SS 2022

Efficient Algorithms
and Data Structures Il

Harald Racke

Fakultat fur Informatik
TU Minchen

https://www.moodle.tum.de/course/view.php?id=79534

Summer Term 2022

Part |

Organizational Matters

m Harald Racke

‘_I—I_Hm Harald Racke

Part |

Organizational Matters

> Modul: IN2004

» Name: “Efficient Algorithms and Data Structures II”
“Effiziente Algorithmen und Datenstrukturen II”

» ECTS: 8 Credit points
> Lectures:

> 4 SWS
Wed 10:15-11:45 (Room 00.13.009A)
Fri 10:15-11:45 (MS HS3)

> Webpage:
https://www.moodle.tum.de/course/view.php?id=79534

The Lecturer

» Harald Racke
» Email: raecke@in.tum.de
» Room: 03.09.044

» Office hours: (per appointment)




Tutorials

» Tutor:

» Omar AbdelWanis
> omar.abdelwanis@tum.de
> per appointment

» Room: 03.11.018
» Time: Mon 14:00-16:00

Assessment

> |n order to pass the module you need to pass an exam.

> Exam:
> 2.5 hours
> There are no resources allowed, apart from a hand-written
piece of paper (A4).
> Answers should be given in English, but German is also
accepted.
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Assessment

> Assignment Sheets:
> An assignment sheet is usually made available on Monday on
the module webpage.
» The first one will be out on Monday, 2 May.
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2 Literatur

Part II

Linear Programming

Brewery Problem

Brewery brews ale and beer.

» Production limited by supply of corn, hops and barley malt

> Recipes for ale and beer require different amounts of

resources
Corn Hops Malt Profit
(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

3 Introduction to Linear Programming




Brewery Problem

>

Corn Hops Malt Profit
(kg) (kg) (kg) (€)
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190
How can brewer maximize profits?
only brew ale: 34 barrels of ale = 442¢€
only brew beer: 32 barrels of beer = 736%€
7.5 barrels ale, 29.5 barrels beer = 776 €
12 barrels ale, 28 barrels beer = 800€

>
>
|

Brewery Problem

Linear Program
> Introduce variables a and b that define how much ale and
beer to produce.
» Choose the variables in such a way that the objective
function (profit) is maximized.
> Make sure that no constraints (due to limited supply) are
violated.

max 13a + 23b

s.t. 5a + 15b <480

4a + 4b <160

35a + 20b <1190
a,b =0
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Standard Form LPs

LP in standard form:

vV v.v Yy

input: numbers a;j, c;, b;

output: numbers x;

n = #decision variables, m = #constraints

maximize linear objective function subject to linear

(in)equalities

n
max > CjX;j
it max clx

n

, s.t. Ax =

s.t. Zauxj bi 1<i<m X >
j=1

xj 2 0 1<j=<n

Standard Form LPs

Original LP
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Standard Form
Add a slack variable to every constraint.

max 13a + 23b

st. 5a + 15b + s =480
4a + 4b + sp =160
35a + 20b + S,u =1190
a |, b , sc , sn , Sm =0
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Standard Form LPs

There are different standard forms:

standard form

max c’x min c’x
st. Ax = b st. Ax = b
x = 0 x = 0

standard standard
maximization form minimization form

max clx min c¢Tx
st. Ax < b st. Ax = b
x = 0 x = 0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> less or equal to equality:

—-3b+5c+s=12
a-3b+5c<12 = A73bToets
=)
> greater or equal to equality:
-3b+5c—-—s=12
a—3b+5c>12 = A73bFC=s
=)

> min to max:

mina - 3b +5¢ = max-a + 3b - 5c¢
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Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

> equality to less or equal:

IA

a—3b+5c <12
a—-3b+5¢c=12 = ca+3b—5c <12

> equality to greater or equal:

\Y

a—-3b+5c =12
a—-3b+5¢c=12 = ca+3b—5c> 12

> unrestricted to nonnegative:

+

x unrestricted = x=x"—-x",x">0,x" =0
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Standard Form LPs

Observations:
> a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

» for the standard minimization or maximization LPs we could
include the nonnegativity constraints into the set of ordinary
constraints; this is of course not possible for the standard
form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))
Let Ac Q™" b e Q™ ceQ” «xe Q. Does there exist x € Q"
st. Ax=b,x>0,cTx>«?

Questions:
» |s LP in NP?
» Is LP in co-NP?
» |Is LPin P?

Input size:

» 1 number of variables, m constraints, L number of bits to
encode the input
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Geometry of Linear Programming

beer b
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Geometry of Linear Programming

beer b

Regardless of the objective function an
optimum solution occurs at a vertex
(Ecke).
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Definitions

Let for a Linear Program in standard form
P={x]|Ax =b,x = 0}.

P is called the feasible region (Losungsraum) of the LP.

v

v

A point x € P is called a feasible point (glltige L6sung).

» If P + & then the LP is called feasible (erfiillbar). Otherwise,
it is called infeasible (unerfillbar).

An LP is bounded (beschrankt) if it is feasible and

» c¢Tx < « for all x € P (for maximization problems)
» cTx > —oo forall x € P (for minimization problems)

v
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Definition 2
Given vectors/points x1,...,xr € R™, > A;x; is called
» linear combination if A; € R.

> affine combination if A; € Rand >; A; = 1.

