6.2 Master Theorem

Lemma 5
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence "

T(n) = aT(E) + fn) .

Case 1.
If f(n) = O(n'°%@-€) then T(n) = O(nlosra),

Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'osr 21ogk ™1 n),
k>0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n

af(%) < cf(n) for some constantc <1 thenT(n) = O(f(n)).
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6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a?(%) :

i=0
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Case 1. Now suppose that f(n) < cn'o8ra—€,
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Case 1. Now suppose that f(n) < cn'o8ra—€,

T(n) - nlogb a
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1

T -l =3 aif (%)

i=0
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Case 1. Now suppose that f(n) < cn'o8ra—€,
log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
log, n—1

logy, a—€
i[n
e 3 a(y)

i=0

IA
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Case 1. Now suppose that f(n) < cn'o8ra—€,
log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
log, n—1

logy, a—€
i[n
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogb u)—i = peig—i
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0

logpn-1 1\ logya—e

se 3 a(y)

i=0

log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = cnIOgb a-c Z (bS)l

i=0

‘m 6.2 Master Theorem
Harald Racke 58/69



Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
logpn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = cnIOgb a-c Z (bS)l
i=0

k+1,1
zl Oq q-1
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Case 1. Now suppose that f(n) < cn'o8ra—€,

T(n) —

b—i(logh a—e)

— bei(blogb u)—i

log, n—1 n
log,a _ el 22
went = 2. alf (bi)
i=0
log, n—1 logy, a—e¢
- Z i(n S
<C a bi
i=0
log, n—1 ]
~ beia=i| = cnloBra=c N (pe)’

i=0

zl ()q

a*'-1 | _ ~plogy “_E(bdoghn -1)/(b° -

q-1

1)
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0

logpn-1 1\ logya—e

se 3 a(y)

i=0

log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = cnIOgb a-c Z (bS)l

i=0
zl 0‘1 ’;*11—1 :Cnlogba—E(beloghn_1)/(b€_1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T -l =3 aif (%)
i=0
logpn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = cnIOgb a-c Z (bS)l
i=0
k+1, —
zl()q o 11 :cnlogba E(beloghn_l)/(be_
= cnlo8ra=€(pc _ 1)/(b€ - 1)
c logy, a(.,€ €
=g nortnt - 1)/(n%)
be -1 /

1)
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l
i=0

zl 0‘1 i O Cnlogba—E(beloghn . 1)/(196 _ 1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n)

Hence,
c

be -1

T(n) < <

+ 1) nlosy(@
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0

logyn-1 1\ logya—e

se 3 a(y)

i=0

log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l

i=0
zl 0‘1 ’:1;1 _ Cnlogba—E(beloghn . 1)/(196 _ 1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)
C

_ logp, a ., _ €
pe_ 1 r(mt=1)/(n7)

Hence,

Cc

T(n) < <

pe g > T(n) = 08 9).
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Case 2. Now suppose that f(n) < cn'ogra,
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Case 2. Now suppose that f(n) < cn'ogra,

T(n) - nlogb a
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1

T(n) — nlogra = Z aif(%)

i=0
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 log, a
i(n
3 a(y)

i=0

IA
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 lo
i n gpa
<c > a i
i=0
log, n—-1
=cnlogra X

i=0
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 lo
i n gpa
<c > a i
i=0
log, n—-1
=cnlogra X

i=0
cnl°8 4log, n
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
_ . logpa _ i had
T(n)-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
pi
i=0
log, n—-1
=cnlogra X
i=0
cnl°8 4log, n

IA

Hence,
T(n) = O(n'°% *log, n)
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 log, a
i(n
3 a(y)

i=0

IA

log, n—1
=cnlogra X

i=0
cnl°8 4log, n

Hence,

T(n) = 08 log,n)  |= T(n) = 08 logn).
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Case 2. Now suppose that f(n) = cn'og 4,
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Case 2. Now suppose that f(n) = cn'og 4,

