
WS 2024/25

Efficient Algorithms

Harald Räcke

Fakultät für Informatik
TU München

https://www.moodle.tum.de/course/view.php?id=100478

Winter Term 2024/25

Part I

Organizational Matters

12. Jan. 2025

Harald Räcke 2/530

Part I

Organizational Matters

▶ Modul: IN2003

▶ Name: “Efficient Algorithms and Data Structures”

“Effiziente Algorithmen und Datenstrukturen”

▶ ECTS: 8 Credit points

▶ Lectures:
▶ 4 SWS

Mon 10:00–12:00 (Room Interim2)
Fri 10:00–12:00 (Room Interim2)

▶ Webpage:

https://www.moodle.tum.de/course/view.php?id=100478

▶ Required knowledge:
▶ IN0001, IN0003

“Introduction to Informatics 1/2”
“Einführung in die Informatik 1/2”

▶ IN0007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

▶ IN0011
“Basic Theoretic Informatics”
“Einführung in die Theoretische Informatik” (THEO)

▶ IN0015
“Discrete Structures”
“Diskrete Strukturen” (DS)

▶ IN0018
“Discrete Probability Theory”
“Diskrete Wahrscheinlichkeitstheorie” (DWT)

12. Jan. 2025

Harald Räcke 4/530

The Lecturer

▶ Harald Räcke

▶ Email: raecke@in.tum.de

▶ Room: 03.09.044

▶ Office hours: (by appointment)

12. Jan. 2025

Harald Räcke 5/530

Tutorials

▶ Omar AbdelWanis

▶ omar.abdelwanis@in.tum.de

▶ Room: 03.09.042

▶ Office hours: (by appointment)

12. Jan. 2025

Harald Räcke 6/530

1 Contents

▶ Foundations
▶ Machine models
▶ Efficiency measures
▶ Asymptotic notation
▶ Recursion

▶ Higher Data Structures
▶ Search trees
▶ Hashing
▶ Priority queues
▶ Union/Find data structures

▶ Cuts/Flows

▶ Matchings

1 Contents 12. Jan. 2025

Harald Räcke 7/530

2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:

The design and analysis of computer algorithms,

Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,

Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia:

Algorithm design: Foundations, analysis, and internet

examples,

John Wiley & Sons, 2002

2 Literatur 12. Jan. 2025

Harald Räcke 8/530

2 Literatur

Ronald L. Graham, Donald E. Knuth, Oren Patashnik:

Concrete Mathematics,

2. Auflage, Addison-Wesley, 1994

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und

die Analyse effizienter Algorithmen,

2. Auflage, Vieweg, 2003

Jon Kleinberg, Eva Tardos:

Algorithm Design,

Addison-Wesley, 2005

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental

Algorithms,

3. Auflage, Addison-Wesley, 1997

2 Literatur 12. Jan. 2025

Harald Räcke 9/530

2 Literatur

Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and

Searching,

3. Auflage, Addison-Wesley, 1997

Christos H. Papadimitriou, Kenneth Steiglitz:

Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, 1982

Uwe Schöning:

Algorithmik,

Spektrum Akademischer Verlag, 2001

Steven S. Skiena:

The Algorithm Design Manual,

Springer, 1998

2 Literatur 12. Jan. 2025

Harald Räcke 10/530

Part II

Foundations

12. Jan. 2025

Harald Räcke 11/530

3 Goals

▶ Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems

efficiently.

▶ Learn how to analyze and judge the efficiency of algorithms.

▶ Learn how to design efficient algorithms.

3 Goals 12. Jan. 2025

Harald Räcke 12/530

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 12. Jan. 2025

Harald Räcke 13/530

4 Modelling Issues

How do you measure?

▶ Implementing and testing on representative inputs
▶ How do you choose your inputs?
▶ May be very time-consuming.
▶ Very reliable results if done correctly.
▶ Results only hold for a specific machine and for a specific set

of inputs.

▶ Theoretical analysis in a specific model of computation.
▶ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
▶ Typically focuses on the worst case.
▶ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the worst
case”.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 14/530

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

▶ the size of the input (number of bits)

▶ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 15/530

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 16/530

Turing Machine
▶ Very simple model of computation.

▶ Only the “current” memory location can be altered.

▶ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

▶ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 17/530

Random Access Machine (RAM)

▶ Input tape and output tape (sequences of zeros and ones;

unbounded length).

▶ Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
▶ Registers hold integers.

▶ Indirect addressing.

Note that in the picture on the right
the tapes are one-directional, and that
a READ- or WRITE-operation always ad-
vances its tape.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 18/530

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers
▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing
▶ R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th register
▶ R[R[i]] := R[j]

loads the content of the j-th into the R[i]-th register

4 Modelling Issues 12. Jan. 2025

Harald Räcke 19/530

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons
▶ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /
▶ R[i] := R[j] + R[k];
R[i] := -R[k]; The jump-directives are very close to the

jump-instructions contained in the as-
sembler language of real machines.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 20/530

Model of Computation

▶ uniform cost model

Every operation takes time 1.

▶ logarithmic cost model
The cost depends on the content of memory cells:
▶ The time for a step is equal to the largest operand involved;
▶ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

The latter model is quite realistic as the word-size of
a standard computer that handles a problem of size n
must be at least log2 n as otherwise the computer could
either not store the problem instance or not address all
its memory.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 21/530

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1 → n do

3: r ← r2

4: return r

▶ running time (for Line 3):
▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)
▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 12. Jan. 2025

Harald Räcke 22/530

C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

µ is a probability distribu-
tion over inputs of length n.

There are different types of complexity bounds:
▶ best-case complexity:

Cbc(n) := min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.

▶ worst-case complexity:

Cwc(n) := max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
▶ average case complexity:

Cavg(n) := 1
|In|

∑

|x|=n
C(x)

more general: probability measure µ

Cavg(n) :=
∑

x∈In
µ(x) · C(x)

4 Modelling Issues 12. Jan. 2025

Harald Räcke 23/530

C(x)
cost of instance
x

|x| input length of
instance x

In
set of instances
of length n

µ is a probability distribu-
tion over inputs of length n.

There are different types of complexity bounds:

▶ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

▶ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 23/530

4 Modelling Issues

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.

4 Modelling Issues 12. Jan. 2025

Harald Räcke 24/530

5 Asymptotic Notation

We are usually not interested in exact running times, but only in

an asymptotic classification of the running time, that ignores

constant factors and constant additive offsets.

▶ We are usually interested in the running times for large

values of n. Then constant additive terms do not play an

important role.

▶ An exact analysis (e.g. exactly counting the number of

operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a

distance from reality.

▶ A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster

machine.

▶ Running time should be expressed by simple functions.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 24/530

Asymptotic Notation

Formal Definition

Let f , g denote functions from N to R+.

▶ O(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow not faster than f)

▶ Ω(f) = {g | ∃c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow not slower than f)

▶ Θ(f) = Ω(f)∩O(f)
(functions that asymptotically have the same growth as f)

▶ o(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≤ c · f(n)]}
(set of functions that asymptotically grow slower than f)

▶ ω(f) = {g | ∀c > 0 ∃n0 ∈ N0 ∀n ≥ n0 : [g(n) ≥ c · f(n)]}
(set of functions that asymptotically grow faster than f)

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 25/530

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from N0

to R+0 .

▶ g ∈ O(f): 0 ≤ lim
n→∞

g(n)
f(n)

<∞

▶ g ∈ Ω(f): 0 < lim
n→∞

g(n)
f(n)

≤ ∞

▶ g ∈ Θ(f): 0 < lim
n→∞

g(n)
f(n)

<∞

▶ g ∈ o(f): lim
n→∞

g(n)
f(n)

= 0

▶ g ∈ω(f): lim
n→∞

g(n)
f(n)

= ∞

• Note that for the version of the Landau
notation defined here, we assume that
f and g are positive functions.

• There also exist versions for arbitrary
functions, and for the case that the
limes is not infinity.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 26/530

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f ∈ O(g). This is

not an equality (how could a function be equal to a set of

functions).

2. People write f(n) = O(g(n)), when they mean f ∈ O(g),
with f : N→ R+, n, f(n), and g : N→ R+, n, g(n).

3. People write e.g. h(n) = f(n)+ o(g(n)) when they mean

that there exists a function z : N→ R+, n, z(n), z ∈ o(g)
such that h(n) = f(n)+ z(n).

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined
using 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a short-
hand for the function itself (leaving out do-
main and codomain and only giving the rule
of correspondence of the function).

Asymptotic Notation
Abuse of notation

4. People write O(f (n)) = O(g(n)), when they mean

O(f (n)) ⊆ O(g(n)). Again this is not an equality.

3. This is particularly useful if you do not want
to ignore constant factors. For example the
median of n elements can be determined
using 3

2n+ o(n) comparisons.

2. In this context f(n) does not mean the func-
tion f evaluated at n, but instead it is a short-
hand for the function itself (leaving out do-
main and codomain and only giving the rule
of correspondence of the function).

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 + 3n+ 1 = 2n2 +Θ(n)

Here, Θ(n) stands for an anonymous function in the set Θ(n)
that makes the expression true.

Note that Θ(n) is on the right hand side, otw. this interpretation

is wrong.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 28/530

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +O(n) = Θ(n2)

Regardless of how we choose the anonymous function

f(n) ∈ O(n) there is an anonymous function g(n) ∈ Θ(n2)
that makes the expression true.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 29/530

Asymptotic Notation in Equations

How do we interpret an expression like:

n∑

i=1

Θ(i) = Θ(n2)

Careful!

“It is understood” that every occurence of an O-symbol (or

Θ,Ω, o,ω) on the left represents one anonymous function.

Hence, the left side is not equal to

Θ(1)+Θ(2)+ · · · +Θ(n− 1)+Θ(n)

The Θ(i)-symbol on the left rep-
resents one anonymous function
f : N → R+, and then

∑
i f(i) is

computed.

Θ(1)+Θ(2)+· · ·+Θ(n−1)+Θ(n) does
not really have a reasonable interpreta-
tion.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 30/530

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as

generating a set:

n2 · O(n)+O(logn)

represents

{
f : N→ R+ | f(n) = n2 · g(n)+ h(n)

with g(n) ∈ O(n) and h(n) ∈ O(logn)
}

Recall that according to the previous
slide e.g. the expressions

∑n
i=1O(i) and∑n/2

i=1 O(i)+
∑n
i=n/2+1O(i) generate dif-

ferent sets.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 31/530

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement

btw. two sets:

n2 · O(n)+O(logn) = Θ(n2)

represents

n2 · O(n)+O(logn) ⊆ Θ(n2)

Note that the equation does not hold.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 32/530

Asymptotic Notation

Lemma 3

Let f , g be functions with the property

∃n0 > 0∀n ≥ n0 : f(n) > 0 (the same for g). Then

▶ c · f(n) ∈ Θ(f (n)) for any constant c
▶ O(f (n))+O(g(n)) = O(f (n)+ g(n))
▶ O(f (n)) · O(g(n)) = O(f (n) · g(n))
▶ O(f (n))+O(g(n)) = O(max{f(n), g(n)})

The expressions also hold for Ω. Note that this means that

f(n)+ g(n) ∈ Θ(max{f(n), g(n)}).

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 33/530

Asymptotic Notation

Comments

▶ Do not use asymptotic notation within induction proofs.

▶ For any constants a,b we have logan = Θ(logb n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

▶ In general logn = log2n, i.e., we use 2 as the default base

for the logarithm.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 34/530

Funktionen

10 20 30 40 50 60 70 80 90

2

4

6

8

log2n√
n

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 35/530

Funktionen

10 20 30 40 50 60 70 80 90

20

40

60

80

log2n√
n
n

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 36/530

Funktionen

10 20 30 40 50 60 70 80 90

200

400

600

log2n√
n
n

n log(n)

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 37/530

Funktionen

10 20 30 40 50 60 70 80 90

2 · 103

4 · 103

6 · 103

8 · 103

1 · 104

log2n√
n
n

n log(n)
n2

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 38/530

Funktionen

10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1
·106

√
n
n

n log(n)
n2

n3

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 39/530

Funktionen

10 20 30 40 50 60 70 80 90

1

2

3

4

5
·1029

n
n log(n)
n2

n3

2n

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 40/530

Laufzeiten

Funktion Eingabelänge n

f(n) 10 102 103 104 105 106 107 108

logn 33ns 66ns 0.1µs 0.1µs 0.2µs 0.2µs 0.2µs 0.3µs
√
n 32ns 0.1µs 0.3µs 1µs 3.1µs 10µs 31µs 0.1ms

n 100ns 1µs 10µs 0.1ms 1ms 10ms 0.1s 1s

n logn 0.3µs 6.6µs 0.1ms 1.3ms 16ms 0.2s 2.3s 27s

n3/2 0.3µs 10µs 0.3ms 10ms 0.3s 10s 5.2min 2.7h

n2 1µs 0.1ms 10ms 1s 1.7min 2.8h 11d 3.2y

n3 10µs 10ms 10s 2.8h 115d 317y 3.2·105y

1.1n 26ns 0.1ms 7.8·1025y

2n 10µs 4·1014y

n! 36ms 3·10142y

1 Operation = 10ns; 100MHz

Alter des Universums: ca. 13.8 · 109y

Asymptotic Notation

In general asymptotic classification of running times is a good

measure for comparing algorithms:

▶ If the running time analysis is tight and actually occurs in

practise (i.e., the asymptotic bound is not a purely theoretical

worst-case bound), then the algorithm that has better

asymptotic running time will always outperform a weaker

algorithm for large enough values of n.

▶ However, suppose that I have two algorithms:
▶ Algorithm A. Running time f(n) = 1000 logn = O(logn).
▶ Algorithm B. Running time g(n) = log2n.

Clearly f = o(g). However, as long as logn ≤ 1000

Algorithm B will be more efficient.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 42/530

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several

parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n→∞ and m →∞
we have to extend the definition to multiple variables.

Formal Definition

Let f , g denote functions from Nd to R+0 .

▶ O(f) = {g | ∃c > 0 ∃N ∈ N0 ∀n⃗ with ni ≥ N for some i :

[g(n⃗) ≤ c · f(n⃗)]}
(set of functions that asymptotically grow not faster than f)

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 43/530

Multiple Variables in Asymptotic Notation

Example 4

▶ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n− 1

then f = O(g) does not hold

▶ f : N→ R+0 , f(n,m) = 1 und g : N→ R+0 , g(n,m) = n
then: f = O(g)

▶ f : N0 → R+0 , f(n,m) = 1 und g : N0 → R+0 , g(n,m) = n
then f = O(g) does not hold

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 44/530

5 Asymptotic Notation

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
McGraw-Hill, 2009

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.

5 Asymptotic Notation 12. Jan. 2025

Harald Räcke 45/530

6 Recurrences

Algorithm 2 mergesort(listL)
1: n← size(L)
2: if n ≤ 1 return L
3: L1 ← L[1 · · · ⌊n2 ⌋]
4: L2 ← L[⌊n2 ⌋ + 1 · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L← merge(L1, L2)
8: return L

This algorithm requires

T(n) = T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+O(n) ≤ 2T

(⌈n
2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.

6 Recurrences 12. Jan. 2025

Harald Räcke 45/530

Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.

6 Recurrences 12. Jan. 2025

Harald Räcke 46/530

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.

6 Recurrences 12. Jan. 2025

Harald Räcke 47/530

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types

of linear inhomogenous relations and also sometimes

non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations

so that it e.g. becomes linear and can therefore be solved

with one of the other techniques.

6 Recurrences 12. Jan. 2025

Harald Räcke 48/530

6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
{

2T
(⌈n

2

⌉)+ cn n ≥ 2

0 otherwise

Informal way:

Assume that instead we have

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.

6.1 Guessing+Induction 12. Jan. 2025

Harald Räcke 49/530

6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

if we choose d ≥ c.

Formally, this is not correct if n is not a power of 2. Also even in

this case one would need to do an induction proof.

6.1 Guessing+Induction 12. Jan. 2025

Harald Räcke 50/530

6.1 Guessing+Induction

• Note that this proves the
statement for n = 2k, k ∈ N≥1, as
the statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

▶ base case (2 ≤ n < 16): true if we choose d ≥ b.

▶ induction step n/2 → n:

Let n = 2k ≥ 16. Suppose statem. is true for n′ = n/2. We

prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

Hence, statement is true if we choose d ≥ c.

6.1 Guessing+Induction

How do we get a result for all values of n?

We consider the following recurrence instead of the original one:

T(n) ≤
{

2T(
⌈n

2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).

6.1 Guessing+Induction 12. Jan. 2025

Harald Räcke 52/530

6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn

≤ dn log
(9

16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
≤ dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4

6.1 Guessing+Induction 12. Jan. 2025

Harald Räcke 53/530

6.2 Master Theorem

Lemma 5

Let a ≥ 1, b > 1 and ϵ > 0 denote constants. Consider the

recurrence

T(n) = aT
(n
b

)
+ f(n) .

Case 1.

If f(n) = O(nlogb(a)−ϵ) then T(n) = Θ(nlogb a).

Case 2.

If f(n) = Θ(nlogb(a) logkn) then T(n) = Θ(nlogb a logk+1n),
k ≥ 0.

Case 3.

If f(n) = Ω(nlogb(a)+ϵ) and for sufficiently large n
af(nb) ≤ cf(n) for some constant c < 1 then T(n) = Θ(f (n)).

Note that the cases do not cover all pos-
sibilities.

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 54/530

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

bℓ, and we assume that the non-recursive case occurs for

problem size 1 and incurs cost 1.

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 55/530

The Recursion Tree

The running time of a recursive algorithm can be visualized by a

recursion tree:

x f(n)

af(nb)

a2f(nb2)

alogb n

nlogb a

=

n

n
b

n
b

n
b

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

n
b2

11111111 1 1 1 1 1 1 1

a

aaa

a a a a a a a a a

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 56/530

6.2 Master Theorem

This gives

T(n) = nlogb a +
logb n−1∑

i=0

aif
(
n
bi

)
.

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 57/530

Case 1. Now suppose that f(n) ≤ cnlogb a−ϵ.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤ c
logb n−1∑

i=0

ai
(
n
bi

)logb a−ϵ

= cnlogb a−ϵ
logb n−1∑

i=0

(
bϵ
)i

= cnlogb a−ϵ(bϵ logb n − 1)/(bϵ − 1)

= cnlogb a−ϵ(nϵ − 1)/(bϵ − 1)

= c
bϵ − 1

nlogb a(nϵ − 1)/(nϵ)

Hence,

T(n) ≤
(

c
bϵ − 1

+ 1
)
nlogb(a)

∑k
i=0 qi = qk+1−1

q−1

b−i(logb a−ϵ) = bϵi(blogb a)−i = bϵia−i

⇒ T(n) = O(nlogb a).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 58/530

Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤ c
logb n−1∑

i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑

i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n) ⇒ T(n) = O(nlogb a logn).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 59/530

Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≥ c
logb n−1∑

i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑

i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n) ⇒ T(n) = Ω(nlogb a logn).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 60/530

Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤ c
logb n−1∑

i=0

ai
(
n
bi

)logb a
·
(

logb

(
n
bi

))k

= cnlogb a
ℓ−1∑

i=0

(
logb

(
bℓ

bi

))k

= cnlogb a
ℓ−1∑

i=0

(ℓ − i)k

= cnlogb a
ℓ∑

i=1

ik

≈ c
k
nlogb aℓk+1

n = bℓ ⇒ ℓ = logb n

ℓ∑

i=1

ik ≈ 1
kℓ

k+1

⇒ T(n) = O(nlogb a logk+1n).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 61/530

Case 3. Now suppose that f(n) ≥ dnlogb a+ϵ, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif(n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1∑

i=0

aif
(
n
bi

)

≤
logb n−1∑

i=0

cif(n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
∑n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

⇒ T(n) = Θ(f (n)).

Where did we use f(n) ≥ Ω(nlogb a+ϵ)?

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 62/530

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 63/530

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit

integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

• This is also nown as the “school
method” for multiplying integers.

• Note that the intermediate num-
bers that are generated can have
at most m+n ≤ 2n bits.

Time requirement:

▶ Computing intermediate results: O(nm).
▶ Adding m numbers of length ≤ 2n: O((m+n)m) = O(nm).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 64/530

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

AB × a0an−1b0bn−1 an
2−1an

2
bn

2−1bn
2

B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0B0

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 65/530

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z1 ← mult(A1, B0)+mult(A0, B1)
7: Z0 ← mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
2T(n2)+O(n)
T(n2)
O(n)

We get the following recurrence:

T(n) = 4T
(n

2

)
+O(n) .

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 66/530

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
▶ Case 1: f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a)
▶ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
▶ Case 3: f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−ϵ) = O(nlogb a−ϵ).

We get a running time of O(n2) for our algorithm.

=⇒ Not better then the “school method”.

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 67/530

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0

= Z2︷ ︸︸ ︷
A1B1

= Z0︷ ︸︸ ︷
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ← mult(A1, B1)
6: Z0 ← mult(A0, B0)
7: Z1 ← mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2)
T(n2)
T(n2)+O(n)
O(n)

A more precise
(correct) analysis
would say that
computing Z1

needs time
T(n2 + 1)+O(n).

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 68/530

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
(n

2

)
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb)+ f(n).
▶ Case 1: f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a)
▶ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
▶ Case 3: f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.

6.2 Master Theorem 12. Jan. 2025

Harald Räcke 69/530

6.3 The Characteristic Polynomial

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (c0, ck ≠ 0).

▶ T(n) only depends on the k preceding values. This means

the recurrence relation is of order k.

▶ The recurrence is linear as there are no products of T[n]’s.

▶ If f(n) = 0 then the recurrence relation becomes a linear,

homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 70/530

6.3 The Characteristic Polynomial

Observations:

▶ The solution T[1], T[2], T[3], . . . is completely determined

by a set of boundary conditions that specify values for

T[1], . . . , T [k].
▶ In fact, any k consecutive values completely determine the

solution.

▶ k non-concecutive values might not be an appropriate set of

boundary conditions (depends on the problem).

Approach:

▶ First determine all solutions that satisfy recurrence relation.

▶ Then pick the right one by analyzing boundary conditions.

▶ First consider the homogenous case.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 71/530

The Homogenous Case

The solution space

S =
{
T = T[1], T[2], T[3], . . . ∣∣ T fulfills recurrence relation

}

is a vector space. This means that if T1,T2 ∈ S, then also

αT1 + βT2 ∈ S, for arbitrary constants α,β.

How do we find a non-trivial solution?

We guess that the solution is of the form λn, λ ≠ 0, and see what

happens. In order for this guess to fulfill the recurrence we need

c0λn + c1λn−1 + c2 · λn−2 + · · · + ck · λn−k = 0

for all n ≥ k.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 72/530

The Homogenous Case

Dividing by λn−k gives that all these constraints are identical to

c0λk + c1λk−1 + c2 · λk−2 + · · · + ck = 0c0λk + c1λk−1 + c2 · λk−2 + · · · + ck︸ ︷︷ ︸
characteristic polynomial P[λ]

This means that if λi is a root (Nullstelle) of P[λ] then T[n] = λni
is a solution to the recurrence relation.

