
Minimizing Stall Time in Single and Parallel DiskSystems Using Multi
ommodity Network FlowsSusanne Albers and Carsten WittDept. of Computer S
ien
e, Dortmund University, 44221 Dortmund, Germany,albers�ls2.
s.uni-dortmund.de,
arsten.witt�udo.eduAbstra
t. We study integrated prefet
hing and
a
hing in single andparallel disk systems. A re
ent approa
h used linear programming tosolve the problem. We show that integrated prefet
hing and
a
hing
analso be formulated as a min-
ost multi
ommodity
ow problem and, ex-ploiting spe
ial properties of our network,
an be solved using
ombinato-rial te
hniques. Moreover, for parallel disk systems, we develop improvedapproximation algorithms, trading performan
e guarantee for runningtime. If the number of disks is
onstant, we a
hieve a 2-approximation.1 Introdu
tionIn today's
omputer systems there is a large gap between pro
essor speeds andmemory a

ess times, the latter usually being the limiting fa
tor in the per-forman
e of the overall system. Therefore,
omputer designers devote a lot ofattention to building improved memory systems, whi
h typi
ally
onsist of harddisks and asso
iated
a
hes. Ca
hing and prefet
hing are two very well-knownte
hniques for improving the performan
e of memory systems and, separately,have been the subje
t of extensive studies. Ca
hing strategies try to keep a
tivelyreferen
ed memory blo
ks in
a
he, ignoring the possibility of redu
ing pro
essorstall times by prefet
hing blo
ks into
a
he before their a
tual referen
e. On theother hand, most of the previous work on prefet
hing tries to predi
t the memoryblo
ks requested next, not taking into a

ount that blo
ks must be evi
ted from
a
he in order to make room for the prefet
hed blo
ks. Only re
ently resear
hershave been working on an integration of both te
hniques [1{5, 7℄.Cao et al. [3℄ and Kimbrel and Karlin [7℄ introdu
ed a theoreti
al model forstudying \Integrated Prefet
hing and Ca
hing" (IPC) that we will also use in thispaper. We �rst
onsider single disk systems. A set S of memory blo
ks resideson one disk. At any time a
a
he
an store k of these blo
ks. The system mustserve a request sequen
e � = �(1); : : : ; �(n), where ea
h request �(i), 1 � i � n,spe
i�es a memory blo
k. The servi
e of a request takes one time unit and
anonly be a

omplished if the requested blo
k is in
a
he. If a requested blo
k isnot in
a
he, it must be fet
hed from disk, whi
h takes F time units, whereF 2 IN. If a missing blo
k is fet
hed immediately before its referen
e, then thepro
essor has to stall for F time units. However, a fet
h may also overlap withthe servi
e of requests. If a fet
h is started i time units before the next referen
e

to the blo
k, then the pro
essor has to stall for only maxf0; F � ig time units. In
ase i � 1, we have a real prefet
h. Of
ourse, at most one fet
h operation maybe exe
uted at any time. On
e a fet
h is initiated, a blo
k must be evi
ted from
a
he in order to make room for the in
oming blo
k. The goal is to minimize thepro
essor stall time, or equivalently the elapsed time, whi
h is the sum of thepro
essor stall time and the length n of the request sequen
e.In parallel disk systems with D disks we have D sets of memory blo
ksS1; : : : ; SD, where Sd is the set of blo
ks that reside on disk d, 1 � d � D. Weassume that ea
h blo
k in the system is lo
ated on only one of the disks. Themain advantage of parallel disk systems is that blo
ks from di�erent disks maybe fet
hed in parallel. Thus if the pro
essor has to stall at some point in time,then all the fet
hes
urrently being a
tive advan
e towards
ompletion. If a fet
his initiated, we may evi
t any blo
k from
a
he, whi
h
orresponds to the modelthat blo
ks are read-only. Again the goal is to minimize the pro
essor stall time.Cao et al. [3, 4℄ studied IPC in single disk systems. They presented simple
ombinatorial algorithms,
alled
onservative and aggressive, that run in polyno-mial time and approximate the elapsed time. Conservative a
hieves an approxi-mation fa
tor of 2, whereas aggressive a
hieves a better fa
tor of minf2; 1+F=kg.Karlin and Kimbrel [7℄ investigated IPC in parallel disk systems and presented apolynomial-time algorithm whose approximation guarantee on the elapsed timeis (1 + DF=k). In [1℄ Albers, Garg and Leonardi developed a polynomial-timealgorithm that
omputes an optimal prefet
hing/
a
hing s
hedule for single disksystems. For parallel disk systems they developed a polynomial-time algorithmthat approximates the stall time. The algorithm a
hieves an approximation fa
-tor of D, using at most D � 1 extra memory lo
ations in
a
he. All the resultspresented in [1℄ are based on a linear program formulation.In this paper we show that IPC in single and parallel disk systems
an beformulated as a min-
ost multi
ommodity
ow problem and, exploiting spe
ialproperties of the network,
an be solved using
ombinatorial methods. Theseresults are presented in Se
. 2. We �rst investigate the single disk problem. Wedes
ribe the
onstru
tion of the network and establish relationships between min-
ost multi
ommodity
ows and prefet
hing/
a
hing s
hedules. We prove that a
ombinatorial approximation algorithm by Kamath et al. [6℄ for
omputing min-
ost multi
ommodity
ows, when applied to our network,
omputes an optimalprefet
hing/
a
hing s
hedule in polynomial time. We then generalize our multi-
ommodity
ow formulation to parallel disk systems. With minor modi�
ationsof the original network we are able to apply the algorithm by Kamath et al. [6℄again. We derive a
ombinatorial algorithm that a
hieves a D-approximation onthe stall time, using at most D � 1 extra memory lo
ation in
a
he. Thus, theresults presented in [1℄
an also be obtained using
ombinatorial te
hniques.For parallel disk systems, D is the best approximation fa
tor on the stalltime
urrently known. This fa
tor D is
aused by the fa
t that the approa
hin [1℄ heavily overestimates the stall times in prefet
hing/
a
hing s
hedules:Stall time is
ounted separately on ea
h disk, i. e. no advantage is taken of thefa
t that prefet
hes exe
uted in parallel simultaneously bene�t from a pro
essor2

