
Minimizing Stall Time in Single and Parallel DiskSystems Using Multiommodity Network FlowsSusanne Albers and Carsten WittDept. of Computer Siene, Dortmund University, 44221 Dortmund, Germany,albers�ls2.s.uni-dortmund.de, arsten.witt�udo.eduAbstrat. We study integrated prefething and ahing in single andparallel disk systems. A reent approah used linear programming tosolve the problem. We show that integrated prefething and ahing analso be formulated as a min-ost multiommodity ow problem and, ex-ploiting speial properties of our network, an be solved using ombinato-rial tehniques. Moreover, for parallel disk systems, we develop improvedapproximation algorithms, trading performane guarantee for runningtime. If the number of disks is onstant, we ahieve a 2-approximation.1 IntrodutionIn today's omputer systems there is a large gap between proessor speeds andmemory aess times, the latter usually being the limiting fator in the per-formane of the overall system. Therefore, omputer designers devote a lot ofattention to building improved memory systems, whih typially onsist of harddisks and assoiated ahes. Cahing and prefething are two very well-knowntehniques for improving the performane of memory systems and, separately,have been the subjet of extensive studies. Cahing strategies try to keep ativelyreferened memory bloks in ahe, ignoring the possibility of reduing proessorstall times by prefething bloks into ahe before their atual referene. On theother hand, most of the previous work on prefething tries to predit the memorybloks requested next, not taking into aount that bloks must be evited fromahe in order to make room for the prefethed bloks. Only reently researhershave been working on an integration of both tehniques [1{5, 7℄.Cao et al. [3℄ and Kimbrel and Karlin [7℄ introdued a theoretial model forstudying \Integrated Prefething and Cahing" (IPC) that we will also use in thispaper. We �rst onsider single disk systems. A set S of memory bloks resideson one disk. At any time a ahe an store k of these bloks. The system mustserve a request sequene � = �(1); : : : ; �(n), where eah request �(i), 1 � i � n,spei�es a memory blok. The servie of a request takes one time unit and anonly be aomplished if the requested blok is in ahe. If a requested blok isnot in ahe, it must be fethed from disk, whih takes F time units, whereF 2 IN. If a missing blok is fethed immediately before its referene, then theproessor has to stall for F time units. However, a feth may also overlap withthe servie of requests. If a feth is started i time units before the next referene



to the blok, then the proessor has to stall for only maxf0; F � ig time units. Inase i � 1, we have a real prefeth. Of ourse, at most one feth operation maybe exeuted at any time. One a feth is initiated, a blok must be evited fromahe in order to make room for the inoming blok. The goal is to minimize theproessor stall time, or equivalently the elapsed time, whih is the sum of theproessor stall time and the length n of the request sequene.In parallel disk systems with D disks we have D sets of memory bloksS1; : : : ; SD, where Sd is the set of bloks that reside on disk d, 1 � d � D. Weassume that eah blok in the system is loated on only one of the disks. Themain advantage of parallel disk systems is that bloks from di�erent disks maybe fethed in parallel. Thus if the proessor has to stall at some point in time,then all the fethes urrently being ative advane towards ompletion. If a fethis initiated, we may evit any blok from ahe, whih orresponds to the modelthat bloks are read-only. Again the goal is to minimize the proessor stall time.Cao et al. [3, 4℄ studied IPC in single disk systems. They presented simpleombinatorial algorithms, alled onservative and aggressive, that run in polyno-mial time and approximate the elapsed time. Conservative ahieves an approxi-mation fator of 2, whereas aggressive ahieves