Let λ1, . . . , λk be the k (complex) roots of P[λ]. Then, because of

the vector space property

α1λn1 +α2λn2 + · · · +αkλnk

is a solution for arbitrary values αi.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 73/530

The Homogenous Case

Lemma 6

Assume that the characteristic polynomial has k distinct roots

λ1, . . . , λk. Then all solutions to the recurrence relation are of the

form

α1λn1 +α2λn2 + · · · +αkλnk .

Proof.

There is one solution for every possible choice of boundary

conditions for T[1], . . . , T [k].

We show that the above set of solutions contains one solution for

every choice of boundary conditions.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 74/530

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

α1 · λ1 + α2 · λ2 + · · · + αk · λk = T[1]
α1 · λ2

1 + α2 · λ2
2 + · · · + αk · λ2

k = T[2]
...

α1 · λk1 + α2 · λk2 + · · · + αk · λkk = T[k]

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 75/530

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

λ1 λ2 · · · λk
λ2

1 λ2
2 · · · λ2

k
...

λk1 λk2 · · · λkk

α1

α2
...

αk

=

T[1]
T[2]

...

T[k]

We show that the column vectors are linearly independent. Then

the above equation has a solution.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 76/530

Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
λ1 λ2 · · · λk−1 λk
...

...
...

...
λk−1

1 λk−1
2 · · · λk−1

k−1 λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 77/530

Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 78/530

Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 79/530

Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

=

k∏

i=2

(λi − λ1) ·

∣∣∣∣∣∣∣∣∣

1 λ2 · · · λk−3
2 λk−2

2
...

...
...

...
1 λk · · · λk−3

k λk−2
k

∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 80/530

Computing the Determinant

Repeating the above steps gives:

∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣

=
k∏

i=1

λi ·
∏

i>ℓ

(λi − λℓ)

Hence, if all λi’s are different, then the determinant is non-zero.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 81/530

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λi with multiplicity (Vielfachheit) at least

2. Then not only is λni a solution to the recurrence but also nλni .

To see this consider the polynomial

P[λ] · λn−k = c0λn + c1λn−1 + c2λn−2 + · · · + ckλn−k

Since λi is a root we can write this as Q[λ] · (λ−λi)2. Calculating

the derivative gives a polynomial that still has root λi.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 82/530

This means

c0nλn−1
i + c1(n− 1)λn−2

i + · · · + ck(n− k)λn−k−1
i = 0

Hence,

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0︸ ︷︷ ︸

T[n]
︸ ︷︷ ︸

T[n−1]
︸ ︷︷ ︸

T[n−k]

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 83/530

The Homogeneous Case

Suppose λi has multiplicity j. We know that

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0

(after taking the derivative; multiplying with λ; plugging in λi)

Doing this again gives

c0n2λni + c1(n− 1)2λn−1
i + · · · + ck(n− k)2λn−ki = 0

We can continue j − 1 times.

Hence, nℓλni is a solution for ℓ ∈ 0, . . . , j − 1.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 84/530

The Homogeneous Case

Lemma 7

Let P[λ] denote the characteristic polynomial to the recurrence

c0T[n]+ c1T[n− 1]+ · · · + ckT[n− k] = 0

Let λi, i = 1, . . . ,m be the (complex) roots of P[λ] with

multiplicities ℓi. Then the general solution to the recurrence is

given by

T[n] =
m∑

i=1

ℓi−1∑

j=0

αij · (njλni) .

The full proof is omitted. We have only shown that any choice of

αij’s is a solution to the recurrence.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 85/530

Example: Fibonacci Sequence

T[0] = 0

T[1] = 1

T[n] = T[n− 1]+ T[n− 2] for n ≥ 2

The characteristic polynomial is

λ2 − λ− 1

Finding the roots, gives

λ1/2 = 1
2
±
√

1
4
+ 1 = 1

2

(
1±

√
5
)

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 86/530

Example: Fibonacci Sequence

Hence, the solution is of the form

α
(

1+√5
2

)n
+ β

(
1−√5

2

)n

T[0] = 0 gives α+ β = 0.

T[1] = 1 gives

α
(

1+√5
2

)
+ β

(
1−√5

2

)
= 1 =⇒ α− β = 2√

5

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 87/530

Example: Fibonacci Sequence

Hence, the solution is

1√
5

[(
1+√5

2

)n
−
(

1−√5
2

)n]

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 88/530

The Inhomogeneous Case

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

with f(n) ≠ 0.

While we have a fairly general technique for solving homogeneous,

linear recurrence relations the inhomogeneous case is different.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 89/530

The Inhomogeneous Case

The general solution of the recurrence relation is

T(n) = Th(n)+ Tp(n) ,

where Th is any solution to the homogeneous equation, and Tp is

one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 90/530

The Inhomogeneous Case

Example:

T[n] = T[n− 1]+ 1 T[0] = 1

Then,

T[n− 1] = T[n− 2]+ 1 (n ≥ 2)

Subtracting the first from the second equation gives,

T[n]− T[n− 1] = T[n− 1]− T[n− 2] (n ≥ 2)

or

T[n] = 2T[n− 1]− T[n− 2] (n ≥ 2)

I get a completely determined recurrence if I add T[0] = 1 and

T[1] = 2.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 91/530

The Inhomogeneous Case

Example: Characteristic polynomial:

λ2 − 2λ+ 1 = 0λ2 − 2λ+ 1︸ ︷︷ ︸
(λ−1)2

Then the solution is of the form

T[n] = α1n + βn1n = α+ βn

T[0] = 1 gives α = 1.

T[1] = 2 gives 1+ β = 2 =⇒ β = 1.

6.3 The Characteristic Polynomial 12. Jan. 2025

Harald Räcke 92/530

The Inhomogeneous Case
If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

T[n] = T[n− 1]+n2

Shift:

T[n− 1] = T[n− 2]+ (n− 1)2 = T[n− 2]+n2 − 2n+ 1

Difference:

T[n]− T[n− 1] = T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

Shift:

T[n− 1] = 2T[n− 2]− T[n− 3]+ 2(n− 1)− 1

= 2T[n− 2]− T[n− 3]+ 2n− 3

Difference:

T[n]− T[n− 1] =2T[n− 1]− T[n− 2]+ 2n− 1

− 2T[n− 2]+ T[n− 3]− 2n+ 3

T[n] = 3T[n− 1]− 3T[n− 2]+ T[n− 3]+ 2

and so on...

6.4 Generating Functions

Definition 8 (Generating Function)

Let (an)n≥0 be a sequence. The corresponding

▶ generating function (Erzeugendenfunktion) is

F(z) :=
∑

n≥0

anzn ;

▶ exponential generating function (exponentielle

Erzeugendenfunktion) is

F(z) :=
∑

n≥0

an
n!
zn .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 95/530

6.4 Generating Functions

Example 9

1. The generating function of the sequence (1,0,0, . . .) is

F(z) = 1 .

2. The generating function of the sequence (1,1,1, . . .) is

F(z) = 1
1− z .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 96/530

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale

Potenzreihe).

Then the generating function is an algebraic object.

Let f =∑n≥0 anzn and g =∑n≥0 bnzn.

▶ Equality: f and g are equal if an = bn for all n.

▶ Addition: f + g :=∑n≥0(an + bn)zn.

▶ Multiplication: f · g :=∑n≥0 cnzn with cn =
∑n
p=0 apbn−p.

There are no convergence issues here.

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 97/530

6.4 Generating Functions

The arithmetic view:

We view a power series as a function f : C→ C.

Then, it is important to think about convergence/convergence

radius etc.

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 98/530

6.4 Generating Functions

What does
∑
n≥0 zn = 1

1−z mean in the algebraic view?

It means that the power series 1− z and the power series∑
n≥0 zn are invers, i.e.,

(
1− z

)
·
(∞∑

n≥0

zn
)
= 1 .

This is well-defined.

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 99/530

6.4 Generating Functions

Suppose we are given the generating

function

∑

n≥0

zn = 1
1− z .

We can compute the derivative:

∑

n≥1

nzn−1 = 1
(1− z)2

∑

n≥1

nzn−1

︸ ︷︷ ︸∑
n≥0(n+1)zn

Hence, the generating function of the sequence an = n+ 1

is 1/(1− z)2.

Formally the derivative of a formal
power series

∑
n≥0 anz

n is defined
as
∑
n≥0 nanzn−1.

The known rules for differentiation
work for this definition. In partic-
ular, e.g. the derivative of 1

1−z is
1

(1−z)2 .

Note that this requires a proof if we
consider power series as algebraic
objects. However, we did not prove
this in the lecture.

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 100/530

6.4 Generating Functions

We can repeat this

∑

n≥0

(n+ 1)zn = 1
(1− z)2 .

Derivative: ∑

n≥1

n(n+ 1)zn−1 = 2
(1− z)3

∑

n≥1

n(n+ 1)zn−1

︸ ︷︷ ︸∑
n≥0(n+1)(n+2)zn

Hence, the generating function of the sequence

an = (n+ 1)(n+ 2) is 2
(1−z)3 .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 101/530

6.4 Generating Functions

Computing the k-th derivative of
∑
zn.

∑

n≥k
n(n− 1) · . . . · (n− k+ 1)zn−k =

∑

n≥0

(n+ k) · . . . · (n+ 1)zn

= k!
(1− z)k+1 .

Hence: ∑

n≥0

(
n+ k
k

)
zn = 1

(1− z)k+1 .

The generating function of the sequence an =
(
n+k
k

)
is 1

(1−z)k+1 .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 102/530

6.4 Generating Functions

∑

n≥0

nzn =
∑

n≥0

(n+ 1)zn −
∑

n≥0

zn

= 1
(1− z)2 −

1
1− z

= z
(1− z)2

The generating function of the sequence an = n is z
(1−z)2 .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 103/530

6.4 Generating Functions

We know

∑

n≥0

yn = 1
1−y

Hence,

∑

n≥0

anzn = 1
1− az

The generating function of the sequence fn = an is 1
1−az .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 104/530

Example: an = an−1 + 1, a0 = 1
Suppose we have the recurrence an = an−1 + 1 for n ≥ 1 and

a0 = 1.

A(z) =
∑

n≥0

anzn

= a0 +
∑

n≥1

(an−1 + 1)zn

= 1+ z
∑

n≥1

an−1zn−1 +
∑

n≥1

zn

= z
∑

n≥0

anzn +
∑

n≥0

zn

= zA(z)+
∑

n≥0

zn

= zA(z)+ 1
1− z

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 105/530

Example: an = an−1 + 1, a0 = 1

Solving for A(z) gives

∑

n≥0

anzn = A(z) = 1
(1− z)2 =

∑

n≥0

(n+ 1)zn

Hence, an = n+ 1.

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 106/530

Some Generating Functions

n-th sequence element generating function

1
1

1− z
n+ 1

1
(1− z)2(

n+k
k

)
1

(1− z)k+1

n
z

(1− z)2

an
1

1− az
n2

z(1+ z)
(1− z)3

1
n! ez

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 107/530

Some Generating Functions

n-th sequence element generating function

cfn cF

fn + gn F +G
∑n
i=0 fign−i F ·G

fn−k (n ≥ k); 0 otw. zkF

∑n
i=0 fi

F(z)
1− z

nfn z
dF(z)

dz

cnfn F(cz)

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 108/530

Solving Recursions with Generating Functions

1. Set A(z) =∑n≥0 anzn.

2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:
▶ partial fraction decomposition (Partialbruchzerlegung)
▶ lookup in tables

6. The coefficients of the resulting power series are the an.

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 109/530

Example: an = 2an−1, a0 = 1

1. Set up generating function:

A(z) =
∑

n≥0

anzn

2. Transform right hand side so that recurrence can be plugged

in:

A(z) = a0 +
∑

n≥1

anzn

2. Plug in:

A(z) = 1+
∑

n≥1

(2an−1)zn

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 110/530

Example: an = 2an−1, a0 = 1

3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

A(z) = 1+
∑

n≥1

(2an−1)zn

= 1+ 2z
∑

n≥1

an−1zn−1

= 1+ 2z
∑

n≥0

anzn

= 1+ 2z ·A(z)

4. Solve for A(z).

A(z) = 1
1− 2z

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 111/530

Example: an = 2an−1, a0 = 1

5. Rewrite f(z) as a power series:

∑

n≥0

anzn = A(z) = 1
1− 2z

=
∑

n≥0

2nzn

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 112/530

Example: an = 3an−1 + n, a0 = 1

1. Set up generating function:

A(z) =
∑

n≥0

anzn

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 113/530

Example: an = 3an−1 + n, a0 = 1

2./3. Transform right hand side:

A(z) =
∑

n≥0

anzn

= a0 +
∑

n≥1

anzn

= 1+
∑

n≥1

(3an−1 +n)zn

= 1+ 3z
∑

n≥1

an−1zn−1 +
∑

n≥1

nzn

= 1+ 3z
∑

n≥0

anzn +
∑

n≥0

nzn

= 1+ 3zA(z)+ z
(1− z)2

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 114/530

Example: an = 3an−1 + n, a0 = 1

4. Solve for A(z):

A(z) = 1+ 3zA(z)+ z
(1− z)2

gives

A(z) = (1− z)2 + z
(1− 3z)(1− z)2 =

z2 − z + 1
(1− 3z)(1− z)2

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 115/530

Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2 − z + 1
(1− 3z)(1− z)2

!= A
1− 3z

+ B
1− z +

C
(1− z)2

This gives

z2 − z + 1 = A(1− z)2 + B(1− 3z)(1− z)+ C(1− 3z)

= A(1− 2z + z2)+ B(1− 4z + 3z2)+ C(1− 3z)

= (A+ 3B)z2 + (−2A− 4B − 3C)z + (A+ B + C)

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 116/530

Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+ B + C = 1

2A+ 4B + 3C = 1

A+ 3B = 1

which gives

A = 7
4

B = −1
4

C = −1
2

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 117/530

Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

A(z) = 7
4
· 1

1− 3z
− 1

4
· 1

1− z −
1
2
· 1
(1− z)2

= 7
4
·
∑

n≥0

3nzn − 1
4
·
∑

n≥0

zn − 1
2
·
∑

n≥0

(n+ 1)zn

=
∑

n≥0

(7
4
· 3n − 1

4
− 1

2
(n+ 1)

)
zn

=
∑

n≥0

(7
4
· 3n − 1

2
n− 3

4

)
zn

6. This means an = 7
43n − 1

2n− 3
4 .

6.4 Generating Functions 12. Jan. 2025

Harald Räcke 118/530

6.5 Transformation of the Recurrence

Example 10
f0 = 1

f1 = 2

fn = fn−1 · fn−2 for n ≥ 2 .

Define

gn := logfn .

Then

gn = gn−1 + gn−2 for n ≥ 2

g1 = log 2 = 1(for log = log2), g0 = 0

gn = Fn (n-th Fibonacci number)

fn = 2Fn

6.5 Transformation of the Recurrence 12. Jan. 2025

Harald Räcke 119/530

6.5 Transformation of the Recurrence

Example 11

f1 = 1

fn = 3fn
2
+n; for n = 2k, k ≥ 1 ;

Define

gk := f2k .

Then:

g0 = 1

gk = 3gk−1 + 2k, k ≥ 1

6.5 Transformation of the Recurrence 12. Jan. 2025

Harald Räcke 120/530

6 Recurrences

We get

gk = 3
[
gk−1

]+ 2k

= 3
[
3gk−2 + 2k−1

]
+ 2k

= 32 [gk−2
]+ 32k−1 + 2k

= 32
[
3gk−3 + 2k−2

]
+ 32k−1 + 2k

= 33gk−3 + 322k−2 + 32k−1 + 2k

= 2k ·
k∑

i=0

(3
2

)i

= 2k · (
3
2)
k+1 − 1
1/2

= 3k+1 − 2k+1

6.5 Transformation of the Recurrence 12. Jan. 2025

Harald Räcke 121/530

6 Recurrences

Let n = 2k:

gk = 3k+1 − 2k+1, hence

fn = 3 · 3k − 2 · 2k

= 3(2log 3)k − 2 · 2k

= 3(2k)log 3 − 2 · 2k

= 3nlog 3 − 2n .

6.5 Transformation of the Recurrence 12. Jan. 2025

Harald Räcke 122/530

6 Recurrences

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[Liu85] Chung Laung Liu:
Elements of Discrete Mathematics
McGraw-Hill, 1985

The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the “Substitu-
tion method” which roughly corresponds to “Guessing+induction”. Chapters 4.4, 4.5, 4.6 of this book
cover the master theorem. Methods using the characteristic polynomial and generating functions can
be found in [Liu85] Chapter 10.

6.5 Transformation of the Recurrence 12. Jan. 2025

Harald Räcke 123/530

Part III

Data Structures

12. Jan. 2025

Harald Räcke 123/530

Abstract Data Type

An abstract data type (ADT) is defined by an interface of

operations or methods that can be performed and that have a

defined behavior.

The data types in this lecture all operate on objects that are

represented by a [key, value] pair.

▶ The key comes from a totally ordered set, and we assume

that there is an efficient comparison function.

▶ The value can be anything; it usually carries satellite

information important for the application that uses the ADT.

12. Jan. 2025

Harald Räcke 124/530

Dynamic Set Operations
▶ S. search(k): Returns pointer to object x from S with

key[x] = k or null.

▶ S. insert(x): Inserts object x into set S. key[x] must not

currently exist in the data-structure.

▶ S. delete(x): Given pointer to object x from S, delete x
from the set.

▶ S.minimum(): Return pointer to object with smallest

key-value in S.

▶ S.maximum(): Return pointer to object with largest

key-value in S.

▶ S. successor(x): Return pointer to the next larger element

in S or null if x is maximum.

▶ S. predecessor(x): Return pointer to the next smaller

element in S or null if x is minimum.

12. Jan. 2025

Harald Räcke 125/530

Dynamic Set Operations

▶ S. union(S′): Sets S := S ∪ S′. The set S′ is destroyed.

▶ S.merge(S′): Sets S := S ∪ S′. Requires S ∩ S′ = ∅.

▶ S. split(k, S′):
S := {x ∈ S | key[x] ≤ k}, S′ := {x ∈ S | key[x] > k}.

▶ S. concatenate(S′): S := S ∪ S′.
Requires key[S.maximum()] ≤ key[S′.minimum()].

▶ S. decrease-key(x, k): Replace key[x] by k ≤ key[x].

12. Jan. 2025

Harald Räcke 126/530

Examples of ADTs

Stack:

▶ S. push(x): Insert an element.

▶ S. pop(): Return the element from S that was inserted most

recently; delete it from S.

▶ S. empty(): Tell if S contains any object.

Queue:

▶ S. enqueue(x): Insert an element.

▶ S. dequeue(): Return the element that is longest in the

structure; delete it from S.

▶ S. empty(): Tell if S contains any object.

Priority-Queue:

▶ S. insert(x): Insert an element.

▶ S. delete-min(): Return the element with lowest key-value;

delete it from S.

7 Dictionary

Dictionary:

▶ S. insert(x): Insert an element x.

▶ S. delete(x): Delete the element pointed to by x.

▶ S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

7 Dictionary 12. Jan. 2025

Harald Räcke 128/530

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary

tree. Each tree-node corresponds to an element. All elements in

the left sub-tree of a node v have a smaller key-value than key[v]
and elements in the right sub-tree have a larger-key value. We

assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

6

2 7

1 5 8

1

2

5

6

7

8

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 129/530

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note

that this is a super-set of the dictionary-operations.

▶ T. insert(x)
▶ T. delete(x)
▶ T. search(k)
▶ T. successor(x)
▶ T. predecessor(x)
▶ T.minimum()
▶ T.maximum()

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 130/530

Binary Search Trees: Searching

TreeSearch(root, 17) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 131/530

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

Binary Search Trees: Searching

TreeSearch(root, 8) 25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 132/530

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

Binary Search Trees: Minimum

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22 24

26

29

28

48

43

41 47

50

55

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 133/530

Algorithm 2 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

succ is min in
right sub-tree

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 134/530

Algorithm 3 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

Binary Search Trees: Successor

25

13 30

6

3

0 5

4

9

7 11

12

20

16

14 19

17

23

22

26

29

28

48

43

47

50

55

succ is lowest
ancestor going
left to reach me

x

y

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 134/530

Algorithm 3 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y ;y ← parent[x]
5: return y;

Binary Search Trees: Insert
Insert element not in the tree.

TreeInsert(root, 20) 25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22

26

29

28

48

43

47

50

55

Search for z. At some

point the search stops

at a null-pointer. This

is the place to insert z.

Algorithm 4 TreeInsert(x, z)
1: if x = null then
2: root[T]← z; parent[z]← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x]← z; parent[z]← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then

10: right[x]← z; parent[z]← x;
11: else TreeInsert(right[x], z);

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 1:

Element does not have any children

▶ Simply go to the parent and set the corresponding pointer to

null.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

26

29

28

48

43

41

42

47

50

55

Case 2:

Element has exactly one child

▶ Splice the element out of the tree by connecting its parent to

its successor.

Binary Search Trees: Delete
25

13 30

6

3

0 5

4

9

7 11

12

21

16

14 19

17 20

23

22 24

29

48

43

41

42

47

50

55

Case 3:

Element has two children

▶ Find the successor of the element

▶ Splice successor out of the tree

▶ Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x]← parent[y];
6: if parent[y] = null then
7: root[T]← x
8: else
9: if y = left[parent[y]] then

10: left[parent[y]]← x
11: else
12: right[parent[y]]← x
13: if y ≠ z then copy y-data to z

select y to splice out

x is child of y (or null)
parent[x] is correct

fix pointer to x

fix pointer to x

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 137/530

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time

O(h), where h denotes the height of the tree.

However the height of the tree may become as large as Θ(n).

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments

to guarantee a height of O(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA

trees, Treaps

similar: SPLAY trees.

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 138/530

Binary Search Trees (BSTs)

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and
Chapter 12 in [CLRS90].

7.1 Binary Search Trees 12. Jan. 2025

Harald Räcke 139/530

7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 139/530

Red Black Trees: Example
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 140/530

7.2 Red Black Trees

Lemma 13

A red-black tree with n internal nodes has height at most

O(logn).

Definition 14

The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 15

A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 141/530

7.2 Red Black Trees

Proof of Lemma 15.

Induction on the height of v.

base case (height(v) = 0)

▶ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

▶ The black height of v is 0.

▶ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 142/530

7.2 Red Black Trees

Proof (cont.)

induction step

▶ Supose v is a node with height(v) > 0.

▶ v has two children with strictly smaller height.

▶ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

▶ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

▶ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 143/530

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 144/530

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 145/530

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red

black properties are maintained.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 146/530

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 147/530

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

z
Insert:

▶ first make a normal insert into a binary search tree

▶ then fix red-black properties

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 148/530

Red Black Trees: Insert

Invariant of the fix-up algorithm:

▶ z is a red node

▶ the black-height property is fulfilled at every node

▶ the only violation of red-black properties occurs at z and
parent[z]
▶ either both of them are red

(most important case)
▶ or the parent does not exist

(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 149/530

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle ← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

z in left subtree of grandparent

Case 1: uncle red

Case 2: uncle black

2a: z right child

2b: z left child

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 150/530

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 151/530

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 152/530

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 153/530

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

Red Black Trees: Insert

Running time:

▶ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

▶ Case 2a → Case 2b → red-black tree

▶ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case at

most once, we get a red-black tree. Hence O(logn) re-colorings

and at most 2 rotations.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 154/530

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

▶ Parent and child of x were red; two adjacent red vertices.

