Minimizing Stall Time in Single and Parallel Disk
Systems Using Multicommodity Network Flows

Susanne Albers and Carsten Witt

Dept. of Computer Science, Dortmund University, 44221 Dortmund, Germany,
albers@ls2.cs.uni-dortmund.de, carsten.wittQudo.edu

Abstract. We study integrated prefetching and caching in single and
parallel disk systems. A recent approach used linear programming to
solve the problem. We show that integrated prefetching and caching can
also be formulated as a min-cost multicommodity flow problem and, ex-
ploiting special properties of our network, can be solved using combinato-
rial techniques. Moreover, for parallel disk systems, we develop improved
approximation algorithms, trading performance guarantee for running
time. If the number of disks is constant, we achieve a 2-approximation.

1 Introduction

In today’s computer systems there is a large gap between processor speeds and
memory access times, the latter usually being the limiting factor in the per-
formance of the overall system. Therefore, computer designers devote a lot of
attention to building improved memory systems, which typically consist of hard
disks and associated caches. Caching and prefetching are two very well-known
techniques for improving the performance of memory systems and, separately,
have been the subject of extensive studies. Caching strategies try to keep actively
referenced memory blocks in cache, ignoring the possibility of reducing processor
stall times by prefetching blocks into cache before their actual reference. On the
other hand, most of the previous work on prefetching tries to predict the memory
blocks requested next, not taking into account that blocks must be evicted from
cache in order to make room for the prefetched blocks. Only recently researchers
have been working on an integration of both techniques [1-5, 7].

Cao et al. [3] and Kimbrel and Karlin [7] introduced a theoretical model for
studying “Integrated Prefetching and Caching” (IPC) that we will also use in this
paper. We first consider single disk systems. A set S of memory blocks resides
on one disk. At any time a cache can store k of these blocks. The system must
serve a request sequence o = o(1),...,0(n), where each request o(i), 1 <i < n,
specifies a memory block. The service of a request takes one time unit and can
only be accomplished if the requested block is in cache. If a requested block is
not in cache, it must be fetched from disk, which takes F' time units, where
F € IN. If a missing block is fetched immediately before its reference, then the
processor has to stall for F' time units. However, a fetch may also overlap with
the service of requests. If a fetch is started i time units before the next reference

to the block, then the processor has to stall for only max{0, ' —4} time units. In
case ¢ > 1, we have a real prefetch. Of course, at most one fetch operation may
be executed at any time. Once a fetch is initiated, a block must be evicted from
cache in order to make room for the incoming block. The goal is to minimize the
processor stall time, or equivalently the elapsed time, which is the sum of the
processor stall time and the length n of the request sequence.

In parallel disk systems with D disks we have D sets of memory blocks
S1,...,S9p, where S; is the set of blocks that reside on disk d, 1 < d < D. We
assume that each block in the system is located on only one of the disks. The
main advantage of parallel disk systems is that blocks from different disks may
be fetched in parallel. Thus if the processor has to stall at some point in time,
then all the fetches currently being active advance towards completion. If a fetch
is initiated, we may evict any block from cache, which corresponds to the model
that blocks are read-only. Again the goal is to minimize the processor stall time.

Cao et al. [3,4] studied IPC in single disk systems. They presented simple
combinatorial algorithms, called conservative and aggressive, that run in polyno-
mial time and approximate the elapsed time. Conservative achieves an approxi-
mation factor of 2, whereas aggressive achieves a better factor of min{2, 1+ F/k}.
Karlin and Kimbrel [7] investigated IPC in parallel disk systems and presented a
polynomial-time algorithm whose approximation guarantee on the elapsed time
is (1 + DF/k). In [1] Albers, Garg and Leonardi developed a polynomial-time
algorithm that computes an optimal prefetching/caching schedule for single disk
systems. For parallel disk systems they developed a polynomial-time algorithm
that approximates the stall time. The algorithm achieves an approximation fac-
tor of D, using at most D — 1 extra memory locations in cache. All the results
presented in [1] are based on a linear program formulation.