stall time. In Se
. 3 we develop improved approximation guarantees that arebounded away from D. We are able to formulate a trade-o�. For any z 2 IN,we a
hieve an approximation fa
tor of 2(D=z) at the expense of a running timethat grows exponentially with z. If the number D of disks is
onstant, we ob-tain a 2-approximation. For the spe
ial
ase D = 2 we also give a better 1:5-approximation. Again, our solutions need D�1 extra memory lo
ations in
a
he.The improved approximation algorithms
an also be obtained using min-
ostmulti
ommodity
ows. However, for the sake of
larity and due to spa
e limita-tions we present an LP-formulation in this extended abstra
t.2 Modeling IPC by Network FlowsWe �rst
onsider single disk systems. We build up our
ombinatorial algorithm inseveral steps. Given a request sequen
e �, we �rst
onstru
t a networkG = (V;E)with several
ommodities su
h that an integral min-
ost
ow
orresponds toan optimal prefet
hing/
a
hing s
hedule for �, and vi
e versa. Of
ourse, analgorithm for
omputing min-
ost multi
ommodity
ows does not ne
essarilyreturn an integral
ow when applied to our network. We show that a non-integral
ow
orresponds to a fra
tional prefet
hing/
a
hing s
hedule in whi
h we
anidentify an integral s
hedule using a te
hnique from [1℄.The main problem we are fa
ed with is that we know of no
ombinatorialpolynomial-time algorithm for
omputing a (non-integral) min-
ost
ow in ournetwork. We solve this problem by applying a
ombinatorial approximation algo-rithm by Kamath et al. [6℄. For any " � 0, Æ � 0, the algorithm
omputes a
owsu
h that a fra
tion of at least 1� " of ea
h demand in the network is satis�edand the
ost of the
ow is at most (1 + Æ) times the optimum. Unfortunately,the
ow
omputed by the algorithm, when applied to our network, does not
orrespond to a feasible fra
tional prefet
hing/
a
hing s
hedule: It is possiblethat (a) more than one blo
k is fet
hed from disk at any time and (b) blo
ks arenot
ompletely in
a
he when requested. We �rst redu
e the
ow in the networkto resolve (a). This redu
es the extent to whi
h blo
ks are in
a
he at the timeof their request even further. We then show that, given su
h
ow, we
an stillderive an optimal prefet
hing/
a
hing s
hedule, provided that " and Æ are
hosenproperly.2.1 The NetworkLet � be a request sequen
e
onsisting of n requests. We
onstru
t a networkG = (V;E) with n + 1
ommodities. Asso
iated with ea
h request �(i) is a
ommodity i, 1 � i � n. This
ommodity has a sour
e si, a sink ti and demanddi = 1. Let ai be the blo
k requested by �(i). For ea
h request �(i), we introdu
everti
es xi and x0i. These verti
es are linearly linked, i. e. there are edges (xi; x0i),1 � i � n, and edges (x0i; xi+1), 1 � i � n � 1, ea
h with
apa
ity k and
ost 0. Intuitively, this sequen
e of verti
es and edges represents the
a
he. If
ommodity i
ows through (xj ; x0j), then blo
k ai is in
a
he when �(j) is served.3