T(n) — nlogb a
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1

T(n) — nlogra = Z a‘f(%)

i=0
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1

i n
T —nloswe =Y atp(r)
i=0
logp n—1

log, a

i(n

e 3 al(y)
i=0
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1 log, a
>c > ai(ﬂ.)
7
i=0

log, n—-1

=cnlo®a X
i=0
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 ' n
T(n) -nlosrad = a‘f(E)
i=0
pn-1 logy, a
fn
3 a(y)

i=0

v

logy n—1
=cnlo®a X
i=0
= cnlo%2og, n
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1 log, a
>c > ai(ﬂ.)
7
i=0

logy n—1
=cnlo®a X
i=0
= cnlo%2og, n

Hence,
T(n) = Q(n'°% %log, n)
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
_ plogpa _ i
Tn)-—n = Z af(bi)
i=0
pn-1 log, a
i n Zb
>c > a i
i=0
log, n—-1
:Cnlogha Z 1
i=0
= cnl°® %log, n

Hence,

T(n) = Qn'%%log,n) |= T(n) = Q% 4logn).

m 6.2 Master Theorem
Harald Racke

60/69



Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

T(n) — nlogra
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T -nowe =5 atf (1)

i=0
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.
logp n—1 n
T(n) —nlogra = Z alf(ﬁ)
i=0
log, n—1 log, a k
n
e 3 a(g) T (low (57))
i=0
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

i=0

n:hgjﬁzlogbn‘
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T -nowe =5 atf (1)
<c > ai<

i=0
log, a n k
) (om ()
i=0

log, n—1
- piN\ K
n:hgjﬁzlogbn‘ = cnlosr @ Z (logb< ))

=
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1 n
log, n—1 n logy, a k
i
se 3 () (tom (5)
i=0
£-1 bg k
n:h”:E:logbn‘ = cnlogra Z (logb (ﬁ))
i=0

£-1
_ Cnlogba Z (‘g _ l)k
i=0
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

£-1
n:hgjﬁzlogbn‘ = cnlosra
i

(100 (5))

-1
= cnlogra Z 0 - i)k
i=0
9
— cnlogra Z ik
i=1

=0
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

log, n—1 log, a k
(n n
e 3 a(g) - (om (57))
i=0
£-1

b€ k
n:h”:E:logbn‘ = cnlogra Z (logb (ﬁ))
i=0

£-1
_ Cnlogba Z (‘g _ l)k
i=0

?
_ Cnlogh uz ik ~ %gkﬂ
i=1
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T(n) —nlosa = S aif(ﬁ.)

£-1
n:hgjﬁzlogbn‘ = cnlosra
i

(100 (5))

£-1
= cnlogra Z 0 - i)k
i=0
!
— cnlogra Z ik
i=1
~ %nlogh a€k+l

=0
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1

T -nowe =5 atf (1)

log, n—1 n logy, a n k
e 3oa(g) T (lom (55))
i=0
/-1 b{) k
n:h”:E:logbn‘ = cnlogra Z (logb (ﬁ))
i=0

-1

= cnlogra Z 0 - i)k
i=0
9

= cnlogpa Z ik

i-1
%nlogh apk+l = T(n) = O(n'°% 4 1ogk 1 n).

Q
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

Ton) -l =3 aif ()

i=0
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n) — nlogba _ Z aif ﬂl
> af(5)
logp n—1
< > cifm) +0omosne)
i=0
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
_ plogya _ ig( N
T(n) —n°ra = Z af(bi>
i=0
logp n—1
< > cifm) +0omosne)
i=0
7’ _gn+l
q<1:zl”=0qlzllq_q sﬁ
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n)-nlosva = 3 a‘f(%)
i=0
logp n—1
< > cifm) +0omosne)
i=0
a<1:3fa = 55 s g | <7 f Sfn) + ome
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

(N
Ton) -l =3 aif ()
i=0
logp n—1
< > cifm) +0omosne)
i=0
n i _an+1 1 l
a<1:3",q" = llq_q < ﬁ Sl _Cf(n) + O (n'o8r a)
Hence,

T(n) <0(f(n))
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1
o - =S aty
> atf(3)
logp n—1
< > cif(n) +omloera)
i=0
a<U:SLoa =Y < g =7 i _f(n) + O
Hence,
Tn) =0(f(n) > T(n) =0(f(n)).|
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010O0T1|1 B
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1000100 1/1 B

