
Average Case Analyses of List Update Algorithms, withApplications to Data CompressionSusanne Albers� Michael MitzenmacheryAbstractWe study the performance of the Timestamp(0) (TS(0)) algorithm for self-organizingsequential search on discrete memoryless sources. We demonstrate that TS(0) is betterthan Move-to-front on such sources, and determine performance ratios for TS(0) againstthe optimal o�ine and static adversaries in this situation. Previous work on such sourcescompared online algorithms only to static adversaries. One practical motivation for our workis the use of the Move-to-front heuristic in various compression algorithms. Our theoreticalresults suggest that in many cases using TS(0) in place of Move-to-front in schemes that usethe latter should improve compression. Tests using implementations on a standard corpusof test documents demonstrate that TS(0) leads to improved compression.Keywords: Online Algorithms, Competitive Analysis, List Update Problem, Prob-ability Distribution, Data Compression, Entropy.1 IntroductionWe study deterministic online algorithms for self-organizing sequential search. Consider a set ofn items x1; x2; : : : ; xn that are stored in an unsorted linear linked list. At any instant of time, analgorithm for maintaining this list is presented with a request that speci�es one of the n items.The algorithm must serve this request by accessing the requested item. That is, the algorithmhas to start at the front of the list and search linearly through the items until the desired itemis found. Serving a request to the i-th item in the list incurs a cost of i. Immediately after arequest, the requested item may be moved at no extra cost to any position closer to the frontof the list; this can lower the cost of subsequent requests. At any time two adjacent items inthe list may be exchanged at a cost of 1; these moves are called paid exchanges. The goal isto serve a sequence of requests so that the total cost incurred on that sequence is as small aspossible. A list update algorithm typically works online, i.e., when serving the present request,the algorithm has no knowledge of future requests.Early work on the list update problem assumes that a request sequence is generated by aprobability distribution ~p = (p1; p2; : : : ; pn). A request to item xi occurs with probability pi; the�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. A portion of this workwas done while the author was at the International Computer Science Institute, Berkeley. E-mail: albers@mpi-sb.mpg.deyDigital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301. A substan-tial portion of this research done while at the Computer Science Department, UC Berkeley, with funding fromthe ONR and National Science Foundation grant No. CCR-9505448. E-mail: michaelm@pa.dec.com1



requests are generated independently. The following online algorithms have been investigatedextensively:� Move-to-front (MTF): Move the requested item to the front of the list.� Transpose (T): Exchange the requested item with the immediately preceding item inthe list.� Frequency count (FC): Maintain a frequency count for each item in the list. Wheneveran item is requested, increase its count by 1. Maintain the list so that the items alwaysoccur in nonincreasing order by frequency count.In this paper we again investigate the list update problem under the assumption that a requestsequence is generated by a probability distribution ~p = (p1; p2; : : : ; pn); that is, it is generatedby a discrete memoryless source. We note that this assumption is a suitable �rst approximationin many applications, especially within speci�c request intervals. For example, if the requestsequence consists of alphanumeric characters from the concatenation of a set of �les, modelingeach �le by a di�erent probability distribution depending on its type provides a �rst-orderapproximation of behavior over request intervals corresponding to each �le.Although our assumption of a memoryless source is only a �rst approximation for real ap-plications, our analysis provides a great deal of insight into how list update algorithms perform.Moreover, our techniques can be applied to higher order models as well. For instance, if thesequence is generated by a Markov chain, so that the probability of a letter appearing dependsonly on the previous letter, generalizing our techniques is straightforward.Our work is motivated by the goal to present a universal algorithm that achieves a goodcompetitive ratio (in the Sleator and Tarjan model, to be presented) but also performs especiallywell when requests are generated by distributions. Previous results have shown that MTF issuch an algorithm, whereas algorithms T and FC are not. More speci�cally, MTF achieves anoptimal competitive ratio of 2 and has a good behavior on probability distributions. AlgorithmsT and FC have an even better performance on distributions but do not achieve a constantcompetitive ratio. Our main contribution is to show that there is an algorithm that has an evenbetter overall performance than MTF. The algorithm we analyze belongs to the Timestamp(p)family of algorithms [1] that were introduced in the context of randomized online algorithmsand are de�ned for any real number p 2 [0; 1]. For p = 0, the algorithm is deterministic and canbe formulated as follows:� Algorithm TS(0): Insert the requested item, say x, in front of the �rst item in thelist that has been requested at most once since the last request to x. If x has not beenrequested so far, leave the position of x unchanged.As an example, consider a list of six items being in the order L : x3 ! x2 ! x4 ! x6 ! x1 ! x5.Suppose that algorithm TS(0) has to serve the second request to x1 in the request sequence � =: : :x1; x2; x2; x4; x3; x3; x1. Items x4 and x6 were requested at most once since the last requestto x1, whereas x2 and x3 were both requested twice. Thus, TS(0) will insert x1 immediately infront of x4 in the list. 2



