jFirst(i; i� 1)j; jSe
ond(i; i� 1)j) faults in phases i� 1 and i.Proof. Apart from the pages requested in phase i�1, whi
h have total size more than K, there arejSe
ond(i; i� 1)j other pages also requested in these two phases. Apart from the pages requestedin phase i there are jFirst(i; i� 1)j pages requested in these two phases.Suppose opt has less than jFirst(i; i � 1)j faults in phase i � 1 and jFirst(i; i � 1)j �jSe
ond(i; i� 1)j. Then some pages in First(i; i� 1) were already in opt's
a
he at the start ofphase i� 1, say x bits. This implies that at least x bits worth of pages in Se
ond(i; i� 1) was notyet in the
a
he, be
ause there is no room. Furthermore, sin
e jFirst(i; i�1)j � jSe
ond(i; i�1)j,the pages in Se
ond(i; i�1) are on average not larger than the pages in First(i; i�1). Thus opthas at least jFirst(i; i�1)j faults. A similar reasoning holds if opt has less than jSe
ond(i; i�1)jfaults in the se
ond phase. �Lemma 3. Suppose jSe
ond(i; i�1)j > jFirst(i; i�1)j. Then opt has at least max(jFirst(i; i�1)j; `i) faults in phases i� 1 and i.Proof. By Lemma 2, opt has at least jFirst(i; i � 1)j faults. The largest page in First(i; i � 1)will have to be loaded in the
a
he at some point during phase i � 1. This implies that at leastL(i � 1) bits of pages requested in phase i are not in the
a
he when this page is in the
a
he,and they need to be loaded later in phase i� 1 or i. This means at least `i faults will be made, byde�nition of `i. �

Theorem 5. In the fault model, R(alg) � (4k+14)=3 for k0 � k and R(alg) � 2k� 23k0 + 143for k0 < k.Proof. Suppose k0 = k. Denote the number of pages requested in phase i by �i. Write �i =�i � �i�1. We have jSe
ond(i; i� 1)j � jFirst(i; i� 1)j = �i.If there are mi
onne
tion faults where mru is applied, then mi times a
onne
tion slot remainsin Current. Thus at most k+1�mi times a
onne
tion slot moves from Previous to Current,and at leastmi�1
onne
tion slots are still in Previous at the end of the phase. These
onne
tionslead to at least mi � 1 pages that were requested in phase i� 1 but not in phase i. Thus opt hasat least min(jFirst(i; i� 1)j; jSe
ond(i; i� 1)j) � min(mi� 1; jSe
ond(i; i� 1)j) faults in phasesi� 1 and i. We have jSe
ond(i; i� 1)j = jFirst(i; i� 1)j+�i � mi � 1 +�i. As before, we
anignore Case 2(
).For ea
h phase i in whi
h more pages were requested than in the previous phase, we use thatopt has at least mi�1 faults in phases i and i�1. For other phases, we use the bound mi�1+�i.By adding these bounds for even and for odd i, we �ndopt(�) � M �N �D2 ;where D = �Pi2X �i, where i 2 X () less pages were requested in phase i than in phase i� 1(thus D > 0).Similarly, opt has at least min(hi+1 � pi; jSe
ond(i; i � 1)j) faults in phases i and i � 1, andwe �nd opt(�) � H � P �D2 :Finally we also still have opt � N . It
an be seen that the average number of pages requestedin ea
h phase is at most k + 1�D=N . We havealg(�) � (k + 1)N �D +M +H � P and alg � 2((k + 1)N �D);where the se
ond inequality follows sin
e alg has at most one
onne
tion fault for ea
h page fault.Thus if D � kN�43 , we �nd that the
ompetitive ratio is at most 4k=3 + 14=3. On the otherhand, if D < kN�43 , thenalg(�) � (k + 1)opt(�) + 4opt(�) +D � (k + 5 + k=3� 4=3)opt(�) = 4k + 143 opt(�):This analysis
an easily be extended to the
ase k0 < k as before, giving R(alg) � 2k � 23k0 + 143 .Details are omitted in this extended abstra
t. �
4.2 The Bit modelIn this se
tion we investigate a Bit model in whi
h the
ost of loading a do
ument is equal to thesize of the do
ument. We also assume that the
ost of establishing a
onne
tion is equal to
, forsome
onstant
 > 0.Theorem 6. In the Bit model, R(alg) � k+52 (
0 + 1) for k0 � k, where
0 =
=s is the
ostof a
onne
tion fault divided by the size of the smallest possible page. For k0 < k, R(alg) �2k+5�k02 (
0 + 1).