a better fator of minf2; 1+F=kg.Karlin and Kimbrel [7℄ investigated IPC in parallel disk systems and presented apolynomial-time algorithm whose approximation guarantee on the elapsed timeis (1 + DF=k). In [1℄ Albers, Garg and Leonardi developed a polynomial-timealgorithm that omputes an optimal prefething/ahing shedule for single disksystems. For parallel disk systems they developed a polynomial-time algorithmthat approximates the stall time. The algorithm ahieves an approximation fa-tor of D, using at most D � 1 extra memory loations in ahe. All the resultspresented in [1℄ are based on a linear program formulation.In this paper we show that IPC in single and parallel disk systems an beformulated as a min-ost multiommodity ow problem and, exploiting speialproperties of the network, an be solved using ombinatorial methods. Theseresults are presented in Se. 2. We �rst investigate the single disk problem. Wedesribe the onstrution of the network and establish relationships between min-ost multiommodity ows and prefething/ahing shedules. We prove that aombinatorial approximation algorithm by Kamath et al. [6℄ for omputing min-ost multiommodity ows, when applied to our network, omputes an optimalprefething/ahing shedule in polynomial time. We then generalize our multi-ommodity ow formulation to parallel disk systems. With minor modi�ationsof the original network we are able to apply the algorithm by Kamath et al. [6℄again. We derive a ombinatorial algorithm that ahieves a D-approximation onthe stall time, using at most D � 1 extra memory loation in ahe. Thus, theresults presented in [1℄ an also be obtained using ombinatorial tehniques.For parallel disk systems, D is the best approximation fator on the stalltime urrently known. This fator D is aused by the fat that the approahin [1℄ heavily overestimates the stall times in prefething/ahing shedules:Stall time is ounted separately on eah disk, i. e. no advantage is taken of thefat that prefethes exeuted in parallel simultaneously bene�t from a proessor2



stall time. In Se. 3 we develop improved approximation guarantees that arebounded away from D. We are able to formulate a trade-o�. For any z 2 IN,we ahieve an approximation fator of 2(D=z) at the expense of a running timethat grows exponentially with z. If the number D of disks is onstant, we ob-tain a 2-approximation. For the speial ase D = 2 we also give a better 1:5-approximation. Again, our solutions need D�1 extra memory loations in ahe.The improved approximation algorithms an also be obtained using min-ostmultiommodity ows. However, for the sake of larity and due to spae limita-tions we present an LP-formulation in this extended abstrat.2 Modeling IPC by Network FlowsWe �rst onsider single disk systems. We build up our ombinatorial algorithm inseveral steps. Given a request sequene �, we �rst onstrut a networkG = (V;E)with several ommodities suh that an integral min-ost ow orresponds toan optimal prefething/ahing shedule for �, and vie versa. Of ourse, analgorithm for omputing min-ost multiommodity ows does not neessarilyreturn an integral ow when applied to our network. We show that a non-integralow orresponds to a frational prefething/ahing shedule in whih we anidentify an integral shedule using a tehnique from [1℄.The main problem we are faed with is that we know of no ombinatorialpolynomial-time algorithm for omputing a (non-integral) min-ost ow in ournetwork. We solve this problem by applying a ombinatorial approximation algo-rithm by Kamath et al. [6℄. For any " � 0, Æ � 0, the algorithm omputes a owsuh that a fration of at least 1� " of eah demand in the network is satis�edand the ost of the ow is at most (1 + Æ) times the optimum. Unfortunately,the ow omputed by the algorithm, when applied to our network, does notorrespond to a feasible frational prefething/ahing shedule: It is possiblethat (a) more than one blok is fethed from disk at