In [1] it was shown that TS(0) achieves a competitive ratio of 2 on any request sequence,as does Move-to-front [17]. Here we demonstrate that TS(0) performs better on distributions,both by developing a formula for the expected cost per request, and by comparing TS(0) withthe optimal static and dynamic o�ine algorithms.Since our results show that TS(0) performs better than MTF on distributions, we considerapplying the algorithm in the context of data compression, where MTF has been used to developa locally adaptive data compression scheme [4]. Here we prove that for all distributions ~p =(p1; p2; : : : ; pn), the expected number of bits needed by a TS(0)-based encoding scheme to encodeone symbol is linear in the entropy of the source. Our implementations also demonstrate thatin practice TS(0)-based schemes can achieve better compression than MTF schemes.1.1 Comparison with previous workWe briey review the main results in the model where a request sequence is generated by aprobability distribution. The performances of MTF, T, and FC have generally been comparedto that of the optimal static ordering, which we call STAT. The optimal static ordering �rstarranges the items xi in nonincreasing order by probabilities pi and then serves a request sequencewithout changing the relative position of items. For any algorithm A, let EA(~p) denote theasymptotic expected cost incurred by algorithm A in serving one request in a request sequencegenerated by the distribution ~p. Rivest [14] showed that for all ~p, EFC(~p)=ESTAT(~p) = 1.However, the algorithm FC has the drawback that it adapts very slowly to changing probabilitydistributions. Chung et al. [6] analyzed the MTF rule and proved EMTF (~p)=ESTAT(~p) � �2 �1:5708 for all ~p. This bound is tight because Gonnet et al. [8] showed that one can �nd ~p0 withEMTF(~p0)=ESTAT(~p0) � � for any � arbitrarily close to �2 .More recent research on the list update problem was inspired by Sleator and Tarjan [17]who suggested to compare the performance of an online algorithm to that of an optimal o�inealgorithm. An optimal o�ine algorithm knows the entire request sequence in advance and canserve it with minimum cost. An online algorithm A is called c-competitive if, for all requestsequences, the cost incurred by A is at most c times the cost incurred by the optimal o�inealgorithm. Sleator and Tarjan proved that the MTF algorithm is 2-competitive. They alsoshowed that the algorithms T and FC are not c-competitive for any constant c that is independentof the list size n. The competitive ratio of 2 is the best ratio that a deterministic online algorithmfor the list update problem can achieve [13].In classical data compression theory, it is often assumed that a discrete memoryless sourcegenerates a string S to be compressed. The string S consists of symbols, where each symbol isan element in the alphabet � = fx1; x2; : : : ; xng. Each symbol is equal to xi with probabilitypi. Bentley et al. [4] showed how any list update algorithm can be used to develop a datacompression scheme. The idea is to convert the string S of symbols into a string I of integers.Whenever the symbol xi has to be compressed, an encoder looks up the current position of xiin a linear list of symbols it maintains, outputs this position and updates the list. A decoderthat receives the string I can recover the original message by looking up in its own linear list,for each integer j it reads, the symbol that is currently stored at position j. The decoder also3



updates its list. Clearly, when the string I of integers is actually transmitted, each integer in thestring should be coded again using a variable length pre�x code. Bentley et al. showed that, forall ~p = (p1; p2; : : : ; pn), the expected number of bits needed to encode one symbol in a string Susing the MTF rule is linear in the entropy of the source. By Shannon's source coding theorem,this is optimal, up to a constant factor. Bentley et al. also showed that, for any string S, theaverage number of bits needed by MTF to encode one symbol in S is linear in the \empiricalentropy" of the string.Recently, Grinberg et al. [9] proposed a modi�cation of the MTF encoding, which theycall MTF encoding with secondary lists. They implemented the new compression scheme buttheir simulations do not show an explicit comparison between MTF and MTF with secondarylists. Also recently, a fast and e�cient compression scheme that uses MTF encoding as asubroutine has been developed [5]. This algorithm appears competitive with those used instandard compression tools, and thus the examination of alternatives to MTF may lead tobetter practical compression algorithms.1.2 Our resultsAn important aspect in our work is that we compare the expected cost incurred by an onlinealgorithm to that of the optimal o�ine algorithm, which we shall denote by OPT. We recallthat OPT may rearrange the list after each request and is not forced to serve a request sequenceusing the optimal static ordering.First we develop a formula for TS(0)'s expected cost on a distribution ~p = (p1; p2; : : : ; pn).This formula implies that if we have a distribution ~p with pi = 1n , for all i, then MTF and TS(0)have the same expected cost. On all other distributions, TS(0) has a smaller expected cost. Thenwe compare TS(0) to the optimal o�ine algorithm OPT and show ETS(~p)=EOPT (~p) � 1:5 for alldistributions ~p. This is a performance MTF cannot match because EMTF(~p0)=ESTAT (~p0) > 1:57for some ~p0, and when MTF is compared to OPT the ratio might even be worse. We also showthat, for any ~p and any � > 0, the cost of TS(0) is at most 1:5 + � times the cost of OPTwith high probability on su�ciently long sequences. It is worthwhile to notice that 1.5 is thebest lower bound currently known on the competitiveness that can be achieved by randomizedlist update algorithms against the oblivious adversary [18]. Thus, the performance ratio ofTS(0) on distributions is at least as good as the performance ratio of randomized algorithms onany input. Finally we evaluate TS(0) against the optimal static ordering and show, for all ~p,ETS(~p)=ESTAT(~p) � 1:34.Given these results, we examine the potential of TS(0) in compression algorithms. As previ-ously mentioned, we prove that for all distributions ~p = (p1; p2; : : : ; pn), the expected number ofbits needed by a TS(0)-based encoding scheme to encode one symbol is linear in the entropy ofthe source. Our upper bounds are slightly better than similar upper bounds for MTF-encodingin this case. We also prove that, for any string S, the average number of bits needed by TS(0) toencode one symbol in S are linear in the empirical entropy of S. Our bound is the same as thatgiven for MTF by [4]. Moreover, we provide evidence that TS(0)-based compression schemescan outperform MTF-based compression schemes in practical situations by implementing these4