In this paper we show that IPC in single and parallel disk systems can be
formulated as a min-cost multicommodity flow problem and, exploiting special
properties of the network, can be solved using combinatorial methods. These
results are presented in Sec. 2. We first investigate the single disk problem. We
describe the construction of the network and establish relationships between min-
cost multicommodity flows and prefetching/caching schedules. We prove that a
combinatorial approximation algorithm by Kamath et al. [6] for computing min-
cost multicommodity flows, when applied to our network, computes an optimal
prefetching/caching schedule in polynomial time. We then generalize our multi-
commodity flow formulation to parallel disk systems. With minor modifications
of the original network we are able to apply the algorithm by Kamath et al. [6]
again. We derive a combinatorial algorithm that achieves a D-approximation on
the stall time, using at most D — 1 extra memory location in cache. Thus, the
results presented in [1] can also be obtained using combinatorial techniques.

For parallel disk systems, D is the best approximation factor on the stall
time currently known. This factor D is caused by the fact that the approach
in [1] heavily overestimates the stall times in prefetching/caching schedules:
Stall time is counted separately on each disk, i.e. no advantage is taken of the
fact that prefetches executed in parallel simultaneously benefit from a processor

stall time. In Sec. 3 we develop improved approximation guarantees that are
bounded away from D. We are able to formulate a trade-off. For any z € IN,
we achieve an approximation factor of 2(D/z) at the expense of a running time
that grows exponentially with z. If the number D of disks is constant, we ob-
tain a 2-approximation. For the special case D = 2 we also give a better 1.5-
approximation. Again, our solutions need D —1 extra memory locations in cache.
The improved approximation algorithms can also be obtained using min-cost
multicommodity flows. However, for the sake of clarity and due to space limita-
tions we present an LP-formulation in this extended abstract.

2 Modeling IPC by Network Flows

We first consider single disk systems. We build up our combinatorial algorithm in
several steps. Given a request sequence o, we first construct a network G = (V, E)
with several commodities such that an integral min-cost flow corresponds to
an optimal prefetching/caching schedule for o, and vice versa. Of course, an
algorithm for computing min-cost multicommodity flows does not necessarily
return an integral flow when applied to our network. We show that a non-integral
flow corresponds to a fractional prefetching/caching schedule in which we can
identify an integral schedule using a technique from [1].

The main problem we are faced with is that we know of no combinatorial
polynomial-time algorithm for computing a (non-integral) min-cost flow in our
network. We solve this problem by applying a combinatorial approximation algo-
rithm by Kamath et al. [6]. For any € > 0, § > 0, the algorithm computes a flow
such that a fraction of at least 1 — & of each demand in the network is satisfied
and the cost of the flow is at most (1 + §) times the optimum. Unfortunately,
the flow computed by the algorithm, when applied to our network, does not
correspond to a feasible fractional prefetching/caching schedule: It is possible
that (a) more than one block is fetched from disk at any time and (b) blocks are
not completely in cache when requested. We first reduce the flow in the network
to resolve (a). This reduces the extent to which blocks are in cache at the time
of their request even further. We then show that, given such flow, we can still
derive an optimal prefetching/caching schedule, provided that € and § are chosen

properly.

2.1 The Network

Let o be a request sequence consisting of n requests. We construct a network
G = (V,E) with n + 1 commodities. Associated with each request o(i) is a
commodity ¢, 1 < i < n. This commodity has a source s;, a sink #; and demand
d; = 1. Let a; be the block requested by o (7). For each request o(2), we introduce
vertices z; and z}. These vertices are linearly linked, i. e. there are edges (z;, z}),
1 < i < n, and edges (z},z;41), 1 < i < n — 1, each with capacity k£ and
cost 0. Intuitively, this sequence of vertices and edges represents the cache. If
commodity i flows through (z;, z}), then block a; is in cache when o(j) is served.

Fig. 1. Sketch of the network for request sequence abcbc and F = 2

To ensure that a; is in cache when o(7) is served, we insert an edge (z},t;) with
capacity 1 and cost 0, and there are no other edges into ¢; or z}, i.e. commodity
i must pass through (z;, z}).

