# IT 

## Winter Semester 2023/24

## Advanced Algorithms

http://www14.in.tum.de/lehre/2023WS/ada/index.html.en

Susanne Albers<br>Department of Computer Science<br>TU München

## Organization

## Lectures: <br> 3 SWS <br> Tue, Thu 12-14 <br> Lecture hall: Galileo 8120.EG. 001

## Exercises: 2 SWS

Teaching assistant: Sebastian Schubert, Malte Kriegelsteiner

Tue 14-16: Room MI 02.04.011
Thu 14-16: Room MI 01.07.023

## Organization

## Problem sets: Made available on Tuesday by 10:00 am via Moodle.

## Exam: Written exam, date will be announced.

Valuation: 6 ECTS $(3+2$ SWS $)$

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD) Diskrete Strukturen (DS) Diskrete Wahrscheinlichkeitstheorie (DWT)

- Th. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, Third Edition, MIT Press, 2009.
- J. Kleinberg and E. Tardos. Algorithm Design. Pearson, Addison Wesley, 2006.
- M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Second Edition, Cambridge University Press, 2017.
- Th. Ottmann und P. Widmayer: Algorithmen und Datenstrukturen. 6. Auflage, Springer Verlag, 2017.
- Research papers


## Content

## Design and analysis techniques for algorithms

- Divide and conquer
- Greedy approaches
- Dynamic programming
- Randomization
- Amortized analysis


## Content

Problems and application areas:

- Geometric algorithms
- Algebraic algorithms
- Graph algorithms
- Data structures
- Algorithms on strings
- Optimization problems
- Complexity


## Geometric divide-and-conquer

## Closest Pair Problem:

Given a set $S$ of $n$ points in the plane, find a pair of points with the smallest distance.



## Line segment intersection

Find all pairs of intersecting line segments.



## Fast Fourier Transform

$p, q \in R[x]$

$$
\begin{aligned}
& p(x)=a_{n} x^{n}+\ldots+a_{1} x^{1}+a_{0} \\
& q(x)=b_{n} x^{n}+\ldots+b_{1} x^{1}+b_{0}
\end{aligned}
$$

## Multiplication

$$
\begin{aligned}
p(x) q(x) & =\left(a_{n} x^{n}+\ldots+a_{0}\right)\left(b_{n} x^{n}+\ldots+b_{0}\right) \\
& =c_{2 n} x^{2 n}+\ldots+c_{1} x^{1}+c_{0}
\end{aligned}
$$

## Fast Fourier Transform

- FFT algorithms compute the discrete Fourier transform (DFT).
- Many applications in engineering, science and mathematics.

Digital signal processing (e.g. UMTS and LTE)
Image processing
Data compression
Partial differential equations

- Popular algorithm by J. Cooley and J.W. Tukey, 1965, based on earlier ideas of C.F. Gauß in 1805.
- Included in Top 10 Algorithms of the 20th Century by IEEE journal Computing in Science \& Engineering (2000).


## Randomization

Algorithm may make random choices.
Advantages: Speed and simplicity

- Types of randomized algorithms
- Randomized primality test
- Cryptography: RSA algorithm


## Randomized Search Trees

| key | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| priority | 3 | 7 | 4 | 1 | 5 | 2 | 6 |



## Minimum cuts



## Suffix Trees

## Static texts

- Literature databases
- Library systems
- Gene databases
- World Wide Web


## Search index

for a text $\sigma$ in order to search for several patterns $\alpha$.

Substring search in time $\mathrm{O}(|\alpha|)$.

## Suffix tree


$\sigma=$ bbabaabc

## Amortized analysis

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Average execution time of an operation is small, even though a single operation can have a high execution time.

## Fibonacci heaps



## Greedy algorithms

In each step make the choice that looks best at the moment

## Basic examples

- The coin-changing problem
- The Traveling Salesman Problem

Scheduling problems

- Interval scheduling
- Scheduling to minimize lateness

Discussion: Shortest paths and minimum spanning trees

## Dynamic programming

Recursive approach: Solve a problem by solving several smaller analogous subproblems of the same type. Then combine these solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been solved, store its solution in a table so that it can be retrieved later by simple table lookup.

## Dynamic programming

- Matrix chain multiplication
- Segmented least squares
- Optimal binary search trees
- Subset sums \& knapsacks


## Maximum flow problem



## ITI

## 01 - Divide and Conquer

## The divide-and-conquer paradigm

- Quicksort
- Formulation and analysis of the paradigm
- Geometric divide-and-conquer
- Closest pair problem
- Line segment intersection
- Voronoi diagrams


## Quicksort: Sorting by partitioning


function Quick ( $S$ : sequence): sequence;
\{returns the sorted sequence $S$ \}
begin
if $\# S \leq 1$ then Quick:=S; else \{ choose pivot/splitter element $v$ in $S$; partition $S$ into $S$, with elements $\leq v$, and $S_{r}$ with elements $\geq v$; Quick: $=$ Quick $\left(S_{f}\right) \mid v$ Quick $\left.\left(S_{r}\right)\right\}$
end;

## Formulation of the D\&C paradigm

Divide-and-conquer method for solving a problem instance of size $n$ :

## 1. Divide

$\mathrm{n}>\mathrm{c}$ : Divide the problem into $k$ subproblems of sizes $n_{1}, \ldots, n_{k}(k \geq 2)$.
$\mathrm{n} \leq \mathrm{c}$ : Solve the problem directly.