> convex combination if A; € Rand >;A; =1 and A; = 0.

» conic combination if A; € R and A; > 0.

Note that a combination involves only finitely many vectors.

Definition 3
A set X < R" is called
> alinear subspace if it is closed under linear combinations.
» an affine subspace if it is closed under affine combinations.
» convex if it is closed under convex combinations.
>

a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space
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Definition 4
Given a set X < R™,
> span(X) is the set of all linear combinations of X
(linear hull, span)
» aff(X) is the set of all affine combinations of X
(affine hull)
» conv(X) is the set of all convex combinations of X
(convex hull)

» cone(X) is the set of all conic combinations of X
(conic hull)

Definition 5
A function f : R™ — R is convex if for x,y € R and A € [0,1] we
have

FAx+ (1 =2)y) <Af(x)+ A -A)f(y)

Lemma 6
IfP < R", and f : R™ — R convex then also

Q={xeP]|f(x) =<t}
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Dimensions

Definition 7
The dimension dim(A) of an affine subspace A = R" is the
dimension of the vector space {x —a | x € A}, where a € A.

Definition 8
The dimension dim(X) of a convex set X < R" is the dimension
of its affine hull aff (X).

Definition 9
Aset H < R" is a hyperplane if H = {x | alx = b}, fora = 0.

Definition 10
A set H < R" is a (closed) halfspace if H = {x | a’x < b}, for
a + 0.
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Definitions

Definition 11
A polytop is a set P < R™ that is the convex hull of a finite set of

points, i.e., P = conv(X) where | X| = c.

Definitions

Definition 12

A polyhedron is a set P < R™ that can be represented as the
intersection of finitely many half-spaces
{H(ayi,b1),...,H(am,bm)}, where

H(ai,bi) = {X eRrR" | aix = bi} .

Definition 13

A polyhedron P is bounded if there exists B s.t. ||x]||> < B for all

x € P.
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Definitions

Theorem 14
P is a bounded polyhedron iff P is a polytop.

Definition 15
Let P < R", a € R" and b € R. The hyperplane

H(a,b) = {x e R" | alx = b}
is a supporting hyperplane of P if max{a’x | x € P} = b.

Definition 16
Let P < R". Fisaface of Pif F=PorF =PnH for some
supporting hyperplane H.

Definition 17
Let P < R™.

» aface v is a vertex of P if {v} is a face of P.
> aface e is an edge of P if e is a face and dim(e) = 1.
» aface Fis a facet of P if F is a face and dim(F) = dim(P) — 1.
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Equivalent definition for vertex:

Definition 18
Given polyhedron P. A point x € P is a vertex if 3c € R™ such
that c’y < cTx, forall y € P, y # x.

Definition 19
Given polyhedron P. A point x € P is an extreme point if
Aa,b + x,a,b € P,with Aa + (1 — A)b = x for A € [0, 1].

Lemma 20
A vertex is also an extreme point.

Observation
The feasible region of an LP is a Polyhedron.

m 3 Introduction to Linear Programming
Harald Ricke

m 3 Introduction to Linear Programming
Harald Ricke




Convex Sets

Theorem 21
If there exists an optimal solution to an LP (in standard form) then
there exists an optimum solution that is an extreme point.

Proof
> suppose x is optimal solution that is not extreme point
> there exists direction d = 0 such that x +d € P
» Ad =0 because A(x +d) =D
» Wlog. assume c’d > 0 (by taking either d or —d)
» Consider x + Ad, A >0
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Convex Sets

Case 1. [3j s.t. dj < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A'd) =band x +A’d = 0

> x + A’d has one more zero-component (dy = 0 for x;x = 0 as
x +deP)

> cIx' =cT(x+Ad)=cTx+AcTd=cTx

Case 2.[d; = O forall jand c'd > 0]

> x + Ad is feasible for all A > 0 since A(x + Ad) = b and
X+Ad=x=0

> asA — o, cl(x +Ad) - 0 ascTd >0
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Algebraic View
beer b

An extreme point in R4 is uniquely de-
fined by d linearly independent equa-
y tions.

\
A\
N\
AN

alea

Notation

Suppose B < {1...n} is a set of column-indices. Define Ap as the
subset of columns of A indexed by B.

Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns.

m 3 Introduction to Linear Programming
Harald Racke




Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume x is not extreme point
there exists direction d s.t. x +d € P
Ad =0 because A(x =d) =b
define B" = {j | d; # 0}
Ap’ has linearly dependent columns as Ad =0

dj=0forall jwithx;=0asx+d=0

vV V. v v Vv Y

Hence, B’ < B, Ap’ is sub-matrix of Ap
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns.

Proof (=)
> assume Ap has linearly dependent columns
> there exists d # 0 such that Agd = 0
> extend d to R™ by adding 0-components
» now, Ad =0 and d; = 0 whenever x; = 0
» for sufficiently small A we have x = Ad € P
>

hence, x is not extreme point
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Theorem 23
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > O}. If
Ap has linearly independent columns then x is a vertex of P.

