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Brewery Problem

Brewery brews ale and beer.

» Production limited by supply of corn, hops and barley malt
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(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) €)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442€
» only brew beer: 32 barrels of beer = 736€
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Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) €)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
» only brew ale: 34 barrels of ale = 442€
» only brew beer: 32 barrels of beer = 736€

> 7.5 barrels ale, 29.5 barrels beer
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Corn Hops Malt Profit
(kg) (kg) (kg) €)
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Brewery Problem

>

Corn Hops Malt Profit
(kg) (kg) (kg) €)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
only brew ale: 34 barrels of ale = 442€
only brew beer: 32 barrels of beer = 736€
7.5 barrels ale, 29.5 barrels beer = 776 €

|
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>

12 barrels ale, 28 barrels beer
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Brewery Problem

>

Corn Hops Malt Profit
(kg) (kg) (kg) €
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
only brew ale: 34 barrels of ale = 442€
only brew beer: 32 barrels of beer = 736€
7.5 barrels ale, 29.5 barrels beer = 776 €
12 barrels ale, 28 barrels beer = 800€

|
| 2
>
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Brewery Problem

Linear Program

‘m 3 Introduction to Linear Programming
Harald Racke 14/258



Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.
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» Choose the variables in such a way that the objective
function (profit) is maximized.
» Make sure that no constraints (due to limited supply) are
violated.
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Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.

» Choose the variables in such a way that the objective
function (profit) is maximized.

» Make sure that no constraints (due to limited supply) are
violated.

max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0
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Standard Form LPs

LP in standard form:
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> input: numbers a;;, ¢j, b;
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Standard Form LPs

LP in standard form:
input: numbers a;;, cj, b;
output: numbers x;

n = #decision variables, m = #constraints

vV v.vY

maximize linear objective function subject to linear
(in)equalities
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Standard Form LPs

LP in standard form:
input: numbers a;;, cj, b;
output: numbers x;

n = #decision variables, m = #constraints

vV v.vY

maximize linear objective function subject to linear
(in)equalities

n
max Z Cij
J=1
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Standard Form LPs

LP in standard form:
input: numbers a;;, cj, b;
output: numbers x;

n = #decision variables, m = #constraints

vV v.vY

maximize linear objective function subject to linear
(in)equalities

n
max ZCJ'XJ'
j=1 max c!x
n
st. Ax = b
s.t. a;ixi = by 1<sis<m
Z (9] Z x = 0
J=1
xj 2 0 1<j=<n
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Standard Form LPs

Original LP
max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0
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Standard Form LPs

Original LP

Standard Form

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Add a slack variable to every constraint.

max 13a
s.t. Sa
4a

35a

a

+

+
+
+

23b

15b + s

4b + sp
20b

b , s , sp

J’_

y

= 480

=160
Sm = 1190
Ssm =0
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Standard Form LPs

There are different standard forms:

standard form

max clx
st. Ax = b
x = 0
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Standard Form LPs

There are different standard forms:

standard form

max clx min c¢’x

st. Ax = b st. Ax = b
x = 0 x = 0

standard

maximization form

max clx

st. Ax =< b
x = 0
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Standard Form LPs

There are different standard forms:

standard form

max clx min c’x
st. Ax = b st. Ax = b
x = 0 x = 0

standard standard
maximization form minimization form

max clx min c¢Tx
st. Ax =< b st. Ax = b
x = 0 x = 0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
> less or equal to equality:

—-3b + + 12
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> less or equal to equality:

I
—
N

a—3b+5c+s

a—-3b+5c<12 =
s>0

> greater or equal to equality:
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
> less or equal to equality:

- 3b + + 12
4-3bi5c<1p — d73bFocEs
s>0

> greater or equal to equality:

-3b+5c—-s5s=12
a—3b+5c212:a €=s
s>0

‘m 3 Introduction to Linear Programming
Harald Racke 18/258



Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
> less or equal to equality:

- 3b + + 12
4-3bi5c<1p — d73bFocEs
s>0

> greater or equal to equality:

-3b+5c—-s5s=12
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:
> less or equal to equality:

- 3b + + 12
4-3bi5c<1p — d73bFocEs
s>0

> greater or equal to equality:

-3b+5c—-s5s=12
a—3b+5c212:a €=s
s>0

> min to max:

mina — 3b +5¢ = max—-a + 3b - 5¢
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> equality to less or equal:
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Standard Form LPs
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12

a-3b+sc-12 = 173 .
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> equality to less or equal:

12

a-3b+sc-12 = 173 .

