

Winter Semester 2023/24

Advanced Algorithms

http://www14.in.tum.de/lehre/2023WS/ada/index.html.en

Susanne Albers Department of Computer Science TU München

Organization

- Lectures: 3 SWS Tue, Thu 12–14 Lecture hall: Galileo 8120.EG.001
- Exercises: 2 SWS Teaching assistant: Sebastian Schubert, Malte Kriegelsteiner

Tue 14–16: Room MI 02.04.011 Thu 14–16: Room MI 01.07.023

Problem sets: Made available on Tuesday by 10:00 am via Moodle.

Exam: Written exam, date will be announced.

Valuation: 6 ECTS (3 + 2 SWS)

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD) Diskrete Strukturen (DS) Diskrete Wahrscheinlichkeitstheorie (DWT)

- Th. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, Third Edition, MIT Press, 2009.
- J. Kleinberg and E. Tardos. Algorithm Design. Pearson, Addison Wesley, 2006.
- M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Second Edition, Cambridge University Press, 2017.
- Th. Ottmann und P. Widmayer: Algorithmen und Datenstrukturen.
 6. Auflage, Springer Verlag, 2017.
- Research papers

Design and analysis techniques for algorithms

- Divide and conquer
- Greedy approaches
- Dynamic programming
- Randomization
- Amortized analysis

Content

Problems and application areas:

- Geometric algorithms
- Algebraic algorithms
- Graph algorithms
- Data structures
- Algorithms on strings
- Optimization problems
- Complexity

Closest Pair Problem:

Given a set S of *n* points in the plane, find a pair of points with the smallest distance.

Find all pairs of intersecting line segments.

$p,q \in R[x]$

$$p(x) = a_{n}x^{n} + \dots + a_{1}x^{1} + a_{0}$$

$$q(x) = b_{n}x^{n} + \dots + b_{1}x^{1} + b_{0}$$

Multiplication

$$p(x)q(x) = (a_n x^n + \dots + a_0)(b_n x^n + \dots + b_0)$$

= $c_{2n} x^{2n} + \dots + c_1 x^1 + c_0$

- FFT algorithms compute the discrete Fourier transform (DFT).
- Many applications in engineering, science and mathematics. Digital signal processing (e.g. UMTS and LTE) Image processing Data compression Partial differential equations
- Popular algorithm by J. Cooley and J.W. Tukey, 1965, based on earlier ideas of C.F. Gauß in 1805.
- Included in Top 10 Algorithms of the 20th Century by IEEE journal Computing in Science & Engineering (2000).

Т

Algorithm may make random choices.

Advantages: Speed and simplicity

- Types of randomized algorithms
- Randomized primality test
- Cryptography: RSA algorithm

Randomized Search Trees

Minimum cuts

Suffix Trees

Static texts

- Literature databases
- Library systems
- Gene databases
- World Wide Web

Search index

for a text σ in order to search for several patterns α .

Substring search in time $O(|\alpha|)$.

ШП

 σ = bbabaabc

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Average execution time of an operation is small, even though a single operation can have a high execution time.

Fibonacci heaps

In each step make the choice that looks best at the moment

Basic examples

- The coin-changing problem
- The Traveling Salesman Problem

Scheduling problems

- Interval scheduling
- Scheduling to minimize lateness

Discussion: Shortest paths and minimum spanning trees

Recursive approach: Solve a problem by solving several smaller analogous subproblems of the same type. Then combine these solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been solved, store its solution in a table so that it can be retrieved later by simple table lookup.

Dynamic programming

- Matrix chain multiplication
- Segmented least squares
- Optimal binary search trees
- Subset sums & knapsacks

Maximum flow problem

01 - Divide and Conquer

The divide-and-conquer paradigm

- Quicksort
- Formulation and analysis of the paradigm
- Geometric divide-and-conquer
 - Closest pair problem
 - Line segment intersection
 - Voronoi diagrams

Quicksort: Sorting by partitioning

function Quick (S: sequence): sequence;

```
{returns the sorted sequence S}
```

begin

 $S_{l} \leq v$

if $\#S \le 1$ then Quick:=S; else { choose pivot/splitter element v in S; partition S into S_{l} with elements $\le v$, and S_{r} with elements $\ge v$; Quick:= Quick(S_{l}) v Quick(S_{r}) }

 $S_r \geq v$

end;

Divide-and-conquer method for solving a problem instance of size *n*:

1. Divide

n > c: Divide the problem into k subproblems of sizes $n_1, ..., n_k$ ($k \ge 2$).

 $n \leq c$: Solve the problem directly.

2. Conquer

Solve the *k* subproblems in the same way (recursively).

3. Merge

Combine the partial solutions to generate a solution for the original instance.

Analysis

T(n): maximum number of steps necessary for solving an instance of size n

$$T(n) = \begin{cases} a & n \leq c \\ T(n_1) + \ldots + T(n_k) & n > c \\ + \text{ cost for divide and merge} \end{cases}$$

Special case: k = 2, $n_1 = n_2 = n/2$ cost for divide and merge: DM(n)

$$T(1) = a$$

 $T(n) = 2T(n/2) + DM(n)$

ΠП

Closest Pair Problem:

Given a set S of *n* points in the plane, find a pair of points with the smallest distance.