0 i €B
> deﬁnecj:SL 1 j‘e—‘B
» thenc’x =0andcTy <Ofory e P
> assume ¢’y = 0; then yj=0forallj¢B
> b=Ay = Apypg = Ax = Apxp gives that Ag(xpg — vp) = 0;
» this means that xp = yp since Ap has linearly independent

columns
> wegety=x

» hence, x is a vertex of P
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

> assume that rank(A) < m

» assume wlog. that the first row A; lies in the span of the
other rows Ay, ..., A;;; this means

A= ZZZ A; - Aj, for suitable A;

C1 if now by = > ", A; - b; then for all x with A;x = b; we also
have A1x = b1; hence the first constraint is superfluous

C2 if by = >[", A; - b; then the LP is infeasible, since for all x
that fulfill constraints A»,..., A, we have

m m
Aix =2 Ai-Aix =D Ai-bi# by




From now on we will always assume that the
constraint matrix of a standard form LP has full
row rank.
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Theorem 24
Given P = {x | Ax = b,x = 0}. x is extreme point iff there exists
Bc{l,...,n} with |B| = m and
> Ap is non-singular
> xp=Az'b >0
» xy =0
where N = {1,...,n} \ B.

Proof
Take B = {j | x; > 0} and augment with linearly independent
columns until |B| = m; always possible since rank(A) = m.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Ay) = |J| where J = {j | x; # 0};

x is a basic feasible solution (giiltige Basislosung) if in addition
x =>0.

A basis (Basis) is an index set B < {1,...,n} with rank(Ag) = m
and |B| = m.

x € R™ with Agxp = b and x; = 0 for all j ¢ B is the basic
solution associated to basis B (die zu B assoziierte Basislosung)
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Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n — m of the x;’s are zero. The
corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.
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Basic Feasible Solutions

Definition 25

For a general LP (max{c’x | Ax < b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.
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Algebraic View

max 13a + 23b

{b, sc, Sm} s.t. 5a + 15b + s =480
(0/401-120/0[390) 4a + 4b + Sn =160
35a + 20b + S, = 1190
b5y 5] a, b,sc,sn,sm=0
(0132/032|550)
{a, b, sp}

{a,b, sm}
(12/28]0/0|210)

(19.41]25.53|0|-19.76/0)

beer

{a,b, s}
(26/14]140]0/0)

{Sc, Shy Sm}
(0/01480]160|1190)

ale {a, sc, sn} {a, sc, sm}
(34/0/30/24/0)  (40]0|280/0]-210)

Fundamental Questions

Linear Programming Problem (LP)
Let A e Q™" be Q™ ce Q" x e Q. Does there exist x € Q"
st. Ax=b,x>0,cTx>a?

Questions:
» Is LP in NP? yes!
» |s LP in co-NP?

» |s LPin P?

Proof:
> Given a basis B we can compute the associated basis solution
by calculating Aglb in polynomial time; then we can also
compute the profit.

Observation
We can compute an optimal solution to a linear program in time

0] ((1’;) - poly(n, m)).

> there are only (;) different bases.
» compute the profit of each of them and take the maximum

What happens if LP is unbounded?
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the
optimum is slow.

Simplex Algorithm [George Dantzig 1947]
Move from BFS to adjacent BFS, without decreasing objective
function.

Two BFSs are called adjacent if the bases just differ in one
variable.

4 Simplex Algorithm

max 13a + 23b

s.t. S5a + 15b + s, =480
4a + 4b + sp =160
35a + 20b + S, = 1190
a , b,sc,sn,sm=0
max Z basis = {Sc, Sn, Sm}
13a + 23b -Z=0 a=b=0
Sa + 15D + s — 480 £=0
d4a+ 4b  +sp = 160 Se = 480
sp =160
35a + 20b + Sm =1190 Spu= 1190
a, b,sc,Sn, Sm >0

m 4 Simplex Algorithm
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Pivoting Step

max Z basis = {S¢, Sh, Sm}
13a + 23b -Z=0 a=b=0
7 =
S5a + 15b + s¢ =480 0
4a + 4b + sy =160 Se = 480
Sh = 160
35a + 20b + Sm =1190 Sm= 1190
a, b,sc,sn, sSm >0

» choose variable to bring into the basis

» chosen variable should have positive coefficient in objective

max Z basis = {S¢, Sh, Sm}

13a + 23b -Z=0 a=b=0
7 =

5a + 15b + s =480 0

d4a+ 4b  + s - 160 Se =480
sp =160

35a + 20b + Sm =1190 Sm= 1190

a ’ h ’ SC ’ SI’L L] Sm > 0

» Choose variable with coefficient > 0 as entering variable.

> If we keep a = 0 and increase b from 0 to 0 > 0 s.t. all

constraints (Ax = b, x > 0) are still fulfilled the objective

value Z will strictly increase.

function

> apply min-ratio test to find out by how much the variable can
be increased

> pivot on row found by min-ratio test

> the existing basis variable in this row leaves the basis

» For maintaining Ax = b we need e.g. to set s, = 480 — 156.

» Choosing 0 = min{480/15,160/4,1190/20} ensures that in the
new solution one current basic variable becomes 0, and no
variable goes negative.