▶ If you delete the root, the root may now be red.

▶ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 155/530

Red Black Trees: Delete
25

13 3041

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children

▶ do normal delete

▶ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:

▶ deleting black node messes up black-height property

▶ if z is red, we can simply color it black and everything is fine

▶ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

▶ the node z is black

▶ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 158/530

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the color
of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

Running time:

▶ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

▶ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

▶ Case 3 → Case 4 → red black tree

▶ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 163/530

Red-Black Trees

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Red black trees are covered in detail in Chapter 13 of [CLRS90].

7.2 Red Black Trees 12. Jan. 2025

Harald Räcke 164/530

Splay Trees

Disadvantage of balanced search trees:

− worst case; no advantage for easy inputs

− additional memory required

− complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

− only amortized guarantee

− read-operations change the tree

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 164/530

Splay Trees

find(x)
▶ search for x according to a search tree

▶ let x̄ be last element on search-path

▶ splay(x̄)

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 165/530

Splay Trees

insert(x)
▶ search for x; x̄ is last visited element during search

(successer or predecessor of x)

▶ splay(x̄) moves x̄ to the root

▶ insert x as new root

x̄

A B

x̄

x

A
B

The illustration shows the case when x̄ is
the predecessor of x.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 166/530

Splay Trees

delete(x)
▶ search for x; splay(x); remove x
▶ search largest element x̄ in A
▶ splay(x̄) (on subtree A)

▶ connect root of B as right child of x̄

x

A B

x̄

A′ B

x̄

A′ B

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 167/530

Move to Root

x

p

A

B C

x

p

A B

C

How to bring element to root?

▶ one (bad) option: moveToRoot(x)

▶ iteratively do rotation around parent of x until x is root

▶ if x is left child do right rotation otw. left rotation

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 168/530

Splay: Zig Case

x

p

A

B C

x

p

A B

C

better option splay(x):

▶ zig case: if x is child of root do left rotation or right rotation

around parent

Note that moveToRoot(x) does the same.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 169/530

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

better option splay(x):

▶ zigzag case: if x is right child and parent of x is left child (or

x left child parent of x right child)

▶ do double right rotation around grand-parent (resp. double

left rotation)

Note that moveToRoot(x) does the same.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 170/530

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

better option splay(x):

▶ zigzig case: if x is left child and parent of x is left child (or x
right child, parent of x right child)

▶ do right roation around grand-parent followed by right

rotation around parent (resp. left rotations)

This case is different between
moveToRoot(x) and splay(x).

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 172/530

Splay vs. Move to Root
a

b

c

d

e

f

x

A B

C

D

E

F

G

H

Input tree on which splay(x) and
moveToRoot(x) is executed.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 173/530

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B C

D

E

F

G

H

Result after moveToRoot(x).

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 173/530

Splay vs. Move to Root

a

b

c

d

e

f

x

A

B

C D

E F

G H

Result after splay(x).

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 174/530

Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears hx times in this sequence.

The cost of a static search tree T is:

cost(T) =m+
∑
x
hx depthT (x)

The total cost for processing the sequence on a splay-tree is

O(cost(Tmin)), where Tmin is an optimal static search tree.

depthT (x) is the number of edges on a
path from the root of T to x.

Theorem given without proof.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 175/530

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

▶ the cost for accessing element x is 1+ depth(x);
▶ after accessing x the tree may be re-arranged through

rotations;

Conjecture:

A splay tree that only contains elements from S has cost

O(cost(A, S)), for processing S.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 176/530

Lemma 16

Splay Trees have an amortized running time of O(logn) for all

operations.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 177/530

Amortized Analysis

Definition 17

A data structure with operations op1(), . . . ,opk() has amortized

running times t1, . . . , tk for these operations if the following

holds.

Suppose you are given a sequence of operations (starting with an

empty data-structure) that operate on at most n elements, and let

ki denote the number of occurences of opi() within this sequence.

Then the actual running time must be at most
∑
i ki · ti(n).

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 178/530

Potential Method

Introduce a potential for the data structure.

▶ Φ(Di) is the potential after the i-th operation.

▶ Amortized cost of the i-th operation is

ĉi = ci + Φ(Di)− Φ(Di−1) .

▶ Show that Φ(Di) ≥ Φ(D0).

Then
k∑

i=1

ci ≤
k∑

i=1

ci + Φ(Dk)− Φ(D0) =
k∑

i=1

ĉi

This means the amortized costs can be used to derive a bound on

the total cost.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 179/530

Example: Stack

Stack

▶ S. push()
▶ S. pop()
▶ S.multipop(k): removes k items from the stack. If the stack

currently contains less than k items it empties the stack.

▶ The user has to ensure that pop and multipop do not

generate an underflow.

Actual cost:

▶ S. push(): cost 1.

▶ S. pop(): cost 1.

▶ S.multipop(k): cost min{size, k} = k.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 180/530

Example: Stack

Note that the analysis
becomes wrong if pop() or
multipop() are called on an
empty stack.

Use potential function Φ(S) = number of elements on the stack.

Amortized cost:
▶ S. push(): cost

Ĉpush = Cpush +∆Φ = 1+ 1 ≤ 2 .

▶ S. pop(): cost

Ĉpop = Cpop +∆Φ = 1− 1 ≤ 0 .

▶ S.multipop(k): cost

Ĉmp = Cmp +∆Φ = min{size, k} −min{size, k} ≤ 0 .

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 181/530

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs

one time-unit.

Incrementing an n-bit binary counter may require to examine

n-bits, and maybe change them.

Actual cost:

▶ Changing bit from 0 to 1: cost 1.

▶ Changing bit from 1 to 0: cost 1.

▶ Increment: cost is k+ 1, where k is the number of

consecutive ones in the least significant bit-positions (e.g,

001101 has k = 1).

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 182/530

Example: Binary Counter
Choose potential function Φ(x) = k, where k denotes the number

of ones in the binary representation of x.

Amortized cost:

▶ Changing bit from 0 to 1:

Ĉ0→1 = C0→1 +∆Φ = 1+ 1 ≤ 2 .

▶ Changing bit from 1 to 0:

Ĉ1→0 = C1→0 +∆Φ = 1− 1 ≤ 0 .

▶ Increment: Let k denotes the number of consecutive ones in

the least significant bit-positions. An increment involves k
(1 → 0)-operations, and one (0 → 1)-operation.

Hence, the amortized cost is kĈ1→0 + Ĉ0→1 ≤ 2.

Splay Trees

potential function for splay trees:

▶ size s(x) = |Tx|
▶ rank r(x) = log2(s(x))
▶ Φ(T) =∑v∈T r(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1

plus the number of rotations.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 184/530

Splay: Zig Case

x

p

A

B C

x

p

A B

C

∆Φ = r ′(x)+ r ′(p)− r(x)− r(p)
= r ′(p)− r(x)
≤ r ′(x)− r(x)

costzig ≤ 1+ 3(r ′(x)− r(x))

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 185/530

Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(x)+ r ′(g)− r(x)− r(x)
= r ′(x)+ r ′(g)+ r(x)− 3r ′(x)+ 3r ′(x)− r(x)− 2r(x)

= −2r ′(x)+ r ′(g)+ r(x)+ 3(r ′(x)− r(x))
≤ −2+ 3(r ′(x)− r(x)) ⇒ costzigzig ≤ 3(r ′(x)− r(x))

Last inequality follows
from next slide. Splay: Zigzig Case

g

p

x

D

C

A B

g

p

x

A

B

C D

1
2

(
r(x)+ r ′(g)− 2r ′(x)

)

= 1
2

(
log(s(x))+ log(s′(g))− 2 log(s′(x))

)

= 1
2

log
(s(x)
s′(x)

)
+ 1

2
log

(s′(g)
s′(x)

)

≤ log
(1

2
s(x)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

The last inequality holds
because log is a concave
function.

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

∆Φ = r ′(x)+ r ′(p)+ r ′(g)− r(x)− r(p)− r(g)
= r ′(p)+ r ′(g)− r(x)− r(p)
≤ r ′(p)+ r ′(g)− r(x)− r(x)
= r ′(p)+ r ′(g)− 2r ′(x)+ 2r ′(x)− 2r(x)

≤ −2+ 2(r ′(x)− r(x)) ⇒ costzigzag ≤ 3(r ′(x)− r(x))

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 187/530

Splay: Zigzag Case

g

p

x

A
D

B C

gp

x

A B C D

1
2

(
r ′(p)+ r ′(g)− 2r ′(x)

)

= 1
2

(
log(s′(p))+ log(s′(g))− 2 log(s′(x))

)

≤ log
(1

2
s′(p)
s′(x)

+ 1
2
s′(g)
s′(x)

)
≤ log

(1
2

)
= −1

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 187/530

Amortized cost of the whole splay operation:

≤ 1+ 1+
∑

steps t
3(rt(x)− rt−1(x))

= 2+ 3(r(root)− r0(x))

≤ O(logn)

The first one is added due to the fact that so far for each step of
a splay-operation we have only counted the number of rotations,
but the cost is 1+#rotations.

The second one comes from the zig-operation. Note that we
have at most one zig-operation during a splay.

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 188/530

Splay Trees

Bibliography
??????????????????????????????????????

7.3 Splay Trees 12. Jan. 2025

Harald Räcke 189/530

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

▶ Insert(x): insert element x.

▶ Search(k): search for element with key k.

▶ Delete(x): delete element referenced by pointer x.

▶ find-by-rank(ℓ): return the ℓ-th element; return “error” if the

data-structure contains less than ℓ elements.

Augment an existing data-structure instead of developing a

new one.

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 189/530

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

2. determine additional information to be stored in the

underlying structure

3. verify/show how the additional information can be

maintained for the basic modifying operations on the

underlying structure.

4. develop the new operations
• Of course, the above steps heavily depend

on each other. For example it makes no
sense to choose additional information to be
stored (Step 2), and later realize that either
the information cannot be maintained
efficiently (Step 3) or is not sufficient to
support the new operations (Step 4).

• However, the above outline is a good way to
describe/document a new data-structure.

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 190/530

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node

without asymptotically affecting the running time of insert,

delete, and search. We come back to this step later...

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 191/530

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

4. How does find-by-rank work?

Find-by-rank(k) Í Select(root,k) with

Algorithm 1 Select(x, i)
1: if x = null then return error

2: if left[x] ≠ null then r ← left[x]. size+1 else r ← 1

3: if i = r then return x
4: if i < r then

5: return Select(left[x], i)
6: else

7: return Select(right[x], i− r)

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 192/530

Select(x, i)
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

26

18

8

3

1 1

4

1 2

1

9

5 3

1 13

1 1

1

7

3

1 1

3

1 1

select(25 , 14)

select(13 , 14)

select(21 , 5)

select(16 , 5)

select(19 , 3)

select(20 , 1)

Find-by-rank:

▶ decide whether you have to proceed into the left or right

sub-tree

▶ adjust the rank that you are searching for if you go right

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 193/530

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time O(log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during

rotations.

Delete(x): Directly after splicing out a node traverse the path

from the spliced out node upwards, and decrease the size counter

on every node on this path. Maintain the size field during

rotations.

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 194/530

Rotations

The only operation during the fix-up procedure that alters the tree

and requires an update of the size-field:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

|A|+|B|+|C|+2 |A|+|B|+|C|+2

|A|+|B|+1|B|+|C|+1

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields

of the children.

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 195/530

Augmenting Data Structures

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

See Chapter 14 of [CLRS90].

7.4 Augmenting Data Structures 12. Jan. 2025

Harald Räcke 196/530

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

Set?

▶ time for search Θ(n)
▶ time for insert Θ(n) (dominated by searching the item)

▶ time for delete Θ(1) if we are given a handle to the object,

otw. Θ(n)

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 196/530

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5 8

10

12 14

18

23 26

28

35 43

∞

Let |L1| denote the number of elements in the “express lane”, and

|L0| = n the number of all elements (ignoring dummy elements).

Worst case search time: |L1| + |L0|
|L1| (ignoring additive constants)

Choose |L1| = √n. Then search time Θ(
√
n).

7.5 Skip Lists

Add more express lanes. Lane Li contains roughly every Li−1
Li -th

item from list Li−1.

Search(x) (k + 1 lists L0, . . . , Lk)

▶ Find the largest item in list Lk that is smaller than x. At most

|Lk| + 2 steps.

▶ Find the largest item in list Lk−1 that is smaller than x. At

most
⌈ |Lk−1|
|Lk|+1

⌉+ 2 steps.

▶ Find the largest item in list Lk−2 that is smaller than x. At

most
⌈ |Lk−2|
|Lk−1|+1

⌉+ 2 steps.

▶ . . .

▶ At most |Lk| +
∑k
i=1

Li−1
Li + 3(k+ 1) steps.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 198/530

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., |Li−1|
|Li| = r , and,

hence, Lk ≈ r−kn.

Worst case running time is: O(r−kn+ kr).
Choose r = n 1

k+1 . Then

r−kn+ kr =
(
n

1
k+1

)−k
n+ kn 1

k+1

= n1− k
k+1 + kn 1

k+1

= (k+ 1)n
1
k+1 .

Choosing k = Θ(logn) gives a logarithmic running time.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 199/530

7.5 Skip Lists

How to do insert and delete?

▶ If we want that in Li we always skip over roughly the same

number of elements in Li−1 an insert or delete may require a

lot of re-organisation.

Use randomization instead!

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 200/530

7.5 Skip Lists

Insert:

▶ A search operation gives you the insert position for element

x in every list.

▶ Flip a coin until it shows head, and record the number

t ∈ {1,2, . . . } of trials needed.

▶ Insert x into lists L0, . . . , Lt−1.

Delete:

▶ You get all predecessors via backward pointers.

▶ Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 201/530

7.5 Skip Lists

Insert (35):

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞

5

8 10 12 14

18 23

26 28

35

43 ∞

-∞

5 8

10

12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12

14

18 23

26

28 35 43

∞

-∞

5 8 10 12 14 18 23 26 28 35 43

∞

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 202/530

High Probability

Definition 18 (High Probability)

We say a randomized algorithm has running time O(logn) with

high probability if for any constant α the running time is at most

O(logn) with probability at least 1− 1
nα .

Here the O-notation hides a constant that may depend on α.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 203/530

High Probability

Suppose there are polynomially many events E1, E2, . . . , Eℓ, ℓ = nc
each holding with high probability (e.g. Ei may be the event that

the i-th search in a skip list takes time at most O(logn)).

Then the probability that all Ei hold is at least

Pr[E1 ∧ · · · ∧ Eℓ] = 1− Pr[Ē1 ∨ · · · ∨ Ēℓ]
≥ 1−nc ·n−α
= 1−nc−α .

This means E1 ∧ · · · ∧ Eℓ holds with high probability.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 204/530

7.5 Skip Lists

Lemma 19

A search (and, hence, also insert and delete) in a skip list with n
elements takes time O(logn) with high probability (w. h. p.).

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 205/530

7.5 Skip Lists

Backward analysis:

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

-∞ 5 8 10 12 14 18

23

26

28

35 43 ∞

-∞ 5 8 10 12 14 18

23

26 28 35 43 ∞

-∞ 5 8 10 12 14 18 23 26 28 35 43 ∞

At each point the path goes up with probability 1/2 and left with

probability 1/2.

We show that w.h.p:

▶ A “long” search path must also go very high.

▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 206/530

7.5 Skip Lists

Estimation for Binomial Coefficients

(
n
k

)k
≤
(
n
k

)
≤
(
en
k

)k

(
n
k

)
= n!
k! · (n− k)! =

n · . . . · (n− k+ 1)
k · . . . · 1

≥
(
n
k

)k

(
n
k

)
= n · . . . · (n− k+ 1)

k!
≤ nk

k!
= nk · kk
kk · k!

=
(
n
k

)k
· k

k

k!
≤
(
n
k

)k
·
∑

i≥0

ki

i!
=
(
en
k

)k

7.5 Skip Lists

Let Ez,k denote the event that a search path is of length z
(number of edges) but does not visit a list above Lk.

In particular, this means that during the construction in the

backward analysis we see at most k heads (i.e., coin flips that tell

you to go up) in z trials.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 208/530

7.5 Skip Lists

Pr[Ez,k] ≤ Pr[at most k heads in z trials]

≤
(
z
k

)
2−(z−k) ≤

(
ez
k

)k
2−(z−k) ≤

(
2ez
k

)k
2−z

choosing k = γ logn with γ ≥ 1 and z = (β+α)γ logn

≤
(

2ez
k

)k
2−βk ·n−γα ≤

(
2ez
2βk

)k
·n−α

≤
(

2e(β+α)
2β

)k
n−α

now choosing β = 6α gives

≤
(

42α
64α

)k
n−α ≤ n−α

for α ≥ 1.

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 209/530

7.5 Skip Lists

So far we fixed k = γ logn, γ ≥ 1, and z = 7αγ logn, α ≥ 1.

This means that a search path of length Ω(logn) visits a list on a

level Ω(logn), w.h.p.

Let Ak+1 denote the event that the list Lk+1 is non-empty. Then

Pr[Ak+1] ≤ n2−(k+1) ≤ n−(γ−1) .

For the search to take at least z = 7αγ logn steps either the

event Ez,k or the event Ak+1 must hold.

Hence,

Pr[search requires z steps] ≤ Pr[Ez,k]+ Pr[Ak+1]

≤ n−α +n−(γ−1)

This means, the search requires at most z steps, w. h. p.

Skip Lists

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].

7.5 Skip Lists 12. Jan. 2025

Harald Räcke 211/530

7.6 van Emde Boas Trees

Dynamic Set Data Structure S:

▶ S. insert(x)
▶ S.delete(x)
▶ S. search(x)
▶ S.min()
▶ S.max()
▶ S. succ(x)
▶ S.pred(x)

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 211/530

7.6 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

▶ S. insert(x): Inserts x into S.

▶ S. delete(x): Deletes x from S. Usually assumes that x ∈ S.

▶ S.member(x): Returns 1 if x ∈ S and 0 otw.

▶ S.min(): Returns the value of the minimum element in S.

▶ S.max(): Returns the value of the maximum element in S.

▶ S. succ(x): Returns successor of x in S. Returns null if x is

maximum or larger than any element in S. Note that x needs

not to be in S.

▶ S. pred(x): Returns the predecessor of x in S. Returns null

if x is minimum or smaller than any element in S. Note that

x needs not to be in S.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 212/530

7.6 van Emde Boas Trees

Can we improve the existing algorithms when the keys are from a

restricted set?

In the following we assume that the keys are from

{0,1, . . . , u− 1}, where u denotes the size of the universe.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 213/530

Implementation 1: Array

0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0

represented bits

u

content

size

one array of u bits

Use an array that encodes the indicator function of the dynamic

set.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 214/530

Implementation 1: Array

Algorithm 1 array.insert(x)
1: content[x]← 1;

Algorithm 2 array.delete(x)
1: content[x]← 0;

Algorithm 3 array.member(x)
1: return content[x];

▶ Note that we assume that x is valid, i.e., it falls within the

array boundaries.

▶ Obviously(?) the running time is constant.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 215/530

Implementation 1: Array

Algorithm 4 array.max()
1: for (i = size−1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 5 array.min()
1: for (i = 0; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

▶ Running time is O(u) in the worst case.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 216/530

Implementation 1: Array

Algorithm 6 array.succ(x)
1: for (i = x + 1; i < size; i++) do

2: if content[i] = 1 then return i;
3: return null;

Algorithm 7 array.pred(x)
1: for (i = x − 1; i ≥ 0; i––) do

2: if content[i] = 1 then return i;
3: return null;

▶ Running time is O(u) in the worst case.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 217/530

Implementation 2: Summary Array

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

√
u

√
u

√
u

√
u

√
u

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

represented bits

▶ √
u cluster-arrays of

√
u bits.

▶ One summary-array of
√
u bits. The i-th bit in the summary

array stores the bit-wise or of the bits in the i-th cluster.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 218/530

Implementation 2: Summary Array

The bit for a key x is contained in cluster number
⌊
x√
u

⌋
.

Within the cluster-array the bit is at position x mod
√
u.

For simplicity we assume that u = 22k for some k ≥ 1. Then we

can compute the cluster-number for an entry x as high(x) (the

upper half of the dual representation of x) and the position of x
within its cluster as low(x) (the lower half of the dual

representation).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 219/530

Implementation 2: Summary Array

Algorithm 8 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 9 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

▶ The running times are constant, because the corresponding

array-functions have constant running times.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 220/530

Implementation 2: Summary Array

Algorithm 10 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

▶ The running time is dominated by the cost of a minimum

computation on an array of size
√
u. Hence, O(√u).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 221/530

Implementation 2: Summary Array

Algorithm 11 max()
1: maxcluster ← summary .max();
2: if maxcluster = null return null;

3: offs ← cluster[maxcluster].max()
4: return maxcluster ◦ offs;

Algorithm 12 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

▶ Running time is roughly 2
√
u = O(√u) in the worst case.

The operator ◦ stands
for the concatenation of
two bitstrings.
This means if
x = 01112 and
y = 00012 then
x ◦y = 011100012.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 222/530

Implementation 2: Summary Array

Algorithm 13 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

▶ Running time is roughly 3
√
u = O(√u) in the worst case.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 223/530

Implementation 2: Summary Array

Algorithm 14 pred(x)
1: m ← cluster[high(x)].pred(low(x))
2: if m ≠ null then return high(x) ◦m;

3: predcluster ← summary .pred(high(x));
4: if predcluster ≠ null then

5: offs ← cluster[predcluster].max();
6: return predcluster ◦ offs;

7: return null;

▶ Running time is roughly 3
√
u = O(√u) in the worst case.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 224/530

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

S(u) is a dynamic set data-structure representing u bits:

1 1 1 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

b
it
-w

is
e

or

1 1 1 0

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

u
size

represented bits

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 225/530

Implementation 3: Recursion

We assume that u = 22k for some k.

The data-structure S(2) is defined as an array of 2-bits (end of the

recursion).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 226/530

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only

need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the

non-recursive case. This is achieved by the fact that an S(4) will

contain S(2)’s as sub-datastructures, which are arrays. Hence, a

call like cluster[1].min() from within the data-structure S(4) is

not a recursive call as it will call the function array .min().