0

‘m 6.2 Master Theorem
Harald Racke 63/69



Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T0110110/1T A
100010O0|1|1T B

1

o
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T0110110/1T A
100010011 B

0|0
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010/0/11 B

0/0 0
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
100010011 B

" jooo
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001/0/011 B

1/oo0o0
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01|{1/101 01 A
1000/1/)0011 B

1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01|{1/101 01 A
1000/1/0011 B

0/1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

' Jo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101110101 A
IOO]O]IOOIOIIII B

0/01000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1100110101 A
IOO]O]IOOIOIIII B

' Joo1000
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T0(1T1T01T01 A
1000]01100]01111 B

1001000

‘m 6.2 Master Theorem
Harald Racke 63/69



Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.
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Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000]01100]01111 B
1011001000

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

000O0O0OO0O
100010O0O
10111011

Time requirement:
» Computing intermediate results: O(nm).

» Adding m numbers of length < 2n: O((m + n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By ‘ X ‘ Aj Ao

Then it holds that

A=A, -27 + Agand B=B; - 27 + By
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By ‘ X ‘ Aj Ao

Then it holds that

A=A, -27 + Agand B=B; - 27 + By

Hence,

A-B=AB;-2"+ (A1By + AoBy) - 27 + AoBo
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

if |[A| = |B| =1 then
return ag - bg
split A into Ag and A;
split B into By and B;
Z> — mult(Aq,By)
Z1 — mult(Aq, Bg) + mult(Ag, By)
Zo — mult(Ap, Bo)
return Zo - 2" + 71 - 22 + Z
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2: return ag - bg O(1)
3: split A into Ag and A, O(n)
4: split B into By and B; O(n)
5. Z» — mult(Aq,B7) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +O(n)
7: Zo — mult(Ag, Bo) T(%)
8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n

T(n) = 4T<2

)+0(n).
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlogr a)
> Case 2: f(n) = O(nl®2loghkn) T(n) = @M% alogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))
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Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlogr a)
> Case 2: f(n) = O(nl®2loghkn) T(n) = @M% alogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(nlogra—c) T(n) = O(nl°8r4)
> Case 2: f(n) = O(n'°gralogkn) T(n) = OB 210g" ! n)
> Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©(n?) for our algorithm.
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f(n) = O(nlogra-¢) T(n) = O(nlosra)
> Case 2: f(n) = O@(nlo%ralogn) T(n) = O(nlo8ralogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©(n?) for our algorithm.

=> Not better then the “school method”.
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We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy
= (Ap + A1) - (Bo +B1) —A1B1 — AgBo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if |A| = |B] = 1 then
2 return ag - by

3: split A into Ag and A,
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zp — mult(A, By) T(%)
6: Zo — mult(Ag, By)

7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z

8: return Zp - 2" + Z; - 2% & Zo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12

—t— ——
= (Ap + A1) - (Bo +B1) — A1B1 — AgBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z
8: return Zp - 2" + Z; - 2% & Zo
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12

—t— ——
= (Ap + A1) - (Bo +B1) — A1B1 — AgBo

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

o(1)
O(1)
o)
O(n)
T(%)
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)

2 return ag - by O(1)

3: split A into Ag and A, On)

4: split B into By and B; O(n)

5: Zp — mult(A, By) T(%)

6: Zo — mult(Ag, By) T(%)

7: Z1 — mult(Ag +A1,Bo;iL—Bl)—Zz—Zo T(%)—FO(‘I’L)
8 return Zp - 2"+ 71 - 22 + 7 O(n)

‘m 6.2 Master Theorem
Harald Racke 68/69



Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f( n) = O(nlosra-¢) T(n) = O(nlosr 9)
> Case 2: f(n) = O(nl°%alogkn) T(n) = O(nlo8ralogh*! n)
> Case 3: f(n) = Q(nlogb ate) T(n) = 0(f(n))
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f( n) = O(nlosra-¢) T(n) = O(nlosr 9)
> Case 2: f(n) =0 alogkn) T(n) = Onlogra1ogk*! n)
> Case 3: f(n) = Q(nlogb are) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f( n) = O(nlosra-¢) T(n) = O(nlosr 9)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.

n)
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