
Improved Parallel Integer Sorting withoutConcurrent Writing�Susanne Albersyz Torben Hagerupy

�A preliminary version of this paper was presented at the 3rd Annual ACM-SIAM Symposium on DiscreteAlgorithms (SODA'92) in Orlando, Florida in January 1992.yMax-Planck-Institut f�ur Informatik, D{66123 Saarbr�ucken, Germany. Supported in part by the DeutscheForschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfsmethoden und Parallelit�at, and in part by the ESPRITBasic Research Actions Program of the EU under contracts No. 3075 and 7141 (projects ALCOM and ALCOM II).zPart of this work was done while the author was a student at the Graduiertenkolleg Informatik, Univer-sit�at des Saarlandes, D{66041 Saarbr�ucken, Germany, and supported by a graduate fellowship of the DeutscheForschungsgemeinschaft. 1

Proposed running head: Improved parallel integer sortingContact author:Susanne AlbersMax-Planck-Institut f�ur InformatikIm Stadtwald66123 Saarbr�uckenGermany

2

AbstractWe show that n integers in the range 1 : : n can be sorted stably on an EREW PRAMusing O(t) time and O(n(plogn log logn + (logn)2=t)) operations, for arbitrary given t �logn log logn, and on a CREW PRAM using O(t) time and O(n(plogn + logn=2t=logn))operations, for arbitrary given t � logn. In addition, we are able to sort n arbitrary integerson a randomized CREW PRAM within the same resource bounds with high probability. Ineach case our algorithm is a factor of almost �(plogn) closer to optimality than all previousalgorithms for the stated problem in the stated model, and our third result matches theoperation count of the best previous sequential algorithm. We also show that n integers inthe range 1 : :m can be sorted in O((logn)2) time with O(n) operations on an EREW PRAMusing a nonstandard word length of O(logn log logn logm) bits, thereby greatly improvingthe upper bound on the word length necessary to sort integers with a linear time-processorproduct, even sequentially. Our algorithms were inspired by, and in one case directly use,the fusion trees of Fredman and Willard.

3

1 IntroductionA parallel algorithm is judged primarily by its speed and its e�ciency. Concerning speed, awidely accepted criterion is that it is desirable for a parallel algorithm to have a running timethat is polylogarithmic in the size of the input. The e�ciency of a parallel algorithm is evaluatedby comparing its time-processor product, i.e., the total number of operations executed, with therunning time of an optimal sequential algorithm for the problem under consideration, the parallelalgorithm having optimal speedup or simply being optimal if the two agree to within a constantfactor. A point of view often put forward and forcefully expressed in (Kruskal et al., 1990b) isthat the e�ciency of a parallel algorithm, at least given present-day technological constraints,is far more important than its raw speed, the reason being that in all probability, the algorithmmust be slowed down to meet a smaller number of available processors anyway.The problem of integer sorting on a PRAM has been studied intensively. While previousresearch has concentrated on algorithms for the CRCW PRAM (Rajasekaran and Reif, 1989;Rajasekaran and Sen, 1992; Bhatt et al., 1991; Matias and Vishkin, 1991a, 1991b; Raman,1990, 1991a, 1991b; Hagerup, 1991; Gil et al., 1991; Hagerup and Raman, 1992, 1993; Bastand Hagerup, 1995; Goodrich et al., 1993, 1994), in this paper we are interested in getting themost out of the weaker EREW and CREW PRAM models. Consider the problem of sorting nintegers in the range 1 : :m. In view of sequential radix sorting, which works in linear time ifm = nO(1), a parallel algorithm for this most interesting range of m is optimal only if its time-processor product is O(n). Kruskal et al. (1990a) showed that for m � n and 1 � p � n=2, theproblem can be solved using p processors in time O�np � logmlog(n=p)�, i.e., with a time-processorproduct of O� n logmlog(n=p)�. The space requirements of the algorithm are �(pn�+n), for arbitrary�xed � > 0, which makes the algorithm impractical for values of p close to n. Algorithms thatare not a�icted by this problem were described by Cole and Vishkin (1986, remark followingTheorem 2.3) and by Wagner and Han (1986). For n=m � p � n=log n, they use O(n) spaceand also sort in O�np � logmlog(n=p)� time with p processors. All three algorithms are optimal ifm = (n=p)O(1). However, let us now focus on the probably most interesting case of m � ncombined with running times of (logn)O(1). Since the running time is at least �(n=p), it iseasy to see that the time-processor product of the algorithms above in this case is bounded onlyby O(n logm=log logn), i.e., the integer sorting algorithms are more e�cient than algorithmsfor general (comparison-based) sorting, which can be done in O(logn) time using O(n logn)operations (Ajtai et al., 1983; Cole, 1988), by a factor of at most �(log logn), to be comparedwith the potential maximum gain of �(logn). This is true even of a more recent EREW PRAMalgorithm by Rajasekaran and Sen (1992) that sorts n integers in the range 1 : :n stably inO(logn log logn) time using O(n logn=log logn) operations and O(n) space.We describe an EREW PRAM algorithm for sorting n integers in the range 1 : :n stably thatexhibits a tradeo� between speed and e�ciency. The minimum running time is �(logn log logn),and for this running time the algorithm essentially coincides with that of Rajasekaran andSen (1992). Allowing more time, however, we can sort with fewer operations, down to a minimum4

of �(nplogn log logn), reached for a running time of �((logn)3=2=plog log n). In general, forany given t � logn log logn, the algorithm can sort in O(t) time using O(n(plog n log logn +(logn)2=t)) operations. Run at the slowest point of its tradeo� curve, the algorithm is moree�cient than the algorithms discussed above by a factor of �(plogn=(log logn)3=2).On the CREW PRAM, we obtain a much steeper tradeo�: For all t � logn, our algorithmsorts n integers in the range 1 : : n in O(t) time using O(n(plogn+logn=2t=logn)) operations; theminimum number of operations of �(nplogn) is reached for a running time of �(logn log logn).We also consider the problem of sorting integers of arbitrary size on the CREW PRAM anddescribe a reduction of this problem to that of sorting n integers in the range 1 : :n. The reductionis randomized and uses O(logn) time and O(nplogn) operations with high probability. It isbased on the fusion trees of Fredman and Willard (1993) and was discovered independently byRaman (1991a).The algorithms above all abide by the standard convention that the word length available tosort n integers in the range 1 : :m is �(log(n+m)) bits, i.e., that unit-time operations on integersof size (n+m)O(1) are provided, but that all integers manipulated must be of size (n+m)O(1).A number of papers have explored the implications of allowing a larger word length. Paul andSimon (1980) and Kirkpatrick and Reisch (1984) demonstrated that with no restrictions onthe word length at all, arbitrary integers can be sorted in linear sequential time. Hagerup andShen (1990) showed that in fact a word length of about O(n logn logm) bits su�ces to sort nintegers in the range 1 : :m in O(n) sequential time or in O(logn) time on an EREW PRAM withO(n=logn) processors. The practical value of such results is doubtful because of the unrealisticassumptions: Hardly any computer has a word length comparable to typical input sizes. Weshow that n integers in the range 1 : :m can be sorted with a linear time-processor product inO((logn)2) time on an EREW PRAM with a word length of O(logn log log n logm) bits. At theprice of a moderate increase in the running time, this greatly improves the known upper bound onthe word length necessary to sort integers with a linear time-processor product, even sequentially.Another, perhaps more illuminating, perspective is obtained by noting that providing a PRAMwith a large word length amounts to adding more parallelism of a more restrictive kind. A singleregister of many bits is akin to a whole SIMD machine, but without the important ability tolet individual processors not participate in the current step. As suggested by this view, usinga word length that allows k integers to be stored in each word potentially could decrease therunning time by a factor of up to �(k). What our algorithm actually achieves is a reduction inthe running time by a factor of �(k=log k) (curiously, it does so by calling a sequential versionof an originally parallel algorithm as a subroutine). This can be interpreted as saying that ifone happens to sort integers of which several will �t in one word, then advantage can be takenof this fact. Our result also o�ers evidence that algorithms using a nonstandard word lengthshould not hastily be discarded as unfeasible and beyond practical relevance.Following the conference publication of the results reported here, our work was shown to haveunexpected consequences in a purely sequential setting. In particular, one of our algorithms isan essential ingredient in an algorithm of Andersson et al. (1995) that sorts n w-bit integers inO(n log logn) time on a w-bit RAM, for arbitrary w � logn. Other papers building directly or5