bb
a
s3 t3s2 t2s1x1 x01t1 x2 x02 t4s4 x04x4 x05x5 t5s512212 2 20 01 01 x03x3Fig. 1. Sket
h of the network for request sequen
e ab
b
 and F = 2To ensure that ai is in
a
he when �(i) is served, we insert an edge (x0i; ti) with
apa
ity 1 and
ost 0, and there are no other edges into ti or x0i, i. e.
ommodityi must pass through (xi; x0i).Let pi be the time of the previous request to ai, i. e. pi is the largest j, j < i,su
h that ai was requested by �(j). If ai is requested for the �rst time in �, thenwe set pi = 0. To serve �(i), blo
k ai
an (1) remain in
a
he after �(pi) untilrequest �(i), provided that pi > 0, or
an (2) be fet
hed into
a
he at some timebefore �(i). To model
ase (1) we introdu
e an edge (si; x0pi), if pi > 0, with
apa
ity 1 and
ost 0. To model
ase (2) we essentially add edges (si; xj), forj = pi+1; : : : ; i, indi
ating that a fet
h for ai is initiated starting at the servi
e of�(j). For the spe
ial
ase j = i the edge represents a fet
h exe
uted immediatelybefore �(i). If i� j < F , then the pro
essor has to stall for F � (i� j) time unitsand hen
e we assign a
ost of F � (i � j) to edge (si; xj). Figure 1 illustratesthis
onstru
tion for the examplary request sequen
e � = ab
b
 and fet
h timeF = 2. Edges outgoing of a sour
e si, i 2 f1; : : : ; 5g, are labeled with their
ost.So far our
onstru
tion allows a
ow algorithm to saturate more than one ofthe edges that
orrespond to fet
hes exe
uted simultaneously (
onsider, e. g. theedges (si; xi�1) and (si�1; xi�2) for some i su
h that �(i� 2), �(i� 1) and �(i)are pairwise distin
t). However, we have to make sure that at most one fet
hoperation is exe
uted at any time. Therefore, in our
onstru
tion we split the\super edge" (si; xj) into several parts. For any `, 1 � ` � n� 1, let [`; `+1) bethe time interval starting at the servi
e of �(`) and ending immediately beforethe servi
e of �(`+ 1). Interval [0; 1) is the time before the servi
e of �(1).We have to
onsider all the fet
hes being a
tive at some time in [`; ` + 1),for any �xed `. A fet
h for ai starting at �(j), j < i, is a
tive during [`; `+ 1)for ` = j; : : : ;minfj + F; ig � 1. For any �xed i and j with 1 � i � n andpi+1 � j < i we introdu
e verti
es vìj and wìj where ` = j; : : : ;minfj+F; ig�1.These verti
es are linked by edges of
apa
ity 1 and
ost 0. More spe
i�
ally,we have edges (vìj ; wìj), ` = j; : : : ;minfj + F; ig � 1, and edges (wìj ; v`�1ij),` = j+1; : : : ;minfj+F; ig�1. The last vertex in this sequen
e, wjij , is linked toxj with an edge of
ost 0 and
apa
ity 1. Finally we add an edge (si; vìj), where` = minfj + F; ig � 1, to the �rst vertex in this sequen
e with
ost F � (i � j)and
apa
ity 1. In this
onstru
tion we ex
luded the
ase j = i be
ause a fet
hfor ai initiated at �(i) is somewhat spe
ial: The fet
h is performed
ompletelybefore �(i), i. e. it does not overlap with any request, and the pro
essor stalls4

for F time units. The fet
h is a
tive at some time during [i� 1; i). We introdu
everti
es vi�1i;i and wi�1ii linked by an edge of
apa
ity 1 and
ost 0. Vertex wi�1iiis linked to xi with an edge of the same
apa
ity and
ost. Finally, we have anedge (si; vi�1ii) of
apa
ity 1 and
ost F .Next we des
ribe the role of the (n+1)-st
ommodity, whi
h is used to ensurethat no two prefet
hes are performed at the same time. More pre
isely, we ensurethat at most one prefet
h is exe
uted in any �xed interval [`; `+1), 1 � ` � n�1.For any �xed `, let f` be the number of prefet
hes whose exe
ution overlaps with[`; `+ 1), i. e. f` = jfvìj j 1 � i � n; pi + 1 � j � igj : (1)Commodity n + 1 has a sour
e sn+1, a sink tn+1 and a demand of dn+1 =Pn�1`=1 (f`� 1). The
ow from sn+1 to tn+1 is routed through the edges (vìj ; wìj)and newly introdu
ed \subsinks" tǹ+1, 1 � ` � n � 1. For any pair of verti
esvìj and wìj we introdu
e edges (sn+1; vìj) and (wìj ; tǹ+1) with
apa
ity 1 and
ost 0. Additionally, we insert edges (tǹ+1; tn+1) with
apa
ity f` � 1 and
ost0. Now
onsider a �xed interval [`; `+1), 1 � ` � n� 1. Every prefet
h for someai initiated at �(j) that is a
tive at some time during [`; `+1) is represented bya \super edge" (si; xj) and
ontains an edge (vìj ; wìj). For �xed ` the network
ontains f` su
h edges. The
apa
ities f` � 1 of the edges (tǹ+1; tn+1) ensurethat only one of the edges (vìj ; wìj)
an
arry a
ow of
ommodity i, i � n.If two or more su
h edges were
arrying
ow of
ommodity i � n, then the
apa
ity
onstraint would be violated at some edge (t`0n+1; tn+1), for some `0 6= `,or demand dn+1 would not be satis�ed.The following lemma states that our network
orre
tly models IPC on a singledisk. Its proof is omitted in this extended abstra
t.Lemma 1. Any feasible integral
ow of
ost C in G
orresponds to a feasibleprefet
hing/
a
hing s
hedule with stall time C for �, and vi
e versa.2.2 Properties of Optimal FlowsWe show that a non-integral
ow in our network
orresponds to a fra
tionalprefet
hing/
a
hing s
hedule, de�ned in the following way.De�nition 2. Given an instan
e of the problem IPC, we de�ne the set of fra
-tional solutions as a superset of the set of integral solutions to the instan
e. Afra
tional solution may deviate from an integral solution in the following way:{ The amount to whi
h a blo
k resides in
a
he may take a fra
tional valuebetween 0 and 1. However, this amount must be 1 while the blo
k is requested.{ Fra
tional parts of blo
ks in
a
he arise due to partial evi
tions or partialfet
hes. For ea
h time interval, the net amount of blo
ks fet
hed must not belarger than the net amount of blo
ks evi
ted, and the net amount of blo
ksfet
hed must not ex
eed 1.{ Stall times are a