compression algorithms and testing them on the standard Calgary Compression Corpus �les[19]. In almost all of our tests, TS(0) encoding achieves a better compression ratio than MTFencoding. We note that further experiments on the performance of compression schemes basedon list update algorithms, including TS(0) and MTF, have recently been performed by [2].2 Analyses for the list update problemIn this section, we begin by demonstrating that the asymptotic expected cost of TS(0) is alwaysat most that of MTF on discrete memoryless sources. We then elaborate on this conclusion bydetermining the competitive ratio of TS(0) on such sources, against both dynamic and staticadversaries.First, we formally de�ne the asymptotic expected cost of a list update algorithm A. Given aprobability distribution ~p = (p1; p2; : : : ; pn) and a request sequence generated according to ~p, thecon�guration of A's list follows a Markov chain, with n! states, that converges to a stationarydistribution. For any of the n! states Si, 1 � i � n!, let qi be the stationary probability ofSi. Furthermore, for any item xj , 1 � j � n, let pos(xj ; Si) be the position of xj in the listcon�guration represented by Si. The asymptotic expected cost eA(xj) incurred by algorithm Ain serving a request to item xj in a request sequence generated according to ~p is xj 's expectedposition in the list, i.e., eA(xj) = X1�i�n! qipos(xj ; Si):The asymptotic expected cost incurred by A in serving a single request in a request sequencegenerated according to ~p = (p1; p2; : : : ; pn) isEA(~p) = nXj=1 pjeA(xj):2.1 The expected cost of TS(0)To bound the expected cost per request of TS(0), we �rst prove a useful lemma.Lemma 1 Consider any point in the request sequence where there have been at least three re-quests for xi and xj . Then xi precedes xj in the list maintained by TS(0) if and only if amajority of the last three requests for xi and xj have been for xi.Proof: We show that the item of the pair fxi; xjg that was requested most often during thelast three requests precedes the other item of the pair fxi; xjg in TS(0)'s list. Suppose that amajority of the last three requests for xi and xj has been to xi. Item xi was requested at leasttwice during these three last requests. First consider the case that the last request for xi andxj has been to xi. Then, at that last request, TS(0) moves xi at some position in front of xj ,provided that xi did not precede xj already, because xj was requested at most once since thelast request to xi. Now assume that the last request for xi and xj has been to xj , i.e., the lastthree requests for xi and xj are xixixj . After the second request to xi, item xi must precede5



xj in TS(0)'s list. The algorithm TS(0) has the important property that if it serves a requestto an item xj , then all items preceding xj in the list that were requested at most once sincethe last request to xj are stored consecutively in front of xj . In other words, if xj is insertedin front of the �rst item in the list that was requested at most once since the last request toxj , then xj does not pass an item that was requested at least twice since the last request toxj . These statements were shown in [1]. Therefore, when TS(0) serves the request to xj in thesubsequence xixixj , then xj does not move in front of xi.Theorem 1 For any probability distribution ~p = (p1; p2; : : : ; pn),a) the asymptotic expected cost incurred by TS(0) in serving a request to item xj, 1 � j � n,is eTS(xj) = 12 + nXi=1 p3i + 3p2i pj(pi + pj)3 :b) ETS(~p) = X1�i�j�n pipjpi + pj  2� (pi � pj)2(pi + pj)2!:Proof: Part a): The cost eTS(xj) is 1 plus the expected number of items xi, xi 6= xj , thatprecede xj in the list. Let Aij be the event that xi precedes xj in the list when TS(0) serves arequest to xj . We compute the asymptotic probability Prob(Aij) using Lemma 1.Lemma 1 implies that the event Aij occurs if and only if the last three requests for xiand xj are (B1) xixixi; (B2) xixixj ; (B3) xixjxi; or (B4) xjxixi. It is not hard to verifythat Prob(B1) = p3i =(pi + pj)3 and Prob(Bk) = p2i pj=(pi + pj)3, for k = 2; 3; 4. Therefore,Prob(Aij) = (p3i + 3p2i pj)=(pi + pj)3 andeTS(xj) = 1 + nXi=1i6=j Prob(Aij) = 1 + nXi=1i6=j p3i + 3p2i pj(pi + pj)3 = 12 + nXi=1 p3i + 3p2i pj(pi + pj)3 :Part b): The asymptotic expected cost incurred by TS(0) on one request isETS(~p) = nXj=1 pjeTS(xj) = 12 + nXj=1 nXi=1 pj  p3i + 3p2i pj(pi + pj)3 != 12 + 12 nXj=1 pj + X1�i<j�n pipj(p2i + 6pipj + p2j )(pi + pj)3= nXj=1 pj + X1�i<j�n pipj(p2i + 6pipj + p2j)(pi + pj)3= X1�i�j�n pipjpi + pj  p2i + 6pipj + p2j(pi + pj)2 != X1�i�j�n pipjpi + pj  2� (pi � pj)2(pi + pj)2! :6