## 2. Conquer

Solve the $k$ subproblems in the same way (recursively).

## 3. Merge

Combine the partial solutions to generate a solution for the original instance.

## Analysis

$T(n)$ : maximum number of steps necessary for solving an instance of size $n$
$T(n)= \begin{cases}a & n \leq c \\ T\left(n_{1}\right)+\ldots+T\left(n_{k}\right) & n>c \\ \text { + cost for divide and merge } & \end{cases}$

Special case: $k=2, n_{1}=n_{2}=n / 2$ cost for divide and merge: $\mathrm{DM}(n)$

$$
T(1)=a
$$

$$
T(n)=2 \mathrm{~T}(n / 2)+\mathrm{DM}(n)
$$

## Geometric divide-and-conquer

## Closest Pair Problem:

Given a set $S$ of $n$ points in the plane, find a pair of points with the smallest distance.
-


## Divide-and-conquer method

1. Divide: Divide $S$ into two equal sized sets $S_{,}$und $S_{r}$.
2. Conquer: $d_{l}=\operatorname{mindist}\left(S_{l}\right) \quad d_{r}=\operatorname{mindist}\left(S_{r}\right)$
3. Merge:
$d_{l r}=\min \left\{d\left(p_{l}, p_{r}\right) \mid p_{l} \in S_{l}, p_{r} \in S_{r}\right\}$ return $\min \left\{d_{l}, d_{r}, d_{l r}\right\}$


## Divide-and-conquer method

1. Divide: Divide $S$ into two equal sets $S_{\text {, }}$ und $S_{r}$.
2. Conquer: $d_{l}=\operatorname{mindist}\left(S_{l}\right) \quad d_{r}=\operatorname{mindist}\left(S_{r}\right)$
3. Merge: $\quad d_{l r}=\min \left\{\mathrm{d}\left(p_{l}, p_{r}\right) \mid p_{l} \in S_{l}, p_{r} \in S_{r}\right\}$ return $\min \left\{d_{1}, d_{r}, d_{l r}\right\}$
Computation of $d_{l r}$ :


## Merge step

1. Consider only points within distance $d$ of the bisection line, in the order of increasing $y$-coordinates.
2. For each point $p$ consider all points $q$ within $y$-distance at most $d$; there are at most 7 such points.

## Merge step



## Implementation

- Initially sort the points in $S$ in order of increasing $x$-coordinates $\mathrm{O}(n \log n)$.
Each bisection line can be determined in $\mathrm{O}(1)$ time.
- Once the subproblems $S_{l}, S_{r}$ are solved, generate a list of the points in $S$ in order of increasing $y$-coordinates.
This can be done by merging the sorted lists of points of $S_{l}, S_{r}$ (merge sort).


## Sorted lists



## Running time (divide-and-conquer)

$$
T(n)= \begin{cases}2 T(n / 2)+a n & n>3 \\ a & n \leq 3\end{cases}
$$

- Guess the solution by repeated substitution.
- Verify by induction.

Solution: $\mathrm{O}(n \log n)$

## Guess by repeated substitution

$$
T(n)= \begin{cases}2 T(n / 2)+a n & n>3 \\ a & n \leq 3\end{cases}
$$

$$
\begin{aligned}
T(n) & =2 T(n / 2)+a n=2(2 T(n / 4)+a n / 2)+a n \\
& =4 T(n / 4)+2 a n=4(2 T(n / 8)+a n / 4)+2 a n \\
& =8 T(n / 8)+3 a n=8(2 T(n / 16)+a n / 8)+3 a n \\
& =16 T(n / 16)+4 a n
\end{aligned}
$$

## Verify by induction

$$
\begin{aligned}
& T(n) \leq a n \log n \quad T(n)= \begin{cases}2 T(n / 2)+a n & n>3 \\
a & n \leq 3\end{cases} \\
& n=2^{i} \\
& i=1: \text { ok }
\end{aligned}
$$

$$
i>1 \quad T\left(2^{i}\right)=2 T\left(2^{i-1}\right)+a 2^{i}
$$

$$
\leq 2 a 2^{i-1}(i-1)+a 2^{i}
$$

$$
=a 2^{i}(i-1)+a 2^{i}
$$

$$
=a 2^{i} i
$$

$$
=a n \log n
$$

## Line segment intersection

Find all pairs of intersecting line segments.