any time and (b) bloks arenot ompletely in ahe when requested. We �rst redue the ow in the networkto resolve (a). This redues the extent to whih bloks are in ahe at the timeof their request even further. We then show that, given suh ow, we an stillderive an optimal prefething/ahing shedule, provided that " and Æ are hosenproperly.2.1 The NetworkLet � be a request sequene onsisting of n requests. We onstrut a networkG = (V;E) with n + 1 ommodities. Assoiated with eah request �(i) is aommodity i, 1 � i � n. This ommodity has a soure si, a sink ti and demanddi = 1. Let ai be the blok requested by �(i). For eah request �(i), we introdueverties xi and x0i. These verties are linearly linked, i. e. there are edges (xi; x0i),1 � i � n, and edges (x0i; xi+1), 1 � i � n � 1, eah with apaity k andost 0. Intuitively, this sequene of verties and edges represents the ahe. Ifommodity i ows through (xj ; x0j), then blok ai is in ahe when �(j) is served.3
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s3 t3s2 t2s1x1 x01t1 x2 x02 t4s4 x04x4 x05x5 t5s512212 2 20 01 01 x03x3Fig. 1. Sketh of the network for request sequene abb and F = 2To ensure that ai is in ahe when �(i) is served, we insert an edge (x0i; ti) withapaity 1 and ost 0, and there are no other edges into ti or x0i, i. e. ommodityi must pass through (xi; x0i).Let pi be the time of the previous request to ai, i. e. pi is the largest j, j < i,suh that ai was requested by �(j). If ai is requested for the �rst time in �, thenwe set pi = 0. To serve �(i), blok ai an (1) remain in ahe after �(pi) untilrequest �(i), provided that pi > 0, or an (2) be fethed into ahe at some timebefore �(i). To model ase (1) we introdue an edge (si; x0pi), if pi > 0, withapaity 1 and ost 0. To model ase (2) we essentially add edges (si; xj), forj = pi+1; : : : ; i, indiating that a feth for ai is initiated starting at the servie of�(j). For the speial ase j = i the edge represents a feth exeuted immediatelybefore �(i). If i� j < F , then the proessor has to stall for F � (i� j) time unitsand hene we assign a ost of F � (i � j) to edge (si; xj). Figure 1 illustratesthis onstrution for the examplary request sequene � = abb and feth timeF = 2. Edges outgoing of a soure si, i 2 f1; : : : ; 5g, are labeled with their ost.So far our onstrution allows a ow algorithm to saturate more than one ofthe edges that orrespond to fethes exeuted simultaneously (onsider, e. g. theedges (si; xi�1) and (si�1; xi�2) for some i suh that �(i� 2), �(i� 1) and �(i)are pairwise distint). However, we have to make sure that at most one fethoperation is exeuted at any time. Therefore, in our onstrution we split the\super edge" (si; xj) into several parts. For any `, 1 � ` � n� 1, let [`; `+1) bethe time interval starting at the servie of �(`) and ending immediately beforethe servie of �(`+ 1). Interval [0; 1) is the time before the servie of �(1).We have to onsider all the fethes being ative at some time in [`; ` + 1),for any �xed `. A feth for ai starting at �(j), j < i, is ative during [`; `+ 1)for ` = j; : : : ;minfj + F; ig � 1. For any �xed i and j with 1 � i � n andpi+1 � j < i we introdue verties vìj and wìj where ` = j; : : : ;minfj+F; ig�1.These verties are linked by edges of apaity 1 and ost 0. More spei�ally,we have edges (vìj ; wìj), ` = j; : : : ;minfj + F; ig � 1, and edges (wìj ; v`�1ij ),` = j+1; : : : ;minfj+F; ig�1. The last vertex in this sequene, wjij , is linked toxj with an edge of ost 0 and apaity 1. Finally we add an edge (si; vìj), where` = minfj + F; ig � 1, to the �rst vertex in this sequene with ost F � (i � j)and apaity 1. In this onstrution we exluded the ase j = i beause a fethfor ai initiated at �(i) is somewhat speial: The feth is performed ompletelybefore �(i), i. e. it does not overlap with any request, and the proessor stalls4