indirectly on techniques and concepts introduced here include (Andersson, 1995) and (Thorup,1996).2 PreliminariesA PRAM is a synchronous parallel machine consisting of processors numbered 1; 2; : : : and aglobal memory accessible to all processors. An EREW PRAM disallows concurrent access to amemory cell by more than one processor, a CREW PRAM allows concurrent reading, but notconcurrent writing, and a CRCW PRAM allows both concurrent reading and concurrent writing.We assume an instruction set that includes addition, subtraction, comparison, unrestricted shiftas well as the bitwise Boolean operations and and or. The shift operation takes two integeroperands x and i and produces x " i = bx � 2ic.Our algorithms frequently need to compute quantities such as logmp�=log�, wherem;� � 2are given integers. Since we have not assumed machine instructions for multiplication and di-vision, let alone extraction of logarithms and square roots, it is not obvious how to carry outthe computation. In general, however, it su�ces for our purposes to compute the quantitiesof interest approximately, namely up to a constant factor, which can be done using negligibleresources: Shift operations provide exponentiation, logarithms can be extracted by exponenti-ating all candidate values in parallel and picking the right one, and approximate multiplication,division and extraction of square roots reduce to extraction of logarithms, followed by addition,subtraction or halving (i.e., right shift by one bit), followed by exponentiation. On some oc-casions, we need more accurate calculations, but the numbers involved are small, and we canimplement multiplication by repeated addition, etc. The details will be left to the reader.Two basic operations that we shall need repeatedly are pre�x summation and segmentedbroadcasting. The pre�x summation problem of size n takes as input an associative operation �over a semigroup S as well as n elements x1; : : : ; xn of S, and the task is to compute x1; x1 �x2; : : : ; x1 �x2 �� � ��xn. The segmented broadcasting problem of size n is, given an array A[1 : : n]and a bit sequence b1; : : : ; bn with b1 = 1, to store the value of A[maxfj : 1 � j � i and bj = 1g]in A[i], for i = 1; : : : ; n. It is well-known that whenever the associative operation can be appliedin constant time by a single processor, pre�x summation problems of size n can be solved on anEREW PRAM using O(logn) time and O(n) operations (see, e.g., (J�aJ�a, 1992)). Segmentedbroadcasting problems of size n can be solved within the same resource bounds by casting themas pre�x summation problems; the details can be found, e.g., in (Hagerup and R�ub, 1989).It can be shown that if an algorithm consists of r parts such that the ith part can be executedin time ti using qi operations, for i = 1; : : : ; r, then the whole algorithm can be executed in timeO(t1 + � � � + tr) using O(q1 + � � � + qr) operations, i.e., time and number of operations aresimultaneously additive. We make extensive and implicit use of this observation.We distinguish between sorting and ranking . To sort a sequence of records, each with akey drawn from a totally ordered domain, is to rearrange the records such that in the resultingsequence the keys occur in nondecreasing order. The sorting is stable if nonidentical recordswith the same key occur in the same order in the output sequence as in the input sequence, i.e.,6

if there are no unnecessary interchanges. To rank a sequence R1; : : : ; Rn of records as above(stably) is to compute a permutation i1; : : : ; in of 1; : : : ; n such that Ri1 ; : : : ; Rin is a possibleresult of sorting R1; : : : ; Rn (stably).For records that consist of just a key with no associated information, the stability requirementadds nothing to the sorting problem | it is vacuously satis�ed. In such cases we follow thetradition of using the term \stable sorting" in the sense of stable ranking. Note that anyalgorithm for (stable) ranking on a PRAM implies an algorithm for (stable) sorting with the sameresource bounds, up to a constant factor, since rearranging a sequence of n records according toa given permutation can be done in constant time using O(n) operations. On the other hand,an algorithm for stable ranking can be derived from any sorting algorithm that can be modi�edas follows: Let the sequence of records to be sorted be R1; : : : ; Rn and let xi be the key of Ri,for i = 1; : : : ; n. The modi�ed algorithm uses as the key of Ri the pair (xi; i), for i = 1; : : : ; n,and orders these pairs lexicographically (i.e., (xi; i) < (xj ; j), xi < xj or (xi = xj and i < j)).We shall refer to this process as stabilizing the original algorithm.Given an element x of a totally ordered domain U and a �nite sequence L of elements of U ,the rank of x in L is the number of elements in L no larger than x.Our basic sorting algorithm is nonconservative, following the terminology of Kirkpatrick andReisch (1984), i.e., the word length allowed for sorting n integers in the range 1 : :m is notlimited to O(log(n + m)) bits. More precisely, we will use a word length of �(kl + logn) bits,where k is a power of 2 with 2 � k � n and l is an integer with l � dlog(m+ k)e+2. This wordlength enables us to store more than one number in a word, which is essential for our technique.Throughout the paper we number the bit positions of words and integers from right to left,with the least signi�cant bit occupying position 0. We assume a word length of at least 2klbits and partition the rightmost 2kl bits into 2k �elds of l bits each. The �elds are numberedfrom right to left, starting at 0, and the number of a �eld is also called its address . The mostsigni�cant bit of each �eld, called the test bit , is usually set to 0. The remaining bits of the�eld can represent a nonnegative integer coded in binary and called an entry. A word normallystores k entries x0; : : : ; xk�1 in its rightmost k �elds and thus has the following structure:: : : : : :| {z } | {z }| {z } | {z }0 : : :0 0 0 : : :0 0 0 xk�1 0 x0�eld 2k � 1 �eld k �eld k � 1 �eld 0The �elds k; : : : ; 2k� 1 serve as temporary storage. Two �elds in distinct words correspondif they have the same address, and two entries correspond if they are stored in corresponding�elds. For h � 1, a word that contains the test bit bi and the entry xi in its �eld number i, fori = 0; : : : ; h� 1, and whose remaining bits are all 0 will be denoted [bh�1 : xh�1; : : : ; b0 : x0]. Ifb0 = � � �= bh�1 = 0, we simplify this to [xh�1; : : : ; x0]. By a sorted word we mean a word of theform [xk�1; : : : ; x0], where x0 � x1 � � � � � xk�1. A sequence x1; : : : ; xn of n integers of at mostl � 1 bits each is said to be given in the word representation (with parameters k and l) if it isgiven in the form of the words [xk; : : : ; x1]; [x2k; : : : ; xk+1]; : : : ; [xn; : : : ; x(dn=ke�1)k+1].The remainder of the paper is structured as follows: We �rst study algorithms for the EREWPRAM. Section 3 tackles the humble but nontrivial task of merging (the sequences represented7

by) two sorted words. Based on this, Section 4 develops a nonconservative parallel merge sortingalgorithm, from which the conservative algorithm that represents our main result for the EREWPRAM is derived in Section 5. Section 6 describes our algorithms for the CREW PRAM.3 Merging two wordsIn this section we describe how a single processor can merge two sorted words in O(log k) time.We use the bitonic sorting algorithm of Batcher (1968) (alternatively, see (Cormen et al., 1990,Sec. 28.3)) and need only describe how bitonic sorting can be implemented to work on sortedwords.A sequence of integers is bitonic if it is the concatenation of a nondecreasing sequence and anonincreasing sequence, or if it can be obtained from such a sequence via a cyclic shift. E.g., thesequence 5; 7; 6; 3; 1; 2; 4 is bitonic, but 2; 5; 3; 1; 4; 6 is not. Batcher's bitonic sorting algorithmtakes as input a bitonic sequence x0; : : : ; xh�1, where h is a power of 2. The algorithm simplyreturns the one-element input sequence if h = 1, and otherwise executes the following steps:(1) For i = 0; : : : ; h=2� 1, let mi = minfxi; xi+h=2g and Mi = maxfxi; xi+h=2g.(2) Recursively sort m0; : : : ; mh=2�1, the sequence of minima, and M0; : : : ;Mh=2�1, the se-quence of maxima, and return the sequence consisting of the sorted sequence of minima followedby the sorted sequence of maxima.Although we shall not here demonstrate the correctness of the algorithm, we note that allthat is required is a proof that m0; : : : ; mh=2�1 and M0; : : : ;Mh=2�1 are bitonic (so that therecursive application is permissible), and that mi � Mj for all i; j 2 f0; : : : ; h=2 � 1g (so thatthe concatenation in Step (2) indeed produces a sorted sequence).Our implementation works in log k+ 1 stages numbered log k; log k� 1; : : : ; 0, where a stagecorresponds to a recursive level in the description above. Note that the stages are numberedbackwards, which gives a more natural description of the single stages. In the beginning ofStage t, for t = log k; : : : ; 0, there is a single word Z containing 2logk�t bitonic sequences oflength 2t+1 each, each of which is stored in 2t+1 consecutive �elds of Z. Furthermore, if z isan element of a sequence stored to the left of a di�erent sequence containing an element z0,then z � z0. Stage t, for t = log k; : : : ; 0, carries out the algorithm above on each of the 2logk�tbitonic sequences, i.e., each sequence of 2t+1 elements is split into a sequence of 2t minima anda sequence of 2t maxima, and these are stored next to each other in the 2t+1 �elds previouslyoccupied by their parent sequence, the sequence of maxima to the left of the sequence of minima.Because of the close connection to the recursive description, the correctness of this im-plementation is obvious. In order to use the algorithm for merging, as opposed to bitonicsorting, we introduce a preprocessing step executed before the �rst phase. Given words X =[xk�1; : : : ; x0] and Y = [yk�1; : : : ; y0], the preprocessing step produces the single word Z =[y0; : : : ; yk�1; xk�1; : : : ; x0]. The important thing to note is that if x0; : : : ; xk�1 and y0; : : : ; yk�1are sorted, then x0; : : : ; xk�1; yk�1; : : : ; y0 is bitonic.We now describe in full detail the single steps of the merging algorithm. We repeatedly use8