This means that the non-recursive case is been dealt with while

initializing the data-structure.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 227/530

Implementation 3: Recursion

Algorithm 15 member(x)
1: return cluster[high(x)].member(low(x));

▶ Tmem(u) = Tmem(
√
u)+ 1.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 228/530

Implementation 3: Recursion

Algorithm 16 insert(x)
1: cluster[high(x)]. insert(low(x));
2: summary . insert(high(x));

▶ Tins(u) = 2Tins(
√
u)+ 1.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 229/530

Implementation 3: Recursion

Algorithm 17 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then

3: summary .delete(high(x));

▶ Tdel(u) = 2Tdel(
√
u)+ Tmin(

√
u)+ 1.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 230/530

Implementation 3: Recursion

Algorithm 18 min()
1: mincluster ← summary .min();
2: if mincluster = null return null;

3: offs ← cluster[mincluster].min();
4: return mincluster ◦ offs;

▶ Tmin(u) = 2Tmin(
√
u)+ 1.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 231/530

Implementation 3: Recursion

Algorithm 19 succ(x)
1: m ← cluster[high(x)]. succ(low(x))
2: if m ≠ null then return high(x) ◦m;

3: succcluster ← summary . succ(high(x));
4: if succcluster ≠ null then

5: offs ← cluster[succcluster].min();
6: return succcluster ◦ offs;

7: return null;

▶ Tsucc(u) = 2Tsucc(
√
u)+ Tmin(

√
u)+ 1.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 232/530

Implementation 3: Recursion

Tmem(u) = Tmem(
√
u) + 1:

Set ℓ := logu and X(ℓ) := Tmem(2ℓ).Then

X(ℓ) = Tmem(2ℓ) = Tmem(u) = Tmem(
√
u)+ 1

= Tmem
(
2
ℓ
2
)+ 1 = X(ℓ2

)+ 1 .

Using Master theorem gives X(ℓ) = O(logℓ), and hence

Tmem(u) = O(log logu).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 233/530

Implementation 3: Recursion

Tins(u) = 2Tins(
√
u) + 1.

Set ℓ := logu and X(ℓ) := Tins(2ℓ). Then

X(ℓ) = Tins(2ℓ) = Tins(u) = 2Tins(
√
u)+ 1

= 2Tins
(
2
ℓ
2
)+ 1 = 2X

(ℓ
2

)+ 1 .

Using Master theorem gives X(ℓ) = O(ℓ), and hence

Tins(u) = O(logu).

The same holds for Tmax(u) and Tmin(u).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 234/530

Implementation 3: Recursion

Tdel(u) = 2Tdel(
√
u) + Tmin(

√
u) + 1 ≤ 2Tdel(

√
u) + c log(u).

Set ℓ := logu and X(ℓ) := Tdel(2ℓ). Then

X(ℓ) = Tdel(2ℓ) = Tdel(u) = 2Tdel(
√
u)+ c logu

= 2Tdel
(
2
ℓ
2
)+ cℓ = 2X

(ℓ
2

)+ cℓ .

Using Master theorem gives X(ℓ) = Θ(ℓ logℓ), and hence

Tdel(u) = O(logu log logu).

The same holds for Tpred(u) and Tsucc(u).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 235/530

Implementation 4: van Emde Boas Trees

0 1 1 1

0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

b
it
-w

is
e

or

0 1 1 1

0 0 0 1

S(
√
u)

S(
√
u) S(

√
u) S(

√
u) S(

√
u)

summary

cluster[0] cluster[1] cluster[2] cluster[3]

3

min

13

max

u
size

1 represented bits

▶ The bit referenced by min is not set within

sub-datastructures.

▶ The bit referenced by max is set within sub-datastructures (if

max ≠ min).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 236/530

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

▶ Recursive calls for min and max are constant time.

▶ min = null means that the data-structure is empty.

▶ min = max ≠ null means that the data-structure contains

exactly one element.

▶ We can insert into an empty datastructure in constant time by

only setting min = max = x.

▶ We can delete from a data-structure that just contains one

element in constant time by setting min = max = null.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 237/530

Implementation 4: van Emde Boas Trees

Algorithm 20 max()
1: return max;

Algorithm 21 min()
1: return min;

▶ Constant time.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 238/530

Implementation 4: van Emde Boas Trees

Algorithm 22 member(x)
1: if x =min then return 1; // TRUE

2: return cluster[high(x)].member(low(x));

▶ Tmem(u) = Tmem(
√
u)+ 1 =⇒ T(u) = O(log logu).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 239/530

Implementation 4: van Emde Boas Trees

Algorithm 23 succ(x)
1: if min ≠ null ∧ x < min then return min;

2: maxincluster ← cluster[high(x)].max();
3: if maxincluster ≠ null ∧ low(x) < maxincluster then

4: offs ← cluster[high(x)]. succ(low(x));
5: return high(x) ◦ offs;

6: else

7: succcluster ← summary . succ(high(x));
8: if succcluster = null then return null;

9: offs ← cluster[succcluster].min();
10: return succcluster ◦ offs;

▶ Tsucc(u) = Tsucc(
√
u)+ 1 =⇒ Tsucc(u) = O(log logu).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 240/530

Implementation 4: van Emde Boas Trees

Algorithm 35 insert(x)
1: if min = null then

2: min = x; max = x;

3: else

4: if x < min then exchange x and min;

5: if x > max then max = x;

6: if cluster[high(x)].min = null; then

7: summary . insert(high(x));
8: cluster[high(x)]. insert(low(x));
9: else

10: cluster[high(x)]. insert(low(x));

▶ Tins(u) = Tins(
√
u)+ 1 =⇒ Tins(u) = O(log logu).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 241/530

Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 8 takes constant time as the

if-condition in Line 6 ensures that we are inserting in an empty

sub-tree.

The only non-constant recursive calls are the call in Line 7 and in

Line 10. These are mutually exclusive, i.e., only one of these calls

will actually occur.

From this we get that Tins(u) = Tins(
√
u)+ 1.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 242/530

Implementation 4: van Emde Boas Trees

▶ Assumes that x is contained in the structure.

Algorithm 36 delete(x)
1: if min = max then

2: min = max = null;

3: else

4: if x = min then

5: firstcluster ← summary .min();
6: offs ← cluster[firstcluster].min();
7: x ← firstcluster ◦ offs;

8: min ← x;

9: cluster[high(x)].delete(low(x));
continued...

find new minimum

delete

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 243/530

Implementation 4: van Emde Boas Trees

Algorithm 36 delete(x)
...continued

10: if cluster[high(x)].min() = null then

11: summary .delete(high(x));
12: if x = max then

13: summax ← summary .max();
14: if summax = null then max ← min;

15: else

16: offs ← cluster[summax].max();
17: max ← summax ◦ offs

18: else

19: if x = max then

20: offs ← cluster[high(x)].max();
21: max ← high(x) ◦ offs;

fix maximum

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 244/530

Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and

Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the

cluster where x was deleted is now empty. But this means that

the call in Line 9 deleted the last element in cluster[high(x)].
Such a call only takes constant time.

Hence, we get a recurrence of the form

Tdel(u) = Tdel(
√
u)+ c .

This gives Tdel(u) = O(log logu).

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 245/530

7.6 van Emde Boas Trees

Space requirements:

▶ The space requirement fulfills the recurrence

S(u) = (√u+ 1)S(
√
u)+O(√u) .

▶ Note that we cannot solve this recurrence by the Master

theorem as the branching factor is not constant.

▶ One can show by induction that the space requirement is

S(u) = O(u). Exercise.

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 246/530

▶ Let the “real” recurrence relation be

S(k2) = (k+ 1)S(k)+ c1 · k; S(4) = c2

▶ Replacing S(k) by R(k) := S(k)/c2 gives the recurrence

R(k2) = (k+ 1)R(k)+ ck; R(4) = 1

where c = c1/c2 < 1.

▶ Now, we show R(k2) ≤ k2 − 2 for k2 ≥ 4.
▶ Obviously, this holds for k2 = 4.
▶ For k2 > 4 we have

R(k2) = (1+ k)R(k)+ ck
≤ (1+ k)(k− 2)+ k ≤ k2 − 2

▶ This shows that R(k) and, hence, S(k) grows linearly.

van Emde Boas Trees

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

See Chapter 20 of [CLRS90].

7.6 van Emde Boas Trees 12. Jan. 2025

Harald Räcke 248/530

7.7 Hashing

Dictionary:

▶ S. insert(x): Insert an element x.

▶ S. delete(x): Delete the element pointed to by x.

▶ S. search(k): Return a pointer to an element e with

key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully

choosing split-elements.

Then the memory location of an object x with key k is determined

by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the

given key. The goal is to have constant search time.

7.7 Hashing 12. Jan. 2025

Harald Räcke 248/530

7.7 Hashing

Definitions:

▶ Universe U of keys, e.g., U ⊆ N0. U very large.

▶ Set S ⊆ U of keys, |S| =m ≤ |U|.
▶ Array T[0, . . . , n− 1] hash-table.

▶ Hash function h : U → [0, . . . , n− 1].

The hash-function h should fulfill:

▶ Fast to evaluate.

▶ Small storage requirement.

▶ Good distribution of elements over the whole table.

7.7 Hashing 12. Jan. 2025

Harald Räcke 249/530

Direct Addressing

Ideally the hash function maps all keys to different memory

locations.

k1

k3k6

k7U
universe
of keys

∅

k6

k3

∅

∅

k7

∅

k1

This special case is known as Direct Addressing. It is usually very

unrealistic as the universe of keys typically is quite large, and in

particular larger than the available memory.

7.7 Hashing 12. Jan. 2025

Harald Räcke 250/530

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function

that maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

Such a hash function h is called a perfect hash function for set S.

7.7 Hashing 12. Jan. 2025

Harald Räcke 251/530

Collisions

If we do not know the keys in advance, the best we can hope for

is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k1, k2 from the set S that map

to the same memory location (i.e., h(k1) = h(k2)). This is called a

collision.

7.7 Hashing 12. Jan. 2025

Harald Räcke 252/530

Collisions

Typically, collisions do not appear once the size of the set S of

actual keys gets close to n, but already when |S| ≥ω(√n).
Lemma 20

The probability of having a collision when hashing m elements

into a table of size n under uniform hashing is at least

1− e−m(m−1)
2n ≈ 1− e−m

2

2n .

Uniform hashing:

Choose a hash function uniformly at random from all functions

f : U → [0, . . . , n− 1].

7.7 Hashing 12. Jan. 2025

Harald Räcke 253/530

Collisions

Proof.

Let Am,n denote the event that inserting m keys into a table of

size n does not generate a collision. Then

Pr[Am,n] =
m∏

ℓ=1

n− ℓ + 1
n

=
m−1∏

j=0

(
1− j

n

)

≤
m−1∏

j=0

e−j/n = e−
∑m−1
j=0

j
n = e−m(m−1)

2n .

Here the first equality follows since the ℓ-th element that is

hashed has a probability of n−ℓ+1
n to not generate a collision

under the condition that the previous elements did not induce

collisions.

7.7 Hashing 12. Jan. 2025

Harald Räcke 254/530

Collisions

−3 −2 −1 1 2 3

1

2

3

4

x

f(x) e−x

1− x

The inequality 1− x ≤ e−x is derived by stopping the

Taylor-expansion of e−x after the second term.

7.7 Hashing 12. Jan. 2025

Harald Räcke 255/530

Resolving Collisions

The methods for dealing with collisions can be classified into the

two main types

▶ open addressing, aka. closed hashing

▶ hashing with chaining, aka. closed addressing, open

hashing.

There are applications e.g. computer chess where you do not

resolve collisions at all.

7.7 Hashing 12. Jan. 2025

Harald Räcke 256/530

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

▶ Access: compute h(x) and search list for key[x].
▶ Insert: insert at the front of the list.

k1

k2 k3

k4
k5

k6

k7

k8

U
universe
of keys

S (actual keys)

∅

∅

∅

∅

k1 k4 ∅

k5 k2 k7 ∅

k3 ∅

k8 k6 ∅

7.7 Hashing 12. Jan. 2025

Harald Räcke 257/530

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the

following notation:

▶ A+ denotes the average time for a successful search when

using A;

▶ A− denotes the average time for an unsuccessful search

when using A;

▶ We parameterize the complexity results in terms of α := m
n ,

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

7.7 Hashing 12. Jan. 2025

Harald Räcke 258/530

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is α = m
n .

Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A− = 1+α .

7.7 Hashing 12. Jan. 2025

Harald Räcke 259/530

Hashing with Chaining

For a successful search observe that we do not choose a list at

random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let kℓ denote the ℓ-th key inserted into the table.

Let for two keys ki and kj, Xij denote the indicator variable for

the event that ki and kj hash to the same position. Clearly,

Pr[Xij = 1] = 1/n for uniform hashing.

The expected successful search cost is

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]keys before ki

cost for key ki

7.7 Hashing 12. Jan. 2025

Harald Räcke 260/530

Hashing with Chaining

E
[

1
m

m∑

i=1

(
1+

m∑

j=i+1

Xij
)]
= 1
m

m∑

i=1

(
1+

m∑

j=i+1

E
[
Xij

])

= 1
m

m∑

i=1

(
1+

m∑

j=i+1

1
n

)

= 1+ 1
mn

m∑

i=1

(m− i)

= 1+ 1
mn

(
m2 − m(m+ 1)

2

)

= 1+ m− 1
2n

= 1+ α
2
− α

2m
.

Hence, the expected cost for a successful search is A+ ≤ 1+ α
2 .

7.7 Hashing 12. Jan. 2025

Harald Räcke 261/530

Hashing with Chaining

Disadvantages:

▶ pointers increase memory requirements

▶ pointers may lead to bad cache efficiency

Advantages:

▶ no à priori limit on the number of elements

▶ deletion can be implemented efficiently

▶ by using balanced trees instead of linked list one can also

obtain worst-case guarantees.

7.7 Hashing 12. Jan. 2025

Harald Räcke 262/530

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),. . . ,h(k,n− 1)
must form a permutation of 0, . . . , n− 1.

Search(k): Try position h(k,0); if it is empty your search fails;

otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n− 1), and this slot is

non-empty then your table is full.

7.7 Hashing 12. Jan. 2025

Harald Räcke 263/530

Open Addressing

Choices for h(k, j):
▶ Linear probing:

h(k, i) = h(k)+ i mod n
(sometimes: h(k, i) = h(k)+ ci mod n).

▶ Quadratic probing:

h(k, i) = h(k)+ c1i+ c2i2 mod n.

▶ Double hashing:

h(k, i) = h1(k)+ ih2(k) mod n.

For quadratic probing and double hashing one has to ensure that

the search covers all positions in the table (i.e., for double

hashing h2(k) must be relatively prime to n (teilerfremd); for

quadratic probing c1 and c2 have to be chosen carefully).

7.7 Hashing 12. Jan. 2025

Harald Räcke 264/530

Linear Probing

▶ Advantage: Cache-efficiency. The new probe position is very

likely to be in the cache.

▶ Disadvantage: Primary clustering. Long sequences of

occupied table-positions get longer as they have a larger

probability to be hit. Furthermore, they can merge forming

larger sequences.

Lemma 21

Let L be the method of linear probing for resolving collisions:

L+ ≈ 1
2

(
1+ 1

1−α
)

L− ≈ 1
2

(
1+ 1

(1−α)2
)

7.7 Hashing 12. Jan. 2025

Harald Räcke 265/530

Quadratic Probing

▶ Not as cache-efficient as Linear Probing.

▶ Secondary clustering: caused by the fact that all keys

mapped to the same position have the same probe sequence.

Lemma 22

Let Q be the method of quadratic probing for resolving collisions:

Q+ ≈ 1+ ln
(1

1−α
)
− α

2

Q− ≈ 1
1−α + ln

(1
1−α

)
−α

7.7 Hashing 12. Jan. 2025

Harald Räcke 266/530

Double Hashing

▶ Any probe into the hash-table usually creates a cache-miss.

Lemma 23

Let D be the method of double hashing for resolving collisions:

D+ ≈ 1
α

ln
(1

1−α
)

D− ≈ 1
1−α

7.7 Hashing 12. Jan. 2025

Harald Räcke 267/530

Open Addressing

Some values:

α Linear Probing Quadratic Probing Double Hashing

L+ L− Q+ Q− D+ D−

0.5 1.5 2.5 1.44 2.19 1.39 2

0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

7.7 Hashing 12. Jan. 2025

Harald Räcke 268/530

Open Addressing

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

α

#probes

L− Q− D−

L+ Q+ D+

7.7 Hashing 12. Jan. 2025

Harald Räcke 269/530

Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open

Addressing scheme.

▶ The probe sequence h(k,0), h(k,1), h(k,2), . . . is equally

likely to be any permutation of ⟨0,1, . . . , n− 1⟩.

7.7 Hashing 12. Jan. 2025

Harald Räcke 270/530

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let Ai denote the event that the i-th probe occurs and is to a

non-empty slot.

Pr[A1 ∩A2 ∩ · · · ∩Ai−1]

= Pr[A1] · Pr[A2 | A1] · Pr[A3 | A1 ∩A2]·
. . . · Pr[Ai−1 | A1 ∩ · · · ∩Ai−2]

Pr[X ≥ i] = m
n
· m− 1
n− 1

· m− 2
n− 2

· . . . · m− i+ 2
n− i+ 2

≤
(m
n

)i−1 = αi−1 .

7.7 Hashing 12. Jan. 2025

Harald Räcke 271/530

Analysis of Idealized Open Address Hashing

E[X] =
∞∑

i=1

Pr[X ≥ i] ≤
∞∑

i=1

αi−1 =
∞∑

i=0

αi = 1
1−α .

1
1−α = 1+α+α2 +α3 + . . .

7.7 Hashing 12. Jan. 2025

Harald Räcke 272/530

Analysis of Idealized Open Address Hashing

∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]

iPr[X = i]

Pr[X ≥ i]
i = 3

1 2 3 4 5 6 7

i

Pr[X = i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

7.7 Hashing 12. Jan. 2025

Harald Räcke 273/530

Analysis of Idealized Open Address Hashing

∑
i
iPr[X = i] =

∑
i
Pr[X ≥ i]iPr[X = i]

Pr[X ≥ i]

i = 4

1 2 3 4 5 6 7

i

Pr[X = i]

The j-th rectangle appears in both sums j times. (j times in the

first due to multiplication with j; and j times in the second for

summands i = 1,2, . . . , j)

7.7 Hashing 12. Jan. 2025

Harald Räcke 273/530

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the

time that k is inserted.

Let k be the i+ 1-st element. The expected time for a search for k
is at most 1

1−i/n = n
n−i .

1
m

m−1∑

i=0

n
n− i =

n
m

m−1∑

i=0

1
n− i =

1
α

n∑

k=n−m+1

1
k

≤ 1
α

∫ n
n−m

1
x

dx = 1
α

ln
n

n−m = 1
α

ln
1

1−α .

7.7 Hashing 12. Jan. 2025

Harald Räcke 274/530

Analysis of Idealized Open Address Hashing

m−n m−n+ 1 n

1
m−n+1

1
m−n+2

1
n

f(x) = 1
x

x

f(x)

n∑

k=m−n+1

1
k
≤
∫ n
m−n

1
x

dx
∫ n
m−n

1
x

dx
n∑

k=m−n+1

1
k

7.7 Hashing 12. Jan. 2025

Harald Räcke 275/530

Deletions in Hashtables

How do we delete in a hash-table?

▶ For hashing with chaining this is not a problem. Simply

search for the key, and delete the item in the corresponding

list.

▶ For open addressing this is difficult.

7.7 Hashing 12. Jan. 2025

Harald Räcke 276/530

Deletions in Hashtables

▶ Simply removing a key might interrupt the probe sequence of

other keys which then cannot be found anymore.

▶ One can delete an element by replacing it with a
deleted-marker.
▶ During an insertion if a deleted-marker is encountered an

element can be inserted there.
▶ During a search a deleted-marker must not be used to

terminate the probe sequence.

▶ The table could fill up with deleted-markers leading to bad

performance.

▶ If a table contains many deleted-markers (linear fraction of

the keys) one can rehash the whole table and amortize the

cost for this rehash against the cost for the deletions.

7.7 Hashing 12. Jan. 2025

Harald Räcke 277/530

Deletions for Linear Probing

▶ For Linear Probing one can delete elements without using

deletion-markers.

▶ Upon a deletion elements that are further down in the

probe-sequence may be moved to guarantee that they are

still found during a search.

7.7 Hashing 12. Jan. 2025

Harald Räcke 278/530

Deletions for Linear Probing

Algorithm 37 delete(p)
1: T[p]← null

2: p ← succ(p)
3: while T[p] ≠ null do

4: y ← T[p]
5: T[p]← null

6: p ← succ(p)
7: insert(y)

p is the index into the table-cell that contains the object to be

deleted.

Pointers into the hash-table become invalid.

7.7 Hashing 12. Jan. 2025

Harald Räcke 279/530

Universal Hashing

Regardless, of the choice of hash-function there is always an input

(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so

that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen

randomly from all functions f : U → [0, . . . , n− 1] is clearly

unrealistic as there are n|U| such functions. Even writing down

such a function would take |U| logn bits.

Universal hashing tries to define a set H of functions that is

much smaller but still leads to good average case behaviour when

selecting a hash-function uniformly at random from H .

7.7 Hashing 12. Jan. 2025

Harald Räcke 280/530

Universal Hashing

Definition 24

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called universal if for all u1, u2 ∈ U with u1 ≠ u2

Pr[h(u1) = h(u2)] ≤ 1
n
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

Note that this means that the probability of a collision between

two arbitrary elements is at most 1
n .

7.7 Hashing 12. Jan. 2025

Harald Räcke 281/530

Universal Hashing

Definition 25

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called 2-independent (pairwise independent) if

the following two conditions hold

▶ For any key u ∈ U , and t ∈ {0, . . . , n− 1} Pr[h(u) = t] = 1
n ,

i.e., a key is distributed uniformly within the hash-table.

▶ For all u1, u2 ∈ U with u1 ≠ u2, and for any two

hash-positions t1, t2:

Pr[h(u1) = t1 ∧ h(u2) = t2] ≤ 1
n2 .

This requirement clearly implies a universal hash-function.

7.7 Hashing 12. Jan. 2025

Harald Räcke 282/530

Universal Hashing

Definition 26

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called k-independent if for any choice of ℓ ≤ k
distinct keys u1, . . . , uℓ ∈ U , and for any set of ℓ not necessarily

distinct hash-positions t1, . . . , tℓ:

Pr[h(u1) = t1 ∧ · · · ∧ h(uℓ) = tℓ] ≤
1

nℓ
,

where the probability is w. r. t. the choice of a random

hash-function from set H .

7.7 Hashing 12. Jan. 2025

Harald Räcke 283/530

Universal Hashing

Definition 27

A class H of hash-functions from the universe U into the set

{0, . . . , n− 1} is called (µ, k)-independent if for any choice of

ℓ ≤ k distinct keys u1, . . . , uℓ ∈ U , and for any set of ℓ not

necessarily distinct hash-positions t1, . . . , tℓ:

Pr[h(u1) = t1 ∧ · · · ∧ h(uℓ) = tℓ] ≤
µ
nℓ

,

where the probability is w. r. t. the choice of a random

hash-function from set H .

7.7 Hashing 12. Jan. 2025

Harald Räcke 284/530

Universal Hashing

Let U := {0, . . . , p − 1} for a prime p. Let Zp := {0, . . . , p − 1}, and

let Z∗p := {1, . . . , p − 1} denote the set of invertible elements in Zp.

Define

ha,b(x) := (ax + b mod p) mod n

Lemma 28

The class

H = {ha,b | a ∈ Z∗p , b ∈ Zp}
is a universal class of hash-functions from U to {0, . . . , n− 1}.