for F time units. The feth is ative at some time during [i� 1; i). We introdueverties vi�1i;i and wi�1ii linked by an edge of apaity 1 and ost 0. Vertex wi�1iiis linked to xi with an edge of the same apaity and ost. Finally, we have anedge (si; vi�1ii ) of apaity 1 and ost F .Next we desribe the role of the (n+1)-st ommodity, whih is used to ensurethat no two prefethes are performed at the same time. More preisely, we ensurethat at most one prefeth is exeuted in any �xed interval [`; `+1), 1 � ` � n�1.For any �xed `, let f` be the number of prefethes whose exeution overlaps with[`; `+ 1), i. e. f` = jfvìj j 1 � i � n; pi + 1 � j � igj : (1)Commodity n + 1 has a soure sn+1, a sink tn+1 and a demand of dn+1 =Pn�1`=1 (f`� 1). The ow from sn+1 to tn+1 is routed through the edges (vìj ; wìj)and newly introdued \subsinks" tǹ+1, 1 � ` � n � 1. For any pair of vertiesvìj and wìj we introdue edges (sn+1; vìj) and (wìj ; tǹ+1) with apaity 1 andost 0. Additionally, we insert edges (tǹ+1; tn+1) with apaity f` � 1 and ost0. Now onsider a �xed interval [`; `+1), 1 � ` � n� 1. Every prefeth for someai initiated at �(j) that is ative at some time during [`; `+1) is represented bya \super edge" (si; xj) and ontains an edge (vìj ; wìj). For �xed ` the networkontains f` suh edges. The apaities f` � 1 of the edges (tǹ+1; tn+1) ensurethat only one of the edges (vìj ; wìj) an arry a ow of ommodity i, i � n.If two or more suh edges were arrying ow of ommodity i � n, then theapaity onstraint would be violated at some edge (t`0n+1; tn+1), for some `0 6= `,or demand dn+1 would not be satis�ed.The following lemma states that our network orretly models IPC on a singledisk. Its proof is omitted in this extended abstrat.Lemma 1. Any feasible integral ow of ost C in G orresponds to a feasibleprefething/ahing shedule with stall time C for �, and vie versa.2.2 Properties of Optimal FlowsWe show that a non-integral ow in our network orresponds to a frationalprefething/ahing shedule, de�ned in the following way.De�nition 2. Given an instane of the problem IPC, we de�ne the set of fra-tional solutions as a superset of the set of integral solutions to the instane. Afrational solution may deviate from an integral solution in the following way:{ The amount to whih a blok resides in ahe may take a frational valuebetween 0 and 1. However, this amount must be 1 while the blok is requested.{ Frational parts of bloks in ahe arise due to partial evitions or partialfethes. For eah time interval, the net amount of bloks fethed must not belarger than the net amount of bloks evited, and the net amount of bloksfethed must not exeed 1.{ Stall times are aounted as follows: If a feth to Æ 2 [0; 1℄ units of blok �(j)is initiated starting at the servie of referene �(i) and j � i < F holds, weinur a stall time of Æ(F � (j � i)) time units.5



Loosely speaking, the main di�erene between integral and frational solutionslies in the possibility to interrupt fethes and to leave parts of a blok in ahebetween onseutive requests to it. Regarding the seond item in the abovede�nition we may assume w. l. o. g. that between any two onseutive referenesto a spei� blok, the points of time where the blok is evited from ahepreede the ones where the blok is fethed bak.Lemma 3. Let G be the network obtained by transforming a request sequene� of the problem IPC aording to the onstrution in Se. 2.1. A valid multi-ommodity ow with ost C within the network G orresponds to a frationalprefething/ahing shedule with stall time C.The next lemma follows immeditately from [1℄; it was shown that a frationalsolution is a onvex ombination of polynomially many integral solutions.Lemma 4. Let L be a frational solution to an input for IPC. There is apolynomial-time algorithm that omputes an integral prefething/ahing shed-ule L� from L where the stall time of L� is less than or equal to the one of L.2.3 Applying the Approximation AlgorithmWe show how to ompute a ow in our network and how to derive an optimalprefething/ahing