- **1. Divide:** Divide S into two equal sized sets S_1 und S_r .
- **2.** Conquer: $d_l = \text{mindist}(S_l)$ $d_r = \text{mindist}(S_r)$
- 3. Merge:

$$d_{lr} = \min\{d(p_{l}, p_{r}) \mid p_{l} \in S_{l}, p_{r} \in S_{r}\}$$

$$d_{lr} = \min\{d(p_{l}, p_{r}) \mid p_{l} \in S_{l}, p_{r} \in S_{r}\}$$

return min{ d_{l}, d_{r}, d_{lr} }

- **1. Divide:** Divide S into two equal sets S_1 und S_r .
- **2.** Conquer: $d_l = \text{mindist}(S_l)$ $d_r = \text{mindist}(S_r)$
- **3. Merge:** $d_{lr} = \min\{ d(p_l, p_r) \mid p_l \in S_l, p_r \in S_r \}$ return $\min\{d_l, d_r, d_{lr}\}$

Computation of d_{lr} :

- 1. Consider only points within distance *d* of the bisection line, in the order of increasing y-coordinates.
- 2. For each point *p* consider all points *q* within *y*-distance at most *d*; there are at most 7 such points.

Merge step

 $d = \min \{ d_l, d_r \}$

- Initially sort the points in S in order of increasing x-coordinates O(n log n).
 Each bisection line can be determined in O(1) time.
- Once the subproblems S_l, S_r are solved, generate a list of the points in S in order of increasing *y*-coordinates.
 This can be done by merging the sorted lists of points of S_l, S_r (merge sort).

Sorted lists

Running time (divide-and-conquer)

$$T(n) = \begin{cases} 2T(n/2) + an & n > 3\\ a & n \le 3 \end{cases}$$

- Guess the solution by repeated substitution.
- Verify by induction.

Solution: O(*n* log *n*)

$$T(n) = \begin{cases} 2T(n/2) + an & n > 3\\ a & n \le 3 \end{cases}$$

$$T(n) = 2T(n/2) + an = 2(2T(n/4) + an/2) + an$$

= 4T(n/4) + 2an = 4(2T(n/8) + an/4) + 2an
= 8T(n/8) + 3an = 8(2T(n/16) + an/8) + 3an
= 16T(n/16) + 4an

$$T(n) \leq an \log n$$
 $T(n) = \begin{cases} 2T(n/2) + an & n > 3\\ a & n \leq 3 \end{cases}$

$$n = 2^i$$
$$i = 1: \text{ ok}$$

$$i > 1 \qquad T(2^{i}) = 2T(2^{i-1}) + a2^{i}$$

$$\leq 2a2^{i-1}(i-1) + a2^{i}$$

$$= a2^{i}(i-1) + a2^{i}$$

$$= a2^{i}i$$

$$= an\log n$$

Find all pairs of intersecting line segments.

Find all pairs of intersecting line segments.

The representation of the horizontal line segments by their endpoints allows for a vertical partitioning of all objects.

- **Input:** Set S of vertical line segments and endpoints of horizontal line segments.
- **Output:** All intersections of vertical line segments with horizontal line segments, for which at least one endpoint is in S.

1. Divide

if |S| > 1
 then using vertical bisection line L, divide S into equal size
 sets S₁ (to the left of L) and S₂ (to the right of L)
 else S contains no intersections

1. Divide:

2. Conquer:

ReportCuts(S_1); ReportCuts(S_2)

3. Merge: ???

Possible intersections of a horizontal line segment h in S_1

Case 1: both endpoints in S_1

Case 2: only one endpoint of h in S_1

2 a) right endpoint in S_1

ReportCuts

ПП

ТШП

3. Merge:

Return the intersections of vertical line segments in S_2 with horizontal line segments in S_1 , for which the left endpoint is in S_1 and the right endpoint is neither in S_1 nor in S_2 . Proceed analogously for S_1 .

Set S

- *L*(*S*): *y*-coordinates of all segments whose left endpoint in *S*, but right endpoint is not in *S*.
- R(S): y-coordinates of all segments whose right endpoint is in S, but left endpoint is not in S.
- V(S): y-intervals of all vertical line segments in S.

ТΠ

S contains only one element e.

Case 1: e = (x, y) is a left endpoint of horizontal line segment s $L(S) = \{(y, s)\}$ $R(S) = \emptyset$ $V(S) = \emptyset$

Case 2: e = (x, y) is a right endpoint of horizontal line segment s $L(S) = \emptyset$ $R(S) = \{(y, s)\}$ $V(S) = \emptyset$

Case 3: $e = (x, y_1, y_2)$ is a vertical line segment s $L(S) = \emptyset$ $R(S) = \emptyset$ $V(S) = \{([y_1, y_2], s)\}$

Assume that $L(S_i)$, $R(S_i)$, $V(S_i)$ are known for i = 1,2. $S = S_1 \cup S_2$

 $L(S) = L(S_1) \setminus R(S_2) \cup L(S_2)$

 $R(S) = R(S_2) \setminus L(S_1) \cup R(S_1)$

 $V(S) = V(S_1) \cup V(S_2)$

- L, R: ordered by increasing y-coordinates (and segment number) linked lists
- V: ordered by increasing lower endpoints linked list

Initially, the input (vertical line segments, left/right endpoints of horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

$$T(n) = 2T(n/2) + a \cdot n + \text{size of output}$$

$$T(1) = O(1)$$

 $O(n \log n + k)$ k = # intersections

Computation of a Voronoi diagram

Input: Set of sites

Output: Partition of the plane into regions, each consisting of the points closer to one particular site than to any other site.

P: Set of sites

 $H(p | p') = \{x | x \text{ is closer to } p \text{ than to } p'\}$

Voronoi region of *p*:

$$VR(p) = \bigcap_{p' \in P \setminus \{p\}} H(p \mid p')$$

WS 2023/24

пп

Divide: Partition the set of sites into two equal sized sets.

Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the whole plane.

Merge: Connect the diagrams by adding new edges.

Output: The complete Voronoi diagram.