7.7 Hashing 12. Jan. 2025

Harald Räcke 285/530

Universal Hashing

Proof.

Let x,y ∈ U be two distinct keys. We have to show that the

probability of a collision is only 1/n.

▶ ax + b ̸≡ ay + b (mod p)

If x ≠ y then (x −y) ̸≡ 0 (mod p).

Multiplying with a ̸≡ 0 (mod p) gives

a(x −y) ̸≡ 0 (mod p)

where we use that Zp is a field (Körper) and, hence, has no

zero divisors (nullteilerfrei).

7.7 Hashing 12. Jan. 2025

Harald Räcke 286/530

Universal Hashing
▶ The hash-function does not generate collisions before the

(mod n)-operation. Furthermore, every choice (a, b) is

mapped to a different pair (tx, ty) with tx := ax + b and

ty := ay + b.

This holds because we can compute a and b when given tx
and ty :

tx ≡ ax + b (mod p)

ty ≡ ay + b (mod p)

tx − ty ≡ a(x −y) (mod p)

ty ≡ ay + b (mod p)

a ≡ (tx − ty)(x −y)−1 (mod p)

b ≡ ty − ay (mod p)

Universal Hashing

There is a one-to-one correspondence between hash-functions

(pairs (a, b), a ≠ 0) and pairs (tx, ty), tx ≠ ty .

Therefore, we can view the first step (before the modn-

operation) as choosing a pair (tx, ty), tx ≠ ty uniformly at

random.

What happens when we do the modn operation?

Fix a value tx. There are p − 1 possible values for choosing ty .

From the range 0, . . . , p − 1 the values tx, tx +n, tx + 2n, . . . map

to tx after the modulo-operation. These are at most ⌈p/n⌉ values.

7.7 Hashing 12. Jan. 2025

Harald Räcke 288/530

Universal Hashing

As ty ≠ tx there are

⌈p
n

⌉
− 1 ≤ p

n
+ n− 1

n
− 1 ≤ p − 1

n

possibilities for choosing ty such that the final hash-value creates

a collision.

This happens with probability at most 1
n .

7.7 Hashing 12. Jan. 2025

Harald Räcke 289/530

Universal Hashing

It is also possible to show that H is an (almost) pairwise

independent class of hash-functions.

⌊
p
n

⌋2

p(p − 1)
≤ Prtx≠ty∈Z2

p

[
tx mod n=h1∧
ty mod n=h2

]
≤

⌈
p
n

⌉2

p(p − 1)

Note that the middle is the probability that h(x) = h1 and

h(y) = h2. The total number of choices for (tx, ty) is p(p − 1).
The number of choices for tx (ty) such that tx mod n = h1

(ty mod n = h2) lies between ⌊ pn⌋ and ⌈pn⌉.

7.7 Hashing 12. Jan. 2025

Harald Räcke 290/530

Universal Hashing

Definition 29

Let d ∈ N; q ≥ (d+ 1)n be a prime; and let ā ∈ {0, . . . , q − 1}d+1.

Define for x ∈ {0, . . . , q − 1}

hā(x) :=
(d∑

i=0

aixi mod q
)

mod n .

Let Hd
n := {hā | ā ∈ {0, . . . , q − 1}d+1}. The class H d

n is

(e, d+ 1)-independent.

Note that in the previous case we had d = 1 and chose ad ≠ 0.

7.7 Hashing 12. Jan. 2025

Harald Räcke 291/530

Universal Hashing

For the coefficients ā ∈ {0, . . . , q − 1}d+1 let fā denote the

polynomial

fā(x) =
(d∑

i=0

aixi
)

mod q

The polynomial is defined by d+ 1 distinct points.

7.7 Hashing 12. Jan. 2025

Harald Räcke 292/530

Universal Hashing
Fix ℓ ≤ d+ 1; let x1, . . . , xℓ ∈ {0, . . . , q − 1} be keys, and let

t1, . . . , tℓ denote the corresponding hash-function values.

Let Aℓ = {hā ∈H | hā(xi) = ti for all i ∈ {1, . . . , ℓ}}
Then

hā ∈ Aℓa hā = fā mod n and

fā(xi) ∈ {ti +α ·n | α ∈ {0, . . . , ⌈ qn⌉ − 1}}︸ ︷︷ ︸
=:Bi

In order to obtain the cardinality of Aℓ we choose our polynomial

by fixing d+ 1 points.

We first fix the values for inputs x1, . . . , xℓ.
We have

|B1| · . . . · |Bℓ|
possibilities to do this (so that hā(xi) = ti).

• Aℓ denotes the set of hash-
functions such that every xi
hits its pre-defined position
ti.

• Bi is the set of positions that
fā can hit so that hā still hits
ti.

Universal Hashing

Now, we choose d− ℓ + 1 other inputs and choose their value

arbitrarily. We have qd−ℓ+1 possibilities to do this.

Therefore we have

|B1| · . . . · |Bℓ| · qd−ℓ+1 ≤ ⌈q
n
⌉ℓ · qd−ℓ+1

possibilities to choose ā such that hā ∈ Aℓ.

7.7 Hashing 12. Jan. 2025

Harald Räcke 294/530

Universal Hashing

Therefore the probability of choosing hā from Aℓ is only

⌈ qn⌉ℓ · qd−ℓ+1

qd+1 ≤ (q+nn)ℓ

qℓ
≤
(q +n

q

)ℓ · 1

nℓ

≤
(
1+ 1

ℓ

)ℓ · 1

nℓ
≤ e
nℓ

.

This shows that the H is (e, d+ 1)-universal.

The last step followed from q ≥ (d+ 1)n, and ℓ ≤ d+ 1.

7.7 Hashing 12. Jan. 2025

Harald Räcke 295/530

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no

delete). Then we may want to design a simple hash-function that

maps all these keys to different memory locations.

k1

k3k6

k7

U
universe
of keys

S (actual keys)

∅

k6

k3

∅

∅

k7

∅

k1

7.7 Hashing 12. Jan. 2025

Harald Räcke 296/530

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very

large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is

E[#Collisions] =
(
m
2

)
· 1
n
.

If we choose n =m2 the expected number of collisions is strictly

less than 1
2 .

Can we get an upper bound on the probability of having

collisions?

The probability of having 1 or more collisions can be at most 1
2 as

otherwise the expectation would be larger than 1
2 .

7.7 Hashing 12. Jan. 2025

Harald Räcke 297/530

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n =m2 is very very high.

We construct a two-level scheme. We first use a hash-function that

maps elements from S to m buckets.

Let mj denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that

maps the elements of the bucket into a table of size m2
j . The

second function can be chosen such that all elements are mapped

to different locations.

7.7 Hashing 12. Jan. 2025

Harald Räcke 298/530

Perfect Hashing

k1

k2
k3

k4
k5

k6
k7

k8

∅ m2 m3 ∅ ∅ m6 ∅ m8

U
universe
of keys

S (actual keys)

k1 k6 ∅ k4 ∅ ∅ ∅ k3 k2 ∅ ∅ ∅ k8 k5 ∅ ∅ k7 ∅

∑
imi =m

m2
2 m2

3 m2
6 m2

8

7.7 Hashing 12. Jan. 2025

Harald Räcke 299/530

Perfect Hashing

The total memory that is required by all hash-tables is O(∑jm2
j).

Note that mj is a random variable.

E
[∑

j
m2
j

]
= E

[
2
∑

j

(
mj
2

)
+
∑

j
mj

]

= 2 E
[∑

j

(
mj
2

)]
+ E

[∑

j
mj

]

The first expectation is simply the expected number of collisions,

for the first level. Since we use universal hashing we have

= 2

(
m
2

)
1
m
+m = 2m− 1 .

7.7 Hashing 12. Jan. 2025

Harald Räcke 300/530

Perfect Hashing

We need only O(m) time to construct a hash-function h with∑
jm2

j = O(4m), because with probability at least 1/2 a random

function from a universal family will have this property.

Then we construct a hash-table hj for every bucket. This takes

expected time O(mj) for every bucket. A random function hj is

collision-free with probability at least 1/2. We need O(mj) to test

this.

We only need that the hash-functions are chosen from a universal

family!!!

7.7 Hashing 12. Jan. 2025

Harald Räcke 301/530

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search time

in a dynamic scenario.

▶ Two hash-tables T1[0, . . . , n− 1] and T2[0, . . . , n− 1], with

hash-functions h1, and h2.

▶ An object x is either stored at location T1[h1(x)] or

T2[h2(x)].
▶ A search clearly takes constant time if the above constraint is

met.

7.7 Hashing 12. Jan. 2025

Harald Räcke 302/530

Cuckoo Hashing

Insert:

∅

∅

x1

x4

∅

∅

x7

∅

∅

∅

x3

∅

x6

∅

∅

x9

∅

∅

T1 T2

x x

x7

x6

x1

x7

x6

x1

7.7 Hashing 12. Jan. 2025

Harald Räcke 303/530

Cuckoo Hashing

Algorithm 38 Cuckoo-Insert(x)
1: if T1[h1(x)] = x ∨ T2[h2(x)] = x then return
2: steps ← 1
3: while steps ≤ maxsteps do
4: exchange x and T1[h1(x)]
5: if x = null then return
6: exchange x and T2[h2(x)]
7: if x = null then return
8: steps ← steps+1
9: rehash() // change hash-functions; rehash everything

10: Cuckoo-Insert(x)

7.7 Hashing 12. Jan. 2025

Harald Räcke 304/530

Cuckoo Hashing

▶ We call one iteration through the while-loop a step of the

algorithm.

▶ We call a sequence of iterations through the while-loop

without the termination condition becoming true a phase of

the algorithm.

▶ We say a phase is successful if it is not terminated by the

maxstep-condition, but the while loop is left because

x = null.

7.7 Hashing 12. Jan. 2025

Harald Räcke 305/530

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop

(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that

touches s different keys?

7.7 Hashing 12. Jan. 2025

Harald Räcke 306/530

Cuckoo Hashing: Insert

T1 T2

x = x1
x2

x3

x4

x5

x6

x7

x1 x2

x3 x4

x5

x6

x7

x8x4

x3x2

xx9

x10

x11

x12

x8

x4

x3

x2

x = x1

x9

x10

x11

x
12

xx2x3x4x5x6x7x8x4x3x2x = x1x9x10x11x12x3

7.7 Hashing 12. Jan. 2025

Harald Räcke 307/530

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7x10

A cycle-structure of size s is defined by

▶ s − 1 different cells (alternating btw. cells from T1 and T2).

▶ s distinct keys x = x1, x2, . . . , xs , linking the cells.

▶ The leftmost cell is “linked forward” to some cell on the right.

▶ The rightmost cell is “linked backward” to a cell on the left.

▶ One link represents key x; this is where the counting starts.

7.7 Hashing 12. Jan. 2025

Harald Räcke 308/530

Cuckoo Hashing

A cycle-structure is active if for every key xℓ (linking a cell pi from

T1 and a cell pj from T2) we have

h1(xℓ) = pi and h2(xℓ) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there

must exist an active cycle structure of size s ≥ 3.

7.7 Hashing 12. Jan. 2025

Harald Räcke 309/530

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T1-cell?

This probability is at most µ
ns since h1 is a (µ, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size s
correctly map into their T2-cell?

This probability is at most µ
ns since h2 is a (µ, s)-independent

hash-function.

These events are independent.

7.7 Hashing 12. Jan. 2025

Harald Räcke 310/530

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at

most µ2

n2s .

What is the probability that there exists an active cycle structure

of size s?

7.7 Hashing 12. Jan. 2025

Harald Räcke 311/530

Cuckoo Hashing

The number of cycle-structures of size s is at most

s3 ·ns−1 ·ms−1 .

▶ There are at most s2 possibilities where to attach the forward

and backward links.

▶ There are at most s possibilities to choose where to place key

x.

▶ There are ms−1 possibilities to choose the keys apart from x.

▶ There are ns−1 possibilities to choose the cells.

7.7 Hashing 12. Jan. 2025

Harald Räcke 312/530

Cuckoo Hashing

The probability that there exists an active cycle-structure is

therefore at most

∞∑

s=3

s3 ·ns−1 ·ms−1 · µ
2

n2s =
µ2

nm

∞∑

s=3

s3
(
m
n

)s

≤ µ2

m2

∞∑

s=3

s3
(

1
1+ ϵ

)s
≤ O

(
1
m2

)
.

Here we used the fact that (1+ ϵ)m ≤ n.

Hence,

Pr[cycle] = O
(

1
m2

)
.

7.7 Hashing 12. Jan. 2025

Harald Räcke 313/530

Cuckoo Hashing

Now, we analyze the probability that a phase is not successful

without running into a closed cycle.

7.7 Hashing 12. Jan. 2025

Harald Räcke 314/530

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x9 x8 x1

x
x2 x3 x4 x5 x6

x7

Sequence of visited keys:

x = x1, x2, x3, x4, x5, x6, x7, x3, x2, x1 = x, x8, x9, . . .

7.7 Hashing 12. Jan. 2025

Harald Räcke 315/530

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting

with x in the order that they are visited during the phase.

Lemma 30

If the sequence is of length p then there exists a sub-sequence of

at least p+2
3 keys starting with x of distinct keys.

7.7 Hashing 12. Jan. 2025

Harald Räcke 316/530

Cuckoo Hashing

Proof.

Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:

x = x1 → x2 → ·· · → xi → xr → xr−1 → ·· · → x1 → xi+1 → ·· · → xj

As r ≤ i− 1 the length p of the sequence is

p = i+ r + (j − i) ≤ i+ j − 1 .

Either sub-sequence x1 → x2 → ·· · → xi or sub-sequence

x1 → xi+1 → ·· · → xj has at least p+2
3 elements.

Taking x1 → ·· · → xi twice, and x1 → xi+1 → . . . xj once
gives 2i+ (j − i+ 1) = i+ j + 1 ≥ p + 2 keys. Hence, one of
the sequences contains at least (p + 2)/3 keys.

7.7 Hashing 12. Jan. 2025

Harald Räcke 317/530

Cuckoo Hashing

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

p1 p2 p3 p4 p5 p6 p7 p8 p9

x1

x
x2 x3 x4 x5 x6 x7 x8

A path-structure of size s is defined by

▶ s + 1 different cells (alternating btw. cells from T1 and T2).

▶ s distinct keys x = x1, x2, . . . , xs , linking the cells.

▶ The leftmost cell is either from T1 or T2.

7.7 Hashing 12. Jan. 2025

Harald Räcke 318/530

Cuckoo Hashing

A path-structure is active if for every key xℓ (linking a cell pi from

T1 and a cell pj from T2) we have

h1(xℓ) = pi and h2(xℓ) = pj

Observation:

If a phase takes at least t steps without running into a cycle there

must exist an active path-structure of size (2t + 2)/3.

Note that we count complete steps. A search
that touches 2t or 2t + 1 keys takes t steps.

7.7 Hashing 12. Jan. 2025

Harald Räcke 319/530

Cuckoo Hashing

The probability that a given path-structure of size s is active is at

most µ2

n2s .

The probability that there exists an active path-structure of size s
is at most

2 ·ns+1·ms−1 · µ
2

n2s

≤ 2µ2
(
m
n

)s−1

≤ 2µ2
(

1
1+ ϵ

)s−1

Plugging in s = (2t + 2)/3 gives

≤ 2µ2
(

1
1+ ϵ

)(2t+2)/3−1

= 2µ2
(

1
1+ ϵ

)(2t−1)/3
.

7.7 Hashing 12. Jan. 2025

Harald Räcke 320/530

Cuckoo Hashing

We choose maxsteps ≥ 3ℓ/2+ 1/2. Then the probability that a

phase terminates unsuccessfully without running into a cycle is at

most

Pr[unsuccessful | no cycle]

≤ Pr[∃ active path-structure of size at least 2maxsteps+2
3]

≤ Pr[∃ active path-structure of size at least ℓ + 1]

≤ Pr[∃ active path-structure of size exactly ℓ + 1]

≤ 2µ2
(1

1+ ϵ
)ℓ ≤ 1

m2

by choosing ℓ ≥ log
(1

2µ2m2

)
/log

(1
1+ϵ

) = log
(
2µ2m2

)
/log

(
1+ ϵ)

This gives maxsteps = Θ(logm). Note that the existence of a path structure of
size larger than s implies the existence of a
path structure of size exactly s.

7.7 Hashing 12. Jan. 2025

Harald Räcke 321/530

Cuckoo Hashing

So far we estimated

Pr[cycle] ≤ O
(1
m2

)

and

Pr[unsuccessful | no cycle] ≤ O
(1
m2

)

Observe that

Pr[successful] = Pr[no cycle]− Pr[unsuccessful | no cycle]

≥ c · Pr[no cycle]

for a suitable constant c > 0. This is a very weak (and trivial)
statement but still sufficient for
our asymptotic analysis.

7.7 Hashing 12. Jan. 2025

Harald Räcke 322/530

Cuckoo Hashing
The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

=
∑

t≥1

Pr[search takes at least t steps | phase successful]

We have

Pr[search at least t steps | successful]

= Pr[search at least t steps ∧ successful]/Pr[successful]

≤ 1
c

Pr[search at least t steps ∧ successful]/Pr[no cycle]

≤ 1
c

Pr[search at least t steps ∧ no cycle]/Pr[no cycle]

= 1
c

Pr[search at least t steps | no cycle] .

Pr[A | B] = Pr[A∧ B]
Pr[B]

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

≤ 1
c

∑

t≥1

Pr[search at least t steps | no cycle]

≤ 1
c

∑

t≥1

2µ2
(1

1+ ϵ
)(2t−1)/3 = 1

c

∑

t≥0

2µ2
(1

1+ ϵ
)(2(t+1)−1)/3

= 2µ2

c(1+ ϵ)1/3
∑

t≥0

(1
(1+ ϵ)2/3

)t = O(1) .

This means the expected cost for a successful phase is constant

(even after accounting for the cost of the incomplete step that

finishes the phase).

7.7 Hashing 12. Jan. 2025

Harald Räcke 324/530

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete

rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is q = O(1/m2)
(probability O(1/m2) of running into a cycle and probability

O(1/m2) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant

time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is∑
i≥1 pi = 1

1−p − 1 = p
1−p = O(p).

Therefore the expected cost for re-hashes is O(m) · O(p) = O(1).

7.7 Hashing 12. Jan. 2025

Harald Räcke 325/530

Formal Proof
Let Yi denote the event that the i-th rehash occurs and does not

lead to a valid configuration (i.e., one of the m+ 1 insertions

fails):

Pr[Yi|Zi] ≤ (m+ 1) · O(1/m2) ≤ O(1/m) =: p .

Let Zi denote the event that the i-th rehash occurs:

Pr[Zi] ≤
i−1∏

j=0

Pr[Yh | Zj] ≤ pi

Let Xsi , s ∈ {1, . . . ,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[Xsi] = E[steps | phase successful] · Pr[phase sucessful]

+maxsteps ·Pr[not sucessful] = O(1) .

The 0-th (re)hash is the initial
configuration when doing the
insert.

The expected cost for all rehashes is

E
[∑

i

∑
s ZiX

s
i

]

Note that Zi is independent of Xsj , j ≥ i (however, it is not

independent of Xsj , j < i). Hence,

E
[∑

i

∑
s ZiX

i
s

]
=
∑
i

∑
s E[Zi] · E[Xis]

≤ O(m) ·
∑
i p

i

≤ O(m) · p
1− p

= O(1) .

7.7 Hashing 12. Jan. 2025

Harald Räcke 327/530

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is Θ(logm) the largest size of a path-structure or

cycle-structure contains just Θ(logm) different keys.

Therefore, it is sufficient to have (µ,Θ(logm))-independent

hash-functions.

7.7 Hashing 12. Jan. 2025

Harald Räcke 328/530

Cuckoo Hashing

How do we make sure that n ≥ (1 + ϵ)m?

▶ Let α := 1/(1+ ϵ).
▶ Keep track of the number of elements in the table. When

m ≥ αn we double n and do a complete re-hash

(table-expand).

▶ Whenever m drops below αn/4 we divide n by 2 and do a

rehash (table-shrink).

▶ Note that right after a change in table-size we have

m = αn/2. In order for a table-expand to occur at least

αn/2 insertions are required. Similar, for a table-shrink at

least αn/4 deletions must occur.

▶ Therefore we can amortize the rehash cost after a change in

table-size against the cost for insertions and deletions.

7.7 Hashing 12. Jan. 2025

Harald Räcke 329/530

Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a

worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of

keys/total number of hash-table slots) is at most 1
2(1+ϵ) .

The 1/(2(1+ϵ)) fill-factor comes from the fact that the total hash-table is
of size 2n (because we have two tables of size n); moreoverm ≤ (1+ϵ)n.

7.7 Hashing 12. Jan. 2025

Harald Räcke 330/530

Hashing

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

Chapter 4 of [MS08] contains a detailed description about Hashing with Linear Probing and Hashing
with Chaining. Also the Perfect Hashing scheme can be found there.

The analysis of Hashing with Chaining under the assumption of uniform hashing can be found in
Chapter 11.2 of [CLRS90]. Chapter 11.3.3 describes Universal Hashing. Collision resolution with Open
Addressing is described in Chapter 11.4. Chapter 11.5 describes the Perfect Hashing scheme.

Reference for Cuckoo Hashing???

7.7 Hashing 12. Jan. 2025

Harald Räcke 331/530

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports

the following operations:

▶ S. build(x1, . . . , xn): Creates a data-structure that contains

just the elements x1, . . . , xn.

▶ S. insert(x): Adds element x to the data-structure.

▶ element S.minimum(): Returns an element x ∈ S with

minimum key-value key[x].
▶ element S. delete-min(): Deletes the element with minimum

key-value from S and returns it.

▶ boolean S. is-empty(): Returns true if the data-structure is

empty and false otherwise.

Sometimes we also have

▶ S.merge(S′): S := S ∪ S′; S′ := ∅.

8 Priority Queues 12. Jan. 2025

Harald Räcke 331/530

8 Priority Queues

An addressable Priority Queue also supports:

▶ handle S. insert(x): Adds element x to the data-structure,

and returns a handle to the object for future reference.

▶ S. delete(h): Deletes element specified through handle h.

▶ S. decrease-key(h, k): Decreases the key of the element

specified by handle h to k. Assumes that the key is at least k
before the operation.

8 Priority Queues 12. Jan. 2025

Harald Räcke 332/530

Dijkstra’s Shortest Path Algorithm

Algorithm 39 Shortest-Path(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. (v,x) ∈ E do
11: if x.key > v.key+d(v,x) then
12: S.decrease-key(hx,v.key+d(v,x));
13: x.key← v.key+d(v,x);

8 Priority Queues 12. Jan. 2025

Harald Räcke 333/530

Prim’s Minimum Spanning Tree Algorithm

Algorithm 40 Prim-MST(G = (V , E,d), s ∈ V)
1: Input: weighted graph G = (V , E,d); start vertex s;
2: Output: pred-fields encode MST;
3: S.build(); // build empty priority queue
4: for all v ∈ V \ {s} do
5: v.key←∞;
6: hv ← S.insert(v);
7: s.key← 0; S.insert(s);
8: while S.is-empty() = false do
9: v ← S.delete-min();

10: for all x ∈ V s.t. {v,x} ∈ E do
11: if x.key > d(v,x) then
12: S.decrease-key(hx,d(v,x));
13: x.key← d(v,x);
14: x.pred← v;

8 Priority Queues 12. Jan. 2025

Harald Räcke 334/530

Analysis of Dijkstra and Prim

Both algorithms require:

▶ 1 build() operation

▶ |V | insert() operations

▶ |V | delete-min() operations

▶ |V | is-empty() operations

▶ |E| decrease-key() operations

How good a running time can we obtain?