—a+3b->5c¢

IAIA
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> equality to less or equal:

a—3b+5c=<12
a-3b+5c=12 = Ca+3b—5¢ < 17
> equality to greater or equal:
a—3b+5c=>=12

>
a-3b+5c=12 = Ca+3bh—5¢> 17
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> equality to less or equal:

a—3b+5c=<12
a-3b+5c=12 = Ca+3b—5¢ < 17
> equality to greater or equal:
a—3b+5c=>=12
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> equality to less or equal:

a—3b+5c=<12
a-3b+5c=12 = Ca+3b—5¢ < 17
> equality to greater or equal:
a—3b+5c=>=12
a-3b+5c=12 = Ca+3bh—5¢> 17

> unrestricted to nonnegative:

x unrestricted = x=x"-x",x">20,x" =0
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Standard Form LPs

Observations:

> alinear program does not contain x2, cos(x), etc.
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Standard Form LPs

Observations:
> alinear program does not contain x2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor
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Standard Form LPs

Observations:
> alinear program does not contain x2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

> for the standard minimization or maximization LPs we could
include the nonnegativity constraints into the set of ordinary
constraints; this is of course not possible for the standard
form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A e Q™" beQ™, ce Q" xe Q. Does there exist x € Q"
st. Ax =b,x=0,cl'x>=a?
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ceQm x e Q. Does there exist x € Q"
st. Ax =b,x=0,cl'x>=a?

Questions:
» |Is LP in NP?
» Is LP in co-NP?
» Is LPin P?

Input size:
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ceQm x e Q. Does there exist x € Q"
st. Ax =b,x=0,cl'x>=a?

Questions:
» |Is LP in NP?
» Is LP in co-NP?
» Is LPin P?

Input size:
> 1 number of variables, m constraints, L number of bits to
encode the input
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Geometry of Linear Programming

beer b
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Geometry of Linear Programming

beer b
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Geometry of Linear Programming

beer b

Regardless of the objective function an
optimum solution occurs at a vertex
(Ecke).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
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Definitions

Let for a Linear Program in standard form
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» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige L6sung).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige L6sung).

» If P + & then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfullbar).
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Definitions

Let for a Linear Program in standard form
P={x|Ax =b,x = 0}.
» P is called the feasible region (Losungsraum) of the LP.
» A point x € P is called a feasible point (glltige L6sung).

> If P + & then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfullbar).
» An LPis bounded (beschrankt) if it is feasible and

» ¢T'x < oo forall x € P (for maximization problems)
» ¢Tx > —co for all x € P (for minimization problems)
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Definition 2

Given vectors/points x1,...,xr € R™, > A;x; is called
» linear combination if A; € R.
> affine combination if A; € R and >; A; = 1.

» convex combination if A; € Rand >;A; =1 and A; > 0.

» conic combination if A; € R and A; > 0.

Note that a combination involves only finitely many vectors.
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Definition 3
A set X < R" is called
» a linear subspace if it is closed under linear combinations.
> an affine subspace if it is closed under affine combinations.
> convex if it is closed under convex combinations.
>

a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space
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Definition 4
Given a set X c R",
» span(X) is the set of all linear combinations of X
(linear hull, span)
> aff(X) is the set of all affine combinations of X
(affine hull)
» conv(X) is the set of all convex combinations of X
(convex hull)
> cone(X) is the set of all conic combinations of X
(conic hull)
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Definition 5
A function f : R"™ — R is convex if for x,y € R"™ and A € [0,1] we
have

SAx+ (1 -2)y) =Af(x)+ (1 -2)f(»)
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Definition 5
A function f : R"™ — R is convex if for x,y € R"™ and A € [0,1] we
have

fAx + (1 -)y) <Af()+ Q-2 f(y)

Lemma 6
If P < R™, and f : R™ — R convex then also

Q=1{xeP]| f(x) =t}
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Dimensions

Definition 7
The dimension dim(A) of an affine subspace A = R" is the
dimension of the vector space {x —a | x € A}, where a € A.