Let p; be the time of the previous request to a;, i.e. p; is the largest j, j < i,
such that a; was requested by o(j). If a; is requested for the first time in o, then
we set p; = 0. To serve o(2), block a; can (1) remain in cache after o(p;) until
request o (i), provided that p; > 0, or can (2) be fetched into cache at some time
before o(i). To model case (1) we introduce an edge (s;,z,,), if p; > 0, with
capacity 1 and cost 0. To model case (2) we essentially add edges (s;,z;), for
j=mpi+1,...,14, indicating that a fetch for a; is initiated starting at the service of
o (7). For the special case j = ¢ the edge represents a fetch executed immediately
before o (7). If i — j < F, then the processor has to stall for F' — (i — j) time units
and hence we assign a cost of F' — (i — j) to edge (s;,x;). Figure 1 illustrates
this construction for the examplary request sequence o = abcbe and fetch time

F = 2. Edges outgoing of a source s;, i € {1,...,5}, are labeled with their cost.

So far our construction allows a flow algorithm to saturate more than one of
the edges that correspond to fetches executed simultaneously (consider, e. g. the
edges (s;,z;—1) and (s;—1,z;_2) for some ¢ such that o(i —2), o(i — 1) and o ()
are pairwise distinct). However, we have to make sure that at most one fetch
operation is executed at any time. Therefore, in our construction we split the
“super edge” (s;, ;) into several parts. For any ¢, 1 <{ <n—1, let [(,{+ 1) be
the time interval starting at the service of o(¢) and ending immediately before
the service of o (¢ + 1). Interval [0, 1) is the time before the service of o(1).

We have to consider all the fetches being active at some time in [¢,£ + 1),
for any fixed £. A fetch for a; starting at o(j), j < i, is active during [{,£ + 1)
for £ = j,...,min{j + F,i} — 1. For any fixed ¢ and j with 1 < i < n and
pi+1 < j < i we introduce vertices v}; and wf; where £ = j,...,min{j+F,i}—1.
These vertices are linked by edges of capacity 1 and cost 0. More specifically,
we have edges (vfj,wfj), ¢ =j,...,min{j + F,i} — 1, and edges (wfj,vfj_l),
£=j41,...,min{j+ F,i} — 1. The last vertex in this sequence, ng, is linked to
z; with an edge of cost 0 and capacity 1. Finally we add an edge (s;, vfj), where
¢ =min{j + F,i} — 1, to the first vertex in this sequence with cost F' — (i — j)
and capacity 1. In this construction we excluded the case j = i because a fetch
for a; initiated at o(i) is somewhat special: The fetch is performed completely

before o(7), i.e. it does not overlap with any request, and the processor stalls

for F' time units. The fetch is active at some time during [i — 1,7). We introduce
vertices v.;" and w!; ' linked by an edge of capacity 1 and cost 0. Vertex w'; '
is linked to a:l with an edge of the same capacity and cost. Finally, we have an
edge (s;,v;; 1) of capacity 1 and cost F.

Next we describe the role of the (n+1)-st commodity, which is used to ensure
that no two prefetches are performed at the same time. More precisely, we ensure
that at most one prefetch is executed in any fixed interval [£,£+1),1 < { <n-—1.
For any fixed ¢, let f;, be the number of prefetches whose execution overlaps with
[£,0+1),1i.e

fo={vl [1<i<n, pi+1<j<i}. (1)

Commodity n + 1 has a source s,41, a sink ¢,41 and a demand of dn+1 =

?:_11 (f¢ —1). The flow from s,41 to t,;; is routed through the edges (v Vs wfj)
and newly introduced “subsinks” tfH_l, 1 < /¢ < n — 1. For any pair of vertices
U” and w we introduce edges (s,+1, fj) and (w “,tnﬂ) with capacity 1 and

cost 0. Addltlonally, we insert edges (! 1,tn+1) With capacity f, — 1 and cost
0. Now consider a fixed interval [¢,£+ 1), 1 < ¢ < n — 1. Every prefetch for some
a; initiated at o(j) that is active at some time during [¢,£+ 1) is represented by
a “super edge” (s;,z;) and contains an edge (v fj, ;). For fixed ¢ the network
contains f, such edges. The capacities f, — 1 of the edges (t5,1,tn4+1) ensure
that only one of the edges (vz],wfj) can carry a flow of commodity i, i < n.
If two or more such edges were carrying flow of commodity ¢ < n, then the
capacity constraint would be violated at some edge (t4 41> tnt1), for some £' # ¢,
or demand d,, 11 would not be satisfied.