ounted as follows: If a fet
h to Æ 2 [0; 1℄ units of blo
k �(j)is initiated starting at the servi
e of referen
e �(i) and j � i < F holds, wein
ur a stall time of Æ(F � (j � i)) time units.5

Loosely speaking, the main di�eren
e between integral and fra
tional solutionslies in the possibility to interrupt fet
hes and to leave parts of a blo
k in
a
hebetween
onse
utive requests to it. Regarding the se
ond item in the abovede�nition we may assume w. l. o. g. that between any two
onse
utive referen
esto a spe
i�
 blo
k, the points of time where the blo
k is evi
ted from
a
hepre
ede the ones where the blo
k is fet
hed ba
k.Lemma 3. Let G be the network obtained by transforming a request sequen
e� of the problem IPC a

ording to the
onstru
tion in Se
. 2.1. A valid multi-
ommodity
ow with
ost C within the network G
orresponds to a fra
tionalprefet
hing/
a
hing s
hedule with stall time C.The next lemma follows immeditately from [1℄; it was shown that a fra
tionalsolution is a
onvex
ombination of polynomially many integral solutions.Lemma 4. Let L be a fra
tional solution to an input for IPC. There is apolynomial-time algorithm that
omputes an integral prefet
hing/
a
hing s
hed-ule L� from L where the stall time of L� is less than or equal to the one of L.2.3 Applying the Approximation AlgorithmWe show how to
ompute a
ow in our network and how to derive an optimalprefet
hing/
a
hing s
hedule. We apply the algorithm by Kamath et al. [6℄ bysetting " := 1=(4F 2n3) and Æ := 1=(3nF). These settings have been derived fromthe easy-to-see upper bound dn+1 � n2F on the demand of
ommodity n+ 1.As the approximation algorithm only satis�es a fra
tion of 1 � " of ea
h
ommodity, the
ow out of ea
h sour
e si, i 2 f1; : : : ; ng, is lower bounded by 1�". Moreover,
ommodity n+1might la
k an amount of "dn+1 � "Fn2. We assumepessimisti
ally that this leads to an additional \illegal"
ow with value "Fn2during a time interval [`; `+1), ` 2 f1; : : : ; n�1g, in so far as edges representingfet
hes in that interval are not \
ongested" properly by
ommodity n+ 1.Let % := 1� "dn+1 � " be a
ru
ial lower bound on the
ow of
ommodities1; : : : ; n. We
an transform the
ow � output by the approximation algorithminto a uniform
ow �0 whi
h dire
ts exa
tly % units of
ow from si to ti forany
ommodity i 2 f1; : : : ; ng. The main idea is to redu
e, for ea
h edge, the
ow of
ommodity i proportionally to the relative amount of
ow of
ommodityi on the
onsidered edge. Then we end up with a uniform
ow �0 whi
h doesnot \over
ow" any interval [`; ` + 1) and delivers the same amount for ea
h
ommodity.In view of De�nition 2 and the equivalen
e des
ribed in Lemma 3, the
ow �0
orresponds to a fra
tional solution to IPC in whi
h all blo
ks have size %. Flow�0
orresponds to a fra
tional solution to IPC in whi
h all blo
ks have size % andthe number of
a
he slots is upper bounded by k=%|hereinafter we
all su
h asolution a %-solution. A