shedule. We apply the algorithm by Kamath et al. [6℄ bysetting " := 1=(4F 2n3) and Æ := 1=(3nF ). These settings have been derived fromthe easy-to-see upper bound dn+1 � n2F on the demand of ommodity n+ 1.As the approximation algorithm only satis�es a fration of 1 � " of eahommodity, the ow out of eah soure si, i 2 f1; : : : ; ng, is lower bounded by 1�". Moreover, ommodity n+1might lak an amount of "dn+1 � "Fn2. We assumepessimistially that this leads to an additional \illegal" ow with value "Fn2during a time interval [`; `+1), ` 2 f1; : : : ; n�1g, in so far as edges representingfethes in that interval are not \ongested" properly by ommodity n+ 1.Let % := 1� "dn+1 � " be a ruial lower bound on the ow of ommodities1; : : : ; n. We an transform the ow � output by the approximation algorithminto a uniform ow �0 whih direts exatly % units of ow from si to ti forany ommodity i 2 f1; : : : ; ng. The main idea is to redue, for eah edge, theow of ommodity i proportionally to the relative amount of ow of ommodityi on the onsidered edge. Then we end up with a uniform ow �0 whih doesnot \overow" any interval [`; ` + 1) and delivers the same amount for eahommodity.In view of De�nition 2 and the equivalene desribed in Lemma 3, the ow �0orresponds to a frational solution to IPC in whih all bloks have size %. Flow�0 orresponds to a frational solution to IPC in whih all bloks have size % andthe number of ahe slots is upper bounded by k=%|hereinafter we all suh asolution a %-solution. Aording to Lemma 4, we may interpret the frationalsolution whih orresponds to �0 as a onvex ombination of integral %-solutions.In order to analyze the quality of the above-desribed onvex ombination ofintegral %-solutions, we have to establish a lower bound on %. As dn+1 � Fn2,6



we obtain % � 1 � "dn+1 � " � 1 � 2"dn+1 � 1 � 1=2nF . Next we estimatethe ost C of the onvex ombination of %-solutions. Sine the approximationalgorithm outputs ows with ost at most (1 + Æ)OPT, where OPT is the ostof an optimal shedule, and reduing ows to % does never inrease ost, thefollowing upper bound on C holds:C � (1+Æ)OPT = OPT=(3nF )+OPT � OPT+1=3 sine OPT � nF : (2)We underestimated the ost C of the onvex ombination of %-solutions byan additive term of at most n(1� %)F . This is due to the fat that eah blokorresponding to a spei� ommodity has size 1 in reality, but size % in theonvex ombination. By inreasing the blok size (or, equivalently, the ow ofthe orresponding ommodity), the ost an rise by at most (1 � %)F . Hene,the ost C 0 of the onvex ombination of integral solutions is at mostC 0 � C + n(1� %)F � OPT+1=3 + nF=2nF < OPT+1 : (3)From C 0 < OPT+1 we onlude that the onvex ombination ontains atleast one integral solution with optimal osts. As the number of possible integralsolutions is bounded by Fn2 (see [1℄), an optimal omponent, i. e. integral solu-tion, within the onvex omposition an be omputed in polynomial time. How-ever, eah integral solution originates from a %-solution where a blok has size%. Sine the ahe is still k large, it remains to prove that no integral omponentof the onvex omposition does hold more than k bloks in ahe onurrently.Sine, w. l. o. g., k=(nF ) < 1 holds, the number of bloks of size % held on-urrently in ahe is at mostk% � k1� 12nF � k�1 + 1nF � < k + 1 (4)beause (1�"0)�1 � 1+2"0 for any "0 2 [0; 1=2℄. Therefore, (k+1)% > k holds, andwe would obtain a ontradition if an integral solution held more than k pages inahe onurrently. Finally, this implies that we have found a feasible and optimalprefething/ahing shedule. The overall running time of the approximationalgorithm is O�("�3Æ�3jEjjV j2), where  denotes the number of ommoditiesand O� means \up to logarithmi fators". As jV j = O(n2) and jEj = O(n2), weobtain the polynomial upper bound O�((nF )3(n3F 2)3(n+ 1)n2n4) = O�(n18).Now we state the main result of this setion.Theorem 5. An optimal solution to an input for IPC an be omputed by aombinatorial algorithm in polynomial time.2.4 Generalization to Multiple DisksThe solution developed for single disk systems an be generalized to multipledisks. Due to spae limitations, we only state the main result here.Theorem 6. There is a ombinatorial polynomial-time algorithm whih om-putes a D-approximation to an input for IPC if the number of disks is D andthere are D � 1 slots of extra ahe available.7