8 Priority Queues 12. Jan. 2025

Harald Räcke 335/530

8 Priority Queues

Operation

Binary
Heap BST

Binomial
Heap

Fibonacci
Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn logn 1

Note that most applications use build() only to create an empty

heap which then costs time 1.

** The standard version of binary heaps is not address-
able. Hence, it does not support a delete.

* Fibonacci heaps only give an amor-
tized guarantee.

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time

O((|V | + |E|) log |V |).

Using Fibonacci Heaps, Prim and Dijkstra run in time

O(|V | log |V | + |E|).

8 Priority Queues 12. Jan. 2025

Harald Räcke 337/530

8.1 Binary Heaps

▶ Nearly complete binary tree; only the last level is not full, and

this one is filled from left to right.

▶ Heap property: A node’s key is not larger than the key of one

of its children.

7

159

19311117

13 1225 43 80

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 338/530

Binary Heaps

Operations:

▶ minimum(): return the root-element. Time O(1).
▶ is-empty(): check whether root-pointer is null. Time O(1).

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 339/530

8.1 Binary Heaps
Maintain a pointer to the last element x.

▶ We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

go up until the last edge used was a right edge.

go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

7

159

19311117

13 1225 43 80 x

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 340/530

8.1 Binary Heaps
Maintain a pointer to the last element x.

▶ We can compute the successor of x
(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.

go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;

insert a new element as a left child;

7

159

19311117

13 1225 43 80 x

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 341/530

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

7

15

9

19

31

1117

13 1225 43 80 x1 x

14

Note that an exchange can either be done by moving the data or

by changing pointers. The latter method leads to an addressable

priority queue.

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 342/530

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

7

9

16 19121718

27 2025 43 13 x1 x

13e

At its new position e may either travel up or down in the tree (but

not both directions).

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 343/530

Binary Heaps

Operations:

▶ minimum(): return the root-element. Time O(1).
▶ is-empty(): check whether root-pointer is null. Time O(1).
▶ insert(k): insert at successor of x and bubble up. Time

O(logn).
▶ delete(h): swap with x and bubble up or sift-down. Time

O(logn).

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 344/530

Binary Heaps

Operations:

▶ minimum(): Return the root-element. Time O(1).
▶ is-empty(): Check whether root-pointer is null. Time O(1).
▶ insert(k): Insert at x and bubble up. Time O(logn).
▶ delete(h): Swap with x and bubble up or sift-down. Time

O(logn).
▶ build(x1, . . . , xn): Insert elements arbitrarily; then do

sift-down operations starting with the lowest layer in the tree.

Time O(n).

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 345/530

Binary Heaps

The standard implementation of binary heaps is via arrays. Let

A[0, . . . , n− 1] be an array

▶ The parent of i-th element is at position ⌊ i−1
2 ⌋.

▶ The left child of i-th element is at position 2i+ 1.

▶ The right child of i-th element is at position 2i+ 2.

Finding the successor of x is much easier than in the description

on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t

maintain their positions and therefore there are no stable handles.

8.1 Binary Heaps 12. Jan. 2025

Harald Räcke 346/530

8.2 Binomial Heaps

Operation

Binary
Heap BST

Binomial
Heap

Fibonacci
Heap*

build n n logn n logn n
minimum 1 logn logn 1

is-empty 1 1 1 1

insert logn logn logn 1

delete logn** logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1

merge n n logn log n 1

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 347/530

Binomial Trees

B0 B1 B2 B3 B4

Bt−1

Bt−1

Bt

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 348/530

Binomial Trees

Properties of Binomial Trees

▶ Bk has 2k nodes.

▶ Bk has height k.

▶ The root of Bk has degree k.

▶ Bk has
(
k
ℓ

)
nodes on level ℓ.

▶ Deleting the root of Bk gives trees B0, B1, . . . , Bk−1.

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 349/530

Binomial Trees

B4

B3

B2

B1

B0

Deleting the root of B5 leaves sub-trees B4, B3, B2, B1, and B0.

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 350/530

Binomial Trees

B4

B3

B2

B1

B0

Deleting the leaf furthest from the root (in B5) leaves a path that

connects the roots of sub-trees B4, B3, B2, B1, and B0.

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 351/530

Binomial Trees

Bk−1

Bk

(
k−1
ℓ

)

(
k−1
ℓ−1

)

The number of nodes on level ℓ in tree Bk is therefore

(
k− 1
ℓ − 1

)
+
(
k− 1
ℓ

)
=
(
k
ℓ

)

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 352/530

Binomial Trees
0000

00010010

0011

0100

01010110

0111

1000

10011010

1011

1100

11011110

1111

The binomial tree Bk is a sub-graph of the hypercube Hk.

The parent of a node with label bk, . . . , b1 is obtained by setting

the least significant 1-bit to 0.

The ℓ-th level contains nodes that have ℓ 1’s in their label.

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 353/530

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

▶ The children of a node are arranged in a circular linked list.

▶ A child-pointer points to an arbitrary node within the list.

▶ A parent-pointer points to the parent node.

▶ Pointers x. left and x. right point to the left and right sibling

of x (if x does not have siblings then x. left = x. right = x).

p

x

a b c d

parent

child

rightleft

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 354/530

8.2 Binomial Heaps

▶ Given a pointer to a node x we can splice out the sub-tree

rooted at x in constant time.

▶ We can add a child-tree T to a node x in constant time if we

are given a pointer to x and a pointer to the root of T .

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 355/530

Binomial Heap

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

In a binomial heap the keys are arranged in a collection of

binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example

the above heap contains trees B0, B1, and B4.

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 356/530

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we

can deduce the binomial trees that will be contained in the

collection.

Let Bk1 , Bk2 , Bk3 , ki < ki+1 denote the binomial trees in the

collection and recall that every tree may be contained at most

once.

Then n =∑i 2ki must hold. But since the ki are all distinct this

means that the ki define the non-zero bit-positions in the binary

representation of n.

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 357/530

Binomial Heap

Properties of a heap with n keys:

▶ Let n = bdbd−1, . . . , b0 denote binary representation of n.

▶ The heap contains tree Bi iff bi = 1.

▶ Hence, at most ⌊logn⌋ + 1 trees.

▶ The minimum must be contained in one of the roots.

▶ The height of the largest tree is at most ⌊logn⌋.
▶ The trees are stored in a single-linked list; ordered by

dimension/size.

712

47

2

148

31

11

2924

70

13

3516

20

37

4239

92

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 358/530

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with

different binomial trees. We can simply

merge the tree-lists.

Note that we do not just do a
concatenation as we want to
keep the trees in the list
sorted according to size.

Otherwise, we cannot do this because the merged heap is not

allowed to contain two trees of the same order.

Merging two trees of the same size: Add

the tree with larger root-value as a child to

the other tree.

For more trees the technique is analogous

to binary addition.

2

76

15

5

918

22

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 359/530

4014

17

2

590

94

19

3027

42

3

2118

26

9

1346

54

194

39

14

2216

29

19

40

4

3914

17

4

3914

17

14

2216

29

019

40

4

3914

17

14

2216

29

2

590

94

19

3027

42

3

2118

26

9

1346

54

8.2 Binomial Heaps

S1.merge(S2):
▶ Analogous to binary addition.

▶ Time is proportional to the number of trees in both heaps.

▶ Time: O(logn).

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 361/530

8.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert(x):
▶ Create a new heap S′ that contains just the element x.

▶ Execute S.merge(S′).
▶ Time: O(logn).

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 362/530

8.2 Binomial Heaps

S.minimum():
▶ Find the minimum key-value among all roots.

▶ Time: O(logn).

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 363/530

8.2 Binomial Heaps

S. delete-min():
▶ Find the minimum key-value among all roots.

▶ Remove the corresponding tree Tmin from the heap.

▶ Create a new heap S′ that contains the trees obtained from

Tmin after deleting the root (note that these are just O(logn)
trees).

▶ Compute S.merge(S′).
▶ Time: O(logn).

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 364/530

8.2 Binomial Heaps

S. decrease-key(handle h):
▶ Decrease the key of the element pointed to by h.

▶ Bubble the element up in the tree until the heap property is

fulfilled.

▶ Time: O(logn) since the trees have height O(logn).

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 365/530

8.2 Binomial Heaps

S. delete(handle h):
▶ Execute S.decrease-key(h,−∞).
▶ Execute S.delete-min().
▶ Time: O(logn).

8.2 Binomial Heaps 12. Jan. 2025

Harald Räcke 366/530

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 367/530

8.3 Fibonacci Heaps

Additional implementation details:

▶ Every node x stores its degree in a field x.degree. Note that

this can be updated in constant time when adding a child to

x.

▶ Every node stores a boolean value x.marked that specifies

whether x is marked or not.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 368/530

8.3 Fibonacci Heaps

The potential function:

▶ t(S) denotes the number of trees in the heap.

▶ m(S) denotes the number of marked nodes.

▶ We use the potential function Φ(S) = t(S)+ 2m(S).

7 24

4626

35

23 17

30

3

5241

44

18

39

min

The potential is Φ(S) = 5+ 2 · 3 = 11.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 369/530

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant

amount of work, where the constant is chosen “big enough” (to

take care of the constants that occur).

To make this more explicit we use c to denote the amount of

work that a unit of potential can pay for.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 370/530

8.3 Fibonacci Heaps

S.minimum()
▶ Access through the min-pointer.

▶ Actual cost O(1).
▶ No change in potential.

▶ Amortized cost O(1).

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 371/530

8.3 Fibonacci Heaps

S.merge(S′)
▶ Merge the root lists.

▶ Adjust the min-pointer

7 24

4626

35

23 17

30

5

11

3

5241

44

18

39

min min

• In the figure below the dashed edges are
replaced by red edges.

• The minimum of the left heap becomes
the new minimum of the merged heap.

Running time:

▶ Actual cost O(1).
▶ No change in potential.

▶ Hence, amortized cost is O(1).
8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 372/530

8.3 Fibonacci Heaps

S. insert(x)
▶ Create a new tree containing x.
▶ Insert x into the root-list.
▶ Update min-pointer, if necessary.

7 24

4626

35

23 17

30

3

5241

44

18

39

min

x

Running time:
▶ Actual cost O(1).
▶ Change in potential is +1.
▶ Amortized cost is c +O(1) = O(1).

x is inserted next to the min-pointer as
this is our entry point into the root-list.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 373/530

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
▶ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
▶ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

▶ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 374/530

8.3 Fibonacci Heaps
D(min) is the number of
children of the node that
stores the minimum.

S. delete-min(x)
▶ Delete minimum; add child-trees to heap;

time: D(min) · O(1).
▶ Update min-pointer; time: (t +D(min)) · O(1).

7 24

4626

35

23 17

30

18

39

41

44

52

3

5241

44

18

39

min

▶ Consolidate root-list so that no roots have the same degree.

Time t · O(1) (see next slide).

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 374/530

8.3 Fibonacci Heaps

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently
check whether two trees have the same degree, we use an array that contains for
every degree value d a pointer to a tree left of the current pointer whose root has
degree d (if such a tree exist).

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xx x x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

52

18

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23 17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxx x x

current

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps

Consolidate:

7

7

52

24

4626

35

23

17

30

18

39

41

44

5218

3941

44

18

3941

44

24

4626

35

7

5217

30

min

0 1 2 3

xxxx x

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 375/530

8.3 Fibonacci Heaps
t and t′ denote the number of trees before and
after the delete-min() operation, respectively.
Dn is an upper bound on the degree (i.e., num-
ber of children) of a tree node.

Actual cost for delete-min()
▶ At most Dn + t elements in root-list before consolidate.

▶ Actual cost for a delete-min is at most O(1) · (Dn + t).
Hence, there exists c1 s.t. actual cost is at most c1 · (Dn + t).

Amortized cost for delete-min()
▶ t′ ≤ Dn + 1 as degrees are different after consolidating.

▶ Therefore ∆Φ ≤ Dn + 1− t;
▶ We can pay c · (t −Dn − 1) from the potential decrease.

▶ The amortized cost is

c1 · (Dn + t)− c · (t −Dn − 1)

≤ (c1 + c)Dn + (c1 − c)t + c ≤ 2c(Dn + 1) ≤ O(Dn)
for c ≥ c1 .

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 376/530

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial

trees (for example only singleton vertices) then the output will be

a set of distinct binomial trees, and, hence, the Fibonacci heap

will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then

Dn ≤ logn.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 377/530

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 1: decrease-key does not violate heap-property

▶ Just decrease the key-value of element referenced by h.

Nothing else to do.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 378/530

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

▶ Decrease key-value of element x reference by h.

▶ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 378/530

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 2: heap-property is violated, but parent is not marked

▶ Decrease key-value of element x reference by h.

▶ If the heap-property is violated, cut the parent edge of x, and

make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Mark the (previous) parent of x (unless it’s a root).

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 378/530

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

▶ Decrease key-value of element x reference by h.

▶ Cut the parent edge of x, and make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 378/530

Fibonacci Heaps: decrease-key(handle h, v)

18

21

52

39

38

41

7

24

26

35

40

74

45

72

17

30

23

19

72

4

40

26

74

24

12

19

4

min

Case 3: heap-property is violated, and parent is marked

▶ Decrease key-value of element x reference by h.

▶ Cut the parent edge of x, and make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Continue cutting the parent until you arrive at an unmarked

node.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 378/530

Fibonacci Heaps: decrease-key(handle h, v)

Marking a node can be viewed as a
first step towards becoming a root.
The first time x loses a child it is
marked; the second time it loses a
child it is made into a root.

Case 3: heap-property is violated, and parent is marked

▶ Decrease key-value of element x reference by h.

▶ Cut the parent edge of x, and make x into a root.

▶ Adjust min-pointers, if necessary.

▶ Execute the following:

p ← parent[x];
while (p is marked)

pp ← parent[p];
cut of p; make it into a root; unmark it;

p ← pp;

if p is unmarked and not a root mark it;

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 379/530

Fibonacci Heaps: decrease-key(handle h, v)

t and t′: number of
trees before and after
operation.
m and m′: number of
marked nodes before
and after operation.

Actual cost:

▶ Constant cost for decreasing the value.

▶ Constant cost for each of ℓ cuts.

▶ Hence, cost is at most c2 · (ℓ + 1), for some constant c2.

Amortized cost:

▶ t′ = t + ℓ, as every cut creates one new root.

▶ m′ ≤m− (ℓ − 1)+ 1 =m− ℓ + 2, since all but the first cut

unmarks a node; the last cut may mark a node.

▶ ∆Φ ≤ ℓ + 2(−ℓ + 2) = 4− ℓ
▶ Amortized cost is at most

c2(ℓ+1)+c(4−ℓ) ≤ (c2−c)ℓ+4c+c2 = O(1) ,
if c ≥ c2.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 380/530

Delete node

H. delete(x):
▶ decrease value of x to −∞.

▶ delete-min.

Amortized cost: O(Dn)
▶ O(1) for decrease-key.

▶ O(Dn) for delete-min.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 381/530

8.3 Fibonacci Heaps

Lemma 32

Let x be a node with degree k and let y1, . . . , yk denote the

children of x in the order that they were linked to x. Then

degree(yi) ≥
{

0 if i = 1

i− 2 if i > 1

The marking process is very important for the proof of
this lemma. It ensures that a node can have lost at most
one child since the last time it became a non-root node.
When losing a first child the node gets marked; when
losing the second child it is cut from the parent and made
into a root.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 382/530

8.3 Fibonacci Heaps

Proof

▶ When yi was linked to x, at least y1, . . . , yi−1 were already

linked to x.

▶ Hence, at this time degree(x) ≥ i− 1, and therefore also

degree(yi) ≥ i− 1 as the algorithm links nodes of equal

degree only.

▶ Since, then yi has lost at most one child.

▶ Therefore, degree(yi) ≥ i− 2.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 383/530

8.3 Fibonacci Heaps
▶ Let sk be the minimum possible size of a sub-tree rooted at a

node of degree k that can occur in a Fibonacci heap.

▶ sk monotonically increases with k
▶ s0 = 1 and s1 = 2.

Let x be a degree k node of size sk and let y1, . . . , yk be its

children.

sk = 2+
k∑

i=2

size(yi)

≥ 2+
k∑

i=2

si−2

= 2+
k−2∑

i=0

si

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 384/530

8.3 Fibonacci Heaps

Definition 33

Consider the following non-standard Fibonacci type sequence:

Fk =

1 if k = 0

2 if k = 1

Fk−1 + Fk−2 if k ≥ 2

φ = 1
2 (1 +

√
5) denotes the golden ratio.

Note that φ2 = 1+φ.

Facts:

1. Fk ≥ φk.
2. For k ≥ 2: Fk = 2+∑k−2

i=0 Fi.

The above facts can be easily proved by induction. From this it

follows that sk ≥ Fk ≥ φk, which gives that the maximum degree

in a Fibonacci heap is logarithmic.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 385/530

k=0: 1 = F0 ≥ Φ0 = 1

k=1: 2 = F1 ≥ Φ1 ≈ 1.61

k-2,k-1→ k: Fk = Fk−1 + Fk−2 ≥ Φk−1 + Φk−2 = Φk−2(Φ+1) = Φk
Φ2︷ ︸︸ ︷

k=2: 3 = F2 = 2+ 1 = 2+ F0

k-1→ k: Fk = Fk−1 + Fk−2 = 2+∑k−3
i=0 Fi + Fk−2 = 2+∑k−2

i=0 Fi

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 386/530

Priority Queues

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures — The Basic Toolbox,
Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fibonacci
heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial heaps.

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps
are dealt with in Exercise 6.11.

8.3 Fibonacci Heaps 12. Jan. 2025

Harald Räcke 387/530

9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint

sets over elements.

▶ P.makeset(x): Given an element x, adds x to the

data-structure and creates a singleton set that contains only

this element. Returns a locator/handle for x in the

data-structure.

▶ P. find(x): Given a handle for an element x; find the set that

contains x. Returns a representative/identifier for this set.

▶ P. union(x, y): Given two elements x, and y that are

currently in sets Sx and Sy , respectively, the function

replaces Sx and Sy by Sx ∪ Sy and returns an identifier for

the new set.

9 Union Find 12. Jan. 2025

Harald Räcke 387/530

9 Union Find

Applications:

▶ Keep track of the connected components of a dynamic graph

that changes due to insertion of nodes and edges.

▶ Kruskals Minimum Spanning Tree Algorithm

9 Union Find 12. Jan. 2025

Harald Räcke 388/530

9 Union Find

Algorithm 41 Kruskal-MST(G = (V , E),w)
1: A← ∅;

2: for all v ∈ V do

3: v. set← P.makeset(v. label)
4: sort edges in non-decreasing order of weight w
5: for all (u,v) ∈ E in non-decreasing order do

6: if P.find(u. set) ≠ P.find(v. set) then

7: A← A∪ {(u,v)}
8: P.union(u. set, v. set)

9 Union Find 12. Jan. 2025

Harald Räcke 389/530

List Implementation

▶ The elements of a set are stored in a list; each node has a

backward pointer to the head.

▶ The head of the list contains the identifier for the set and a

field that stores the size of the set.

A

7

a b c d e f g

∅

▶ makeset(x) can be performed in constant time.

▶ find(x) can be performed in constant time.

9 Union Find 12. Jan. 2025

Harald Räcke 390/530

List Implementation

union(x, y)
▶ Determine sets Sx and Sy .

▶ Traverse the smaller list (say Sy), and change all backward

pointers to the head of list Sx.

▶ Insert list Sy at the head of Sx.

▶ Adjust the size-field of list Sx.

▶ Time: min{|Sx|, |Sy |}.

9 Union Find 12. Jan. 2025

Harald Räcke 391/530

List Implementation

Sx

7

a b c d x f g

∅

Sy
4

h i y j

∅

9 Union Find 12. Jan. 2025

Harald Räcke 392/530

List Implementation

Sx

11

a b c d x f g

∅

Sy
4

h i y j

9 Union Find 12. Jan. 2025

Harald Räcke 392/530

List Implementation

Running times:

▶ find(x): constant

▶ makeset(x): constant

▶ union(x,y): O(n), where n denotes the number of

elements contained in the set system.

9 Union Find 12. Jan. 2025

Harald Räcke 393/530

List Implementation

Lemma 34

The list implementation for the ADT union find fulfills the

following amortized time bounds:

▶ find(x): O(1).
▶ makeset(x): O(logn).
▶ union(x,y): O(1).

9 Union Find 12. Jan. 2025

Harald Räcke 394/530

The Accounting Method for Amortized Time Bounds

▶ There is a bank account for every element in the data

structure.

▶ Initially the balance on all accounts is zero.

▶ Whenever for an operation the amortized time bound

exceeds the actual cost, the difference is credited to some

bank accounts of elements involved.

▶ Whenever for an operation the actual cost exceeds the

amortized time bound, the difference is charged to bank

accounts of some of the elements involved.

▶ If we can find a charging scheme that guarantees that

balances always stay positive the amortized time bounds are

proven.

9 Union Find 12. Jan. 2025

Harald Räcke 395/530

List Implementation

▶ For an operation whose actual cost exceeds the amortized

cost we charge the excess to the elements involved.

▶ In total we will charge at most O(logn) to an element

(regardless of the request sequence).

▶ For each element a makeset operation occurs as the first

operation involving this element.

▶ We inflate the amortized cost of the makeset-operation to

Θ(logn), i.e., at this point we fill the bank account of the

element to Θ(logn).
▶ Later operations charge the account but the balance never

drops below zero.

9 Union Find 12. Jan. 2025

Harald Räcke 396/530

List Implementation

makeset(x): The actual cost is O(1). Due to the cost inflation the

amortized cost is O(logn).

find(x): For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not change

any accounts. Cost: O(1).

union(x, y):
▶ If Sx = Sy the cost is constant; no bank accounts change.

▶ Otw. the actual cost is O(min{|Sx|, |Sy |}).
▶ Assume wlog. that Sx is the smaller set; let c denote the

hidden constant, i.e., the actual cost is at most c · |Sx|.
▶ Charge c to every element in set Sx.

9 Union Find 12. Jan. 2025

Harald Räcke 397/530

List Implementation

Lemma 35

An element is charged at most ⌊log2n⌋ times, where n is the total

number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x’s

set doubles. This can happen at most ⌊logn⌋ times.

9 Union Find 12. Jan. 2025

Harald Räcke 398/530

Implementation via Trees

▶ Maintain nodes of a set in a tree.

▶ The root of the tree is the label of the set.

▶ Only pointer to parent exists; we cannot list all elements of a

given set.