The following lemma states that our network correctly models IPC on a single
disk. Its proof is omitted in this extended abstract.

Lemma 1. Any feasible integral flow of cost C in G corresponds to a feasible
prefetching/caching schedule with stall time C' for o, and vice versa.

2.2 Properties of Optimal Flows

We show that a non-integral flow in our network corresponds to a fractional
prefetching/caching schedule, defined in the following way.

Definition 2. Given an instance of the problem IPC, we define the set of frac-
tional solutions as a superset of the set of integral solutions to the instance. A
fractional solution may deviate from an integral solution in the following way:

— The amount to which a block resides in cache may take a fractional value
between 0 and 1. However, this amount must be 1 while the block is requested.

— Fractional parts of blocks in cache arise due to partial evictions or partial
fetches. For each time interval, the net amount of blocks fetched must not be
larger than the net amount of blocks evicted, and the net amount of blocks
fetched must not exceed 1.

— Stall times are accounted as follows: If a fetch to § € [0, 1] units of block o (5)
is initiated starting at the service of reference o(i) and j —i < F holds, we
incur a stall time of 6(F — (j — 1)) time units.

Loosely speaking, the main difference between integral and fractional solutions
lies in the possibility to interrupt fetches and to leave parts of a block in cache
between consecutive requests to it. Regarding the second item in the above
definition we may assume w.l.0.g. that between any two consecutive references
to a specific block, the points of time where the block is evicted from cache
precede the ones where the block is fetched back.

Lemma 3. Let G be the network obtained by transforming a request sequence
o of the problem IPC according to the construction in Sec. 2.1. A wvalid multi-
commodity flow with cost C' within the network G corresponds to a fractional
prefetching/caching schedule with stall time C'.

The next lemma follows immeditately from [1]; it was shown that a fractional
solution is a convex combination of polynomially many integral solutions.

Lemma 4. Let L be a fractional solution to an input for IPC. There is a
polynomial-time algorithm that computes an integral prefetching/caching sched-
ule L* from L where the stall time of L* is less than or equal to the one of L.

2.3 Applying the Approximation Algorithm

We show how to compute a flow in our network and how to derive an optimal
prefetching/caching schedule. We apply the algorithm by Kamath et al. [6] by
setting € := 1/(4F?n®) and & := 1/(3nF). These settings have been derived from
the easy-to-see upper bound d,, ;1 < n?F on the demand of commodity n + 1.

As the approximation algorithm only satisfies a fraction of 1 — ¢ of each
commodity, the flow out of each source s;, 1 € {1,...,n}, is lower bounded by 1—
&. Moreover, commodity n+1 might lack an amount of ed,, ;1 < eFn?. We assume
pessimistically that this leads to an additional “illegal” flow with value £F'n?
during a time interval [¢,£+ 1), ¢ € {1,...,n—1}, in so far as edges representing
fetches in that interval are not “congested” properly by commodity n + 1.

Let o :=1— edp4+1 — € be a crucial lower bound on the flow of commodities
1,...,n. We can transform the flow ¢ output by the approximation algorithm
into a uniform flow ¢’ which directs exactly o units of flow from s; to ¢; for
any commodity 7 € {1,...,n}. The main idea is to reduce, for each edge, the
flow of commodity 7 proportionally to the relative amount of flow of commodity
7 on the considered edge. Then we end up with a uniform flow ¢’ which does
not “overflow” any interval [¢,¢ 4+ 1) and delivers the same amount for each
commodity.

In view of Definition 2 and the equivalence described in Lemma 3, the flow ¢’
corresponds to a fractional solution to IPC in which all blocks have size g. Flow
@' corresponds to a fractional solution to TPC in which all blocks have size ¢ and
the number of cache slots is upper bounded by k/g—hereinafter we call such a
solution a p-solution. According to Lemma 4, we may interpret the fractional
solution which corresponds to ¢’ as a convex combination of integral p-solutions.