the two constants K1 = [1 : 0; 1 : 0; : : : ; 1 : 0| {z }2k �elds]and K2 = [2k � 1; 2k� 2; : : : ; 2; 1; 0]:It is easy to compute K1 and K2 in O(log k) time. This is accomplished by the program fragmentbelow.K1 := 1 " (l� 1);for t := 0 to log k do(� K1 = [1 : 0; 1 : 0; : : : ; 1 : 0| {z }2t �elds] �)K1 := K1 or (K1 " (2t � l));K2 := (K1 " (�l + 1))� 1;for t := 0 to log k do(� K2 = [2t; : : : ; 2t; 2t; 2t� 1; 2t � 2; : : : ; 2; 1; 0| {z }2k �elds] �)K2 := K2 + ((K2 " (2t � l)) and CopyTestBit(K1));The function CopyTestBit , used in the last line above to remove spurious bits by truncatingthe shifted copy of K2 after �eld number 2k � 1, takes as argument a word with the rightmostl � 1 bits in each �eld and all bits to the left of �eld number 2k � 1 set to 0 and returns theword obtained from the argument word by copying the value of each test bit to all other bitswithin the same �eld and subsequently setting all test bits to 0. It can be de�ned as follows:CopyTestBit(A) � A� (A " (�l+ 1)):We next describe in detail the preprocessing step of our merging algorithm. The central problemis, given a word Y = [yk�1; : : : ; y0], to produce the word[y0; : : : ; yk�1; 0; 0; : : : ; 0| {z }k �elds]:In other words, the task is to reverse a sequence of 2k numbers. First observe that if we identifyaddresses of �elds with their binary representation as strings of log k + 1 bits and denote by athe address obtained from the address a by complementing each of its log k + 1 bits, then theentry in the �eld with address a, for a = 0; : : : ; 2k � 1, is to be moved to address a. To seethis, note that the entry under consideration is to be moved to address a0 = 2k � 1 � a. Sincek is a power of 2, a0 = a. By this observation, the preprocessing can be implemented by stagesnumbered 0; : : : ; logk, executed in any order, where Stage t, for t = 0; : : : ; logk, swaps eachpair of entries whose addresses di�er precisely in bit number t. In order to implement Stage t,we use a mask M to separate those entries whose addresses have a 1 in bit number t from theremaining entries, shifting the former right by 2t �elds and shifting the latter left by 2t �elds.The complete preprocessing can be programmed as follows:9

for t := 0 to log k dobegin (� Complement bit t �)(� Mask away �elds with 0 in position t of their address �)M := CopyTestBit((K2 " (l � 1� t)) and K1);Y := ((Y and M) " (�2t � l)) or((Y � (Y and M)) " (2t � l));end;Z := X or Y ;Let us now turn to the bitonic sorting itself, one stage of which is illustrated in Fig. 1. InStage t of the bitonic sorting, for t = log k; : : : ; 0, we �rst extract the entries in those �elds whoseaddresses have a 1 in bit position t and compute a word A containing these entries, moved rightby 2t �elds, and a word B containing the remaining entries in their original positions. Numbersthat are to be compared are now in corresponding positions in A and B. We carry out all thecomparisons simultaneously in a way pioneered by Paul and Simon (1980): All the test bits inA are set to 1, the test bits in B are left at 0, and B is subtracted from A. Now the test bit ina particular position \survives" if and only if the entry in A in that position is at least as largeas the corresponding entry in B. Using the resulting sequence of test bits, it is easy to create amask M 0 that separates the minima ((B and M 0) or (A� (A and M 0))) from the maxima ((Aand M 0) or (B � (B and M 0))) and to move the latter left by 2t �elds. The complete programfor the bitonic sorting follows.for t := log k downto 0 dobegin(� Mask away �elds with 0 in position t of their address �)M := CopyTestBit((K2 " (l � 1� t)) and K1);A := (Z and M) " (�2t � l);B := Z � (Z and M);M 0 := CopyTestBit(((A or K1)�B) and K1);Z := (B and M 0) or(A� (A and M 0)) or((A and M 0) " (2t � l)) or((B � (B and M 0)) " (2t � l));end;This completes the description of the algorithm to merge two sorted words. If the inputnumbers x0; : : : ; xk�1 and y0; : : : ; yk�1 are drawn from the range 1 : :m, a �eld must be able tostore nonnegative integers up to maxfm; 2k � 1g, in addition to the test bit; a �eld length ofdlog(m+ k)e+ 2 bits therefore su�ces. The running time of the algorithm clearly is O(logk).10

12 15 10 9 7 2 4 8= 12 15 10 (B � (B and M 0)) " (2t � l)9 (A and M 0) " (2t � l)7 2 4 A� (A and M 0)8 B and M 0ororor 0 0 0 1= 0 12 0 15 0 10 0 8� B1 7 1 2 1 4 1 9 A7 2 4 9 12 15 10 8
Fig. 1. One stage of bitonic sorting.4 Nonconservative sorting on the EREW PRAMGiven the ability to merge two sorted words, it is easy to develop a procedure for mergingtwo sorted sequences given in word representation. Let X and Y be such sequences, eachcomprising r words. Although the sequences X and Y may contain repeated values, we willconsider the elements of X and Y to be pairwise distinct, and we impose a total order on theseelements by declaring an element z of X or Y to be smaller than another element z0 of X orY exactly if its value is smaller, or if it precedes z0 in the same input sequence, or if z and z0have the same value, z belongs to X , and z0 belongs to Y (i.e., ties are broken by consideringelements in X to be smaller). De�ne a representative as the �rst (smallest, rightmost) entryin a word of either X or Y and begin by extracting the representative of each word of X (Y ,respectively) to form a sorted sequence x1; : : : ; xr (y1; : : : ; yr, respectively), stored in the usualfashion, i.e., one element to a word. Merge x1; : : : ; xr and y1; : : : ; yr, according to the total orderde�ned above, by means of a standard algorithm such as the one described by Hagerup and R�ub(1989), which uses O(log r + 1) time and O(r) operations, and let z1; : : : ; z2r be the resultingsequence. For i = 1; : : : ; 2r, associate a processor with zi. The task of this processor is tomerge the subsequences of X and Y comprising those input numbers z with zi � z < zi+1 (takez2r+1 = 1). One of these subsequences is part of the sequence stored in the word containingzi, while the second subsequence is part of the sequence stored in the word containing zj , wherej is the maximal integer with 1 � j < i such that zi and zj do not belong to the same input11

sequence; if there is no such j, the second subsequence is empty. Segmented broadcastingusing O(log r + 1) time and O(r) operations allows each processor associated with an elementof z1; : : : ; z2r to obtain copies of the at most two words containing the subsequences that it isto merge, after which the processor can use the algorithm described in the previous section tomerge its words in O(log k) time. For i = 1; : : : ; 2r, the processor associated with zi then locateszi and zi+1 in the resulting sequence by means of binary search, which allows it to remove thoseinput numbers z that do not satisfy zi � z < zi+1. Finally the pieces of the output producedby di�erent processors must be assembled appropriately in an output sequence. By computingthe number of smaller input numbers, each processor can determine the precise location in theoutput of its piece, which spreads over at most three (in fact, two) output words. The processorsthen write their pieces to the appropriate output words. In order to avoid write con
icts, thisis done in three phases, devoted to processors writing the �rst part of a word, the last part ofa word, and neither (i.e., a middle part), respectively. To see that indeed no write con
ict canoccur in the third phase, observe that if two or more processors were to write to the same wordin the third phase, at least one of them would contribute a representative coming from the sameinput sequence as the representative contributed by the processor writing the last part of theword (in the second phase); this is impossible, since no output word can contain two or morerepresentatives from the same input sequence. We have proved:Lemma 1 For all given integers n, m, k and l, where k is a power of 2 with 2 � k � n, m � 1and l � dlog(m + k)e + 2, two sorted sequences of n integers in the range 1 : :m each, givenin the word representation with parameters k and l, can be merged on an EREW PRAM usingO(logn) time, O((n=k) log k) operations, O(n=k) space and a word length of O(kl+ logn) bits.Theorem 1 For all given integers n, k and m with 2 � k � n and m � 2 such that blogmc isknown, n integers in the range 1 : :m can be sorted on an EREW PRAM using O((logn)2) time,O((n=k) logk log n+ n) operations, O(n) space and a word length of O(k logm+ log n) bits.Proof: Assume that n and k are powers of 2. For m � (logn)2, the result is implied by thestandard integer sorting results mentioned in the introduction. Furthermore, if k � (logn)2 � 2,we can replace k by (logn)2 without weakening the claim. Assume therefore that k � m, inwhich case an integer l with l � dlog(m+k)e+2, but l = O(logm) can be computed in constanttime, using the given value of blogmc. We use the word representation with parameters k and land sort by repeatedly merging pairs of ever longer sorted sequences in a tree-like fashion, as insequential merge sorting. During a �rst phase of the merging, consisting of log k merging rounds,the number of input numbers per word doubles in each round, altogether increasing from 1 to k.The remaining O(logn) rounds operate with k input numbers per word throughout. Both phasesof the merging are executed according to Lemma 1. For i = 1; : : : ; logk, the ith merging roundinputs n=2i�1 words, each containing a sorted sequence of 2i�1 input numbers, and merges thesewords in pairs, storing the result in n=2i words of 2i input numbers each. By Lemma 1, the costof the �rst phase of the merging, in terms of operations, is O(Plog ki=1 in=2i�1) = O(n). The costof the second phase is O((n=k) log k log n), and the total time needed is O((logn)2). 212