3 Improving the Approximation FatorIn this setion we return to the linear program by Albers, Garg and Leonardi [1℄for the multiple disk ase and improve its approximation fator. If the number Dof disks is onstant, we ahieve a 2-approximation. We know that our approahleads to a linear program whih an also be stated as a min-ost multiom-modity ow problem. We omit that representation as we onsider the improvedapproximation guarantee to be the most important ontribution.3.1 Bundling IntervalsThe drawbak of the LP formulation by Albers, Garg and Leonardi [1℄ is thatit overestimates the stall time of prefething/ahing shedules. We present anLP that ounts stall time more aurately. As in [1℄ we represent time periodsin whih feth operations are exeuted by open intervals I = (i; j), with i =0; : : : ; n� 1 and j = i+1; : : : ; n, where n = j�j is the length of the given requestsequene. Suh an interval I = (i; j) orresponds to the time period startingafter the servie of �(i) and ending before the servie of �(j). Its length isjI j = j � i� 1. If jI j < F , then F � jI j units of stall time must be sheduled inthe feth operation. Sine fethes take F time units, we an restrit ourselves tointervals with j � i+F +1. For eah potential interval I we introdue a opy Idfor eah disk d 2 f1; : : : ; Dg. Let I be the resulting set of all these intervals. TheLP in [1℄ determines whih intervals of I should exeute prefethes. Stall timesare ounted separately for the intervals and disks, whih auses the overestimate.The main idea of our LP is to form bundles of intervals and treat eahbundle as a unit: In any bundle either all the intervals or no interval will exeutea feth. We next introdue the notion of bundles and need one property ofoptimal prefething/ahing shedules. An interval I = (i1; i2) properly ontainsinterval J = (j1; j2) (whih is not neessarily assoiated with the same disk) ifi1 < j1 and j2 < i2 hold. The proof of the next lemma is omitted.Lemma 7. An optimal (frational or integral) prefething/ahing shedule fora system with D disks does not inlude feth intervals properly ontaining eahother.De�nition 8. A set of intervals B, jBj 6= ;, is alled a bundle if B ontainsat most one interval from eah disk and is overlapping. A set of intervals B isalled overlapping if it inludes no intervals properly ontaining eah other buthas for all but one I = (i1; i2) 2 B some interval J = (j1; j2) 2 B, J 6= I, suhthat j1 � i1 and J overlaps with I. Two intervals I = (i1; i2) and J = (j1; j2),i1 � j1, are alled overlapping if either j1 < i2 � 1 is valid, or j1 = i2 � 1 andadditionally i2 � i1 � 1 < F hold.Fix a z 2 IN with z � D. We will bundle intervals from up to z disks. In thisextended abstrat we assume for simpliity that D=z 2 IN. We partition the diskset into D=z sets f1; : : : ; zg; fz+1; : : : ; 2zg; : : : ; fD� z +1; : : : ; Dg. Now let Bzbe the set of all the bundles omposed of intervals from I, with the additional8