» The basic variable in the row that gives
min{480/15,160/4,1190/20} becomes the leaving variable.




max Z
13a + 23b
5a + 15b + s,
4a + 4b + Sp
35a + 20b
a, b, s, s,

Substitute b = 1= (480 — 5a — sc).

max Z
16 23
34 = T5-¢
1a+b+ ks
34 155¢
8 4
3a — 155¢ + Sn
85 4
?(1 = §SC
a ] b ] SC ’ Sh,

basis = {s¢, Sn,Sm}
- 7=0 a=b=0
Z =0
=480
_ sc =480
= L0 sp =160
+ Sm =1190 Sm= 1190
, Sm >0
basis = {b, sp, Sm }
~Z=-736| |gqos-0
=32 Z =736
— 37 b =32
Sh =32
+ Sm =550 Sm= 550
, Sm >0

max Z
%Ga _%SC - Z =-736
%a+b+1—155(; =32
%a —%sc+sh =32
83—511 — %sc + Sm =550
a,b, sc,Sh,Sm >0

basis = {b, sp, Sm}
a =5.=0

Z =736

b =32

Sh = 32

Sm= 550

Choose variable a to bring into basis.

Computing min{3 - 32, 3-32/8,3-550/85} means pivot on line 2.

Substitute a = %(32 + %sc - Sn).

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

» any feasible solution satisfies all equations in the tableaux

» in particular: Z = 800 — s; — 2sp, S¢ = 0,5, = 0

> hence optimum solution value is at most 800

> the current solution has value 800

bt £ basis = {a, b, s}
- Sc— 2sp —Z=-800| | —g -0
b+ f5sc— &sn =28 Z =800
a —11—036+ %sh =12 b =28
3 85 a=12
55¢ — g Sh + Sm =210 Sm= 210
a,b, s, sp,sm =20
Matrix View
Let our linear program be
cixpg + chxy = Z
ABXB + ANXN = b
XB xy = O
The simplex tableaux for basis B is
(ch —chAgtANxN = Z-ciAglh
Ixg + AgtAnxy = Ap'b
XB xy = O

The BFS is given by xy = 0,xp = Az'b.

If (¢}, — cf Azt AN) < 0 we know that we have an optimum

solution.
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Geometric View of Pivoting

/%? max 13a + 23b
4,
s s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + S, = 1190
{b, sn, sm}Oom | a, b,sc,sn,sm=0
— S.L. oa T IOUD T 3¢
4a + 4b + Sp
{a,b, sm} 35a + 20b +
a, b, Sc s Sh
el
[}
v
o
{a bs\K
{Scs Shy Sm} ‘

ale {a, sc, sn}

Algebraic Definition of Pivoting

> Given basis B with BFS x*.
» Choose index j ¢ B in order to increase x;-k from 0 to 6 > 0.

» Other non-basis variables should stay at 0.
> Basis variables change to maintain feasibility.

» Go from x* tox™ +0 - d.

Requirements for d:

dj =1 (normalization)

dp=0,¢B, {+j

A(x* + 0d) = b must hold. Hence Ad = 0.

Altogether: Apdp + Ay; = Ad = 0, which gives
dp = —Ag'Aj.

vV v.v Y
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Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)

Let B be a basis, and let j ¢ B. The vector d with d; =1 and
dp=0,0¢B,0+janddg=—-Ag'A,; is called the j-th basis
direction for B.

Going from x* to x* + 0 - d the objective function changes by

0-cld=0(c;—clAglAL))

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)
For a basis B the value

Fo— s T A1 )

is called the reduced cost for variable x;.

Note that this is defined for every j. If j € B then the above term
is 0.
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Algebraic Definition of Pivoting
Let our linear program be

ckxp + chxy = Z
ApxXp + ANXN = b
XB , xy = 0

The simplex tableaux for basis B is

(ch —ctAgtANXN = Z - clAz'D
Ixp + AglAvxy = Ap'b
XB , xy = 0

The BFS is given by xy = 0,xp = Az'b.

If (cf; — cfAz'An) < 0 we know that we have an optimum
solution.
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4 Simplex Algorithm

Questions:

» What happens if the min ratio test fails to give us a value 6
by which we can safely increase the entering variable?

» How do we find the initial basic feasible solution?

> |s there always a basis B such that
(ch — ctAgtAN) <0 ?

Then we can terminate because we know that the solution is
optimal.

> If yes how do we make sure that we reach such a basis?

‘m 4 Simplex Algorithm
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Min Ratio Test

The min ratio test computes a value 0 > 0 such that after setting
the entering variable to 0 the leaving variable becomes 0 and all
other variables stay non-negative.

For this, one computes b;/A;, for all constraints i and calculates
the minimum positive value.

What does it mean that the ratio b;/A;, (and hence Aj;,) is
negative for a constraint?

This means that the corresponding basic variable will increase if
we increase b. Hence, there is no danger of this basic variable
becoming negative

What happens if all b;/A;. are negative? Then we do not have a
leaving variable. Then the LP is unbounded!

Termination

The objective function does not decrease during one iteration of
the simplex-algorithm.

Does it always increase?

m 4 Simplex Algorithm
Harald Ricke




Termination

The objective function may not increase!

Because a variable x, with £ € B is already O.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)
A BFS x* is called degenerate if the set J = {j | x;.k > 0} fulfills
lJI <m.