ording to Lemma 4, we may interpret the fra
tionalsolution whi
h
orresponds to �0 as a
onvex
ombination of integral %-solutions.In order to analyze the quality of the above-des
ribed
onvex
ombination ofintegral %-solutions, we have to establish a lower bound on %. As dn+1 � Fn2,6

we obtain % � 1 � "dn+1 � " � 1 � 2"dn+1 � 1 � 1=2nF . Next we estimatethe
ost C of the
onvex
ombination of %-solutions. Sin
e the approximationalgorithm outputs
ows with
ost at most (1 + Æ)OPT, where OPT is the
ostof an optimal s
hedule, and redu
ing
ows to % does never in
rease
ost, thefollowing upper bound on C holds:C � (1+Æ)OPT = OPT=(3nF)+OPT � OPT+1=3 sin
e OPT � nF : (2)We underestimated the
ost C of the
onvex
ombination of %-solutions byan additive term of at most n(1� %)F . This is due to the fa
t that ea
h blo
k
orresponding to a spe
i�

ommodity has size 1 in reality, but size % in the
onvex
ombination. By in
reasing the blo
k size (or, equivalently, the
ow ofthe
orresponding
ommodity), the
ost
an rise by at most (1 � %)F . Hen
e,the
ost C 0 of the
onvex
ombination of integral solutions is at mostC 0 � C + n(1� %)F � OPT+1=3 + nF=2nF < OPT+1 : (3)From C 0 < OPT+1 we
on
lude that the
onvex
ombination
ontains atleast one integral solution with optimal
osts. As the number of possible integralsolutions is bounded by Fn2 (see [1℄), an optimal
omponent, i. e. integral solu-tion, within the
onvex
omposition
an be
omputed in polynomial time. How-ever, ea
h integral solution originates from a %-solution where a blo
k has size%. Sin
e the
a
he is still k large, it remains to prove that no integral
omponentof the
onvex
omposition does hold more than k blo
ks in
a
he
on
urrently.Sin
e, w. l. o. g., k=(nF) < 1 holds, the number of blo
ks of size % held
on-
urrently in
a
he is at mostk% � k1� 12nF � k�1 + 1nF � < k + 1 (4)be
ause (1�"0)�1 � 1+2"0 for any "0 2 [0; 1=2℄. Therefore, (k+1)% > k holds, andwe would obtain a
ontradi
tion if an integral solution held more than k pages in
a
he
on
urrently. Finally, this implies that we have found a feasible and optimalprefet
hing/
a
hing s
hedule. The overall running time of the approximationalgorithm is O�("�3Æ�3
jEjjV j2), where
 denotes the number of
ommoditiesand O� means \up to logarithmi
 fa
tors". As jV j = O(n2) and jEj = O(n2), weobtain the polynomial upper bound O�((nF)3(n3F 2)3(n+ 1)n2n4) = O�(n18).Now we state the main result of this se
tion.Theorem 5. An optimal solution to an input for IPC
an be
omputed by a
ombinatorial algorithm in polynomial time.2.4 Generalization to Multiple DisksThe solution developed for single disk systems
an be generalized to multipledisks. Due to spa
e limitations, we only state the main result here.Theorem 6. There is a
ombinatorial polynomial-time algorithm whi
h
om-putes a D-approximation to an input for IPC if the number of disks is D andthere are D � 1 slots of extra
a
he available.7

3 Improving the Approximation Fa
torIn this se
tion we return to the linear program by Albers, Garg and Leonardi [1℄for the multiple disk
ase and improve its approximation fa
tor. If the number Dof disks is
onstant, we a
hieve a 2-approximation. We know that our approa
hleads to a linear program whi
h
an also be stated as a min-
ost multi
om-modity
ow problem. We omit that representation as we
onsider the improvedapproximation guarantee to be the most important
ontribution.3.1 Bundling IntervalsThe drawba
k of the LP formulation by Albers, Garg and Leonardi [1℄ is thatit overestimates the stall time of prefet
hing/
a
hing s
hedules. We present anLP that
ounts stall time more a