Corollary 1 For all integers n;m � 4, if blogmc is known, then n integers in the range 1 : :mcan be sorted with a linear time-processor product in O((logn)2) time on an EREW PRAM witha word length of O(logn log logn logm) bits.5 Conservative sorting on the EREW PRAMThe sorting algorithm in the previous section is inherently nonconservative, in the sense thatin most interesting cases, the algorithm can be applied only with a word length exceeding�(log(n + m)) bits. In this section we use a cascade of several di�erent simple reductions toderive a conservative sorting algorithm. In general terms, a reduction allows us to replace anoriginal sorting problem by a collection of smaller sorting problems, all of which are eventuallysolved using the algorithm of Theorem 1.The �rst reduction is the well-known radix sorting, which we brie
y describe. Supposethat we are to sort records whose keys are tuples of w components stably with respect to thelexicographical order on these tuples. Having at our disposal an algorithm that can sort stablywith respect to single components, we can carry out the sorting in w successive phases. Inthe �rst phase, the records are sorted with respect to their least signi�cant components, in thesecond phase they are sorted with respect to the second-least signi�cant components, etc. Sincethe sorting in each phase is stable (so that it does not upset the order established by previousphases), after the wth phase the records will be stably sorted, as desired. We shall applyradix sorting to records with keys that are not actually tuples of components, but nonnegativeintegers that can be viewed as tuples by considering some �xed number of bits in their binaryrepresentation as one component.For the problem of sorting n integers in the range 1 : :m, de�ne n as the size and m as theheight of the sorting problem. For arbitrary positive integers n, m and w, where m is a powerof 2, radix sorting can be seen to allow us to reduce an original sorting problem of size n andheight mw to w sorting problems of size n and height m each that must be solved one afterthe other (because the input of one problem depends on the output of the previous problem).The requirement that m should be a power of 2 ensures that when input numbers are viewedas w-tuples of integers in the range 1 : :m, any given component of a tuple can be accessed inconstant time (recall that we do not assume the availability of unit-time multiplication).Our second reduction, which was also used by Rajasekaran and Sen (1992) and which wecall group sorting, allows us to reduce a problem of sorting integers in a sublinear range toseveral problems of sorting integers in a linear range. More precisely, if n and m are powersof 2 with 2 � m � n, we can, spending O(logn) time and O(n) operations, reduce a sortingproblem of size n and height m to n=m sorting problems of size and height m each that can beexecuted in parallel. The method is as follows: Divide the given input numbers into r = n=mgroups of m numbers each and sort each group. Then, for i = 1; : : : ; m and j = 1; : : : ; r,determine the number ni;j of occurrences of the value i in the jth group. Because each groupis sorted, this can be done in constant time using O(rm) = O(n) operations. Next computethe sequence N1;1; : : : ; N1;r; N2;1; : : : ; N2;r; : : : ; Nm;1; : : : ; Nm;r of pre�x sums of the sequence13

n1;1; : : : ; n1;r; n2;1; : : : ; n2;r; : : : ; nm;1; : : : ; nm;r (the associative operation being usual addition),which takes O(logn) time and uses O(n) operations. For i = 1; : : : ; m and j = 1; : : : ; r, thelast occurrence of i in (the sorted) jth group, if any, can now compute its position in theoutput sequence simply as Ni;j, after which all remaining output positions can be assignedusing segmented broadcasting, an occurrence of i in the jth group d positions before the lastoccurrence of i in the jth group being placed at output position Ni;j � d.We now describe an algorithm to sort n integers in the range 1 : :n with a word lengthof O(�) bits, where � � logn. Our approach is to sort numbers in a restricted range 1 : :2s,where s is a positive integer, and to apply the principle of radix sorting to sort numbers inthe larger range 1 : : n in O(logn=s) phases, s bits at a time. Within each radix sort phase, nnumbers in the range 1 : :2s are sorted using the method of group sorting, where the algorithmof Theorem 1 is applied as the basic algorithm to sort each group. Hence each radix sort phasetakes O(s2+log n) time and uses O((n=k)s log k+n) operations. Employed in a straightforwardmanner, the algorithm of Theorem 1 is able to sort only s-bit keys. Extending each key byanother s bits and stabilizing the algorithm as described in Section 2, however, we can assumethat the algorithm sorts the full input numbers (in the range 1 : :n) stably by their s-bit keyswithin each group, a necessary prerequisite for the use of radix sorting.Lemma 2 For all given integers n � 4, s � 1 and � � log n, n integers in the range 1 : :n canbe sorted stably on an EREW PRAM usingO�log n�s+ logns �� time;O�n log n�s log�� + 1s�+ n� operations;O(n) space and a word length of O(�) bits.Proof: If s > blog nc, we can replace s by blog nc, and if � > s3, we can replace � by s3, ineach case without weakening the claim. Assume therefore that 1 � s � logn, in which case wecan use the algorithm sketched above, and that � � s3. Choose k as an integer with 2 � k � nsuch that k = �(�=s), which causes the necessary word length to be O(ks+ log n) = O(�) bits,as required. The time needed by the algorithm is O((logn=s)(s2 + log n)), as claimed, and thenumber of operations is O� log ns �ns log kk + n��= O�n logn� log kk + 1s��= O�n logn�s log�� + 1s�� : 2We obtain our best conservative sorting algorithm by combining Lemma 2 with a reductiondue to Rajasekaran and Sen (1992), who showed that when n is a perfect square, a sorting14

problem of size and height n reduces to two batches of sorting problems, each batch consistingofpn problems of size and height pn. The sorting problems comprising a batch can be executedin parallel, whereas the �rst batch must be completed before the processing of the second batchcan start, and the reduction itself uses O(logn) time and O(n) operations. The reduction issimple: Using the principle of radix sorting, the original sorting problem of size and height n isreduced to two sorting problems of size n and height pn, each of which in turn is reduced, usingthe principle of group sorting, to a collection of pn sorting problems of size and height pn.In general, we cannot assume that n is a perfect square, and the reduction above needsunit-time division, which is not part of our instruction repertoire. Without loss of generality,however, we can assume that n is a power of 2, and we can modify the argument to showthat in this case a sorting problem of size and height n reduces, using O(logn) time and O(n)operations, to two batches of sorting problems, each batch comprising sorting problems of totalsize n and individual size and height 2dlogn=2e. Iterating this reduction i � 1 times yields aprocedure that reduces a sorting problem of size and height n to 2i batches of sorting problems,each batch comprising sorting problems of total size n and individual size and height 2dlogn=2ie.The reduction itself uses O(i logn) time and O(2in) operations; the latter quantity is alwaysdominated by the number of operations needed to solve the subproblems resulting from thereduction, so that we need not account for it in the following. Our plan is to solve the smallsubproblems generated by the reduction using the algorithm of Lemma 2, with i chosen to makethe total running time come out at a pre-speci�ed value. This gives rise to a tradeo� betweenrunning time and work: Increasing i has the e�ect of lowering the running time, but raising thetotal number of operations.In the case m > n we appeal to yet another reduction. Suppose that we are given a sortingproblem of size n and height m > n, where n is a power of 2, and view each input number aswritten in the positional system with basis n as a sequence of w = �(logm=logn) digits. Asstated earlier, radix sorting can be thought of as reducing the original problem of size n andheight m to w sorting problems of size and height n each that must be solved one after theother. Vaidyanathan et al. (1993) gave a di�erent reduction that also results in a collection ofO(w) sorting problems of size and height n each. The di�erence is that the sorting problemsresulting from the reduction of Vaidyanathan et al. can be partitioned into O(log(2+w)) batchessuch that all subproblems in the same batch can be solved in parallel. Moreover, the numberof subproblems in the ith batch, for i = 1; 2; : : : ; is at most 21�i=3w. The reduction works asfollows: Suppose that we sort the input numbers just by their two most signi�cant digits (tobasis n). This is one sorting problem of size n and height n2, or (using radix sorting) two sortingproblems of size and height n each. After the sorting we can replace each pair of �rst two digitsby its rank in the sorted sequence of pairs without changing the relative order of the inputnumbers. The rank information can be obtained via segmented broadcasting within resourcebounds dominated by those needed for the sorting, and since the ranks are integers in the range1 : :n, we have succeeded in replacing two digit positions by just one digit position. We cando the same in parallel for the 3rd and 4th digit position, for the 5th and 6th position, and soon; if the total number of digit positions is odd, we sort the last digit position together with15