▶ Example:
10

12 5

2

6

9

3

8

14 17

7

16

19 23

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

9 Union Find 12. Jan. 2025

Harald Räcke 399/530

Implementation via Trees

makeset(x)
▶ Create a singleton tree. Return pointer to the root.

▶ Time: O(1).

find(x)
▶ Start at element x in the tree. Go upwards until you reach

the root.

▶ Time: O(level(x)), where level(x) is the distance of element

x to the root in its tree. Not constant.

9 Union Find 12. Jan. 2025

Harald Räcke 400/530

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
▶ Perform a← find(x); b ← find(y). Then: link(a, b).
▶ link(a, b) attaches the smaller tree as the child of the larger.

▶ In addition it updates the size-field of the new root.

6

9

3

8

14 17

7

10

12 5

2

1

2

5

1

1 1

11

1

1

2

4

▶ Time: constant for link(a, b) plus two find-operations.

9 Union Find 12. Jan. 2025

Harald Räcke 401/530

Implementation via Trees

Lemma 36

The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

▶ When we attach a tree with root c to become a child of a tree

with root p, then size(p) ≥ 2 size(c), where size denotes the

value of the size-field right after the operation.

▶ After that the value of size(c) stays fixed, while the value of

size(p) may still increase.

▶ Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c),
for any pair of nodes (p, c), where p is a parent of c.

9 Union Find 12. Jan. 2025

Harald Räcke 402/530

Path Compression

find(x):
▶ Go upward until you find the root.

▶ Re-attach all visited nodes as children of the root.

▶ Speeds up successive find-operations.

10

12 5

2

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

1

2

4

▶ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

One could change the algorithm to
update the size-fields. This could
be done without asymptotically af-
fecting the running time.

However, the only size-field that is
actually required is the field at the
root, which is always correct.

We will only use the other size-fields
for the proof of Theorem 39.

9 Union Find 12. Jan. 2025

Harald Räcke 403/530

Path Compression

find(x):
▶ Go upward until you find the root.

▶ Re-attach all visited nodes as children of the root.

▶ Speeds up successive find-operations.

10

12

2

5

6

9

3

8

14 17

7

1

2

5

1

1 1

11

1

2

1

4

▶ Note that the size-fields now only give an upper bound on

the size of a sub-tree.

One could change the algorithm to
update the size-fields. This could
be done without asymptotically af-
fecting the running time.

However, the only size-field that is
actually required is the field at the
root, which is always correct.

We will only use the other size-fields
for the proof of Theorem 39.

9 Union Find 12. Jan. 2025

Harald Räcke 403/530

Path Compression

Asymptotically the cost for a find-operation does not increase due

to the path compression heuristic.

However, for a worst-case analysis there is no improvement on

the running time. It can still happen that a find-operation takes

time O(logn).

9 Union Find 12. Jan. 2025

Harald Räcke 404/530

Amortized Analysis

Definitions:

▶ size(v) Í the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the

number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the

case that there are no find-operations.

▶ rank(v) Í ⌊log(size(v))⌋.
▶ =⇒ size(v) ≥ 2rank(v).

Lemma 37

The rank of a parent must be strictly larger than the rank of a

child.

9 Union Find 12. Jan. 2025

Harald Räcke 405/530

Amortized Analysis

Lemma 38

There are at most n/2s nodes of rank s.

Proof.

▶ Let’s say a node v sees node x if v is in x’s sub-tree at the

time that x becomes a child.

▶ A node v sees at most one node of rank s during the running

time of the algorithm.

▶ This holds because the rank-sequence of the roots of the

different trees that contain v during the running time of the

algorithm is a strictly increasing sequence.

▶ Hence, every node sees at most one rank s node, but every

rank s node is seen by at least 2s different nodes.

9 Union Find 12. Jan. 2025

Harald Räcke 406/530

Amortized Analysis

We define

tow(i) :=
{

1 if i = 0

2tow(i−1) otw.
tow(i) = 222222

i times

and

log∗(n) := min{i | tow(i) ≥ n} .

Theorem 39

Union find with path compression fulfills the following amortized

running times:

▶ makeset(x) : O(log∗(n))
▶ find(x) : O(log∗(n))
▶ union(x,y) : O(log∗(n))

9 Union Find 12. Jan. 2025

Harald Räcke 407/530

Amortized Analysis

In the following we assume n ≥ 2.

rank-group:

▶ A node with rank rank(v) is in rank group log∗(rank(v)).
▶ The rank-group g = 0 contains only nodes with rank 0 or

rank 1.

▶ A rank group g ≥ 1 contains ranks

tow(g − 1)+ 1, . . . , tow(g).
▶ The maximum non-empty rank group is

log∗(⌊logn⌋) ≤ log∗(n)− 1 (which holds for n ≥ 2).

▶ Hence, the total number of rank-groups is at most log∗n.

9 Union Find 12. Jan. 2025

Harald Räcke 408/530

Amortized Analysis

Accounting Scheme:

▶ create an account for every find-operation

▶ create an account for every node v

The cost for a find-operation is equal to the length of the path

traversed. We charge the cost for going from v to parent[v] as

follows:

▶ If parent[v] is the root we charge the cost to the

find-account.

▶ If the group-number of rank(v) is the same as that of

rank(parent[v]) (before starting path compression) we

charge the cost to the node-account of v.

▶ Otherwise we charge the cost to the find-account.

9 Union Find 12. Jan. 2025

Harald Räcke 409/530

Amortized Analysis

Observations:

▶ A find-account is charged at most log∗(n) times (once for

the root and at most log∗(n)− 1 times when increasing the

rank-group).

▶ After a node v is charged its parent-edge is re-assigned. The

rank of the parent strictly increases.

▶ After some charges to v the parent will be in a larger

rank-group. =⇒ v will never be charged again.

▶ The total charge made to a node in rank-group g is at most

tow(g)− tow(g − 1)− 1 ≤ tow(g).

9 Union Find 12. Jan. 2025

Harald Räcke 410/530

Amortized Analysis

What is the total charge made to nodes?

▶ The total charge is at most

∑
g
n(g) · tow(g) ,

where n(g) is the number of nodes in group g.

9 Union Find 12. Jan. 2025

Harald Räcke 411/530

Amortized Analysis

For g ≥ 1 we have

n(g) ≤
tow(g)∑

s=tow(g−1)+1

n
2s
≤

∞∑

s=tow(g−1)+1

n
2s

= n
2tow(g−1)+1

∞∑

s=0

1
2s
= n

2tow(g−1)+1 · 2

= n
2tow(g−1) =

n
tow(g)

.

Hence,

∑
g
n(g) tow(g) ≤ n(0) tow(0)+

∑

g≥1

n(g) tow(g) ≤ n log∗(n)

9 Union Find 12. Jan. 2025

Harald Räcke 412/530

Amortized Analysis

Without loss of generality we can assume that all

makeset-operations occur at the start.

This means if we inflate the cost of makeset to log∗n and add

this to the node account of v then the balances of all node

accounts will sum up to a positive value (this is sufficient to

obtain an amortized bound).

9 Union Find 12. Jan. 2025

Harald Räcke 413/530

Amortized Analysis

The analysis is not tight. In fact it has been shown that the

amortized time for the union-find data structure with path

compression is O(α(m,n)), where α(m,n) is the inverse

Ackermann function which grows a lot lot slower than log∗n.

(Here, we consider the average running time of m operations on

at most n elements).

There is also a lower bound of Ω(α(m,n)).

9 Union Find 12. Jan. 2025

Harald Räcke 414/530

Amortized Analysis

A(x,y) =

y + 1 if x = 0

A(x − 1,1) if y = 0

A(x − 1, A(x,y − 1)) otw.

α(m,n) = min{i ≥ 1 : A(i, ⌊m/n⌋) ≥ logn}

▶ A(0, y) = y + 1

▶ A(1, y) = y + 2

▶ A(2, y) = 2y + 3

▶ A(3, y) = 2y+3 − 3

▶ A(4, y) = 2222

︸ ︷︷ ︸
y+3 times

−3

9 Union Find 12. Jan. 2025

Harald Räcke 415/530

Union Find

Bibliography

[CLRS90a] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest:
Introduction to Algorithms (1st ed.),
MIT Press and McGraw-Hill, 1990

[CLRS90b] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (2nd ed.),
MIT Press and McGraw-Hill, 2001

[CLRS90c] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[AHU74] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22
of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but
neither in [CLRS90b] in nor in [CLRS90c]. The latter books contains a more involved analysis that gives
a better bound than O(log∗ n).

A description of the O(log∗)-bound can also be found in Chapter 4.8 of [AHU74].

9 Union Find 12. Jan. 2025

Harald Räcke 416/530

Part IV

Flows and Cuts

12. Jan. 2025

Harald Räcke 416/530

The following slides are partially based on slides by Kevin Wayne.

12. Jan. 2025

Harald Räcke 417/530

10 Introduction
Flow Network

▶ directed graph G = (V , E); edge capacities c(e)
▶ two special nodes: source s; target t;
▶ no edges entering s or leaving t;
▶ at least for now: no parallel edges;

10

5

15

4

4

9

15

8

6

30

15

15

10

10

10

s

a

b

c

d

e

f

t

10 Introduction 12. Jan. 2025

Harald Räcke 418/530

Cuts

Definition 40

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A and

t ∈ V \A.

Definition 41

The capacity of a cut A is defined as

cap(A,V \A) :=
∑

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

10 Introduction 12. Jan. 2025

Harald Räcke 419/530

Cuts

Example 42

10

5

15

4

4

9

15

8

6

30

15

15

10

10

10

s

a

b

c

d

e

f

t

A

The capacity of the cut is cap(A,V \A) = 28.

10 Introduction 12. Jan. 2025

Harald Räcke 420/530

Flows

Definition 43

An (s, t)-flow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑

e∈out(v)
f(e) =

∑

e∈into(v)
f(e) .

(flow conservation constraints)

10 Introduction 12. Jan. 2025

Harald Räcke 421/530

Flows

Definition 44

The value of an (s, t)-flow f is defined as

val(f) =
∑

e∈out(s)
f(e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

10 Introduction 12. Jan. 2025

Harald Räcke 422/530

Flows

Example 45

10|10

3|5

11|15

4|4

0|4

6|9

0|15

8|8

1|6

11|30

0|15

0|15

6|10

8|10

10|10

s

a

b

c

d

e

f

t

The value of the flow is val(f) = 24.

10 Introduction 12. Jan. 2025

Harald Räcke 423/530

Flows

Lemma 46 (Flow value lemma)

Let f be a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f) =
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e) .

10 Introduction 12. Jan. 2025

Harald Räcke 424/530

Proof.

val(f) =
∑

e∈out(s)
f(e)

=
∑

e∈out(s)
f(e)+

∑

v∈A\{s}

(∑

e∈out(v)
f(e)−

∑

e∈in(v)
f(e)

)

=
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e)

The last equality holds since every edge with both end-points in A
contributes negatively as well as positively to the sum in Line 2.

The only edges whose contribution doesn’t cancel out are edges

leaving or entering A.

10 Introduction 12. Jan. 2025

Harald Räcke 425/530

Example 47

10|10

3|5

11|15

4|4

0|4

6|9

0|15

8|8

1|6

11|30

0|15

0|15

6|10

8|10

10|10

s

a

b

c

d

e

f

t

A

The net-flow across the cut is val(f) = 24.

10 Introduction 12. Jan. 2025

Harald Räcke 426/530

Corollary 48

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f ′ with larger value. Then

cap(A,V \A) < val(f ′)

=
∑

e∈out(A)
f ′(e)−

∑

e∈into(A)
f ′(e)

≤
∑

e∈out(A)
f ′(e)

≤ cap(A,V \A)

10 Introduction 12. Jan. 2025

Harald Räcke 427/530

11 Augmenting Path Algorithms

Greedy-algorithm:

▶ start with f(e) = 0 everywhere

▶ find an s-t path with f(e) < c(e) on every edge

▶ augment flow along the path

▶ repeat as long as possible

0|20

0|20

0|30

0|20

0|20

flow value: 0

s

a

b

t

flow value: 0flow value: 0flow value: 20

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 428/530

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

▶ Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

▶ Gf has edge e′1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e′2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

u v5|20
6|10

u v9
21

G

Gf

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 429/530

Augmenting Path Algorithm

Definition 49

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 430/530

Augmenting Paths

0|2

0|4

0|8

0|12

0|7

0|8

0|50|20

0|10

flow value: 0

s

a

b

t

c

d

0

2

0
4

0

8

0
12

0

7

0

8

0 5
0

20

0 10

s

a

b

t

c

d

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 431/530

Augmenting Path Algorithm

Theorem 50

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 51

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 432/530

Augmenting Path Algorithm

1. =⇒ 2.

This we already showed.

2. =⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. =⇒ 1.

▶ Let f be a flow with no augmenting paths.

▶ Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

▶ Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 433/530

Augmenting Path Algorithm

val(f) =
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e)

=
∑

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the second

exploits the fact that the flow along incoming edges must be 0 as

the residual graph does not have edges leaving A.

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 434/530

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 435/530

Lemma 52

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 53

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 436/530

A Bad Input

Problem: The running time may not be polynomial

0|500

0|500

0|1

0|500

0|500

flow value: 0

s

a

b

t

0

500

0 500

0

1

0 500

0

500

s

a

b

t

flow value: 0flow value: 0flow value: 1flow value: 1flow value: 1flow value: 2flow value: 2flow value: 2flow value: 3flow value: 3flow value: 3flow value: 4flow value: 4flow value: 4flow value: 5flow value: 5flow value: 5flow value: 6flow value: 6
Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 437/530

A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.

flow value: 0

s

a

b

c

t

d

e

f

∞

∞

∞ ∞

∞
∞

∞ r2

∞ r

∞ 0

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞

∞

∞

flow value: 0flow value: 0flow value: r2flow value: r2flow value: r2flow value: r2 + r3flow value: r2 + r3flow value: r2 + r3flow value: r2 + r3 + r4

Running time may be infinite!!!

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 438/530

How to choose augmenting paths?

▶ We need to find paths efficiently.

▶ We want to guarantee a small number of iterations.

Several possibilities:

▶ Choose path with maximum bottleneck capacity.

▶ Choose path with sufficiently large bottleneck capacity.

▶ Choose the shortest augmenting path.

11.1 The Generic Augmenting Path Algorithm 12. Jan. 2025

Harald Räcke 439/530

Overview: Shortest Augmenting Paths

Lemma 54

The length of the shortest augmenting path never decreases.

Lemma 55

After at most O(m) augmentations, the length of the shortest

augmenting path strictly increases.

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 440/530

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 56

The shortest augmenting path algorithm performs at most

O(mn) augmentations. This gives a running time of O(m2n).

Proof.

▶ We can find the shortest augmenting paths in time O(m) via

BFS.

▶ O(m) augmentations for paths of exactly k < n edges.

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 441/530

Shortest Augmenting Paths

Define the level ℓ(v) of a node as the length of the shortest s-v
path in Gf (along non-zero edges).

Let LG denote the subgraph of the residual graph Gf that

contains only those edges (u,v) with ℓ(v) = ℓ(u)+ 1.

A path P is a shortest s-u path in Gf iff it is an s-u path in LG.

edge of Gf edge of LG

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 442/530

In the following we assume that the residual graph Gf does not

contain zero capacity edges.

This means, we construct it in the usual sense and then delete

edges of zero capacity.

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 443/530

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation Gf changes as follows:

▶ Bottleneck edges on the chosen path are deleted.

▶ Back edges are added to all edges that don’t have back edges

so far.

These changes cannot decrease the distance between s and t.

edge of Gf edge of LG

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the

shortest augmenting path strictly increases.

Let M denote the set of edges in graph LG at the beginning of a

round when the distance between s and t is k.

An s-t path in Gf that uses edges not in M has length larger than

k, even when using edges added to Gf during the round.

In each augmentation an edge is deleted from M.

edge of Gf edge in M

Note that an edge cannot
enter M again during the
round as this would require
an augmentation along a
non-shortest path.

Shortest Augmenting Paths

Theorem 57

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 58 (without proof)

There exist networks with m = Θ(n2) that require Ω(mn)
augmentations, when we restrict ourselves to only augment along

shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 446/530

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve

(asymptotically) on the number of augmentations.

However, we can improve the running time to O(mn2) by

improving the running time for finding an augmenting path

(currently we assume O(m) per augmentation for this).

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 447/530

Shortest Augmenting Paths

We maintain a subset M of the edges of Gf with the guarantee

that a shortest s-t path using only edges from M is a shortest

augmenting path.

With each augmentation some edges are deleted from M.

When M does not contain an s-t path anymore the distance

between s and t strictly increases.

Note that M is not the set of edges of the level graph but a subset

of level-graph edges.

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 448/530

Suppose that the initial distance between s and t in Gf is k.

M is initialized as the level graph LG.

Perform a DFS search to find a path from s to t using edges from

M.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

You can delete incoming edges of v from M.

11.2 Shortest Augmenting Paths 12. Jan. 2025

Harald Räcke 449/530

Analysis

Let a phase of the algorithm be defined by the time between two

augmentations during which the distance between s and t strictly

increases.

Initializing M for the phase takes time O(m).

The total cost for searching for augmenting paths during a phase

is at most O(mn), since every search (successful (i.e., reaching t)
or unsuccessful) decreases the number of edges in M and takes

time O(n).

The total cost for performing an augmentation during a phase is

only O(n). For every edge in the augmenting path one has to

update the residual graph Gf and has to check whether the edge

is still in M for the next search.

There are at most n phases. Hence, total cost is O(mn2).

How to choose augmenting paths?

▶ We need to find paths efficiently.

▶ We want to guarantee a small number of iterations.

Several possibilities:

▶ Choose path with maximum bottleneck capacity.

▶ Choose path with sufficiently large bottleneck capacity.

▶ Choose the shortest augmenting path.

11.3 Capacity Scaling 12. Jan. 2025

Harald Räcke 451/530

Capacity Scaling
Intuition:
▶ Choosing a path with the highest bottleneck increases the

flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter ∆.
▶ Gf (∆) is a sub-graph of the residual graph Gf that contains

only edges with capacity at least ∆.

s

a

b

t

0

114

0 37

0

9

0 86

0

15

Gf

s

a

b

t

0

114

0 37

0

9

0 86

0

15

Gf (30)

11.3 Capacity Scaling 12. Jan. 2025

Harald Räcke 452/530

Capacity Scaling

Algorithm 1 maxflow(G, s, t, c)
1: foreach e ∈ E do fe ← 0;

2: ∆← 2dlog2 Ce

3: while ∆ ≥ 1 do

4: Gf (∆)← ∆-residual graph

5: while there is augmenting path P in Gf (∆) do

6: f ← augment(f , c, P)
7: update(Gf (∆))
8: ∆← ∆/2
9: return f

11.3 Capacity Scaling 12. Jan. 2025

Harald Räcke 453/530

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

▶ because of integrality we have Gf (1) = Gf
▶ therefore after the last phase there are no augmenting paths

anymore

▶ this means we have a maximum flow.

11.3 Capacity Scaling 12. Jan. 2025

Harald Räcke 454/530

Capacity Scaling

Lemma 59

There are ⌈logC⌉ + 1 iterations over ∆.

Proof: obvious.

Lemma 60

Let f be the flow at the end of a ∆-phase. Then the maximum flow

is smaller than val(f)+m∆.

Proof: less obvious, but simple:

▶ There must exist an s-t cut in Gf (∆) of zero capacity.

▶ In Gf this cut can have capacity at most m∆.

▶ This gives me an upper bound on the flow that I can still add.

11.3 Capacity Scaling 12. Jan. 2025

Harald Räcke 455/530

Capacity Scaling

Lemma 61

There are at most 2m augmentations per scaling-phase.

Proof:

▶ Let f be the flow at the end of the previous phase.

▶ val(f∗) ≤ val(f)+ 2m∆
▶ Each augmentation increases flow by ∆.

Theorem 62

We need O(m logC) augmentations. The algorithm can be

implemented in time O(m2 logC).

11.3 Capacity Scaling 12. Jan. 2025

Harald Räcke 456/530

Matching

▶ Input: undirected graph G = (V , E).
▶ M ⊆ E is a matching if each node appears in at most one

edge in M.

▶ Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

▶ Input: undirected, bipartite graph G = (L⊎ R,E).
▶ M ⊆ E is a matching if each node appears in at most one

edge in M.

▶ Maximum Matching: find a matching of maximum cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃

12.1 Matching 12. Jan. 2025

Harald Räcke 458/530

Bipartite Matching

▶ Input: undirected, bipartite graph G = (L⊎ R,E).
▶ M ⊆ E is a matching if each node appears in at most one

edge in M.

▶ Maximum Matching: find a matching of maximum cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃

12.1 Matching 12. Jan. 2025

Harald Räcke 459/530

Maxflow Formulation
▶ Input: undirected, bipartite graph G = (L⊎ R ⊎ {s, t}, E′).
▶ Direct all edges from L to R.

▶ Add source s and connect it to all nodes on the left.

▶ Add t and connect all nodes on the right to t.
▶ All edges have unit capacity.

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

12.1 Matching 12. Jan. 2025

Harald Räcke 460/530

Proof

Max cardinality matching in G ≤ value of maxflow in G′

▶ Given a maximum matching M of cardinality k.

▶ Consider flow f that sends one unit along each of k paths.

▶ f is a flow and has cardinality k.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃

12.1 Matching 12. Jan. 2025

Harald Räcke 461/530

Proof
Max cardinality matching in G ≥ value of maxflow in G′

▶ Let f be a maxflow in G′ of value k
▶ Integrality theorem ⇒ k integral; we can assume f is 0/1.

▶ Consider M= set of edges from L to R with f(e) = 1.

▶ Each node in L and R participates in at most one edge in M.

▶ |M| = k, as the flow must use at least k middle edges.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃

12.1 Matching 12. Jan. 2025

Harald Räcke 462/530

12.1 Matching

Which flow algorithm to use?

▶ Generic augmenting path: O(m val(f∗)) = O(mn).
▶ Capacity scaling: O(m2 logC) = O(m2).
▶ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

A graph is a unit capacity simple graph if

▶ every edge has capacity 1

▶ a node has either at most one leaving edge or at most one
entering edge

12.1 Matching 12. Jan. 2025

Harald Räcke 463/530

Baseball Elimination

team wins losses remaining games

i wi ℓi Atl Phi NY Mon

Atlanta 83 71 − 1 6 1
Philadelphia 80 79 1 − 0 2

New York 78 78 6 0 − 0
Montreal 77 82 1 2 0 −

Which team can end the season with most wins?

▶ Montreal is eliminated, since even after winning all remaining
games there are only 80 wins.

▶ But also Philadelphia is eliminated. Why?

12.2 Baseball Elimination 12. Jan. 2025

Harald Räcke 464/530

Baseball Elimination

Formal definition of the problem:

▶ Given a set S of teams, and one specific team z ∈ S.

▶ Team x has already won wx games.

▶ Team x still has to play team y, rxy times.

▶ Does team z still have a chance to finish with the most

number of wins.

12.2 Baseball Elimination 12. Jan. 2025

Harald Räcke 465/530

Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still

obtain.

s t

1

2

4

5

1-2

1-4

1-5

2-4

2-5

4-5

r12

r14

r15

r24

r25
r
45

M − w
1

M − w2

M − w4

M
− w

5

∞

Idea. Distribute the results of remaining games in such a way

that no team gets too many wins.