urately. As in [1℄ we represent time periodsin whi
h fet
h operations are exe
uted by open intervals I = (i; j), with i =0; : : : ; n� 1 and j = i+1; : : : ; n, where n = j�j is the length of the given requestsequen
e. Su
h an interval I = (i; j)
orresponds to the time period startingafter the servi
e of �(i) and ending before the servi
e of �(j). Its length isjI j = j � i� 1. If jI j < F , then F � jI j units of stall time must be s
heduled inthe fet
h operation. Sin
e fet
hes take F time units, we
an restri
t ourselves tointervals with j � i+F +1. For ea
h potential interval I we introdu
e a
opy Idfor ea
h disk d 2 f1; : : : ; Dg. Let I be the resulting set of all these intervals. TheLP in [1℄ determines whi
h intervals of I should exe
ute prefet
hes. Stall timesare
ounted separately for the intervals and disks, whi
h
auses the overestimate.The main idea of our LP is to form bundles of intervals and treat ea
hbundle as a unit: In any bundle either all the intervals or no interval will exe
utea fet
h. We next introdu
e the notion of bundles and need one property ofoptimal prefet
hing/
a
hing s
hedules. An interval I = (i1; i2) properly
ontainsinterval J = (j1; j2) (whi
h is not ne
essarily asso
iated with the same disk) ifi1 < j1 and j2 < i2 hold. The proof of the next lemma is omitted.Lemma 7. An optimal (fra
tional or integral) prefet
hing/
a
hing s
hedule fora system with D disks does not in
lude fet
h intervals properly
ontaining ea
hother.De�nition 8. A set of intervals B, jBj 6= ;, is
alled a bundle if B
ontainsat most one interval from ea
h disk and is overlapping. A set of intervals B is
alled overlapping if it in
ludes no intervals properly
ontaining ea
h other buthas for all but one I = (i1; i2) 2 B some interval J = (j1; j2) 2 B, J 6= I, su
hthat j1 � i1 and J overlaps with I. Two intervals I = (i1; i2) and J = (j1; j2),i1 � j1, are
alled overlapping if either j1 < i2 � 1 is valid, or j1 = i2 � 1 andadditionally i2 � i1 � 1 < F hold.Fix a z 2 IN with z � D. We will bundle intervals from up to z disks. In thisextended abstra
t we assume for simpli
ity that D=z 2 IN. We partition the diskset into D=z sets f1; : : : ; zg; fz+1; : : : ; 2zg; : : : ; fD� z +1; : : : ; Dg. Now let Bzbe the set of all the bundles
omposed of intervals from I, with the additional8

restri
tion that the intervals of a bundle must
ome from the same subset of thedisk partition. One
an show that jBzj � n(F + 1)2z(D=z)z!.We are nearly ready to state the extended linear program for IPC and D > 1.For ea
h bundle B 2 Bz, we introdu
e a variable x(B) whi
h is set to 1 if aprefet
h is performed in all intervals in bundle B, and is set to 0 otherwise. Inorder to spe
ify whi
h blo
ks are fet
hed and evi
ted we use variables fId;a andeId;a for all Id 2 I and all blo
ks a. Variable fId;a (respe
tively eId;a) is equal to1 if a is fet
hed (respe
tively evi
ted) in Id. Of
ourse eId;a = fId;a = 0 if a doesnot reside on disk d. For a bundle B 2 Bz, let s(B) be the minimum stall timeneeded to exe
ute fet
hes in all the intervals of B assuming that no other fet
hoperations are performed in the s
hedule. The value s(B)
an be
omputed asfollows. Let (a1; b1); : : : ; (am; bm) be the sequen
e of all intervals in B obtainedby sorting them by in
reasing end index, where intervals with the same end indexare sorted by in
reasing start index breaking ties arbitrarily.One
an easily verifythat in an optimal s
hedule for B, stall times o

ur at the end of intervals, thefet
h in (a1; b1) is started at the latest point in time (i. e. immediately beforerequest a2 if b1 6= a1 and after a1 otherwise) whereas the fet
hes in (ai; bi), i � 2,are started at the earliest point in time. We determine the amounts of stall timesneeded at the end of intervals. Let i1; i2; : : : ; im0 with m0 � m be the sequen
eobtained from b1; : : : ; bm by eliminating multiple o

urren
es of the same valueand keeping only the indi
es ij su
h that bij+1 6= bij . By de�nition, i0 := 0and bi0 := 0. For j = 1; : : : ;m0, interval (aij ; bij) is the shortest interval withend index bij and determines the stall time to be inserted before that request.The fun
tion h : fbi1 ; : : : ; bim0 g ! IN that indi
ates the a
tual stall time neededbefore request bij is de�ned indu
tively, for j = 1; : : : ;m0, as follows:h(bij) :=maxn0; F � (bij � aij � 1)� Xr2fbi1 ;:::;bij�1g : r2faij+1;:::;bij�1gh(r)o :Using this de�nition we have s(B) :=Pm0j=1 h(bij).In order to refer to individial disks, we need for d 2 f1; : : : ; Dg the proje
tions�d : Bz ! I, where �d(B) = I if I 2 B and I resides on disk d, and �d(B) = ;if B
ontains no interval asso
iated with disk d. The value of �d is well de�nedsin
e at most one interval from ea
h disk is part of a bundle. Now the extendedlinear program reads as follows. Minimize the obje
tive fun
tionXB2Bz x(B)s(B) (5)subje
t to 8i 2 f1; : : : ; ng;8d XB2Bz : �d(B)�(i�1;i+1)x(B) � 1 (6)8d;8Id Xa fId;a =Xa eId;a � XB2Bz : �d(B)=Id x(B) (7)9