## Line segment intersection

Find all pairs of intersecting line segments.


The representation of the horizontal line segments by their endpoints allows for a vertical partitioning of all objects.

## ReportCuts

Input: Set $S$ of vertical line segments and endpoints of horizontal line segments.
Output: All intersections of vertical line segments with horizontal line segments, for which at least one endpoint is in $S$.

1. Divide
if $|S|>1$
then using vertical bisection line $L$, divide $S$ into equal size sets $S_{1}$ (to the left of $L$ ) and $S_{2}$ (to the right of $L$ )
else $S$ contains no intersections

## ReportCuts

1. Divide:

2. Conquer:

ReportCuts $\left(S_{1}\right)$; ReportCuts $\left(S_{2}\right)$

## ReportCuts

3. Merge: ???

Possible intersections of a horizontal line segment $h$ in $S_{1}$
Case 1: both endpoints in $S_{1}$


## ReportCuts

Case 2: only one endpoint of $h$ in $S_{1}$
2 a) right endpoint in $S_{1}$

$S_{2}$

## ReportCuts

2 b) left endpoint of $h$ in $S_{1}$

right endpoint in $S_{2}$
right endpoint not in $S_{2}$
$S_{1}$


## Procedure: ReportCuts(S)

## 3. Merge:

Return the intersections of vertical line segments in $S_{2}$ with horizontal line segments in $S_{1}$, for which the left endpoint is in $S_{1}$ and the right endpoint is neither in $S_{1}$ nor in $S_{2}$. Proceed analogously for $S_{1}$.


## Implementation

## Set $S$

$L(S)$ : $y$-coordinates of all segments whose left endpoint in $S$, but right endpoint is not in $S$.
$R(S)$ : $y$-coordinates of all segments whose right endpoint is in $S$, but left endpoint is not in $S$.
$V(S): y$-intervals of all vertical line segments in $S$.

## Base cases

$S$ contains only one element $e$.

Case 1: $e=(x, y)$ is a left endpoint of horizontal line segment $s$

$$
L(S)=\{(y, s)\} \quad R(S)=\varnothing \quad V(S)=\varnothing
$$

Case 2: $e=(x, y)$ is a right endpoint of horizontal line segment $s$

$$
L(S)=\varnothing \quad R(S)=\{(y, s)\} \quad V(S)=\varnothing
$$

Case 3: $e=\left(x, y_{1}, y_{2}\right)$ is a vertical line segment $s$

$$
L(S)=\varnothing \quad R(S)=\varnothing \quad V(S)=\left\{\left(\left[y_{1}, y_{2}\right], s\right)\right\}
$$

## Merge step

Assume that $L\left(S_{i}\right), R\left(S_{i}\right), V\left(S_{i}\right)$ are known for $i=1,2$. $S=S_{1} \cup S_{2}$

$$
\begin{aligned}
& L(S)=L\left(S_{1}\right) \backslash R\left(S_{2}\right) \cup L\left(S_{2}\right) \\
& R(S)=R\left(S_{2}\right) \backslash L\left(S_{1}\right) \cup R\left(S_{1}\right) \\
& V(\mathrm{~S})=V\left(\mathrm{~S}_{1}\right) \cup V\left(S_{2}\right)
\end{aligned}
$$

$L, R$ : ordered by increasing y-coordinates (and segment number) linked lists
$V$ : ordered by increasing lower endpoints linked list

## Output of the intersections



## Running time

Initially, the input (vertical line segments, left/right endpoints of horizontal line segments) has to be sorted and stored in an array.

## Divide-and-conquer:

$$
\begin{aligned}
& \mathrm{T}(n)=2 \mathrm{~T}(n / 2)+a \cdot n+\text { size of output } \\
& \mathrm{T}(1)=\mathrm{O}(1) \\
& \mathrm{O}(n \log n+k) \quad k=\# \text { intersections }
\end{aligned}
$$

## Computation of a Voronoi diagram

Input: Set of sites
Output: Partition of the plane into regions, each consisting of the points closer to one particular site than to any other site.


## Definition of Voronoi diagrams

$P$ : Set of sites

$$
H\left(p \mid p^{\prime}\right)=\left\{x \mid x \text { is closer to } p \text { than to } p^{\prime}\right\}
$$

Voronoi region of $p$ :

$$
V R(p)=\bigcap_{p^{\prime} \in P \backslash\{p\}} H\left(p \mid p^{\prime}\right)
$$

## Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.
Conquer: Recursive computation of the two smaller Voronoi diagrams.
Stopping condition: The Voronoi diagram of a single site is the whole plane.


Merge: Connect the diagrams by adding new edges.

## Computation of a Voronoi diagram

Output: The complete Voronoi diagram.


Running time: $\mathrm{O}(n \log n)$, where $n$ is the number of sites.