It is possible that the algorithm cycles, i.e., it cycles through a
sequence of different bases without ever terminating. Happens,
very rarely in practise.
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Non Degenerate Example

2&/ max 13a + 23b
Gl
'5°¢ s.t. 5a + 15b + s =480
4a + 4b + Sp =160
\ 35a + 20b + S, = 1190

% \ a, b,sc,sn,sm=0
N
\\\\

beer

Degenerate Example

13a + 23b
5a + 15b + s, =480
80/17-a + 4b + Sp =160
35a + 20b + S, = 1190
a , b,sc,Sh,sm=0
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v
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= 4 _/A Vi
¢ g-direc. _Smtdir€eN fa, b, s}
{Scs Sy Sm) ‘ ale {a, sq\sn}
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Summary: How to choose pivot-elements

» We can choose a column e as an entering variable if ¢, > 0
(. is reduced cost for x,).

» The standard choice is the column that maximizes é,.

» If Aj, <Oforallie {1,...,m} then the maximum is not
bounded.

> Otw. choose a leaving variable £ such that by/A, is minimal
among all variables i with A;, > 0.

> If several variables have minimum by/A, you reach a
degenerate basis.

» Depending on the choice of £ it may happen that the
algorithm runs into a cycle where it does not escape from a
degenerate vertex.
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Termination

What do we have so far?
Suppose we are given an initial feasible solution to an LP. If the LP
is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and
we can conclude that the LP is unbounded, or we terminate
because the vector of reduced cost is non-positive. In the latter
case we have an optimum solution.
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How do we come up with an initial solution?
» Ax <b,x=0,and b = 0.

» The standard slack form for this problem is
Ax +Is =b,x = 0,s > 0, where s denotes the vector of slack
variables.

» Then s = b, x = 0 is a basic feasible solution (how?).

> We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary
problem?
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Two phase algorithm

Suppose we want to maximize ¢’ x s.t. Ax = b, x = 0.

1. Multiply all rows with b; < 0 by —1.

2. maximize — > ;v;s.t. Ax +Iv = b, x >0, v = 0 using
Simplex. x = 0, v = b is initial feasible.
If >; v; > 0 then the original problem is infeasible.
Otw. you have x > 0 with Ax = b.

From this you can get basic feasible solution.

o v AW

Now you can start the Simplex for the original problem.
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Optimality

Lemma 29
Let B be a basis and x* a BFS corresponding to basis B. ¢ <0
implies that x* is an optimum solution to the LP.
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Duality
How do we get an upper bound to a maximization LP?
max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b >0

Note that a lower bound is easy to derive. Every choice of a,b > 0
gives us a lower bound (e.g. a = 12,b = 28 gives us a lower
bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; v;a;; = cj then > ; y;b; will be an upper
bound.

Duality

Definition 30
Let z = max{c’x | Ax < b,x = 0} be a linear program P (called
the primal linear program).

The linear program D defined by
w=min{bTy | ATy =¢c,y =0}

is called the dual problem.
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Duality

Lemma 31
The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y = 0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is
» z=-—min{-c'x | -Ax = —b,x = 0}

» z=max{cTx | Ax <b,x >0}

Weak Duality

Let z = max{c'x | Ax < b,x = 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy = ¢,y = 0]}.

Theorem 32 (Weak Duality)
Let X be primal feasible and let Vv be dual feasible. Then

cTx<z<w=<bTy .
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Weak Duality

ATy >c=>xTATY > %Tc (X 2 0)
A% <b = yTA% < 5Th (5 = 0)

This gives

Since, there exists primal feasible X with ¢’ % = z, and dual
feasible ¥ with 77 = w we get z < w.

If P is unbounded then D is infeasible.
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5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z=max{c'x | Ax =b,x > 0}

w=min{bTy | ATy > ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.
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Proof
Primal:

max{cTx | Ax =b,x > 0}

=max{cix | Ax <b,—-Ax < —-b,x = 0}
=max{c x| [AA]x < [bb],x > 0}
Dual:
min{[b" ~b"]y | [AT —AT]y = ¢,y = 0}
+ +
= min{[bT -bT]. [i] ‘ [AT —AT] . [i] >c,y 20,y > 0}

=min{p” - (y* - y)|AT- (v -y )=,y =0,y =0}
min{bTy' ATy > c}
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —cfAglA<0

This is equivalent to AT (Az1)Tcp > ¢
v* = (A1) Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Apxf)Ty*
(ApxH)T(AgH Tep = (x)TAL (A1) Tep

=cTx*

Hence, the solution is optimal.
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5.3 Strong Duality

P =max{cTx | Ax <b,x = 0}
na: humber of variables, m 4: number of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{cx | Ax < b}
NAg=MNA, MJ =MA+NA

Dual D = min{bTy | ATy = ¢,y = 0}.
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5.3 Strong Duality

beer

1
| If we have a conic combination y of c then

1 bTy is an upper bound of the profit we can

: obtain (weak duality):
I
1cTx = (ATy)Tx = yTAx < yTh
1
: If x and y are optimal then the duality gap
1 is 0 (strong duality). This means

0=cTx-yTh

>

= yT(Ax - b)

1
| The last term can only be 0 if y; is 0 when-
1 ever the i-th constraint is not tight. This

1 . . .

| means we have a conic combination of ¢
by normals (columns of AT) of tight con-

1 straints.

v
3
o<
¢
’Q

1
1
1
1
1
1
1
1
1
1
1
1
1
1
= (ATy)Tx - yTh :
:
1
1
1
1
1
1
1
1
1
1
1
1
1

: Conversely, if we have x such that the nor-
; mals of tight constraint (at x) give rise to a 1

~

' conic combination of ¢, we know that x is :

ale | optimal. |

The profit vector c lies in the cone generated by the normals for
the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 33 (Strong Duality)
Let P and D be a primal dual pair of linear programs, and let z*
and w* denote the optimal solution to P and D, respectively.
Then

=w
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Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on
X. Thenmin{ f(x) : x € X} exists.