12.2 Baseball Elimination 12. Jan. 2025

Harald Räcke 466/530

Certificate of Elimination

Let T ⊆ S be a subset of teams. Define

w(T) :=
∑

i∈T
wi, r (T) :=

∑

i,j∈T ,i<j
rij

If w(T)+r(T)|T | > M then one of the teams in T will have more than

M wins in the end. A team that can win at most M games is

therefore eliminated.

wins of
teams in T

remaining games
among teams in T

12.2 Baseball Elimination 12. Jan. 2025

Harald Räcke 467/530

Theorem 63

A team z is eliminated if and only if the flow network for z does

not allow a flow of value
∑
ij∈S\{z},i<j rij.

Proof (⇐)

▶ Consider the mincut A in the flow network. Let T be the set

of team-nodes in A.

▶ If for node x-y not both team-nodes x and y are in T , then

x-y ∉ A as otw. the cut would cut an infinite capacity edge.

▶ We don’t find a flow that saturates all source edges:

r(S \ {z}) > cap(A,V \A)
≥

∑

i<j: i∉T∨j∉T
rij +

∑

i∈T
(M −wi)

≥ r(S \ {z})− r(T)+ |T |M −w(T)

▶ This gives M < (w(T)+ r(T))/|T |, i.e., z is eliminated.

Baseball Elimination

Proof (⇒)

▶ Suppose we have a flow that saturates all source edges.

▶ We can assume that this flow is integral.

▶ For every pairing x-y it defines how many games team x and

team y should win.

▶ The flow leaving the team-node x can be interpreted as the

additional number of wins that team x will obtain.

▶ This is less than M −wx because of capacity constraints.

▶ Hence, we found a set of results for the remaining games,

such that no team obtains more than M wins in total.

▶ Hence, team z is not eliminated.

12.2 Baseball Elimination 12. Jan. 2025

Harald Räcke 469/530

Project Selection

Project selection problem:

▶ Set P of possible projects. Project v has an associated profit

pv (can be positive or negative).

▶ Some projects have requirements (taking course EA2 requires

course EA1).

▶ Dependencies are modelled in a graph. Edge (u,v) means

“can’t do project u without also doing project v.”

▶ A subset A of projects is feasible if the prerequisites of every

project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

12.3 Project Selection 12. Jan. 2025

Harald Räcke 470/530

Project Selection

The prerequisite graph:

▶ {x,a, z} is a feasible subset.

▶ {x,a} is infeasible.

z

a x

z

a x

12.3 Project Selection 12. Jan. 2025

Harald Räcke 471/530

Project Selection

Mincut formulation:

▶ Edges in the prerequisite graph get infinite capacity.

▶ Add edge (s, v) with capacity pv for nodes v with positive

profit.

▶ Create edge (v, t) with capacity −pv for nodes v with

negative profit.
prerequisite graph

s t

u z

v w

a x

∞

pu

pv

p
a

−p
z

−pw

−px

12.3 Project Selection 12. Jan. 2025

Harald Räcke 472/530

Theorem 64

A is a mincut if A \ {s} is the optimal set of projects.

Proof.

▶ A is feasible because of capacity infinity edges.

▶ cap(A,V \A) =
∑

v∈Ā:pv>0

pv +
∑

v∈A:pv<0

(−pv)

=
∑

v :pv>0

pv −
∑

v∈A
pv

prerequisite graph

s t

u z

v w

a x

∞

pu

pv

p
a

−p
z

−pw

−px

∑

v∈Ā:pv>0

pv
∑

v∈Ā:pv>0

pv

For the formula we
define ps := 0.

The step follows by
adding

∑
v∈A:pv>0 pv−∑

v∈A:pv>0 pv = 0.

Note that minimizing
the capacity of the cut
(A,V \A) corresponds
to maximizing profits
of projects in A.

Preflows

Definition 65

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑

e∈out(v)
f(e)≤

∑

e∈into(v)
f(e) .

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 474/530

Preflows

Example 66

10|1
0

3|5

11|15

0|4

0|4

0|9

0|15

1|6

11|30

0|10

0|10

2|1
0

0|8

0|15

0|15

s

a

b

c

t

d

e

f

A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an active

node.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 475/530

Preflows

Definition:

A labelling is a function ℓ : V → N. It is valid for preflow f if

▶ ℓ(u) ≤ ℓ(v)+ 1 for all edges (u,v) in the residual graph Gf
(only non-zero capacity edges!!!)

▶ ℓ(s) = n
▶ ℓ(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 476/530

Preflows

0|2

0|4

0|8

0|12

0|7

0|8

0|520|20

10|10

s6

a

0|20

b

0|10

t 0

c

0|0

d

0|0

0

2

0
4

0

8

0
12

0

7

0

8

0 5
20

0

10 0

s6

a
0

b

0

t 0

c
0

d

0

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 477/530

Preflows

Lemma 67

A preflow that has a valid labelling saturates a cut.

Proof:

▶ There are n nodes but n+ 1 different labels from 0, . . . , n.

▶ There must exist a label d ∈ {0, . . . , n} such that none of the

nodes carries this label.

▶ Let A = {v ∈ V | ℓ(v) > d} and B = {v ∈ V | ℓ(v) < d}.
▶ We have s ∈ A and t ∈ B and there is no edge from A to B in

the residual graph Gf ; this means that (A, B) is a saturated

cut.

Lemma 68

A flow that has a valid labelling is a maximum flow.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 478/530

Push Relabel Algorithms

Idea:

▶ start with some preflow and some valid labelling

▶ successively change the preflow while maintaining a valid

labelling

▶ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 479/530

Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is admissible

if ℓ(u) = ℓ(v)+ 1 (i.e., it goes downwards w.r.t. labelling ℓ).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissible arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

▶ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

▶ deactivating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

Note that a push-operation may be
saturating and deactivating at the
same time.

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissible arc.

Increasing the label of u by 1 results in a valid labelling.

▶ Edges (w,u) incoming to u still fulfill their constraint

ℓ(w) ≤ ℓ(u)+ 1.

▶ An outgoing edge (u,w) had ℓ(u) < ℓ(w)+ 1 before since

it was not admissible. Now: ℓ(u) ≤ ℓ(w)+ 1.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 481/530

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 482/530

Reminder

▶ In a preflow nodes may not fulfill conservation constraints; a

node may have more incoming flow than outgoing flow.

▶ Such a node is called active.

▶ A labelling is valid if for every edge (u,v) in the residual

graph ℓ(u) ≤ ℓ(v)+ 1.

▶ An arc (u,v) in residual graph is admissible if

ℓ(u) = ℓ(v)+ 1.

▶ A saturating push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

▶ A deactivating push along e = (u,v) pushes a flow of f(u),
where f(u) is the excess flow of u. This makes u inactive.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 483/530

Push Relabel Algorithms

Algorithm 1 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 484/530

Preflow Push

0|2

0|4

0|8

0|12

0|7

0|8

0|520|20

10|10

s6

a

0|20

b

0|10

t 0

c

0|0

d

0|0

0

2

0
4

0

8

0
12

0

7

0

8

0 5
20

0

10 0

s6

a
0

b

0

t 0

c
0

d

0

relabel to 1saturating pushsaturating pushsaturating pushrelabel to 7deactivating push

The yellow edges indicate the cut that is intro-
duced by the smallest missing label.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 485/530

Analysis
Note that the lemma is almost trivial. A node v having excess
flow means that the current preflow ships something to v. The
residual graph allows to undo flow. Therefore, there must exist a
path that can undo the shipment and move it back to s. However,
a formal proof is required.

Lemma 69

An active node has a path to s in the residual graph.

Proof.

▶ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

▶ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

▶ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

▶ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 486/530

Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑

b∈B
f(b)

=
∑

b∈B

(∑

v∈V
f(v, b)−

∑

v∈V
f(b,v)

)

=
∑

b∈B

(∑

v∈A
f(v, b)+

∑

v∈B
f(v, b)−

∑

v∈A
f(b,v)−

∑

v∈B
f(b,v)

)

=
∑

b∈B

∑

v∈A
f(v, b)−

∑

b∈B

∑

v∈A
f(b,v)+

∑

b∈B

∑

v∈B
f(v, b)−

∑

b∈B

∑

v∈B
f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 487/530

Analysis

Lemma 70

The label of a node cannot become larger than 2n− 1.

Proof.

▶ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

Lemma 71

There are only O(n2) relabel operations.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 488/530

Analysis

Lemma 72

The number of saturating pushes performed is at most O(mn).

Proof.

▶ Suppose that we just made a saturating push along (u,v).
▶ Hence, the edge (u,v) is deleted from the residual graph.

▶ For the edge to appear again, a push from v to u is required.

▶ Currently, ℓ(u) = ℓ(v)+ 1, as we only make pushes along

admissible edges.

▶ For a push from v to u the edge (v,u) must become

admissible. The label of v must increase by at least 2.

▶ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).

Lemma 73

The number of deactivating pushes performed is at most

O(n2m).

Proof.

▶ Define a potential function Φ(f) =∑active nodes v ℓ(v)
▶ A saturating push increases Φ by ≤ 2n (when the target node

becomes active it may contribute at most 2n to the sum).

▶ A relabel increases Φ by at most 1.

▶ A deactivating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

▶ Hence,

#deactivating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

Analysis

Theorem 74

There is an implementation of the generic push relabel algorithm

with running time O(n2m).

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 491/530

Analysis

Proof:

For every node maintain a list of admissible edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

▶ check whether edge (v,u) needs to be added to Gf
▶ check whether (u,v) needs to be deleted (saturating push)

▶ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
▶ check for all outgoing edges if they become admissible

▶ check for all incoming edges if they become non-admissible

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 492/530

Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in the

residual graph Gf). Then we use the discharge-operation:

Algorithm 2 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissible then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value between

consecutive calls to discharge.

Lemma 75

If v = null in Line 3, then there is no

outgoing admissible edge from u.

Proof.

▶ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissible.

▶ The only thing that could make the edge admissible again

would be a relabel at u.

▶ If we reach the end of the list (v = null) all edges are not

admissible.

This shows that discharge(u) is correct, and that we can perform

a relabel in Line 4.

In order for e to become admissible the
other end-point say v has to push flow to
u (so that the edge (u,v) re-appears in
the residual graph). For this the label of
v needs to be larger than the label of u.
Then in order to make (u,v) admissible
the label of u has to increase.

13.1 Generic Push Relabel 12. Jan. 2025

Harald Räcke 494/530

13.2 Relabel to Front

Algorithm 1 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then // relabel happened

10: move u to the front of L
11: u← u.next

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 495/530

13.2 Relabel to Front

Lemma 76 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissible edges; this means for an admissible edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 496/530

Proof:

▶ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissible, which means that any
ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

▶ Maintenance:
1. ▶ Pushes do no create any new admissible edges. Therefore, if

discharge() does not relabel u, L is still topologically sorted.
▶ After relabeling, u cannot have admissible incoming edges as

such an edge (x,u) would have had a difference
ℓ(x)− ℓ(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissible edges leaving u that were generated by the
relabeling.

13.2 Relabel to Front

Proof:

▶ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current u;
the discharge(u) operation only terminates when u is not
active anymore.

For the case that we do not relabel, observe that the only way
a predecessor could be active is that we push flow to it via an
admissible arc. However, all admissible arc point to
successors of u.

Note that the invariant means that for u = null we have a preflow

with a valid labelling that does not have active nodes. This means

we have a maximum flow.

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 498/530

13.2 Relabel to Front

Lemma 77

There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 499/530

13.2 Relabel to Front

Lemma 78

The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 500/530

13.2 Relabel to Front

Recall that a saturating push operation

(min{cf (e), f (u)} = cf (e)) can also be a deactivating push

operation (min{cf (e), f (u)} = f(u)).
Lemma 79

The cost for all saturating push-operations that are not

deactivating is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 501/530

13.2 Relabel to Front

Lemma 80

The cost for all deactivating push-operations is only O(n3).

A deactivating push-operation takes constant time and ends the

current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 81

The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

13.2 Relabel to Front 12. Jan. 2025

Harald Räcke 502/530

13.3 Highest Label

Algorithm 1 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)

13.3 Highest Label 12. Jan. 2025

Harald Räcke 503/530

13.3 Highest Label

Lemma 82

When using highest label the number of deactivating pushes is

only O(n3).

A push from a node on level ℓ can only “activate” nodes on levels

strictly less than ℓ.

This means, after a deactivating push from u a relabel is required

to make u active again.

Hence, after n deactivating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of deactivating pushes is at most

n(#relabels + 1) = O(n3).

13.3 Highest Label

Since a discharge-operation is terminated by a deactivating push

this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?

13.3 Highest Label 12. Jan. 2025

Harald Räcke 505/530

13.3 Highest Label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (deactivating) push was to s or t the list k− 1 must

be non-empty (i.e., the search takes constant time).

13.3 Highest Label 12. Jan. 2025

Harald Räcke 506/530

13.3 Highest Label

Hence, the total time required for searching for active nodes is at

most

O(n3)+n(#deactivating-pushes-to-s-or-t)

Lemma 83

The number of deactivating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 84

The push-relabel algorithm with the rule highest-label takes time

O(n3).

13.3 Highest Label 12. Jan. 2025

Harald Räcke 507/530

13.3 Highest Label

Proof of the Lemma.

▶ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

▶ After a node v (which must have ℓ(v) = n+ 1) made a

deactivating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before v
can become active again.

▶ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most once,

v can make at most n pushes to the source.

▶ As this holds for every node the total number of pushes to

the source is at most O(n2).

13.3 Highest Label 12. Jan. 2025

Harald Räcke 508/530

Mincost Flow

Problem Definition:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

▶ G = (V , E) is a directed graph.

▶ u : E → R+0 ∪ {∞} is the capacity function.

▶ c : E → R is the cost function

(note that c(e) may be negative).

▶ b : V → R,
∑
v∈V b(v) = 0 is a demand function.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 509/530

Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

▶ Given a flow network for a standard maxflow problem.

▶ Set b(v) = 0 for every node. Keep the capacity function u for

all edges. Set the cost c(e) for every edge to 0.

▶ Add an edge from t to s with infinite capacity and cost −1.

▶ Then, val(f∗) = − cost(fmin), where f∗ is a maxflow, and

fmin is a mincost-flow.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 510/530

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

▶ Given a flow network for a standard maxflow problem, and a

value k.

▶ Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

▶ Set edge-costs to zero, and keep the capacities.

▶ There exists a maxflow of value at least k if and only if the

mincost-flow problem is feasible.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 511/530

Generalization

Our model:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
∑
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

A more general model?

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : ℓ(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ℓ : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

14 Mincost Flow 12. Jan. 2025

Harald Räcke 512/530

Generalization

Differences

▶ Flow along an edge e may have non-zero lower bound ℓ(e).
▶ Flow along e may have negative upper bound u(e).
▶ The demand at a node v may have lower bound a(v) and

upper bound b(v) instead of just lower bound = upper

bound = b(v).

14 Mincost Flow 12. Jan. 2025

Harald Räcke 513/530

Reduction I
min

∑
e c(e)f (e)

s.t. ∀e ∈ E : ℓ(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set ℓ(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −∑v∈V b(v).

−∑v b(v) is negative; hence r is only sending flow.

v

r

u(e
) = b

(v)
− a(

v)

`(e
) = 0

c(e
) = 0

Reduction II

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : ℓ(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either ℓ(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
`(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) ≠ 0 we can transform the graph so that c(e) = 0.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 515/530

Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

x

b(x) = b(u)
u v

+
δ−
δ

+δ
δ

−δ

−δ +δ

u(e)= ∞
`(e) = −∞
c(e) = δ ≠ 0

−δ

Additionally we set b(u) = 0.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 516/530

Reduction III

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : ℓ(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that ℓ(e) ≠ −∞:

u v

u v

u(e) = d ≠∞
`(e) = −∞
c(e) = a

u(e) = ∞
`(e) = −d
c(e) = −a

Replace the edge by an edge in opposite direction.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 517/530

Reduction IV
min

∑
e c(e)f (e)

s.t. ∀e ∈ E : ℓ(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that ℓ(e) = 0:

u v

u v

u(e)
ℓ(e) = d ≠ −∞
c(e)

u(e) = u(e)− d
ℓ(e) = 0
c(e)

ū v̄
b(ū) = d b(v̄) = −d

The added edges have infinite capacity and cost c(e)/2.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 518/530

Applications

Caterer Problem

▶ She needs to supply ri napkins on N successive days.

▶ She can buy new napkins at p cents each.

▶ She can launder them at a fast laundry that takes m days and

cost f cents a napkin.

▶ She can use a slow laundry that takes k > m days and costs s
cents each.

▶ At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

▶ Minimize cost.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 519/530

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

day edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = ri;
cost: c(e) = 0

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

buy edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = p

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

forward edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = 0

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

slow edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = s

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

fast edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = f

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

trash edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = 0

Residual Graph

Version A:

The residual graph G′ for a mincost flow is just a copy of the

graph G.

If we send f(e) along an edge, the corresponding edge e′ in the

residual graph has its lower and upper bound changed to

ℓ(e′) = ℓ(e)− f(e) and u(e′) = u(e)− f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the

residual graph for standard flows, with the only exception that

one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity

z and a cost of −c((u,v)).

14 Mincost Flow 12. Jan. 2025

Harald Räcke 521/530

14 Mincost Flow

A circulation in a graph G = (V , E) is a function f : E → R+ that

has an excess flow f(v) = 0 for every node v ∈ V .

A circulation is feasible if it fulfills capacity constraints, i.e.,

f(e) ≤ u(e) for every edge of G.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 522/530

Lemma 85

A given flow is a mincost-flow if and only if the corresponding

residual graph Gf does not have a feasible circulation of negative

cost.

⇒ Suppose that g is a feasible circulation of negative cost in the

residual graph.

Then f + g is a feasible flow with cost

cost(f)+ cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f∗ be a min-cost flow.

We need to show that the residual graph has a feasible

circulation with negative cost.

Clearly f∗ − f is a circulation of negative cost. One can also

easily see that it is feasible for the residual graph. (after

sending −f in the residual graph (pushing all flow back) we arrive

at the original graph; for this f∗ is clearly feasible)

For previous slide:
g = f∗ − f is obtained by computing ∆(e) = f∗(e)− f(e) for every
edge e = (u,v). If the result is positive set g((u,v)) = ∆(e) and
g((v,u)) = 0. Otherwise set g((u,v)) = 0 and g((v,u)) = −∆(e).

14 Mincost Flow 12. Jan. 2025

Harald Räcke 523/530

14 Mincost Flow

Lemma 86

A graph (without zero-capacity edges) has a feasible circulation of

negative cost if and only if it has a negative cycle w.r.t.

edge-weights c : E → R.

Proof.

▶ Suppose that we have a negative cost circulation.

▶ Find directed cycle only using edges that have non-zero flow.

▶ If this cycle has negative cost you are done.

▶ Otherwise send flow in opposite direction along the cycle

until the bottleneck edge(s) does not carry any flow.

▶ You still have a circulation with negative cost.

▶ Repeat.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 524/530

14 Mincost Flow

Algorithm 48 CycleCanceling(G = (V , E), c,u, b)
1: establish a feasible flow f in G
2: while Gf contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4: δ← min{uf (e) | e ∈ Z}
5: augment δ units along Z and update Gf

14 Mincost Flow 12. Jan. 2025

Harald Räcke 525/530

How do we find the initial feasible flow?

x1

x2

x3

x4

x5

x6

x7

ts −b(x1)−b(x1)
−b(x2)−b(x2)

−b(x3)
−b(x3)

b(x4)b(x4)

b(x5)b(x5)

b(x6)
b(x6)

b(x7)b(x7)

▶ Connect new node s to all nodes with negative b(v)-value.

▶ Connect nodes with positive b(v)-value to a new node t.
▶ There exist a feasible flow in the original graph iff in the

resulting graph there exists an s-t flow of value

∑

v :b(v)<0

(−b(v)) =
∑

v :b(v)>0

b(v) .

14 Mincost Flow

1

2

3

4

(2
, 4
)

3

(1, 2)0

1(2, 2)
1

(1
, 5
)

(3, 3)3

0

-4 4

0

demand

cost

capacity

flow

14 Mincost Flow 12. Jan. 2025

Harald Räcke 527/530

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 3)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 4
)

(-1
, 1
)

0

-4 4

0

14 Mincost Flow 12. Jan. 2025

Harald Räcke 528/530

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 3)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 4
)

(-1
, 1
)

0

-4 4

0

14 Mincost Flow 12. Jan. 2025

Harald Räcke 528/530

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 1)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 2
)

(-1
, 3
)

0

-4 4

0

14 Mincost Flow 12. Jan. 2025

Harald Räcke 528/530

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 1)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 2
)

(-1
, 3
)

0

-4 4

0

14 Mincost Flow 12. Jan. 2025

Harald Räcke 528/530

14 Mincost Flow

1

2

3

4

(2
, 2
)

(-2
, 2
) (-3, 1)

(3, 3)

(1, 2)(-1, 2)
(2, 1)(-2, 2)

(1
, 1
)

(-1
, 4
)

0

-4 4

0

14 Mincost Flow 12. Jan. 2025

Harald Räcke 528/530

14 Mincost Flow

Lemma 87

The improving cycle algorithm runs in time O(nm2CU), for

integer capacities and costs, when for all edges e, |c(e)| ≤ C and

|u(e)| ≤ U .

▶ Running time of Bellman-Ford is O(mn).
▶ Pushing flow along the cycle can be done in time O(n).
▶ Each iteration decreases the total cost by at least 1.

▶ The true optimum cost must lie in the interval

[−mCU, . . . ,+mCU].

Note that this lemma is weak since it does not allow for edges

with infinite capacity.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 529/530

14 Mincost Flow

A general mincost flow problem is of the following form:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : ℓ(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ℓ : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

Lemma 88 (without proof)

A general mincost flow problem can be solved in polynomial time.

14 Mincost Flow 12. Jan. 2025

Harald Räcke 530/530

	Organizational Matters
	Contents
	Literatur

	Foundations
	Goals
	Modelling Issues
	Asymptotic Notation
	Recurrences
	Guessing+Induction
	Master Theorem
	The Characteristic Polynomial
	Generating Functions
	Transformation of the Recurrence

	Data Structures
	Dictionary
	Binary Search Trees
	Red Black Trees
	Splay Trees
	Augmenting Data Structures
	Skip Lists
	van Emde Boas Trees
	Hashing
	Hashing with Chaining
	Open Addressing
	Deletions in Hashtables
	Universal Hashing
	Perfect Hashing
	Cuckoo Hashing

	Priority Queues
	Binary Heaps
	Binomial Heaps
	Fibonacci Heaps

	Union Find

	Flows and Cuts
	Introduction
	Augmenting Path Algorithms
	The Generic Augmenting Path Algorithm
	Shortest Augmenting Paths
	Capacity Scaling

	Flow Applications
	Matching
	Baseball Elimination
	Project Selection

	Push Relabel Algorithms
	Generic Push Relabel
	Relabel to Front
	Highest Label

	Mincost Flow