the two positions preceding it. This involves a total of w sorting problems of size and height ndivided into three batches (one for each radix sorting phase), and it reduces the number of digitpositions to at most w=2. We now simply proceed in the same way until the input numbers havebeen sorted by a single remaining digit.Theorem 2 Let n;m � 4 be integers and take h = minfn;mg. Then, for all given integerst � logn+ log h log log h log(2+ logm=logn) and � � log(n+m), n integers in the range 1 : :mcan be sorted stably on an EREW PRAM using O(t) time,O�n�logms log�� + log h logmt + 1�+ t�operations, O(n) space and a word length of O(�) bits.Proof: Assume that � � (logm)3, since otherwise we can replace � by 23blog logmc withoutweakening the claim. Assume further that n and m are powers of 2 and consider �rst the casem � n. Using the principle of group sorting and spending O(logn) time and O(n) operations,we can reduce the given problem to a batch of sorting problems of total size n and individual sizeand height m. We then compute positive integers � and i with � = �(minft; logmp�=log�g)and 2i = �((logm)3=�2 + 1), carry out the i-level reduction described above and solve theresulting subproblems using the algorithm of Lemma 2 with s = �(�=logm). What remains isto analyze the time and the number of operations needed. First note thatdlogm=2ie = O(logm=2i) = O(�2=(logm)2)and that 2i = O((logm)2=� + 1):Since i = O(log logm), the time needed for the i-level reduction is O(i logm) = O(t), and thetime needed for the processing of 2i batches of subproblems of size 2dlogm=2ie each isO�2idlogm=2ie�s+ dlogm=2ies ��= O�logm� �logm + �2=(logm)2�=logm �� = O(�) = O(t):The number of operations needed for the processing of 2i batches of subproblems, each batchconsisting of subproblems of total size n, isO�2i�ndlogm=2ie�s log �� + 1s�+ n��= O�n logm� � log�� logm + logm� �+ 2in�= O�n�� log �� + (logm)2� + 1��= O�n�logms log�� + (logm)2� + 1��= O�n�logms log�� + log h logmt + 1��:16

This proves Theorem 2 in the case m � n. Consider now the case m > n and suppose�rst that minf�=blog�c; tg � (logn)2. We then use the reduction of Vaidyanathan et al. toreduce the original problem of size n and height m to O(log(2 + w)) batches of subproblemsof size and height n each, where w = �(logm=logn), such that the ith batch comprises atmost 21�i=3w subproblems. Each of the resulting subproblems is solved using the algorithm ofTheorem 2 for the case m = n. The minimum time needed is O(logn log logn log(2 + w)) =O(log h log log h log(2 +w)), as claimed. In order to achieve a total time of �(t), we spend �(t)time on each of the six �rst batches, and from then on we spend only half as much time oneach group of six successive batches as on the previous group. This clearly does indeed yieldan overall time bound of O(t). Since the number of subproblems in each group of six successivebatches is at most 2�6=3 = 1=4 of the number of subproblems in the previous group, while theavailable time is half that available to the previous group, it can be seen that the total numberof operations executed is within a constant factor of the number of operations needed by the�rst batch, i.e., the total number of operations isO� logmlogn �n�log ns log �� + (logn)2t + 1���= O�n�logms log �� + logn logmt + logmlogn ��= O�n�logms log �� + log h logmt ��;where the last transformation uses the upper bounds on � and t assumed above.On the other hand, if minf�=blog�c; tg > (logn)2, we use the algorithm of Theorem 1 withk = �(�=logm). The time needed is O((logn)2) = O(t), the word length is O(�), and thenumber of operations is O�nk log k logn + n�= O�n logm� log� logn + n�= O�n�logms log�� �s log�� logn + 1��= O�n�logms log�� + 1��: 2Theorem 2 exhibits a general tradeo� between time, operations and word length. Specializingto the case of conservative sorting of integers in a linear range, we obtain:Corollary 2 For all given integers n � 4 and t � logn log logn, n integers in the range 1 : :ncan be sorted stably on an EREW PRAM using O(t) time, O(n(plog n log logn + (logn)2=t))operations, O(n) space and a standard word length of O(logn) bits.Another interesting consequence of Theorem 2 is given in Corollary 3 below. A result corre-sponding to Corollary 3 was previously known only for m = (logn)O(1), even for the strongerCRCW PRAM. 17

Corollary 3 For all integers n � 4 and m � 1, if m = 2O(plogn=log logn), then n integers inthe range 1 : :m can be sorted stably on an EREW PRAM using O(logn) time, O(n) operations,O(n) space and a standard word length of O(logn) bits.6 Algorithms for the CREW PRAMIf concurrent reading is allowed, we can use table lookup to merge two sorted words in timeO(1), rather than O(log k). This possibility was pointed out to us by Richard Anderson. Atable that maps two arbitrary sorted words given in the word representation with parametersk and l to the words obtained by merging these has at most 22kl entries, each of which can becomputed sequentially in O(log k) time using the algorithm of Section 3. Similarly, a table thatmaps each pair consisting of a sorted word and an l-bit integer to the rank of the given integerin the given word contains at most 22kl entries, each of which can be computed in O(log k) timeby means of binary search. These tables can therefore be constructed using O(logk) time andO(22kl log k) operations. In the following we wish to distinguish between the resources neededto construct such tables and those consumed by merging or sorting proper, the reason beingthat if an original problem is reduced to a collection of subproblems with the same parameters(size, height, etc.), then all subproblems can be solved using the same tables, so that the costof constructing the tables can be amortized over the subproblems. We choose to use the term\preprocessing" to denote the resources needed to construct and store tables that depend onlyon the size parameters of the input problem, but not on the actual numbers to be merged orsorted.Lemma 3 For all given integers n, m, k and l, where k is a power of 2 with 2 � k � n, m � 8and l � dlog(m+ k)e+2, and for all �xed � > 0, two sorted sequences of n integers in the range1 : :m each, given in the word representation with parameters k and l, can be merged on a CREWPRAM using O(logn) preprocessing time, O(22kl log k + n) preprocessing operations and space,O(log log logm) time, O(n=k) operations, O(nm�=k) space and a word length of O(kl + log n)bits. Moreover, if m = O(n=(k logn)), the merging time and space can be reduced to O(1) andO(n), respectively.Proof: We use an algorithm similar to that of Lemma 1, the main item of interest being how tomerge the two sequences of O(n=k) representatives. By a process of repeated squaring, executedduring the preprocessing, we can either compute blog log logmc or determine that m � 2n,in both cases without ever creating an integer of more than �(log(n + m)) bits. If m � 2n,the representatives can be merged in O(log logn) = O(log log logm) time with the algorithmof Kruskal (1983). Otherwise the representatives can be merged in O(log log logm) time withthe algorithm of Berkman and Vishkin (1993), which is responsible for the superlinear spacerequirements. If m = O(n=(k log n)), �nally, the representatives can be merged in constant timeand linear space, as noted by Chaudhuri and Hagerup (1994); the latter result assumes theavailability of certain integer values that can be computed during the preprocessing. In eachcase the number of operations needed is O(n=k).18

When the representatives have been merged, each processor associated with a representativecan access the two words that it is to merge directly, without resorting to segmented broadcast-ing. The merging itself and the removal of input numbers outside of the interval of interest isdone in constant time using table lookup, the relevant tables having been constructed duringthe preprocessing as described above. The remainder of the computation works in constant timeusing O(n=k) operations even on the EREW PRAM. 2The remaining development for the CREW PRAM parallels that for the EREW PRAM, forwhich reason we provide a somewhat terse description. We refrain from developing a series ofnonconservative CREW PRAM algorithms that employ fast merging, but not table lookup.Theorem 3 For all given integers n, k and m with 2 � k � n and m � 8 such that blogmcis known and for all �xed � > 0, n integers in the range 1 : :m can be sorted on a CREWPRAM using O(logn) preprocessing time, O(2O(k logm)+n) preprocessing operations and space,O(logn log log logm) time, O((n=k) logn + n) operations, O(nm�) space and a word length ofO(k logm + logn) bits. Moreover, if m = O(n), the time and space bounds for the sorting canbe reduced to O(logn) and O(n), respectively.Proof: We can assume that n and k are powers of 2 and that k � log n � m, so that aninteger l � dlog(m + k)e + 2 with l = O(logm) can be computed in constant time. We usethe word representation with parameters k and l and sort using repeated merging as in thealgorithm of Theorem 1. Each round of merging is executed using the algorithm of Lemma 3,and the complete sorting can be carried out in O(logn log log logm) time using O((n=k) logn)operations.If m = O(n), we can use radix sorting to replace the original sorting problem of size n andheight m by two sorting problems of size n and height O(n=(k logm)) each. 2Lemma 4 For all given integers n � 2, s � 1 and � � logn, n integers in the range 1 : :ncan be sorted stably on a CREW PRAM using O(logn) preprocessing time, 2O(�) preprocessingoperations and space, O (logn)2s + logn! time;O�n logn� s� + 1s�+ n� operations;O(n) space and a word length of O(�).Proof: We can assume that s � logn and that � � s2. We use radix sorting and group sortingto reduce the original problem to O(logn=s) batches, each comprising sorting problems of totalsize n and individual size and height 2s. We solve each subproblem using the algorithm ofTheorem 3 with k chosen as an integer with 2 � k � n such that k = �(�=s). The total timeneeded is O((logn=s) logn), and the number of operations isO� logns �nsk + n�� = O�n logn� s� + 1s��: 219