(without proof)
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Lemma 35 (Projection Lemma)

Let X = R™ be a non-empty convex set, and let v ¢ X. Then there
exist x* € X with minimum distance from . Moreover for all

x € X we have (v — x*)T(x — x*) < 0.
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Proof of the Projection Lemma

Define f(x) = ||y — x|l.

» We want to apply Weierstrass but X may not be bounded.
> X + . Hence, there exists x’ € X.
>

Define X' = {x € X | ||y — x|l < |l — x'||}. This set is closed
and bounded.

Applying Weierstrass gives the existence.

v

v
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*||? < ||y — x| for all x € X.

By convexity: x € X then x* +e(x —x*) e Xforall 0 <e < 1.

Iy —x*112 < |y — x* —e(x — x*)||?

=y - x*|I> + €®llx - x*||I* = 2e(y — x*)T(x — x*)

Hence, (v — x™)T(x — x*) < %ellx — x*|2.

Letting € — O gives the result.
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Theorem 36 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let v ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}
where a € R™, o« € R that separates y from X. (a' y < «;
alx = « forall x € X)
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to y in X.
> By previous lemma (v — x*)T(x — x*) <0 for all x € X.
» Choosea = (x* —y)and x = alx*.
» Forx € X:al(x —x*) >0, and, hence, a’x > «.
>

Also, a’y =al(x* —a) = « - ||a]|? < «

Lemma 37 (Farkas Lemma)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax e R" with Ax = b, x =0
2. 3y eR™ withATy >0, b7y <0

Assume X satisfies 1. and 7y satisfies 2. Then

0>yIb=yTAx >0

Hence, at most one of the statements can hold.
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Farkas Lemma

xX ap

1

/
/

If b is not in the cone generated by the columns of A, there exists
a hyperplane y that separates b from the cone.

Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x > 0} so that S closed, convex, b ¢ S.
We want to show that there is v with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'b < «
and y's > «xforall s € S.

0eS=>a=<0=>yIb<0

yTAx > « for all x = 0. Hence, ¥TA > 0 as we can choose x
arbitrarily large.




Lemma 38 (Farkas Lemma; different version)

Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax e R" with Ax <b,x >0
2.3y e R™ withATy >0,bTy <0,y =0

Rewrite the conditions:

1. 3x € R" with [AI]-[);]zb,xzo,szO
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Proof of Strong Duality

P: z=max{cTx | Ax < b,x = 0}
D: w=min{bTy | ATy > ¢,y = 0}

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

zZ=w .
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < ot implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b st. ATy—cv = 0
-Tx < -« Ty —av < 0
x = 0 y,v = 0

From the definition of & we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. ATy—-cv = 0
bTy—av < 0
y,v = 0

If the solution v, v has v = 0 we have that

dy e R™
st. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.
We can rescale this solution (scaling both v and v) s.t. v = 1.

Then v is feasible for the dual but b”y < «. This means that
w < K.

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))
Let A Q™" bheQ™, ceQ” xe Q. Does there exist x € Q"
st. Ax=b,x>0,cTx > o?

Questions:
> Is LP in NP?
» Is LP in co-NP? yes!
» IsLPinP?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
> We can prove this by providing an optimal basis for the dual.
> A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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Complementary Slackness

Lemma 41
Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy > ¢;y = 0} has
solution y*.

1. Ifx}k > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than xj-‘ = 0.

3. If ¥ > 0 then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than v = 0.

If we say that a variable x;-k (v]) has slack if x;‘ >0y >0), (e,
the corresponding variable restriction is not tight) and a contraint
has slack if it is not tight, then the above says that for a
primal-dual solution pair it is not possible that a constraint and
its corresponding (dual) variable has slack.

Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cTx* < y*TAx* < bTy*
Because of strong duality we then get
CTX* _ y*TAx* _ bTy*

This gives e.g.

DTA-chx¥ =0

J
From the constraint of the dual it follows that Y7 A > ¢”. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. Sa + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M >13
15C + 4H + 20M =23
C,HM =0

Note that brewer won't sell (at least not all) if e.g.

5C +4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €f,
and ¢y, respectively.
The profit increases to max{cx | Ax < b + &;x = 0}. Because of
strong duality this is equal to

min (bT +€T)y
s.t. ATy
y

%
a

%
]
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by > ; €;y/".

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
» |If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example
N %

'50\3\ \ max 13a + 23b
s.t. 5a + 15b + s =480
—& 4a + 4b + s =160
35a + 20b + S, = 1190

a , b, S ,Sh,sm=0
\

beer

: \
Y
N
N
N
N
Ay
Ay
‘\ N

B ale

The change in profit when increasing hops by one unit is

= cfAglep.
——
y*




Of course, the previous argument about the increase in the primal
objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 42
An (s,1)-flow in a (complete) directed graph G = (V,V xV,¢) is a
function f : V x V — Rj that satisfies

1. For each edge (x,y)

0 < fxy <cCxy .

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = zfxv .

(flow conservation constraints)
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Flows

Definition 43
The value of an (s, 1)-flow f is defined as

Val(f) = Zfsx - fos .