Definition 8
The dimension dim(X) of a convex set X = R" is the dimension
of its affine hull aff(X).
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Definition 9
Aset H < R"is a hyperplane if H = {x | alx = b}, fora # 0.
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Definition 9
Aset H < R"is a hyperplane if H = {x | alx = b}, fora # 0.

Definition 10
Aset H < R™is a (closed) halfspace if H = {x | a’x < b}, for
a + 0.
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Definitions

Definition 11
A polytop is a set P < R" that is the convex hull of a finite set of
points, i.e., P = conv(X) where | X| = c.
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Definitions

Definition 12

A polyhedron is a set P < R" that can be represented as the
intersection of finitely many half-spaces
{H(ai,b1),...,H(am,bm)}, where

H(ai,bi) = {X e R" | aix < bi} .
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Definitions

Definition 12

A polyhedron is a set P < R" that can be represented as the
intersection of finitely many half-spaces
{H(ai,b1),...,H(am,bm)}, where

H(ai,bi) = {X e R" | aix < bi} .

Definition 13
A polyhedron P is bounded if there exists B s.t. ||[x||2 < B for all
x € P.
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Definitions

Theorem 14
P is a bounded polyhedron iff P is a polytop.
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Definition 15
Let P = R"™, a € R" and b € R. The hyperplane

H(a,b) = {x e R" | a’x = b}

is a supporting hyperplane of P if max{a’x | x € P} = b.
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Definition 15
Let P = R"™, a € R" and b € R. The hyperplane

H(a,b) = {x e R" | a’x = b}
is a supporting hyperplane of P if max{a’x | x € P} = b.

Definition 16
Let P < R™ Fisafaceof Pif F=PorF =PnH for some
supporting hyperplane H.
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Definition 15
Let P = R"™, a € R" and b € R. The hyperplane

H(a,b) = {x e R" | a’x = b}
is a supporting hyperplane of P if max{a’x | x € P} = b.

Definition 16
Let P < R™ Fisafaceof Pif F=PorF =PnH for some
supporting hyperplane H.

Definition 17
Let P < R™,
> aface v is a vertex of P if {v} is a face of P.
> aface eis an edge of P if e is a face and dim(e) = 1.
> aface Fis afacet of P if F is a face and dim(F) = dim(P) — 1.
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Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point x € P is a vertex if 3¢ € R" such
thatc’y < c’x, forall y € P, v # x.

Definition 19
Given polyhedron P. A point x € P is an extreme point if
Aa,b = x, a,b € P,with Aa+ (1 —A)b =x for A € [0,1].
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Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point x € P is a vertex if 3¢ € R" such
thatc’y < c’x, forall y € P, v # x.

Definition 19
Given polyhedron P. A point x € P is an extreme point if
Aa,b = x, a,b € P,with Aa+ (1 —A)b =x for A € [0,1].

Lemma 20
A vertex is also an extreme point.
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Observation
The feasible region of an LP is a Polyhedron.
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Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.
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Theorem 21

If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.

Proof

> suppose x is optimal solution that is not extreme point
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Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.

Proof

> suppose x is optimal solution that is not extreme point

> there exists direction d + 0 suchthat x +d € P
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Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.

Proof

> suppose x is optimal solution that is not extreme point
> there exists direction d + 0 such that x +d € P
» Ad =0 because A(x+d) =b
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Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.