In order to analyze the quality of the above-described convex combination of
integral p-solutions, we have to establish a lower bound on g. As d,, ;1 < Fn?2,

we obtain ¢ > 1 —éedp11 —€ > 1 —2ed,y1 > 1 —1/2nF. Next we estimate
the cost C of the convex combination of g-solutions. Since the approximation
algorithm outputs flows with cost at most (1 +) OPT, where OPT is the cost
of an optimal schedule, and reducing flows to ¢ does never increase cost, the
following upper bound on C holds:

C <(146)OPT =O0OPT /(3nF)+OPT < OPT+1/3 since OPT <nF . (2)

We underestimated the cost C of the convex combination of p-solutions by
an additive term of at most n(l — g)F. This is due to the fact that each block
corresponding to a specific commodity has size 1 in reality, but size g in the
convex combination. By increasing the block size (or, equivalently, the flow of
the corresponding commodity), the cost can rise by at most (1 — o) F. Hence,
the cost C' of the convex combination of integral solutions is at most

C'<C+n(l-oF <OPT+1/3+nF/2nF < OPT+1 . (3)

From C' < OPT +1 we conclude that the convex combination contains at
least one integral solution with optimal costs. As the number of possible integral
solutions is bounded by Fn? (see [1]), an optimal component, i.e. integral solu-
tion, within the convex composition can be computed in polynomial time. How-
ever, each integral solution originates from a p-solution where a block has size
o. Since the cache is still k£ large, it remains to prove that no integral component
of the convex composition does hold more than k blocks in cache concurrently.

Since, w.l.o.g., k/(nF) < 1 holds, the number of blocks of size g held con-
currently in cache is at most

E§#§k<l+i><k+l (4)

0 1—5% nF
because (1—¢')~1 < 1+2¢’ for any €’ € [0, 1/2]. Therefore, (k+1)p > k holds, and
we would obtain a contradiction if an integral solution held more than &k pages in
cache concurrently. Finally, this implies that we have found a feasible and optimal
prefetching/caching schedule. The overall running time of the approximation
algorithm is O*(e=3673¢|E||V|?), where ¢ denotes the number of commodities
and O* means “up to logarithmic factors”. As |V| = O(n?) and |E| = O(n?), we
obtain the polynomial upper bound O*((nF)3(n®F2)3(n + 1)n2n*) = O*(n'®).
Now we state the main result of this section.

Theorem 5. An optimal solution to an input for IPC can be computed by a
combinatorial algorithm in polynomial time.

2.4 Generalization to Multiple Disks

The solution developed for single disk systems can be generalized to multiple
disks. Due to space limitations, we only state the main result here.

Theorem 6. There is a combinatorial polynomial-time algorithm which com-
putes a D-approximation to an input for IPC if the number of disks is D and
there are D — 1 slots of extra cache available.

3 Improving the Approximation Factor

In this section we return to the linear program by Albers, Garg and Leonardi [1]
for the multiple disk case and improve its approximation factor. If the number D
of disks is constant, we achieve a 2-approximation. We know that our approach
leads to a linear program which can also be stated as a min-cost multicom-
modity flow problem. We omit that representation as we consider the improved
approximation guarantee to be the most important contribution.

3.1 Bundling Intervals

The drawback of the LP formulation by Albers, Garg and Leonardi [1] is that
it overestimates the stall time of prefetching/caching schedules. We present an
LP that counts stall time more accurately. As in [1] we represent time periods
in which fetch operations are executed by open intervals I = (4,7), with ¢ =
0,...,n—1land j=1i+1,...,n, where n = |o| is the length of the given request
sequence. Such an interval I = (i,7) corresponds to the time period starting
after the service of o(i) and ending before the service of o(j). Its length is
|[I| =j—i—1.If |I| < F, then F — |I| units of stall time must be scheduled in
the fetch operation. Since fetches take F' time units, we can restrict ourselves to
intervals with j < i+ F'+ 1. For each potential interval I we introduce a copy I%
for each disk d € {1, ..., D}. Let T be the resulting set of all these intervals. The
LP in [1] determines which intervals of Z should execute prefetches. Stall times
are counted separately for the intervals and disks, which causes the overestimate.