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max 2z foz = 2z fas
s.it. V(z,w)eVxV ow & Cawy fow
Vw=s,t X, fow—2fwz = 0 Ppu
fzw = O
min X xy) Exylxy
st faxy (x,y =5,8) 1 1lxy—1px+lp, = 0O
Ssy (¥ £5,t): 145, +1p, = 1
fxs (x =5,t): 10xs—1px > -1
Sty (¥ =5,0) ¢ 1:y +1py = 0
Fxt (x #5s,t): 105t —1px > 0
fst - W > 1
Jis: 1 > -1
Ly = 0
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LP-Formulation of Maxflow

min 2 xy) Cxylxy
s.t. fay (6, #=5,8) 1 1lxy—1pxt+lpy = O
fsy (¥ £5,1): 14sy— 1+1py, = O
Jxs (x #s,t): 10s—1px+ 1 = O
Sty (¥ =5,t): 14— 0+1p, = 0
fxt (x #5s,1): 10i—1px+ 0 = 0
Sfot: 14— 1+ 0= 0
Jis 14— 0+ 1 = 0
by = 0
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LP-Formulation of Maxflow

min 2 (xy) Cxylxy
s.t. fay (,y #=5,1) 1 1lxy—1pxt+lpy = O
fsy (¥ £5,1): 14sy— ps+lpy, = O
Jxs (x #s,t): 10xs—1px+ ps = O
Sry (¥ =5,0): 14y — pi+lp, = 0
fxt (x £5s,t): 10xi—1px+ pr = 0O
St Ws— ps+ pr = 0
Sis 15— pe+ ps = 0
by = 0

with p; = 0 and p; = 1.
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LP-Formulation of Maxflow

min > xy) Cxylxy

s.t. fxy: lxy—lpx+lpy, = O
lxy =2 0
ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t

(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < {x, + p, then simply follows from triangle
inequality (d(x,t) = d(x,y) +d(y,t) = d(x,t) < lxy +d(y,1)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut
in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Change LP := max{c’x, Ax = b;x = 0} into
LP" := max{cTx, Ax = b, x = 0} such that
I. LP is feasible
Il. If a set B of basis variables corresponds to an infeasible basis
(i.e. Az'b # 0) then B corresponds to an infeasible basis in
LP’ (note that columns in Ag are linearly independent).

lll. LP has no degenerate basic solutions
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Degenerate Example

?&/ max 13a + 23b
Gl
"ow s.t. 5a + 15b + s =480
&9 80/17-a + 4b + Sh =160

o —
(!)Q&\ Q\', ‘ 35a + 20b + sm = 1190
o~ . a, b,sc,sn,sm=0
N

{a,b,sm} ﬁ%\\n\\

\\

beer

o
2 \\% &
2 \\o
) (o 4
_Smtdir€eN ta, b, 5.}

ale {a, sq\sn}

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may
not make progress during an iteration of simplex.

Idea:
Given feasible LP := max{c’x, Ax = b;x = 0}. Change it into
LP' := max{c’x,Ax = v, x = 0} such that
I. LP' is feasible
1. If a set B of basis variables corresponds to an infeasible basis
(i.e. Az'b # 0) then B corresponds to an infeasible basis in
LP’ (note that columns in Ap are linearly independent).

I1l. LP’ has no degenerate basic solutions

Perturbation

Let B be index set of some basis with basic solution

x5 =Az'b = 0,x% =0 (i.e. Bis feasible)

Fix

b':=b+Ap| : | fore>0.

Em

This is the perturbation that we are using.
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Property |

The new LP is feasible because the set B of basis variables
provides a feasible basis:

Agl| b+ Ap| =xf+| 1 |=20.

Property Il

Let B be a non-feasible basis. This means (Alglb)i < 0 for some
row i.

Then for small enough € > 0

& &

Al | b+ Ap| = (Az'b)i+ | Azt A | <0
em . em/) /.
13 1

Hence, B is not feasible.
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Property llI
Let B be a basis. It has an associated solution
£
_ a1 -1

Em

*
Xp

in the perturbed instance.

We can view each component of the vector as a polynom with
variable ¢ of degree at most m.

AEIAB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, € > 0 small enough gives that no component of the above
vector is 0. Hence, no degeneracies.

Since, there are no degeneracies Simplex will terminate when run
on LP'.
> If it terminates because the reduced cost vector fulfills

=(cT - cfAz'A) <0

(o)}

then we have found an optimal basis. Note that this basis is
also optimal for LP, as the above constraint does not depend
on b.

> If it terminates because it finds a variable x; with ¢; > 0 for
which the j-th basis direction d, fulfills d > 0 we know that
LP" is unbounded. The basis direction does not depend on b.
Hence, we also know that LP is unbounded.

m 6 Degeneracy Revisited
Harald Racke

‘m 6 Degeneracy Revisited
Harald Racke




Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also
the right choice of ¢ is difficult.

Idea:

Simulate behaviour of LP” without explicitly doing a perturbation.
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (¢, > 0, of
course).

If we do not have a choice for the leaving variable then LP" and LP
do the same (i.e., choose the same variable).

Otherwise we have to be careful.
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Lexicographic Pivoting

In the following we assume that b > 0. This can be obtained by

replacing the initial system (A | b) by (Az'A | Az'b) where B is
the index set of a feasible basis (found e.g. by the first phase of
the Two-phase algorithm).