restrition that the intervals of a bundle must ome from the same subset of thedisk partition. One an show that jBzj � n(F + 1)2z(D=z)z!.We are nearly ready to state the extended linear program for IPC and D > 1.For eah bundle B 2 Bz, we introdue a variable x(B) whih is set to 1 if aprefeth is performed in all intervals in bundle B, and is set to 0 otherwise. Inorder to speify whih bloks are fethed and evited we use variables fId;a andeId;a for all Id 2 I and all bloks a. Variable fId;a (respetively eId;a) is equal to1 if a is fethed (respetively evited) in Id. Of ourse eId;a = fId;a = 0 if a doesnot reside on disk d. For a bundle B 2 Bz, let s(B) be the minimum stall timeneeded to exeute fethes in all the intervals of B assuming that no other fethoperations are performed in the shedule. The value s(B) an be omputed asfollows. Let (a1; b1); : : : ; (am; bm) be the sequene of all intervals in B obtainedby sorting them by inreasing end index, where intervals with the same end indexare sorted by inreasing start index breaking ties arbitrarily.One an easily verifythat in an optimal shedule for B, stall times our at the end of intervals, thefeth in (a1; b1) is started at the latest point in time (i. e. immediately beforerequest a2 if b1 6= a1 and after a1 otherwise) whereas the fethes in (ai; bi), i � 2,are started at the earliest point in time. We determine the amounts of stall timesneeded at the end of intervals. Let i1; i2; : : : ; im0 with m0 � m be the sequeneobtained from b1; : : : ; bm by eliminating multiple ourrenes of the same valueand keeping only the indies ij suh that bij+1 6= bij . By de�nition, i0 := 0and bi0 := 0. For j = 1; : : : ;m0, interval (aij ; bij ) is the shortest interval withend index bij and determines the stall time to be inserted before that request.The funtion h : fbi1 ; : : : ; bim0 g ! IN that indiates the atual stall time neededbefore request bij is de�ned indutively, for j = 1; : : : ;m0, as follows:h(bij ) :=maxn0; F � (bij � aij � 1)� Xr2fbi1 ;:::;bij�1g : r2faij+1;:::;bij�1gh(r)o :Using this de�nition we have s(B) :=Pm0j=1 h(bij ).In order to refer to individial disks, we need for d 2 f1; : : : ; Dg the projetions�d : Bz ! I, where �d(B) = I if I 2 B and I resides on disk d, and �d(B) = ;if B ontains no interval assoiated with disk d. The value of �d is well de�nedsine at most one interval from eah disk is part of a bundle. Now the extendedlinear program reads as follows. Minimize the objetive funtionXB2Bz x(B)s(B) (5)subjet to 8i 2 f1; : : : ; ng;8d XB2Bz : �d(B)�(i�1;i+1)x(B) � 1 (6)8d;8Id Xa fId;a =Xa eId;a � XB2Bz : �d(B)=Id x(B) (7)9



8a;8i 2 f1; : : : ; nag XI2I : I�(ai;ai+1) fI;a = XI2I : I�(ai;ai+1) eI;a � 1 (8)8a XI2I : I�(0;a1) fI;a = 1; 8a XI2I : I�(0;a1) eI;a = 0 (9)8a;8i 2 f1; : : : ; nag XI2I : I�(ai�1;ai+1) fI;a = XI2I : I�(ai�1;ai+1) eI;a = 0 (10)8I 2 I;8a fI;a; eI;a 2 f0; 1g (11)8B 2 Bz x(B) 2 f0; 1g : (12)Here we have taken over some terminology from the original formulation in [1℄.The �rst set of ontraints ensures that for eah disk and eah point of time, theamount of feth is at most 1. The seond set of onstraints guarantees for eahinterval on every disk that the amount of bloks fethed in the interval is at mostthe overall amount of bloks evited in that interval. For a spei� interval Id,we allow a bundle variable x(B), where B ontains Id, to take value 1; observethat B might onsist of Id as the only element. If a bundle variable x(B) is 1, theseond set of onstraints allows fethes in all intervals belonging to the bundle.Please note that onstraint (6) only ensures that at most one prefeth operationmay be exeuted while serving a request. Espeially, it allows prefethes to bestarted in the midst of stall times, suh the exat point of time where a prefethis started may be unspei�ed if there is stall time at the beginning of an interval.We will argue later that this freedom is justi�ed. Constraints (8){(11) have beenadapted from the LP formulation in [1℄ and ensure that a blok is in ahe at thetime of its referene. The objetive funtion �nally ounts the s-values, whihare related to parallel stall times, for bundles whose variables are 1. It remainsto prove that a solution to the extended linear program indues a valid shedulewhose stall time is ounted at least one by the value of the objetive funtion.Consider an arbitrary integer solution to the extended LP, whih spei�esan assignment to the variables fI;a; eI;a and x(B). Using fI;a and eI;a, we