The main idea of our LP is to form bundles of intervals and treat each
bundle as a unit: In any bundle either all the intervals or no interval will execute
a fetch. We next introduce the notion of bundles and need one property of
optimal prefetching/caching schedules. An interval I = (i1,12) properly contains
interval J = (j1,J2) (which is not necessarily associated with the same disk) if
11 < j1 and j» < i2 hold. The proof of the next lemma is omitted.

Lemma 7. An optimal (fractional or integral) prefetching/caching schedule for
a system with D disks does not include fetch intervals properly containing each
other.

Definition 8. A set of intervals B, |B| # 0, is called a bundle if B contains
at most one interval from each disk and is overlapping. A set of intervals B is
called overlapping if it includes no intervals properly containing each other but
has for all but one I = (i1,i2) € B some interval J = (j1,j2) € B, J # I, such
that j1 > i1 and J overlaps with I. Two intervals I = (i1,i2) and J = (j1, ja2),
i1 < j1, are called overlapping if either j; < iz — 1 is wvalid, or j; = iz — 1 and
additionally is — i1 — 1 < F hold.

Fix a z € IN with z < D. We will bundle intervals from up to z disks. In this
extended abstract we assume for simplicity that D/z € IN. We partition the disk
set into D/z sets {1,...,2},{z+1,...,22},...,{D—2+1,...,D}. Now let B,
be the set of all the bundles composed of intervals from Z, with the additional

restriction that the intervals of a bundle must come from the same subset of the
disk partition. One can show that |B,| < n(F + 1)2*(D/z)z!.

We are nearly ready to state the extended linear program for IPC and D > 1.
For each bundle B € B,, we introduce a variable z(B) which is set to 1 if a
prefetch is performed in all intervals in bundle B, and is set to 0 otherwise. In
order to specify which blocks are fetched and evicted we use variables f; , and
era q for all I? € T and all blocks a. Variable f1a,q (respectively eza ,) is equal to
1if a is fetched (respectively evicted) in I¢. Of course eraq = fra o = 0if a does
not reside on disk d. For a bundle B € B, let s(B) be the minimum stall time
needed to execute fetches in all the intervals of B assuming that no other fetch
operations are performed in the schedule. The value s(B) can be computed as
follows. Let (a1,b1),..., (am,bm) be the sequence of all intervals in B obtained
by sorting them by increasing end index, where intervals with the same end index
are sorted by increasing start index breaking ties arbitrarily. One can easily verify
that in an optimal schedule for B, stall times occur at the end of intervals, the
fetch in (a1, b1) is started at the latest point in time (i.e. immediately before
request as if by # a; and after a; otherwise) whereas the fetches in (a;, b;), i > 2,
are started at the earliest point in time. We determine the amounts of stall times
needed at the end of intervals. Let i1,1s,...,%, with m’ < m be the sequence
obtained from by,..., b, by eliminating multiple occurrences of the same value
and keeping only the indices i; such that b;, ;1 # b;,. By definition, iy := 0
and b, := 0. For j = 1,...,m’, interval (a;;,b;;) is the shortest interval with
end index b;; and determines the stall time to be inserted before that request.
The function h: {b;,,...,b; ,} — IN that indicates the actual stall time needed
before request b;; is defined inductively, for j = 1,...,m’, as follows:

h(bi,) := maX{O, F— (b, —ai, — 1) — 3 h(r)} .
Te{bi17---7bij71}2 Te{aij+17...,bij—1}

Using this definition we have s(B) := Z;nzll h(b;;).