Corollary 1 For any probability distribution ~p = (p1; p2; : : : ; pn),EMTF (~p)� ETS(~p) = X1�i�j�n pipj (pi � pj)2(pi + pj)3 :Proof: Rivest [14] showed EMTF(~p) =P1�i�j�n 2pipjpi+pj : Using part b) of Theorem 1, the resultfollows immediately.2.2 Performance against dynamic o�ine algorithmsTheorem 2 For any probability distribution ~p = (p1; p2; : : : ; pn),ETS(~p) � 32EOPT (~p):Proof: The analysis consists of two main parts. In the �rst part we show that, given a �xedrequest sequence �, the cost incurred by TS(0) and OPT on � can be divided into costs that arecaused by each unordered pair fx; yg of items x and y, x 6= y. This technique of evaluating costby considering pairs of items was also used in [3, 11, 1]. In the second part of the analysis weshow that, for each pair fx; yg, the asymptotic expected cost paid by TS(0) is at most 32 timesthe asymptotic expected cost incurred by OPT.In the following we will always assume that serving a request to the i-th item in the listincurs a cost of i � 1 rather than i. If ETS(~p) � 32EOPT (~p) holds in this (i � 1)-cost model,then the inequality also holds in the i-cost model. (We note that the reverse statement doesnot necessarily hold.) Now consider a �xed request sequence � = �(1)�(2); : : : ; �(m) of lengthm. For an algorithm A 2 fTS(0); OPTg, let CA(t; x) denote the cost caused by item x whenA serves request �(t). That is, CA(t; x) = 1 if x precedes the item requested by �(t) in A's listat time t; otherwise CA(t; x) = 0. For any pair fx; yg of items x 6= y, let p(x; y) be the totalnumber of paid exchanges that A incurs in moving x in front of y or y in front of x. Recall thatin a paid exchange, an item, which is not accessed by the present request, is exchanged with theimmediately preceding item in the list. The cost incurred by A on � can be written asCA(�) = Xfx;ygx 6=y ( Xt2[1;m]�(t)=x CA(t; y) + Xt2[1;m]�(t)=y CA(t; x) + p(x; y)):Now, for any unordered pair fx; yg of items x and y, with x 6= y, let �xy be the request sequencethat is obtained from � if we delete all requests that are neither to x nor to y. Let CTS(�xy)be the cost incurred by TS(0) if it serves �xy on a two item list that consists of only x and y.In [1] it was shown that if TS(0) serves � on the long list, then the relative position of x and ychanges in the same way as if TS(0) serves �xy on the two item list. Therefore,CTS(�xy) = Xt2[1;m]�(t)=x CTS(t; y) + Xt2[1;m]�(t)=y CTS(t; x)and CTS(�) = Xfx;ygx 6=y CTS(�xy): (1)7



Note that TS(0) does not incur paid exchanges and hence p(x; y) = 0 for all pairs fx; yg. Theoptimal cost COPT (�) can be written in a similar way:COPT (�xy) � Xt2[1;m]�(t)=x COPT (t; y) + Xt2[1;m]�(t)=y COPT (t; x) + p(x; y)and COPT (�) � Xfx;ygx 6=y COPT (�xy): (2)Here, only inequality signs hold because if OPT serves �xy on the two items list, then it canalways arrange x and y optimally in the list, which might not be possible if OPT serves � on theentire list. In fact, an optimal o�ine algorithm for serving a request sequence �xy on a two itemlist can be speci�ed easily: whenever there are at least two consecutive requests to the sameitem, that item is moved to the front of the list after the �rst request if the item is not alreadythere. On all other requests, the list remains unchanged. Clearly, such an optimal ordering ofall pairs fx; yg might not always be possible if OPT serves � on the long list.Equation (1) and inequality (2) allow us to compare CTS(�) and COPT (�) by simply com-paring CTS(�xy) and COPT (�xy) for each pair fx; yg of items. The same can trivially be shownto hold true for the asymptotic expected costs ETS(~p) and EOPT (~p) as well, by taking the expec-tations of both sides of equation (1) and inequality (2), and using the linearity of expectations.Hence, in the following, we concentrate on one particular pair fx; yg of items x 6= y. For analgorithm A 2 fTS(0), OPTg, let ExyA (~p) be the asymptotic expected cost incurred on the twoitem list containing x and y if A serves a single request in �xy , given that the request sequence� is generated by ~p. We will show thatExyTS(~p) � 32ExyOPT (~p):This proves the theorem.We �rst evaluate ExyTS(~p). TS(0) incurs a cost of 1 on a request in �xy if x is requested and yprecedes x in TS(0)'s list or if y is requested and x precedes y in TS(0)'s list. Otherwise, TS(0)incurs a cost of 0. By Lemma 1, y precedes x in TS(0)'s list if and only if the majority of thelast three requests for x and y have been for y, i.e., if the last three requests in �xy have been(B1) yyy; (B2) yyx; (B3) yxy; or (B4) xyy. In the probability distribution ~p = (p1; p2; : : : ; pn),let px be the probability of a request to x and let py be the probability of a request to py . De�nep = px=(px + py) and q = (1 � p) = py=(px + py). Clearly, p and q are the probabilities thatwithin �xy , a request is made to x and y, respectively. Thus, the asymptotic probability that yprecedes x in TS(0)'s list is q3 + 3q2p. Similarly, the asymptotic probability that x precedes yin TS(0)'s list is p3 + 3p2q. ThusExyTS(~p) = p(q3 + 3q2p) + q(p3 + 3p2q) = pq(p2 + 6pq + q2):Next we determine ExyOPT (~p). Consider OPT's movements when it serves �xy on the twoitem list. As explained in the paragraph after inequality (2), we may assume without loss of8