The theorem below is our main result for the CREW PRAM. Since it describes a stand-alonealgorithm, the cost of table construction is not indicated separately, but incorporated into theoverall resource bounds. We �x the word length at the standard O(log(n + m)) bits, sinceotherwise the preprocessing cost would be so high as to make the result uninteresting.Theorem 4 Let n;m � 2 be integers and take h = minfn;mg and t0 = log h log(2+logm=logn).Then, for all given integers t � t0 + logn, n integers in the range 1 : :m can be sorted stably ona CREW PRAM using O(t) time,O�n� logmplog n + log h logmlog n � 2t=t0 + 1��operations, O(n) space and a standard word length of O(log(n+m)) bits.Proof: Assume that n and m are powers of 2 and consider �rst the case m � n. Using groupsorting, we begin by reducing the given problem to a batch of sorting problems of total size nand individual size and heightm. We then compute positive integers a, s and i with a � t=logm,but a = O(t=logm), s = �(plogn + logm=(a � 2a)) and 2i = �(logm=s + 1), use the i-levelreduction of Rajasekaran and Sen and solve all the resulting subproblems using the algorithmof Lemma 4.Recall that, used with a word length of �, the algorithm of Lemma 4 needs 2O(�) preprocessingoperations and space. We choose � = �(logn) su�ciently small to make the preprocessing costO(n). For this we must ensure that the algorithm of Lemma 4 is applied to inputs of size atmost 2�. But since the input size is 2dlogm=2ie � 2dlogn=2ie, this is simply a matter of alwayschoosing i larger than a �xed constant.Since 2i = O(a � 2a), the time needed for the i-level reduction is O(i logm) = O(a logm) =O(t). Furthermore, since dlogm=2ie = O(s), the time needed for the processing of 2i batches ofsubproblems of size 2dlogm=2ie each isO�2i�dlogm=2ie2s + dlogm=2ie�� = O(2is) = O(logm+plogn) = O(t):The number of operations needed for the processing of 2i batches of subproblems, each batchconsisting of subproblems of total size n, isO�2i�ndlogm=2ie� slog n + 1s�+ n��= O�n logm� slogn + 1s�+ n�= O�n logm�plog n+ logm=(a � 2a)logn + 1plogn�+ n�= O�n logm� 1plog n + (logm)2t logn � 2a�+ n�= O�n� logmplogn + log h logmlogn � 2t=t0 + 1��:20

This proves Theorem 4 in the case m � n. In the case m > n we use the reduction ofVaidyanathan et al. to reduce the original problem to O(log(2 + logm=logn)) batches of sub-problems of size and height n each and solve each subproblem using the algorithm of Theorem 4for the case m = n, with �(t logn=t0) time allotted to each batch. This gives a total time ofO(t), and the total number of operations needed isO� logmlogn �n�plogn + logn2t=t0 + 1���= O�n logm� 1plog n + 12t=t0��= O�n� logmplogn + log h logmlogn � 2t=t0 + 1��: 2Corollary 4 For all given integers n � 2 and t � logn, n integers in the range 1 : : n can besorted on a CREW PRAM using O(t) time, O(n(plog n+log n=2t=logn)) operations, O(n) spaceand a standard word length of O(logn) bits.It is instructive to compare the tradeo� of Corollary 4 with that of the algorithm of Kruskal etal. (1990a). Put in a form analogous to that of Corollary 4, the result of Kruskal et al. states thatfor all t � 2 logn, n integers in the range 1 : : n can be sorted in O(t) time with a time-processorproduct of O� n lognlog(t=logn) + n�. Our algorithm and that of Kruskal et al. therefore pair thesame minimum time of �(log n) with the same operation count of �(n logn), i.e., no savingsrelative to comparison-based sorting. Allowing more time decreases the number of operations inboth cases, but the number of operations of our algorithm decreases doubly-exponentially fasterthan the corresponding quantity for the algorithm of Kruskal et al. and reaches its minimum of�(nplogn) already for t = �(log n log logn). If we allow still more time, our algorithm doesnot become any cheaper, and the algorithm of Kruskal et al. catches up for t = 2�(plogn) andis more e�cient from that point on.Placed in a similar context, our EREW PRAM sorting algorithm of Corollary 2 exhibits atradeo� that is intermediate between the two tradeo�s discussed above. As the time increases,the number of operations decreases exponentially faster than for the algorithm of Kruskal et al.Corollary 5 For all integers n � 2 and m � 1, if m = 2O(plogn), then n integers in the range1 : :m can be sorted stably on a CREW PRAM using O(logn) time, O(n) operations, O(n) spaceand a standard word length of O(logn) bits.Allowing randomization and assuming the availability of unit-time multiplication and integerdivision, we can extend the time and processor bounds of Corollary 4 to integers drawn from anarbitrary range. Suppose that the word length is � bits, where � � log n, so that the numbersto be sorted come from the range 0 : :2�� 1. Following Fredman and Willard (1993), we assumethe availability of a �xed number of constants that depend only on �. Using an approach verysimilar to ours, Raman (1991a) showed that n integers of arbitrary size can be sorted on a CREWPRAM in O(logn log logn) time using O(n logn= log logn) operations with high probability.The basic idea is very simple. First we choose a random sample V from the set of inputelements, sort V by standard means and determine the rank in V of each input element. We21

then use the algorithm of Corollary 4 to sort the input elements by their ranks and �nallysort each group of elements with a common rank, again by a standard sorting algorithm. Ifeach group is relatively small, the last step is not too expensive. The other critical step is thecomputation of the rank in V of each input element. An obvious way to execute this step is tostore the elements in V in sorted order in a search tree T , and then to carry out n independentsearches in T , each using a di�erent input element as its key. Since we aim for an operationcount of O(nplogn), however, T cannot be a standard balanced binary tree, and we have toresort to more sophisticated data structures, namely the fusion tree of Fredman and Willard(1993) and the priority queue of van Emde Boas (1977). Building on an approach outlined inSection 6 of (Fredman and Willard, 1993), we use a fusion tree that is a complete d-ary tree,where d � 2 and d = 2�(plogn), with the elements of the sample V stored in sorted order inits leaves. The distinguishing property of a fusion tree is that in spite of its high node degree,a search can proceed from a parent node to the correct child node in constant time. Since thedepth of our fusion tree is O(plogn), it allows the rank of all input elements to be determinedusing O(nplogn) operations, which precisely matches what we have to pay for sorting the inputelements by their ranks.The fusion tree makes crucial use of very large integers. Speci�cally, the constraint is thatwe must be able to represent numbers of dO(1) bits in a constant number of words. It followsthat we can use the fusion tree if � � 2bplognc. If � < 2bplognc, we replace the fusion treeas our search structure by a van Emde Boas (vEB) structure (van Emde Boas, 1977). Thelatter supports sequential search operations in O(log�) time. Since we use a vEB structure onlyif � < 2plogn, this is again su�cient for our purpose. The main outstanding di�culty is theconstruction of fusion trees and vEB structures, for which we use randomized algorithms. Whendiscussing randomized algorithms below, we always intend these to \fail gracefully", i.e., if theycannot carry out the task for which they were designed, they report failure without causingconcurrent writing or other error conditions.A fusion tree node contains various tables that can be constructed sequentially in O(d4) time.The sequential algorithm can be parallelized to yield a randomized algorithm that constructs afusion tree node with probability at least 1=2 and uses O(log d) time, dO(1) operations and dO(1)space; we present the details in an appendix. Letting this algorithm be executed in parallelby dlog ve + 2 independent processor teams, for v � 1, we can reduce the probability that afusion tree node is not constructed correctly to at most 1=(4v). Hence the entire fusion tree fora sorted set of v elements, which has fewer than 2v nodes, can be constructed in O(log v) timeusing dO(1)v log v operations and dO(1)v log v space with probability at least 1=2. As concerns theconstruction of a vEB structure for a sorted set of v elements, Raman (1991a) gives a randomizedalgorithm for this task that uses O(log v) time, O(v) operations and O(v) space and works withprobability at least 1=2 (in fact, with a much higher probability). We now give the remainingdetails of the complete sorting algorithm.Theorem 5 For every �xed integer � � 1 and for all given integers n � 2 and t � logn, n (ar-bitrary) integers can be sorted on a CREW PRAM using O(t) time, O(n(plogn+log n=2t=logn))operations and O(n) space with probability at least 1� 2�2�plog n .22