knowbetween whih requests a prefeth operation must be started, but may hoosethe exat point of time of the start if the related requests are intermitted by stalltime.We indutively onstrut a shedule whose stall time is bounded from aboveby the value of the objetive funtion. First, we sort the bundles B for whihx(B) = 1 holds by inreasing maximum end index (of the intervals in the bundle)and, if equality holds, by inreasing minimum start index. Let B1; : : : ; Bm bethe resulting sequene. Suppose that we have already onstruted a shedulefor B1; : : : ; Br�1. For bundle Br, we have to shedule fethes and evitions forthose bloks whose variables fI;a and eI;a have been set to 1 and I 2 Br. Weuse the notation introdued for de�ning the stall times s(B) on page 9. Let(a1; b1); : : : ; (am; bm) be the sequene of intervals in Br. We �rst insert h(bi`)units of stall time before bi` , ` 2 f1; : : : ;m0g, and then shedule the fethes in(ai; bi), i 2 f1; : : : ;mg, as follows. The feth in (a1; b1) is started at the latestpossible point in time. More preisely, if a1 < b1, we start the feth with theservie of request a1+1; otherwise the feth is sheduled immediately before the10



servie of b1. The fethes in (ai; bi), i � 2, are started at the earliest point in timeafter ai suh that the required disk is available. The de�nition of the h-valuesensures that we reserve at least F time units for eah feth irrespetively of stalltimes whih are aused by fethes in intervals from bundles B1; : : : ; Br�1. Infat, a reserved time interval might even be longer. However, this is no problem.The feth simply ompletes after F time units and the orresponding disk isthen idle for the rest of the interval. Thus, the onstruted shedule is feasibleand we insert exatlyPmj=1 s(Bj) units of stall time.3.2 Ahieving the (2D=z)-ApproximationLemma 9. The extended linear program for D disks has an integral solution ofost at most (2D=z)OPT.Proof. Suppose we have been given an optimal integral prefething/ahingshedule of stall time OPT. We restrit ourselves to an arbitrary subset of thepartition D=z�1[i=0 fiz + 1; iz + 2; : : : ; iz + zg (13)of the disk set f1; : : : ; Dg. W. l. o. g., this subset is f1; : : : ; zg. We onsider onlystall times aused by fethes in intervals assoiated with disks f1; : : : ; zg. Inthe following, we speify an assignment to the variables assoiated with disksf1; : : : ; zg suh that the stall time that arises by exeuting only the fethes ondisks f1; : : : ; zg is ounted at most twie in the objetive funtion of the linearprogram. Repeating this proess for all the subsets of the above partition, weobtain an assignment to all the variables x(B) for B 2 Bz. As the objetivefuntion is separable with respet to the bundles in Bz and therefore with respetto the (D=z) subsets of the above partition, we ount a spei� stall time in theoptimal prefething/ahing shedule at most 2(D=z) times.By I 0 � I we denote the set of all intervals assoiated with the disk setf1; : : : ; zg in whih prefethes are performed. Aording to Lemma 7, we haveno intervals properly ontaining eah other in the set I 0. Therefore, we an orderthe intervals in I 0 by inreasing start points and (if these are equal) by inreasingend points. Let I1; : : : ; Im be the resulting sequene. We partition I 0 into bundlesaording to the following greedy algorithm.B := ;for j = 1; : : : ;m doif interval Ij [B is a bundle then set B := Ij [ Belse output B as an element of the partition and set B := ;.Let B1 [ � � � [ B`, ` � m, be the partition of I 0 obtained by this proess.Our solution to the linear program is onstruted by setting x(Bj) to 1 forj 2 f1; : : : ; `g. The variables fI;a and eI;a are set aording to whih bloks arefethed in the intervals of the onsidered bundle. This proess is repeated foreah subset of the partition (13) of the disk set. All remaining variables are zero.11
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