generality that whenever there are two consecutive requests to the same item, OPT moves thatitem to the front of the list on the �rst request. Thus, OPT incurs a cost of 1 on a request in�xy if x is requested and the last requests in �xy were of the form yy(xy)i for some i � 0, or ify is requested and the last requests in �xy were of the form xx(yx)i for some i � 0. Therefore,ExyOPT (~p) = p 1Xi=0 q2(pq)i + q 1Xi=0 p2(qp)i= p(q2=(1� pq)) + q(p2=(1� pq)) = pq=(1� pq):We conclude that ExyTS(~p) � (1�pq)(p2+6pq+q2)ExyOPT (~p): The expression (1�pq)(p2+6pq+q2)is maximal for p = q = 12 and hence ExyTS(~p) � 32ExyOPT (~p).We next show that for long enough sequences on discrete memoryless sources, TS(0) will beat worst (1:5 + �)-competitive with high probability.Theorem 3 For every distribution ~p = (p1; p2; : : : ; pn) and � > 0 there exist constants c1, c2,and m0 dependent on ~p, n, and � such that for a request sequence � of length m � m0 generatedaccording to ~p: ProbfCTS(�) > (1:5 + �)COPT (�)g � c1e�c2m�2Proof: Again, we begin by considering the performance of the algorithms on a pair of itemsfx; yg. We �rst show that the cost of TS(0) on a random request sequence � is close to itsexpectation with high probability. Consider the eight state Markov chain that records the lastthree requests of � that are from the sequence �xy. Label the states (xxx); (xxy) and so on,according to the last three requests. Then by Lemma 1 the cost to TS(0) on �xy is exactly thenumber of transitions from (xxx) to (xxy), plus the number of requests from (xxy) to (xyy),and so on. Consider only the number of transitions from state (xxx) to (xxy) over the courseof the sequence �. Let Z be the random number of such transitions on �. Abusing notationsomewhat, let E[Z] be the asymptotic expected number of such transitions. We now make useof standard large deviation bounds on �nite state Markov chains (see, for example, [16, Lemma7.6] or [12, Corollary 4.2]), which yield Cherno�-like bounds on the deviation of the number oftransition from the asymptotic expected number of transitions. In particular, we have for each�1 > 0 and su�ciently large m:ProbfjZ � E[Z]j > �1E[Z]g � c3e�c4m�21for some constants c3 and c4 dependent on px and py. That is, the number of transitions ofthis type is close to the expected number of transitions with high probability. We now use thisargument for every transition type that corresponds to a cost of 1 for TS(0) over all possiblepairs of elements. Summing and using linearity of expectations then yieldsProbfCTS(�)� E[CTS(�)] > �1E[CTS(�)]g � c5e�c6m�21 ;for some constants c5 and c6 dependent on ~p and n.9



Similarly, we may bound the cost of OPT on � by bounding the deviation of OPT on thesubsequence �xy . Note that this will provide only a one-sided bound for the cost of OPT on �by equation (2), but this is su�cient. As shown in Theorem 2 we may assume OPT incurs a costof 1 on a request in �xy if x is requested and the last request in �xy were of the form yy(xy)i,and similarly if y is requested. Hence to count the cost to OPT on �xy we may use a six stateMarkov chain that records the last two items requested from �xy as well as the last item thatwas requested twice sequentially. Using large deviation bounds and summing over all necessarytransitions over all pairs of items yields that for each �2 > 0,ProbfCOPT(�)� E[COPT(�)] > �2E[COPT(�)]g � c7e�c8m�22 :Choosing �1 = �2 = �4 su�ces to yield the theorem. (We also note that, by this constructions,the constants c1,c2, and m can all be made polynomial in n and 1=pn.)2.3 Performance against static o�ine algorithmsRecall that the expected cost incurred by TS(0) in serving one request in a request sequencegenerated by ~p = (p1; p2; : : : ; pn) is1 +Xi Xj 6=i pip3j + 3p2jp2i(pi + pj)3 =Xi;j pipj(p2i + 6pipj + p2j )2(pi + pj)3 + 12 :We can now adapt the techniques presented in [6] to bound the ratio between ETS(~p) andESTAT (~p). We assume p1 � p2 � : : : � pn. As ESTAT (~p) = Pi ipi = 12Pi;j min(pi; pj) + 12 , wehave ETS(~p)ESTAT (~p) = Pi;j pipj(p2i+6pipj+p2j)2(pi+pj)3 + 1212Pi;j min(pi; pj) + 12 < Pi;j pipj(p2i+6pipj+p2j)(pi+pj)3Pi;jmin(pi; pj) :The result is immediate from the following theorem:Theorem 4 If xi > 0 (1 � i � n), thenPi;j xixj(x2i+6xixj+x2j )(xi+xj)3Pi;j min(xi; xj) � 1:34:Proof: We shall rely on the following lemma, to be proven later, which replaces the ratio ofsums by the ratio of integrals:Lemma 2 Suppose f is an integrable function on (0;1) with R10 fdx = 0: Let G(x; y) behomogeneous of degree 1, H(x; y) = @2G@x@y , and H+(x; y) = maxfH(x; y); 0g. ThenR10 R10 G(x; y)f(x)f(y)dxdyR10 R10 min(x; y)f(x)f(y)dxdy � Z 10 H+(x; 1)x�1=2dx:10



Let G(x; y) = xy(x2+6xy+y2)(x+y)3 . Without loss of generality, let 0 < x1 < x2 < : : : < xn. Let f�be a function such that f� = 1 in neighborhoods of length � around each xi and 0 otherwise.Then as � approaches 0,Pi;j xixj(x2i+6xixj+x2j)(xi+xj)3Pi;j min(xi; xj) = lim�!0 R10 R10 G(x; y)f�(x)f�(y)dxdyR10 R10 min(x; y)f�(x)f�(y)dxdy :We now apply Lemma 2. Here H+(x; y) = max(�6xy(x2�6xy+y2)(x+y)5 ; 0). We calculate the requiredintegral (using Maple) to �nd Z 10 H+(x; 1)x�1=2dx � 1:3390::::We now move to the proof of Lemma 2. The proof depends on H�older's inequalityZ f(x)g(x)dx� �Z fp(x)dx�1=p�Z gq(x)dx�1=q ;and the following version of Hilbert's inequality (see [10]):Theorem 5 (Hilbert's inequality) For p; q > 1 satisfying 1p + 1q = 1, suppose that K(x; y) isnon-negative and homogeneous of degree �1, and thatZ 10 K(x; 1)x�1=pdx = Z 10 K(1; y)y�1=qdx = C:Then Z 10 dx�Z 10 K(x; y)g(y)dy�q � Cq Z 10 gq(y)dy:Proof of Lemma 2: Set F (x) = R x1 f(x)dx:Then, by Lemma 2 of [6], R10 R10 min(x; y)f(x)f(y)dxdy =R10 F 2(x)dx. Similarly,Z 10 Z 10 G(x; y)f(x)f(y)dxdy = Z 10 f(x)dx�G(x; y)F (y)j10 � Z 10 @G@y F (y)dy�= � Z 10 Z 10 @G@y f(x)F (y)dxdy= Z 10 Z 10 @2G@x@yF (x)F (y)dxdy= Z 10 Z 10 H(x; y)F (x)F (y)dxdy� Z 10 Z 10 H+(x; y)F (x)F (y)dxdy� �Z 10 F 2(x)dx�1=2"Z 10 dx�Z 10 H+(x; y)F (y)dy�2#1=2� Z 10 F 2(x)dx Z 10 H+(x; 1)x�1=2dx:11