8a;8i 2 f1; : : : ; nag XI2I : I�(ai;ai+1) fI;a = XI2I : I�(ai;ai+1) eI;a � 1 (8)8a XI2I : I�(0;a1) fI;a = 1; 8a XI2I : I�(0;a1) eI;a = 0 (9)8a;8i 2 f1; : : : ; nag XI2I : I�(ai�1;ai+1) fI;a = XI2I : I�(ai�1;ai+1) eI;a = 0 (10)8I 2 I;8a fI;a; eI;a 2 f0; 1g (11)8B 2 Bz x(B) 2 f0; 1g : (12)Here we have taken over some terminology from the original formulation in [1℄.The �rst set of
ontraints ensures that for ea
h disk and ea
h point of time, theamount of fet
h is at most 1. The se
ond set of
onstraints guarantees for ea
hinterval on every disk that the amount of blo
ks fet
hed in the interval is at mostthe overall amount of blo
ks evi
ted in that interval. For a spe
i�
 interval Id,we allow a bundle variable x(B), where B
ontains Id, to take value 1; observethat B might
onsist of Id as the only element. If a bundle variable x(B) is 1, these
ond set of
onstraints allows fet
hes in all intervals belonging to the bundle.Please note that
onstraint (6) only ensures that at most one prefet
h operationmay be exe
uted while serving a request. Espe
ially, it allows prefet
hes to bestarted in the midst of stall times, su
h the exa
t point of time where a prefet
his started may be unspe
i�ed if there is stall time at the beginning of an interval.We will argue later that this freedom is justi�ed. Constraints (8){(11) have beenadapted from the LP formulation in [1℄ and ensure that a blo
k is in
a
he at thetime of its referen
e. The obje
tive fun
tion �nally
ounts the s-values, whi
hare related to parallel stall times, for bundles whose variables are 1. It remainsto prove that a solution to the extended linear program indu
es a valid s
hedulewhose stall time is
ounted at least on
e by the value of the obje
tive fun
tion.Consider an arbitrary integer solution to the extended LP, whi
h spe
i�esan assignment to the variables fI;a; eI;a and x(B). Using fI;a and eI;a, we knowbetween whi
h requests a prefet
h operation must be started, but may
hoosethe exa
t point of time of the start if the related requests are intermitted by stalltime.We indu
tively
onstru
t a s
hedule whose stall time is bounded from aboveby the value of the obje
tive fun
tion. First, we sort the bundles B for whi
hx(B) = 1 holds by in
reasing maximum end index (of the intervals in the bundle)and, if equality holds, by in
reasing minimum start index. Let B1; : : : ; Bm bethe resulting sequen
e. Suppose that we have already
onstru
ted a s
hedulefor B1; : : : ; Br�1. For bundle Br, we have to s
hedule fet
hes and evi
tions forthose blo
ks whose variables fI;a and eI;a have been set to 1 and I 2 Br. Weuse the notation introdu
ed for de�ning the stall times s(B) on page 9. Let(a1; b1); : : : ; (am; bm) be the sequen
e of intervals in Br. We �rst insert h(bi`)units of stall time before bi` , ` 2 f1; : : : ;m0g, and then s
hedule the fet
hes in(ai; bi), i 2 f1; : : : ;mg, as follows. The fet
h in (a1; b1) is started at the latestpossible point in time. More pre
isely, if a1 < b1, we start the fet
h with theservi
e of request a1+1; otherwise the fet
h is s
heduled immediately before the10

servi
e of b1. The fet
hes in (ai; bi), i � 2, are started at the earliest point in timeafter ai su
h that the required disk is available. The de�nition of the h-valuesensures that we reserve at least F time units for ea
h fet
h irrespe
tively of stalltimes whi
h are
aused by fet
hes in intervals from bundles B1; : : : ; Br�1. Infa
t, a reserved time interval might even be longer. However, this is no problem.The fet
h simply
ompletes after F time units and the
orresponding disk isthen idle for the rest of the interval. Thus, the
onstru
ted s
hedule is feasibleand we insert exa
tlyPmj=1 s(Bj) units of stall time.3.2 A
hieving the (2D=z)-ApproximationLemma 9. The extended linear program for D disks has an integral solution of
ost at most (2D=z)OPT.Proof. Suppose we have been given an optimal integral prefet
hing/
a
hings
hedule of stall time OPT. We restri
t ourselves to an arbitrary subset of thepartition D=z�1[i=0 fiz + 1; iz + 2; : : : ; iz + zg (13)of the disk set f1; : : : ; Dg. W. l. o. g., this subset is f1; : : : ; zg. We
onsider onlystall times
aused by fet
hes in intervals asso
iated with disks f1; : : : ; zg. Inthe following, we spe
ify an assignment to the variables asso
iated with disksf1; : : : ; zg su
h that the stall time that arises by exe
uting only the fet
hes ondisks f1; : : : ; zg is
ounted at most twi
e in the obje
tive funtion of the linearprogram. Repeating this pro
ess for all the subsets of the above partition, weobtain an assignment to all the variables x(B) for B 2 Bz. As the obje
tivefun
tion is separable with respe
t to the bundles in Bz and therefore with respe
tto the (D=z) subsets of the above partition, we
ount a spe
i�
 stall time in theoptimal prefet
hing/
a
hing s
hedule at most 2(D=z) times.By I 0 � I we denote the set of all intervals asso
iated with the disk setf1; : : : ; zg in whi
h prefet
hes are performed. A