In order to refer to individial disks, we need for d € {1, ..., D} the projections
mq: B, — I, where mq(B) = I if I € B and I resides on disk d, and 74(B) = 0
if B contains no interval associated with disk d. The value of 74 is well defined
since at most one interval from each disk is part of a bundle. Now the extended
linear program reads as follows. Minimize the objective function

subject to

Vie{l,...,n},Vd > z(B) <1 (6)
BeB.: mq(B)D(i—1,i+1)

Vd’VId Zfld,azzeld,ag Z éE(B) (7)

BeB,: nq(B)=I¢

Va,Vi € {1,...,n,} Z fra= Z era <1 (8)

I€ET: Ig(ai7ai+1) IET: Ig(ai,ai+1)
Va > fra=1, Va > erna=0 (9)
I€T: 1C(0,a1) I€eZ: 1C(0,a1)
Va,¥i € {1,...,n,} > fra= > era=0 (10)
I€T: ID(a;—1,a;+1) I€T: ID(a;—1,a;+1)
VIe€Z,Va fraer.€{0,1} (11)
VB e B, =z(B)e{0,1} . (12)

Here we have taken over some terminology from the original formulation in [1].
The first set of contraints ensures that for each disk and each point of time, the
amount of fetch is at most 1. The second set of constraints guarantees for each
interval on every disk that the amount of blocks fetched in the interval is at most
the overall amount of blocks evicted in that interval. For a specific interval I¢,
we allow a bundle variable 2(B), where B contains I¢, to take value 1; observe
that B might consist of ¢ as the only element. If a bundle variable z(B) is 1, the
second set of constraints allows fetches in all intervals belonging to the bundle.
Please note that constraint (6) only ensures that at most one prefetch operation
may be executed while serving a request. Especially, it allows prefetches to be
started in the midst of stall times, such the exact point of time where a prefetch
is started may be unspecified if there is stall time at the beginning of an interval.
We will argue later that this freedom is justified. Constraints (8)—(11) have been
adapted from the LP formulation in [1] and ensure that a block is in cache at the
time of its reference. The objective function finally counts the s-values, which
are related to parallel stall times, for bundles whose variables are 1. It remains
to prove that a solution to the extended linear program induces a valid schedule
whose stall time is counted at least once by the value of the objective function.

Consider an arbitrary integer solution to the extended LP, which specifies
an assignment to the variables f7 ,,er , and z(B). Using fr, and e o, we know
between which requests a prefetch operation must be started, but may choose
the exact point of time of the start if the related requests are intermitted by stall
time. We inductively construct a schedule whose stall time is bounded from above
by the value of the objective function. First, we sort the bundles B for which
z(B) = 1 holds by increasing maximum end index (of the intervals in the bundle)
and, if equality holds, by increasing minimum start index. Let Bi,...,B,, be
the resulting sequence. Suppose that we have already constructed a schedule
for By,...,B,_1. For bundle B,, we have to schedule fetches and evictions for
those blocks whose variables fr, and e;, have been set to 1 and I € B,. We
use the notation introduced for defining the stall times s(B) on page 9. Let
(a1,b1),...,(am,bm) be the sequence of intervals in B,. We first insert h(b;,)
units of stall time before b;,, £ € {1,...,m'}, and then schedule the fetches in
(ai,bi), 1 € {1,...,m}, as follows. The fetch in (a1,b;1) is started at the latest
possible point in time. More precisely, if a; < by, we start the fetch with the
service of request a1 + 1; otherwise the fetch is scheduled immediately before the

10

service of b;. The fetches in (a;, b;), 7 > 2, are started at the earliest point in time
after a; such that the required disk is available. The definition of the h-values
ensures that we reserve at least F' time units for each fetch irrespectively of stall
times which are caused by fetches in intervals from bundles B;,...,B, 1. In
fact, a reserved time interval might even be longer. However, this is no problem.
The fetch simply completes after F' time units and the corresponding disk is
then idle for the rest of the interval. Thus, the constructed schedule is feasible
and we insert exactly 37", s(B;) units of stall time.

3.2 Achieving the (2D /z)-Approximation

Lemma 9. The extended linear program for D disks has an integral solution of
cost at most (2D /z) OPT.

Proof. Suppose we have been given an optimal integral prefetching/caching
schedule of stall time OPT. We restrict ourselves to an arbitrary subset of the
partition

D/z—1
U {iz+Liz+2,... iz + 2} (13)
=0
of the disk set {1,...,D}. W.l.o.g., this subset is {1,...,2}. We consider only
stall times caused by fetches in intervals associated with disks {1,...,z}. In

the following, we specify an assignment to the variables associated with disks
{1,...,2} such that the stall time that arises by executing only the fetches on
disks {1,..., 2} is counted at most twice in the objective funtion of the linear
program. Repeating this process for all the subsets of the above partition, we
obtain an assignment to all the variables z(B) for B € B,. As the objective
function is separable with respect to the bundles in B, and therefore with respect
to the (D/z) subsets of the above partition, we count a specific stall time in the
optimal prefetching/caching schedule at most 2(D/z) times.