The second equality follows from the de�nition of F and the hypothesis that R10 fdx = 0. Thesecond to last step follows from H�older's inequality, and the last step utilizes Hilbert's inequality.The lemma follows immediately.Note the necessity of replacing H(x; y) by H+(x; y) in the third to last step, as H�older'sinequality requires the functions inside the integral to be non-negative. In fact in Theorem 4the function H(x; y) can be negative, so care must be taken in calculating the integral. It issomewhat surprising that, despite seemingly having to \cut o�" part of the integral, we stillrealize an interesting result. It also suggests that perhaps the bound could be improved byavoiding this technical di�culty.3 Analyses and simulations for data compressionThe MTF algorithm has proved useful in the development of the locally adaptive compressionscheme of [4]. Motivated by this result, we consider a similar algorithm based on TS(0). Weassume the reader is somewhat familiar with the system of [4], which was briey described inthe introduction.3.1 Theoretical resultsLet BTS(~p) be the expected number of bits that TS(0) needs to encode one symbol in an inputsequence that is generated by ~p = (p1; p2; : : : ; pn). We assume pi > 0 for all i. In order to analyzeBTS(~p), we have to specify how an integer j should be encoded. We use a variable length pre�xcode by Elias [7] which encodes the integer j using 1 + blog jc+ 2blog(1 + log j)c bits. Bentleyet al. [4] showed that, using this pre�x code, the expected number of bits needed by the MTFalgorithm is BMTF (~p) � 1 + H(~p) + 2 log(1 + H(~p)); for all ~p. Here H(~p) = Pni=1 pi log( 1pi ) isthe entropy of the source. We prove similar bounds for TS(0).Theorem 6 For any ~p = (p1; p2; : : : ; pn),BTS(~p) � 1 +H(~p) + 2 log(1 +H(~p));where H(~p) = H(~p) + log(1�P1�i�j�n pipj(pi�pj)2(pi+pj)2 ).Note that 0 �P1�i�j�n pipj(pi�pj)2(pi+pj)2 < 1 and thus log(1�P1�i�j�n pipj(pi�pj)2(pi+pj)2 ) � 0.Proof of Theorem 6: Let f(j) = 1 + log j + 2 log(1 + log j). Consider a �xed symbol xi,1 � i � n. For j = 1; : : : ; n, let qij be the asymptotic probability that xi is at position j inTS(0)'s list. The expected number of bits to encode the symbol xi is Pnj=1 qijf(j), which, byJensen's [10] inequality, is at most f(Pnj=1 qijj). Jensen's inequality states that for any concavefunction f and any set fw1; w2; : : : ; wng of positive reals, Pni=1 wif(yi) � f(Pni=1 wiyi). Notethat qijj is the asymptotic expected position eTS(xi) of symbol xi in TS(0)'s list. Therefore,BTS(p) �Pni=1 pif(eTS(xi)): In the following we show thatnXi=1 pi log(eTS(xi)) � H(p): (3)12



Using this inequality, we can easily derive Theorem 6 becauseBTS(~p) � nXi=1 pif(eTS(xi)) � 1 + nXi=1 pi log(eTS(xi)) + 2 nXi=1 log(1 + pi log(eTS(xi)))� 1 +H(p) + 2 log(1 +H(p)):We now show inequality (3). By Theorem 1a), we have eTS(xi) = 12 +Pnj=1 p3j+3p2jpi(pi+pj)3 andnXi=1 pi log(eTS(xi)) = nXi=1 pi log0@12 + nXj=1 p3j + 3p2jpi(pi + pj)3 1A= nXi=1 pi log0@12 + nXj=1 pjpi + pj + nXj=1 pip2j � p2i pj(pi + pj)3 1A :We have 12 +Pnj=1 pjpi+pj = 1pi (12pi +Pnj=1 pipjpi+pj ) � 1pi (pi +Pnj=1j 6=i pj) = 1pi : ThereforenXi=1 pi log(eTS(xi)) � nXi=1 pi log0@ 1pi + nXj=1 pip2j � p2i pj(pi + pj)3 1A= nXi=1 pi log� 1pi�+ nXi=1 pi log0@1 + nXj=1 p2i p2j � p3i pj(pi + pj)3 1A� nXi=1 pi log� 1pi�+ log0@1 + nXi=1 pi nXj=1 p2i p2j � p3i pj(pi + pj)3 1A :The last step follows again from Jensens's inequality. We concludenXi=1 pi log(eTS(xi)) � nXi=1 pi log� 1pi�+ log0@1� X1�i�j�n pipj(pi � pj)2(pi + pj)2 1A :So far we have assumed that an input sequence S to be compressed is generated by aprobability distribution ~p = (p1; p2; : : : ; pn). Now consider any input sequence S. Let m bethe length of S, and let mi, 1 � i � n, be the number of occurrences of the symbol xi in thestring S. Let ATS(S) be the average number of bits needed to encode one symbol in the stringS using the TS(0) algorithm. Similarly, let AMTF (S) be the average number of bits neededby the MTF algorithm. Again, we assume that an integer j is encoded by means of the Eliasencoding that requires 1 + blog jc + 2blog(1 + log j)c bits. Bentley et al. [4] show that for anyinput sequence S, AMTF (S) � 1 + H(S) + 2 log(1 + H(S)) where H(S) = Pni=1 mim log( mmi ) isthe \empirical entropy" of S. The empirical entropy is interesting because it corresponds to theaverage number of bits per symbol used by the optimal static Hu�man encoding of a sequence;this result implies that MTF encoding is, at worst, almost as good as static Hu�man encoding.We can show a similar bound for a variation of TS(0), where after the �rst occurrence of asymbol it is moved to the front of the list.Theorem 7 For any input sequence S,ATS(S) � 1 +H(S) + 2 log(1 +H(S));where H(S) =Pni=1 mim log( mmi ). 13