Proof

> suppose x is optimal solution that is not extreme point
» there exists direction d # 0 suchthat x +d € P

» Ad =0 because A(x +d) =b

» Wlog. assume c’d = 0 (by taking either d or —d)
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Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.
Proof
> suppose x is optimal solution that is not extreme point
there exists direction d + O suchthat x +d € P
Ad =0 because A(x +d) =Db
Wlog. assume c’d = 0 (by taking either d or —d)
Consider x + Ad, A > 0
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Convex Sets
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Convex Sets

Case 1. [dj s.t. d; < 0]
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
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Convex Sets
Case 1. [dj s.t. d; < 0]

> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A'd) =band x + A’d = 0
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A’d) =band x + A'd = 0
» x + A’d has one more zero-component (dx = 0 for x; = 0 as
xX+deP)
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A’d) =band x + A'd = 0
» x + A’d has one more zero-component (dx = 0 for x; = 0 as
xX+deP)
> oIx' =cT(x+Ad) =cTx+Acld=cTx
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A’d) =band x + A'd = 0
» x + A’d has one more zero-component (dx = 0 for x; = 0 as
xX+deP)
> oIx' =cT(x+Ad) =cTx+Acld=cTx

Case 2.[d; = O forall jand c'd > 0]
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A'd) =band x + A’d = 0

» x + A’d has one more zero-component (dx = 0 for x; = 0 as
xX+deP)

> Ix' =clT(x+Ad)=cTx+A'cTd >cTx

Case 2.[d; = O forall jand c'd > 0]

> x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad>=x=0
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Convex Sets

Case 1. [dj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A'd) =band x + A’d = 0

» x + A’d has one more zero-component (dx = 0 for x; = 0 as
xX+deP)

> Ix' =clT(x+Ad)=cTx+A'cTd >cTx

Case 2.[d; = O forall jand c'd > 0]

> x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad>=x=0

» as A — oo, cl(x+Ad) - o ascld >0
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Algebraic View
beer b

An extreme point in R4 is uniquely de-
fined by d linearly independent equa-
tions.

A

alea



Notation
Suppose B < {1...n} is a set of column-indices. Define Ap as the
subset of columns of A indexed by B.
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Notation
Suppose B < {1...n} is a set of column-indices. Define Ap as the
subset of columns of A indexed by B.

Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume X is not extreme point
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns

Proof (<)

> assume X is not extreme point

> there exists direction d s.t. x +d € P
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns

Proof (<)

> assume X is not extreme point
> there exists directiond s.t. x +d € P

» Ad =0 because A(x +d)=b
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (<)

> assume X is not extreme point

> there exists directiond s.t. x +d € P
» Ad =0 because A(x =d) =b

> define B' = {j | d; + 0}
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume X is not extreme point
> there exists directiond s.t. x +d € P
» Ad =0 because A(x =d) =b
> define B’ = {j | dj = 0}
>

Ap' has linearly dependent columns as Ad =0
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume X is not extreme point
> there exists directiond s.t. x +d € P
Ad =0 because A(x £d) =b
define B’ = {j | d; = 0}
Ap' has linearly dependent columns as Ad =0
dj=0forall jwithx; =0asx+d =0
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume X is not extreme point
there exists direction d s.t. x +d € P
Ad =0 because A(x £d) =b
define B’ = {j | d; = 0}
Ap' has linearly dependent columns as Ad =0
dj=0forall jwithx; =0asx+d =0

vV vV vV v v Y

Hence, B’ < B, Ap’ is sub-matrix of Ap
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (=)
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns.

Proof (=)

» assume Ag has linearly dependent columns
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns

Proof (=)

» assume Ag has linearly dependent columns
» there exists d # 0 such that Agd =0
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Theorem 22

LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns

Proof (=)

> assume Ap has linearly dependent columns
» there exists d # 0 such that Agd =0
» extend d to R™ by adding 0-components
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns.

Proof (=)

> assume Ap has linearly dependent columns
» there exists d # 0 such that Agd =0
» extend d to R™ by adding 0-components

» now, Ad = 0 and d; = 0 whenever x; = 0
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