Proof: Let x1; : : : ; xn be the input elements, assume these to be pairwise distinct and let � � 1be an integer constant whose value will be �xed below. Execute the following steps.1. Draw v = dn=2�bplognce independent integers i1; : : : ; iv from the uniform distribution overf1; : : : ; ng. Construct the set V = fxi1 ; : : : ; xivg and sort it.2. Construct a search structure T for the set V . If � � 2bplognc let T be a fusion tree;otherwise let T be a vEB structure. In order to obtain T with su�ciently high probability,carry out 2(�+1)dplogne independent attempts to construct T , each attempt succeedingwith probability at least 1=2. By the discussion before the statement of Theorem 5, thiscan be done in O(logn) time using 2(�+1)dplogne � dO(1)v log v = 2O(plogn) � v operationsand space. For � chosen su�ciently large, the bound on operations and space is O(n), andthe probability that T is not constructed correctly is at most 2�2(�+1)plog n .3. Use T to compute the rank of xj in V , for j = 1; : : : ; n. This uses O(plogn) time andO(nplogn) operations.4. Use the algorithm of Corollary 4 to sort the input elements x1; : : : ; xn with respect to theirranks. This uses O(t) time and O(n(plogn + log n=2t=logn)) operations. For i = 0; : : : ; v,let Xi be the set of those input elements whose rank in V is i. Step 4 moves the elementsin Xi to consecutive positions, for i = 0; : : : ; v.5. Sort each of X0; : : : ; Xv using, e.g., Cole's merge sorting algorithm (Cole, 1988). IfM = maxfjXij : 0 � i � vg, this takes O(logn) time and O(Pvi=0 jXij log(jXij + 1)) =O(n logM) operations.The resources used by Step 1 are negligible. Hence all that remains is to show that withsu�ciently high probability, logM = O(plogn). But if logM > u + 1, where u = 2�plog n,the sampling in Step 1 misses at least 2u consecutive elements in the sorted sequence of inputelements, the probability of which is at mostn�1� 2un �v � n � e�2uv=n� n � e�22�plog n��plog n = n � e�2�plog n :For � chosen su�ciently large, the latter probability and the failure probability of 2�2(�+1)plog nin Step 2 add up to at most 2�2�plog n . 2For t � logn log log n, the algorithm of Theorem 5 exhibits optimal speedup relative to thesequential randomized algorithm described by Fredman and Willard (1993).AcknowledgmentWe are grateful to Christine R�ub and Richard Anderson, whose suggestions allowed us to improveour results and to simplify the exposition. 23

ReferencesAjtai, M., Koml�os, J., and Szemer�edi, E. (1983), An O(n logn) sorting network, in \Pro-ceedings, 15th Annual ACM Symposium on Theory of Computing," pp. 1{9.Andersson, A. (1995), Sublogarithmic searching without multiplications, in \Proceedings,36th Annual Symposium on Foundations of Computer Science," pp. 655{663.Andersson, A., Hagerup, T., Nilsson, S., and Raman, R. (1995), Sorting in linear time?,in \Proceedings, 27th Annual ACM Symposium on the Theory of Computing," pp. 427{436.Bast, H., and Hagerup, T. (1995), Fast parallel space allocation, estimation, and integersorting, Inform. and Comput. 123, 72{110.Batcher, K.E. (1968), Sorting networks and their applications, in \Proceedings, AFIPS SpringJoint Computer Conference, 32", pp. 307{314.Berkman, O., and Vishkin, U. (1993), On parallel integer merging, Inform. and Comput.106, 266{285.Bhatt, P. C. P., Diks, K., Hagerup, T., Prasad, V. C., Radzik, T., and Saxena, S.(1991), Improved deterministic parallel integer sorting, Inform. and Comput. 94, 29{47.Chaudhuri, S., and Hagerup, T. (1994), Pre�x graphs and their applications, in \Proceed-ings, 20th International Workshop on Graph-Theoretic Concepts in Computer Science,"Lecture Notes in Computer Science, Vol. 903, pp. 206{218, Springer-Verlag, Berlin.Cole, R. (1988), Parallel merge sort, SIAM J. Comput. 17, 770{785.Cole R., and Vishkin, U. (1986), Deterministic coin tossing with applications to optimalparallel list ranking, Inform. and Control 70, 32{53.Cormen, T.H., Leiserson, C.E., and Rivest, R. L. (1990), \Introduction to Algorithms,"The MIT Press, Cambridge, Mass.Fredman, M. L., and Willard, D. E. (1993), Surpassing the information theoretic boundwith fusion trees, J. Comput. System Sci. 47, 424{436.Gil, J., Matias, Y., and Vishkin, U. (1991), Towards a theory of nearly constant timeparallel algorithms, in \Proceedings, 32nd Annual Symposium on Foundations of ComputerScience," pp. 698{710.Goodrich, M. T., Matias, Y., and Vishkin, U. (1993), Approximate parallel pre�x com-putation and its applications, in \Proceedings, 7th International Parallel Processing Sym-posium," pp. 318{325.Goodrich, M. T., Matias, Y., and Vishkin, U. (1994), Optimal parallel approximation forpre�x sums and integer sorting, in \Proceedings, 5th Annual ACM-SIAM Symposium onDiscrete Algorithms," pp. 241{250.Hagerup, T. (1991), Constant-time parallel integer sorting, in \Proceedings, 23rd AnnualACM Symposium on Theory of Computing," pp. 299{306.24

Hagerup, T. and Raman, R. (1992), Waste makes haste: Tight bounds for loose parallelsorting, in \Proceedings, 33rd Annual Symposium on Foundations of Computer Science,"pp. 628{637.Hagerup, T. and Raman, R. (1993), Fast deterministic approximate and exact parallel sort-ing, in \Proceedings, 5th Annual ACM Symposium on Parallel Algorithms and Architec-tures," pp. 346{355.Hagerup, T., and R�ub, C. (1989), Optimal merging and sorting on the EREW PRAM,Inform. Process. Lett. 33, 181{185.Hagerup, T., and Shen, H. (1990), Improved nonconservative sequential and parallel integersorting, Inform. Process. Lett. 36, 57{63.J�aJ�a, J. (1992), \An Introduction to Parallel Algorithms," Addison-Wesley, Reading, Mass.Kirkpatrick, D., and Reisch, S. (1984), Upper bounds for sorting integers on random accessmachines, Theoret. Comput. Sci. 28, 263{276.Kruskal, C. P. (1983), Searching, merging, and sorting in parallel computation, IEEE Trans.Comput. 32, 942{946.Kruskal, C. P., Rudolph, L., and Snir, M. (1990a), E�cient parallel algorithms for graphproblems, Algorithmica 5, 43{64.Kruskal, C.P., Rudolph, L., and Snir, M. (1990b), A complexity theory of e�cient parallelalgorithms, Theoret. Comput. Sci. 71, 95{132.Matias, Y., and Vishkin, U. (1991a), On parallel hashing and integer sorting, J. Algorithms12, 573{606.Matias, Y., and Vishkin, U. (1991b), Converting high probability into nearly-constant time{ with applications to parallel hashing, in \Proceedings, 23rd Annual ACM Symposium onTheory of Computing," pp. 307{316.Paul, W. J., and Simon, J. (1980), Decision trees and random access machines, in \Proceed-ings, International Symposium on Logic and Algorithmic," Z�urich, pp. 331{340.Rajasekaran, S., and Reif, J. H. (1989), Optimal and sublogarithmic time randomizedparallel sorting algorithms, SIAM J. Comput. 18, 594{607.Rajasekaran, S., and Sen, S. (1992), On parallel integer sorting, Acta Inform. 29, 1{15.Raman, R. (1990), The power of collision: Randomized parallel algorithms for chaining andinteger sorting, in \Proceedings, 10th Conference on Foundations of Software Technologyand Theoretical Computer Science," Lecture Notes in Computer Science, Vol. 472, pp. 161{175, Springer-Verlag, Berlin.Raman, R. (1991a), \The power of collision: Randomized parallel algorithms for chaining andinteger sorting," Tech. Rep. no. 336, Computer Science Department, University of Rochester,New York, March 1990 (revised January 1991).25