Proof. Denote the average phase length by K + Æ for some Æ > 0. Denote the average number ofmru faults in a phase by m and the average number of bits worth of old pages that are impliedby m0, then m0 � ms. Denote the average number of pages on whi
h there is no fault in aphase by p and the average number of bits that are requested without fault by p0, then p0 �ps. Finally, denote the average number of holes
reated in a phase by h. Denote the
ost of asingle
onne
tion fault by
 and write
0 =
=s. Similarly to in the previous se
tion, it
an beseen that for the average
ost in a phase we have alg=s � k + Æ=s + (m + h)
=s � p0=s andopt=s � max (max(1; Æ=s);m=2; h� p=2). Here the �rst maximum in the se
ond equation followsfrom Pimax(Æi; s)=Ns � max(Ns;NÆ)=Ns = max (1; Æ=s) ; where K + Æi is the amount of bitsfrom distin
t requests requested in phase i.Sin
e the number of
onne
tion faults in a phase is bounded from above by the number of pagefaults, we have m+ h � K + Æ � p0s) h � k + Æs � p�m � (k + 1)opts � p�m: (7)We also have h � 2opts +p. Note that 2opts +p = (k+1)opts �p�m) 2p = (k� 1)opt=s�m.Suppose p � ((k � 1)opt=s�m)=2. (The other
ase is handled similarly.) Thenalgs � (k + 1)opts +m
0 + h
0 � p � (k + 1)opts +m
0 + 2opts
0 + p(
0 � 1)� (k + 1)opts +m
0 + 2opts
0 + (
0 � 1)((k � 1)opts �m)=2� (k + 1)opts + (
0 + 1)m=2 + 2opts
0 + (
0 � 1)(k � 1)opt2s� (k +
0 + 2 + 2
0 + (
0 � 1)(k � 1)2)opts = (k + 5)(
0 + 1)2 � opts :For k0 < k, we have opt(�)=s � (m�(k�k0))=2 and R(alg) � (2k�k0+5)(
0+1)2 ; details are omittedin this extended abstra
t. �Hen
e the
ompetitive ratio grows linearly with k and with
 (
0). The reason for this is that we
annot identify
onne
tion faults by opt; it is
on
eivable that opt never has a
onne
tion fault.
5 The distributed settingWe �nally study the distributed problem setting where requests
an o

ur at various networknodes. Again, ea
h node has a do
ument
a
he and a
onne
tion
a
he. Here, a request is spe
i�edby a pair (v; d), indi
ating that do
ument d is requested by the user at node v. The
ost of servingrequests is the same as before. The
ru
ial di�eren
e is in the usage of
onne
tions. An open
onne
tion between nodes v and v0
an be used for downloading do
uments from v to v0 as well asfrom v0 to v. However, if one of the nodes of the
onne
tion de
ides to
lose the
onne
tion, thenthe
onne
tion
annot be used by the other node either. Hen
e, the
onne
tion
a
he
on�gurationsa�e
t ea
h other.Theorem 7. In the distributed problem setting, no deterministi
 online algorithm
an a
hieve a
ompetitive ratio smaller than 2k=(1+ 1=k0), where k is the size of the largest do
ument
a
he andk0 is the maximum number of
onne
tions that a network node
an keep open.Proof. Consider a node v at whi
h k+ 1 do
uments are stored. Additionally we have k0 + 1 nodesvi; 1 � i � k0+1, Ea
h node in the network has a do
ument
a
he of size k and a
onne
tion
a
he