Proof: Our analysis is very similar to the corresponding proof by Bentley et al. Again, letf(j) = 1+log j+2 log(1+log j). Consider a �xed symbol xi, 1 � i � n, and let t1; t2; : : : ; tmi bethe times at which the symbol xi occurs in the string S. We assume here that after TS(0) hastransmitted the �rst occurrence of the symbol xi, it moves xi to the front of the list. Furthermore,we may assume without loss of generality that the �rst occurrence of xi is encoded using f(t1)bits. We show that for k = 2; 3; : : : ; mi, the k-th occurrence of the symbol xi can be encodedusing f(posk�1 + tk � tk�1 � posk) bits, where posk is the position of symbol xi in TS(0)'s listimmediately after the k-th xi is transmitted. After the (k � 1)-st occurrence of xi is encoded,the position of xi in TS(0)'s list is posk�1. Let dk be the number of symbols xj , xj 6= xi, thatoccur at least twice in the interval [tk�1 + 1; tk � 1]. Obviously, at most tk � tk�1 � 1 � dksymbols xj can move ahead of xi in TS(0)'s list during the time interval [tk�1 + 1; tk � 1]. Bythe de�nition of TS(0), immediately after the k-th occurrence of xi is transmitted, xi precedesall items in TS(0)'s list that were requested at most once in [tk�1+1; tk�1]. Also, by Lemma 1,xi is located behind all items in the list that are requested at least twice in [tk�1 + 1; tk � 1].Thus, dk + 1 = posk. Therefore, the k-th occurrence of xi can be encoded using at mostf(posk�1 + tk � tk�1 � 1 � dk) = f(posk�1 + tk � tk�1 � posk) bits. The total number of bitsneeded to encode the mi occurrences of the symbol xi is at mostf(t1) + miXk=2 f(posk�1 + tk � tk�1 � posk) � mif( 1mi (t1 + miXk=2(posk�1 + tk � tk�1 � posk)))= mif( 1mi (tmi + pos1 � posmi))� mif(mmi ):The �rst inequality follows from Jensen's inequality; in the last step we make use of the factsthat tmi � m and pos1 = 1 � posmi .Summing up the above expression for all xi and dividing by m, we obtain that the averagenumber of bits needed by TS(0) to encode one symbol in the string S isATS(S) � nXi=1 mim f(mmi ):The theorem follows immediately.3.2 Simulation resultsOur theoretical work suggests that a compression scheme similar to Move-to-front using theTS(0) scheme may provide better performance. In e�ect, TS(0) is a conservative version ofMTF encoding; like MTF-encoding, it responds well to locality of reference by moving recentlyrequested items to the front, but it responds more slowly. Understanding this intuition is im-portant to understand where TS(0)-encoding can improve on MTF-encoding: when the localityis very strong, then MTF encoding will perform better, since it responds more aggressively. Onthe other hand, TS(0)-encoding is more e�ective when the input to be compressed resembles a14



File TS(0) MTF OriginalBytes % Orig. Bytes % Orig. Bytesbib 99121 89.09 106478 95.70 111261book1 581758 75.67 644423 83.83 768771book2 473734 77.55 515257 84.35 610856geo 92770 90.60 107437 104.92 102400news 310003 82.21 333737 88.50 377109obj1 18210 84.68 19366 90.06 21504obj2 229284 92.90 250994 101.69 246814paper1 42719 80.36 46143 86.80 53161paper2 63654 77.44 69441 84.48 82199pic 113001 22.02 119168 23.22 513216progc 33123 83.62 35156 88.75 39611progl 52490 73.26 55183 77.02 71646progp 37266 75.47 40044 81.10 49379trans 79258 84.59 82058 87.58 93695Table 1: MTF vs. TS(0) : Byte-based compressionstring generated by a distribution, possibly with a large number of rare items each with a smallprobability of appearing.We have tested our theoretical results by implementing simple versions of TS(0)-encodersand decoders for text compression. Our tests use standard documents from the Calgary Com-pression Corpus [19]. The current goal of these tests is not to develop an all-purpose functionalcompression system, but merely to demonstrate the potential gains from using TS(0) in place ofMTF. The compression is performed by turning the document into a token stream. The tokensare then encoded by their position in the list using standard variable-length pre�x encodingsgiven by Elias [7]; each integer j requires 1 + 2blog jc bits. This pre�x code is di�erent fromthe code we used in the analyses of the previous section; in our tests, it leads to slightly bettercompression. We can compare the compression of MTF and TS(0) compression by varying theadaptive discipline of the list.In the �rst test ASCII characters (that is, single bytes) constitute the tokens, and the list isinitialized in order of character frequency in standard text. The results of Table 1 demonstratethat TS(0)-encoding outperforms MTF-encoding signi�cantly on the sample documents. Thebold faced �gures indicate how much space the compressed �les take, assuming that the original�les use 100% space. The improvement of TS(0) over MTF is typically 6 { 8 %. Moreover, in allcases TS(0)-encoding beats MTF-encoding. However, this character-based compression schemeperforms far worse than standard UNIX utilities, such as pack, compress, and gzip, whichgenerally compress text �les by 30% to 80%. Among the Unix utilities, compress is superior topack, and gzip is superior to compress.In order to make TS(0) and MTF encoding comparable to the standard UNIX utilities, we15