Raman, R. (1991b), \Optimal sub-logarithmic time integer sorting on the CRCW PRAM,"Tech. Rep. no. 370, Computer Science Department, University of Rochester, New York,January 1991.Thorup, M. (1996), On RAM priority queues, in \Proceedings, 7th Annual ACM-SIAM Sym-posium on Discrete Algorithms," pp. 59{67.Vaidyanathan, R., Hartmann, C. R. P., and Varshney, P. K. (1993), Towards optimalparallel radix sorting, in \Proceedings, 7th International Parallel Processing Symposium,"pp. 193{197.van Emde Boas, P. (1977), Preserving order in a forest in less than logarithmic time andlinear space, Inform. Process. Lett. 6, 80-82.Wagner, R. A., and Han, Y. (1986), Parallel algorithms for bucket sorting and the data de-pendent pre�x problem, in \Proceedings, International Conference on Parallel Processing,"pp. 924{930.Appendix: Constructing a fusion-tree node in parallelIn this appendix we show that if � and d are positive integers with 2 � d6 � �, then a fusion-tree node for d � 1 given integers y1; : : : ; yd�1 drawn from the set U = f0; : : : ; 2� � 1g canbe constructed on a CREW PRAM with a word length of � bits using O(log d) time, dO(1)operations and dO(1) space with probability at least 1=2. Our algorithm is a straightforwardparallelization of the corresponding sequential algorithm of Fredman and Willard (1993).For any integer x and any �nite set S of integers, denote by rank(x; S) the rank of x in S, andlet Y = fy1; : : : ; yd�1g. Recall that the purpose of the fusion-tree node is to enable rank(x; Y) tobe determined in constant time by a single processor, for arbitrary given x 2 U . If y1; : : : ; yd�1are numbers of just O(�=d) bits, this can be done essentially as described in Section 3: Createa word B of O(�) bits containing y1; : : : ; yd�1 in separate �elds, with test bits set to zero, andanother word A containing d� 1 copies of x, with test bits set to one, then subtract B from Aand clear all bit positions, except those of the test bits, in the resulting word C. The test bitsof C can be added and their sum placed in a single �eld by means of a suitable multiplication;this number is rank(x; Y). In the following we will reduce the general rank computation to twosuch rank computations in sequences of small integers.For arbitrary x; y 2 U , de�ne msb(x; y) as �1 if x = y, and otherwise as the largest numberof a bit position in which x and y di�er. Fredman and Willard demonstrated that msb(x; y)can be determined in constant time by a single processor, for arbitrary given x; y 2 U . Withoutloss of generality assume that 0 < y1 < � � � < yd�1 < 2� � 1. In order to avoid special cases, weintroduce the two additional keys y0 = 0 and yd = 2� � 1. Let P = fmsb(yi�1; yi) : 1 � i � dgand write P = fp1; : : : ; prg with p1 < � � � < pr; clearly r � d. De�ne f : U ! f0; : : : ; 2r � 1gas the function that extracts the bit positions in P and packs them tightly, i.e., bit numberi in f(y) is bit number pi+1 in y, for i = 0; : : : ; r � 1 and for all y 2 U , while bits number26

r; : : : ; �� 1 are zero in f(y). It is important to note that f(y1) < � � � < f(yd�1). We write f(Y)for ff(y1); : : : ; f(yd�1)g.Let � = f0; : : : ; dg � f0; : : : ; rg � f0; 1g and de�ne a function � : U ! � as follows: Forx 2 U , let i = rank(f(x); f(Y)) and choose j 2 fi; i+1g to minimize msb(f(x); f(yj)), resolvingties by taking j = i. Note that this means that among all elements of f(Y [fy0; ydg), f(yj)is one with a longest pre�x in common with f(x) (the longest-pre�x property). Furthermoretake l = rank(msb(x; yj); P) and let a = 1 if x � yj , a = 0 otherwise. Then �(x) = (j; l; a).Fredman and Willard showed that for x 2 U , rank(x; Y) depends only on �(x). (This is easyto see by imagining a digital search tree T for the bit strings y0; : : : ; yd. The root-to-leaf pathin T corresponding to yj is a continuation of the path taken by a usual search in T for x, andP is the set of heights of children of nodes in T with two children, so that l determines themaximal path in T of nodes with at most one child on which the search for x terminates.) Asa consequence, once �(x) is known, rank(x; Y) can be determined in constant time as R[�(x)],where R is a precomputed table with 2(d+ 1)(r+ 1) entries.Since both images under f and bit positions are su�ciently small integers, the two rankcomputations in the algorithm implicit in the de�nition of � can be carried out in constantsequential time as described earlier in the appendix. As a consequence, we are left with twoproblems: How to construct the table R, and how to evaluate f in constant time.As rank(x; Y) can be determined in O(log d) sequential time for any given x 2 U , it su�cesfor the construction of R to provide a set X � U of dO(1) \test values" that \exercise" the wholetable, i.e., such that �(X) = �(U). This is easy: Take p0 = �1 and pr+1 = � and de�ne xj;l;a,for all (j; l; a) 2 �, as the integer obtained from yj by complementing the highest-numberedbit whose number is smaller than pl+1 and whose value is 1 � a; if there is no such bit, takexj;l;a = yj . We will show that if (j; l; a) 2 �(U), then �(xj;l;a) = (j; l; a), which proves thatX = fxj;l;a : (j; l; a) 2 �g is a suitable \test set". It may be helpful to visualize the followingarguments as they apply to the digital search tree mentioned above.Fix (j; l; a) 2 � and let S = fx 2 U : pl � msb(x; yj) < pl+1 and (x � yj , a = 1)g.Elements of S are the only candidates for being mapped to (j; l; a) by �.Suppose �rst that msb(xj;l;a; yj) > pl. Then f(xj;l;a) = f(yj), so that choosing i = j clearlyachieves the unique minimum of �1 of msb(f(xj;l;a); f(yi)g. By the longest-pre�x property andthe fact that xj;l;a 2 S, it now follows that �(xj;l;a) = (j; l; a).If msb(xj;l;a; yj) < pl, it is easy to see that S = �, so that (j; l; a)2 �(U).If msb(xj;l;a; yj) = pl, �nally, it can be seen that msb(x; yj) = pl for all x 2 S. Consider twocases: If msb(xj;l;a; yi) < pl for some i 2 f0; : : : ; dg, then msb(f(x); f(yi)) < msb(f(x); f(yj)) forall x 2 S. Then, by the longest-pre�x property, no x 2 S is mapped to (j; l; a), i.e., (j; l; a)2�(U).If msb(xj;l;a; yi) � pl for all i 2 f0; : : : ; dg, on the other hand, �(x) = �(xj;l;a) for all x 2 S, sothat �(xj;l;a) = (j; l; a) if (j; l; a) 2 �(U). Summing up, the useful part of R can be constructedin O(log d) time with d2 processors.We actually do not know how to evaluate f e�ciently, and Fredman and Willard employ adi�erent function g that still extracts the bit positions in P , but packs them less tightly. Moreprecisely, for nonnegative integers q1; : : : ; qr of size O(�) to be determined below, bit number pi27

in y is bit number pi + qi in g(y), for i = 1; : : : ; r and for all y 2 U , while all other bits in g(y)are zero. The integers q1; : : : ; qr will be chosen to satisfy the following conditions.(1) p1 + q1 < p2 + q2 < : : : < pr + qr;(2) (pr + qr)� (p1 + q1) � 2r5;(3) The r2 sums pi + qj , where 1 � i; j � r, are all distinct.Condition (1) ensures that rank(g(x); g(Y)) = rank(f(x); f(Y)) and that minimizingmsb(g(x); g(yj)) is equivalent to minimizing msb(f(x); f(yj)), for all x 2 U , so that substi-tuting g for f leaves the algorithm correct. Condition (2) ensures that images under g are stillsu�ciently small, following a �xed right shift by p1 + q1 bit positions, to allow constant-timecomputation of rank(g(x); g(Y)), and Condition (3) implies that g can be implemented as amultiplication by Pri=1 2qi followed by the application of a bit mask that clears all bits outsideof the positions p1 + q1; : : : ; pr + qr of interest.Fredman and Willard described a deterministic procedure for computing q1; : : : ; qr. We ob-tain q1; : : : ; qr through a randomized but faster procedure that essentially amounts to choosingq1; : : : ; qr at random. More precisely, choose Z1; : : : ; Zr independently from the uniform distri-bution over f1; : : : ; 2r4g and take qi = � � pi + 2(i � 1)r4 + Zi, for i = 1; : : : ; r. It is easy tosee that q1; : : : ; qr are nonnegative and that Conditions (1) and (2) are satis�ed. Condition (3)may be violated, but we can check this in O(log d) time with d2 processors. For �xed i; j; k; lwith 1 � i; j; k; l � r and (i; j) 6= (k; l), the condition pi + qj 6= pk + ql is violated with prob-ability at most 1=(2r4), so that altogether Condition (3) is violated with probability at mostr4=(2r4) = 1=2.

28

12 15 10 9 7 2 4 8= 12 15 10 (B � (B and M 0)) " (2t � l)9 (A and M 0) " (2t � l)7 2 4 A� (A and M 0)8 B and M 0ororor 0 0 0 1= 0 12 0 15 0 10 0 8� B1 7 1 2 1 4 1 9 A7 2 4 9 12 15 10 8

Fig. 1. One stage of bitonic sorting.