By Z' C Z we denote the set of all intervals associated with the disk set
{1,...,2} in which prefetches are performed. According to Lemma 7, we have
no intervals properly containing each other in the set Z’. Therefore, we can order
the intervals in Z’ by increasing start points and (if these are equal) by increasing

end points. Let I, ..., I,,, be the resulting sequence. We partition Z’ into bundles
according to the following greedy algorithm.
B:=0

for j=1,...,mdo
if interval I; U B is a bundle then set B:=I; UB
else output B as an element of the partition and set B := ().

Let By U---U By, £ < m, be the partition of Z' obtained by this process.
Our solution to the linear program is constructed by setting z(B;) to 1 for
j €{1,...,£}. The variables fr, and ey, are set according to which blocks are
fetched in the intervals of the considered bundle. This process is repeated for
each subset of the partition (13) of the disk set. All remaining variables are zero.

11

In the following, we revert to the subset {1,...,z} and denote by OPT*
the stall time incurred if counting only fetch intervals associated with disks
{1,...,z}. For bundles B;, j € {1,...,¢}, let s'(B;) be the sum of the stall
times in the optimal schedule between the start of the first fetch in B; and the
completion of the last fetch in B;. Obviously, s(B;) < s'(B;). One can show that

Z;z.:l s'(Bj) < 2-OPT", which implies that the value of the objective function
is at most 2 OPT. O

Lemma 9 implies that there is also a fractional solution to the extended LP with
cost at most (2D /z) OPT. Using techniques from [1], we can convert a fractional
solution to the extended LP with cost C' to an integral prefetching/caching
schedule with stall time C' if D —1 extra memory locations in cache are available.
Thus we obtain an approximation algorithm of factor 2D/z.

Theorem 10. There is a polynomial p(n) such that for each z € {1,...,D}
with D/z € IN there is a algorithm with running time O(p(n) - n - (F + 1)%z!)
that computes a 2D/ z-approzimation for IPC provided that D —1 extra memory
locations are available in cache.

Finally, for D = 2 the extended linear program does not seem to give an
improved approximation. However, in this special case, we can show an even
better approximation factor of 1.5.

Lemma 11. If D = 2, the extended linear program with z = 2 has an integral
solution of cost at most 1.5 - OPT.

References

1. S. Albers, N. Garg, and S. Leonardi. Minimizing stall time in single and parallel
disk systems. In Proc. 30th Annual ACM Symp. on Theory of Computing, pages
454-462, 1998.

2. B. Bershad, P. Cao, E. W. Felten, G. A. Gibson, A. R. Karlin, T. Kimbrel, K. Li,
R. H. Patterson, and A. Tomkins. A trace-driven comparison of algorithms for
parallel prefetching and caching. In Proc. ACM SIGOPS/USENIX Assoc. Symp.
on Operating System Design and Implementation (OSDI), 1996.

3. P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of integrated prefetching
and caching strategies. In Proc. ACM Int. Conf. on Measurement and Modeling of
Computer Systems (SIGMETRICS), pages 188-196, 1995.

4. P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and performance
of integrated application-controlled caching, prefetching and disk scheduling. ACM
Transaction on Computer Systems, 14(4):311-343, 1996.

5. G. A. Gibson, E. Ginting, R. H. Patterson, D. Stodolsky, and J. Zelenka. Informed
prefetching and caching. In Proc. 17th Int. Conf. on Operating Systems Principles,
pages 79-95, 1995.

6. A.Kamath, O. Palmon, and S. Plotkin. Fast approximation algorithm for minimum
cost multicommodity flow. In Proc. 6th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 493-501, 1995.

7. R. Karlin and T. Kimbrel. Near-optimal parallel prefetching and caching. In
Proc. 37th Annual Symp. on Foundations of Computer Science, pages 540-549.
IEEE Society, 1996.

12