File TS(0) MTF OriginalBytes % Orig. Bytes % Orig. Bytesbib 34117 30.66 35407 31.82 111261book1 286691 37.29 296172 38.53 768771book2 260602 42.66 267257 43.75 610856news 116782 30.97 117876 31.26 377109paper1 15195 28.58 15429 29.02 53161paper2 24862 30.25 25577 31.12 82199progc 10160 25.65 10338 26.10 39611progl 14931 20.84 14754 20.59 71646progp 7395 14.98 7409 15.00 49379Table 2: MTF vs. TS(0) : Word-based compressionhave to use words as the tokens, which we do in our second test. A word is taken to be asequence of non-white space characters between white space. This technique assumes that thedecompressor has a dictionary consisting of a list of all words in the document; in practice,this dictionary (in compressed or uncompressed form) can be included as part of the compresseddocument. In the results of Table 2, we compare the size of the MTF and TS(0) based encodings.These �gures do not include the dictionary cost, so that a direct comparison between MTF andTS(0) can be seen. Also, for convenience, we placed no memory limitation on the compressoror decompressor; that is, the length of the list was allowed to grow as large as necessary. Inpractice one might wish to devise a more memory-e�cient scheme, using the list as a cache asin [4].The results of Table 2 reect the compression achieved1, including only the token streamand not the dictionary. As one might expect, the gains from TS(0) in this situation are lessdramatic, but still noticeable.To compare the TS(0) compression with the standard UNIX utilities, we add to the results inTable 2 the size of the dictionary after being compressed using pack. These results are presentedin Table 3. We emphasize that our results for TS(0) could be improved by compressing thedictionary using other methods, but the results are quite suggestive of TS(0) performance: thescheme performs better than pack and occasionally as well as compress, but not as well as gzip.We have also attempted to use TS(0) encoding in place of MTF encoding in the data com-pression algorithm recently presented by Burrows and Wheeler [5]. Unfortunately, the resultshere show less promise. In some cases, TS(0) led to improved compression, but in most casesMTF encoding yielded better results. Although it is not entirely clear why this is the case, wenote that the Burrows-Wheeler compression scheme attempts to use MTF on a stream withextremely high locality of reference. Given this, it is not entirely surprising that MTF wouldoutperform TS(0). We remain optimistic that TS(0) based encoding will prove useful in othersituations.1Because the current implementation handles only ASCII characters, we do not have results for all �les.16



File TS(0) pack compress gzip% Orig. % Orig. % Orig. % Orig.bib 51.51 63.91 41.82 31.51book1 50.66 57.04 43.19 40.76book2 56.06 60.31 41.05 33.84news 57.07 65.37 48.29 38.41paper1 53.74 62.94 47.17 34.94paper2 49.88 58.07 43.99 36.20progc 65.11 65.71 48.33 33.51progl 37.54 60.15 37.89 22.71progp 42.79 61.42 38.90 22.77Table 3: TS(0) word-based compression vs. UNIX utilities4 ConclusionWe have analyzed the performance of the deterministic list update algorithm TS(0) when arequest sequence is generated by a probability distribution ~p = (p1; p2; : : : ; pn). We have demon-strated that TS(0) has a better overall performance than the Move-to-front algorithm on suchdistributions. In particular, we have shown that on all distributions, the expected cost incurredby TS(0) is at most 1.5 times the expected cost incurred by the optimal (dynamic) o�ine algo-rithm. We note that a similar analysis can also be used to study the Timestamp(p) algorithms[1], but TS(0) yields the best competitive ratio against distributions. Also, the techniques weused can easily be extended to the case that a request sequence is generated by a Markov chain,but for general Markov chains, we cannot prove that TS(0) has a better competitive ratio than2. (MTF can easily be shown to be 2-competitive against a Markov chain that cycles amongthe n elements of the list.)List update algorithms can be used to develop locally adaptive data compression schemes.Our theoretical results show that TS(0) based encoding can be better than Move-to-front basedencoding. We have supported our theoretical observations by building encoders and decoderswith TS(0) encoding that lead to improved compression over MTF encoding on a standardcorpus of test �les.We suggest some open questions based on our work. A tight bound on the competitive ratioof TS(0) against static o�ine algorithms, perhaps based on a tight bound for the expressionin Theorem 4, remains open. A more general question is whether there is quick, simple wayto determine which list update strategy (say between MTF and TS(0)) is expected to performbetter on a given higher order Markovian source. In theory, the expected cost per request canbe determined, but this seems excessively time-consuming. Our work settles the question fordiscrete memoryless sources in favor of TS(0); for higher order sources, the question appearsmore di�cult. 17
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