ording to Lemma 7, we haveno intervals properly
ontaining ea
h other in the set I 0. Therefore, we
an orderthe intervals in I 0 by in
reasing start points and (if these are equal) by in
reasingend points. Let I1; : : : ; Im be the resulting sequen
e. We partition I 0 into bundlesa

ording to the following greedy algorithm.B := ;for j = 1; : : : ;m doif interval Ij [B is a bundle then set B := Ij [Belse output B as an element of the partition and set B := ;.Let B1 [� � � [B`, ` � m, be the partition of I 0 obtained by this pro
ess.Our solution to the linear program is
onstru
ted by setting x(Bj) to 1 forj 2 f1; : : : ; `g. The variables fI;a and eI;a are set a

ording to whi
h blo
ks arefet
hed in the intervals of the
onsidered bundle. This pro
ess is repeated forea
h subset of the partition (13) of the disk set. All remaining variables are zero.11

In the following, we revert to the subset f1; : : : ; zg and denote by OPT�the stall time in
urred if
ounting only fet
h intervals asso
iated with disksf1; : : : ; zg. For bundles Bj , j 2 f1; : : : ; `g, let s0(Bj) be the sum of the stalltimes in the optimal s
hedule between the start of the �rst fet
h in Bj and the
ompletion of the last fet
h in Bj . Obviously, s(Bj) � s0(Bj). One
an show thatPj̀=1 s0(Bj) � 2 �OPT�, whi
h implies that the value of the obje
tive fun
tionis at most 2OPT. utLemma 9 implies that there is also a fra
tional solution to the extended LP with
ost at most (2D=z)OPT. Using te
hniques from [1℄, we
an
onvert a fra
tionalsolution to the extended LP with
ost C to an integral prefet
hing/
a
hings
hedule with stall time C if D�1 extra memory lo
ations in
a
he are available.Thus we obtain an approximation algorithm of fa
tor 2D=z.Theorem 10. There is a polynomial p(n) su
h that for ea
h z 2 f1; : : : ; Dgwith D=z 2 IN there is a algorithm with running time O(p(n) � n � (F + 1)zz!)that
omputes a 2D=z-approximation for IPC provided that D�1 extra memorylo
ations are available in
a
he.Finally, for D = 2 the extended linear program does not seem to give animproved approximation. However, in this spe
ial
ase, we
an show an evenbetter approximation fa
tor of 1:5.Lemma 11. If D = 2, the extended linear program with z = 2 has an integralsolution of
ost at most 1:5 �OPT.Referen
es1. S. Albers, N. Garg, and S. Leonardi. Minimizing stall time in single and paralleldisk systems. In Pro
. 30th Annual ACM Symp. on Theory of Computing, pages454{462, 1998.2. B. Bershad, P. Cao, E. W. Felten, G. A. Gibson, A. R. Karlin, T. Kimbrel, K. Li,R. H. Patterson, and A. Tomkins. A tra
e-driven
omparison of algorithms forparallel prefet
hing and
a
hing. In Pro
. ACM SIGOPS/USENIX Asso
. Symp.on Operating System Design and Implementation (OSDI), 1996.3. P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of integrated prefet
hingand
a
hing strategies. In Pro
. ACM Int. Conf. on Measurement and Modeling ofComputer Systems (SIGMETRICS), pages 188{196, 1995.4. P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and performan
eof integrated appli
ation-
ontrolled
a
hing, prefet
hing and disk s
heduling. ACMTransa
tion on Computer Systems, 14(4):311{343, 1996.5. G. A. Gibson, E. Ginting, R. H. Patterson, D. Stodolsky, and J. Zelenka. Informedprefet
hing and
a
hing. In Pro
. 17th Int. Conf. on Operating Systems Prin
iples,pages 79{95, 1995.6. A. Kamath, O. Palmon, and S. Plotkin. Fast approximation algorithm for minimum
ost multi
ommodity
ow. In Pro
. 6th Annual ACM-SIAM Symp. on Dis
reteAlgorithms, pages 493{501, 1995.7. R. Karlin and T. Kimbrel. Near-optimal parallel prefet
hing and
a
hing. InPro
. 37th Annual Symp. on Foundations of Computer S
ien
e, pages 540{549.IEEE So
iety, 1996. 12