of size k0. Requests are generated as follows. At any time one of the
onne
tions (v; vi) is
losed inthe
on�guration of an online algorithm A be
ause v kan only maintain k0 open
onne
tions and a
onne
tion is open only if it is
a
hed by both of its endpoints. An adversary generates a request atthis node vi for the do
ument that is
urrently not stored in A's do
ument
a
he at vi. Suppose thata request sequen
e
onsists of m requests and that mi requests were generated at vi; 1 � i � k0+1.The online
ost is equal to 2m. An optimal o�ine algorithm has at most dmik e do
ument faults at viand hen
e no more than mk +k0+1 do
ument faults in total. Furthermore an optimal algorithm
anmaintain the
onne
tion
a
he at v in su
h a way that at most d(mk + k0+1)=k0e
onne
tion faultso

ur. Thus as m!1, the ratio of the online to o�ine
ost tends to 2=(1k + 1kk0) = 2k(1 + 1=k0).�Note that a
ompetitive ratio of 2k is a
hieved by any
a
hing algorithm that uses a k-
ompetitivepaging strategy for the do
ument
a
he any repla
ement rule for the
onne
tion
a
he.
6 Con
lusionsIn this paper we studied integrated do
ument and
onne
tion
a
hing in a variety of problemsettings. An open question left by our work is to �nd a better algorithm for the
ase where the
onne
tion
a
he is very small (relative to k). We
onje
ture that the true
ompetitive ratio forthis problem should be
lose to k.
Referen
es1. D. A
hlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging algorithms.Theoreti
al Computer S
ien
e, 234:203{218, 2000.2. S. Albers. Generalized
onne
tion
a
hing. In Pro
eedings of the Twelfth ACM Symposium on ParallelAlgorithms and Ar
hite
tures, pages 70{78. ACM, 2000.3. E. Cohen, H. Kaplan, and U. Zwi
k. Conne
tion
a
hing. In Pro
eedings of the 31st ACM Symposiumon the Theory of Computing, pages 612{621. ACM, 1999.4. E. Cohen, H. Kaplan, and U. Zwi
k. Conne
tion
a
hing under various models of
ommuni
ation. InPro
eedings of the Twelfth ACM Symposium on Parallel Algorithms and Ar
hite
tures, pages 54{63.ACM, 2000.5. T. Feder, R. Motwani, R. Panigraphy, and A. Zhu. Web
a
hing with request reordering. In Pro
eedings13th ACM-SIAM Symposium on Dis
rete Algorithms, pages 104{105, 2002.6. A. Feldman, R. Karp, M. Luby, and L. A. M
Geo
h. Personal
ommuni
ation
ited in [9℄.7. A. Fiat, R.M. Karp, M. Luby, L.A. M
Geo
h, D.D. Sleator, and N.E. Young. Competitive pagingalgorithms. Journal of Algorithms, 12(4):685{699, De
 1991.8. P. Gopalan, H. Karlo�, A. Mehta, M. Mihail, and N. Vishnoi. Ca
hing with expiration times. InPro
eedings 13th ACM-SIAM Symposium on Dis
rete Algorithms, pages 540{547, 2002.9. S. Irani. Page repla
ement with multi-size pages and appli
ations to web
a
hing. In Pro
eedings 29thACM Symposium on Theory of Computing, pages 701{710, 1997.10. L. M
Geo
h and D. Sleator. A strongly
ompetitive randomized paging algorithm. J. Algorithms,6:816{825, 1991.11. D. Sleator and R. E. Tarjan. Amortized eÆ
ien
y of list update and paging rules. Communi
ationsof the ACM, 28:202{208, 1985.12. N. Young. On-line �le
a
hing. In Pro
eedings 9th ACM-SIAM Symposium on Dis
rete Algorithms,pages 82{86, 1998.