Then the perturbed instance is

b'=b+

Em
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Matrix View
Let our linear program be

T T

CgXp + CyXn = Z
ABXB + ANXN = b
XB xy = O
The simplex tableaux for basis B is
(ch —chAgtAN)xN = Z-ciAglh
Ixp + AglAnxy = Aplb
XB xy = O

The BFS is given by xy = 0,xp = Az'b.

If (¢}, — cf Azt AN) < 0 we know that we have an optimum
solution.
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has A, > 0 and
minimizes R
by (Aﬁlb)é)

0, = 2L = 2B T
Age  (A3'Ase)y

£ is the index of a leaving variable within B. This means if e.g.
B = {1,3,7,14} and leaving variable is 3 then £ = 2.

Lexicographic Pivoting

Definition 44
U <jex v if and only if the first component in which u and v differ
fulfills u; < v;.
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Lexicographic Pivoting

LP’ chooses an index that minimizes

1
£ 1 £
Agl| b+ Ag (D11
em P em P
Op = -1 = -1

(AB A*e)[’ (AB A*e)e
_throwof Ag'(b | D) | €
(Ag'Ase)p :
Em

Lexicographic Pivoting

This means you can choose the variable/row £ for which the

vector
0-th row of Agl(b | T)

(AglAse)p

is lexicographically minimal.
Of course only including rows with (Az'A..)y > 0.

This technique guarantees that your pivoting is the same as in the
perturbed case. This guarantees that cycling does not occur.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at
most (T’ﬁl) iterations, because it will not visit a basis twice.

The input size is L - n - m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary
representation of the largest coefficient in the matrix A.

If we really require (;}L) iterations then Simplex is not a
polynomial time algorithm.

Can we obtain a better analysis?

Number of Simplex Iterations

Observation
Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.
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Example

max c” X

IA
—

IA

s.t. 0<x
0<xo

=)
A
x
S
IA
—

21 constraint on n variables define an n-dimensional hypercube
as feasible region.

The feasible region has 2" vertices.

Example

T e T
max ¢’ x e !
st. 0<x; <1 i ! |
0<xy <1 ! i |
0<x,=<1 | :\J
‘4{ : ,"‘XZ

X1 e

However, Simplex may still run quickly as it usually does not visit
all feasible bases.

In the following we give an example of a feasible region for which
there is a bad Pivoting Rule.
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Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving
variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable
the leaving variable is unique.
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Klee Minty Cube

max X
s.t. 0<x; =<1
€Ex1 <x» <1-€ex;
€Ex» < x3<1-€x>
EXn-1<xpn=<1-€xy1
x;i =0

(1,e1-¢)

(l,s,eb‘),

X1 -1

Observations

> We have 2n constraints, and 3n variables (after adding slack
variables to every constraint).

> Every basis is defined by 2n variables, and n non-basic
variables.
> There exist degenerate vertices.

> The degeneracies come from the non-negativity constraints,
which are superfluous.

> In the following all variables x; stay in the basis at all times.

» Then, we can uniquely specify a basis by choosing for each
variable whether it should be equal to its lower bound, or
equal to its upper bound (the slack variable corresponding to
the non-tight constraint is part of the basis).

> We can also simply identify each basis/vertex with the
corresponding hypercube vertex obtained by letting € — 0.

Analysis

> In the following we specify a sequence of bases (identified by
the corresponding hypercube node) along which the
objective function strictly increases.

» The basis (0,...,0,1) is the unique optimal basis.

» Our sequence S, starts at (0,...,0) ends with (0,...,0,1)
and visits every node of the hypercube.

> An unfortunate Pivoting Rule may choose this sequence, and,
hence, require an exponential number of iterations.
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Klee Minty Cube

max X
s.t. 0<x1=<1
€Ex] <x2 <1-€x;
€Exr» <= x3<1-€x

.
1,61 —:ez)

0,1,¢)

1
2 =

(1, € €2). et " Txo

X1 - - -

Analysis

The sequence S, that visits every node of the hypercube is
defined recursively

(0,...,0,0,0)
?S'nl
0,...,0,1,0)
l S
0,...,0,1,1)
el
0,...,0,0,1)

The non-recursive case is S =0 — 1
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Analysis

Lemma 45
The objective value x,, is increasing along path S,,.

Proof by induction:
n = 1: obvious, since S; =0 —1,and 1 > 0.
n-1-n
> For the first part the value of x;;, = exy—1.
» By induction hypothesis x,,_; is increasing along S, -1,
hence, also x.
» Going from (0,...,0,1,0) to (0,...,0,1,1) increases x, for
small enough €.
> For the remaining path S;¥, we have x,, = 1 — €xy,_1.
> By induction hypothesis x;,_1 is increasing along S,,—1, hence

—€xp-1 is increasing along S;%,.

Remarks about Simplex

Observation
The simplex algorithm takes at most (,ﬁ) iterations. Each
iteration can be implemented in time O (mn).

In practise it usually takes a linear number of iterations.
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Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for
choosing entering and leaving variables) there exist lower bounds
that require the algorithm to have exponential running time
(Q(29M)) (e.g. Klee Minty 1972).
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Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist
subexponential lower bounds (Q(22™M%) for « > 0) (Friedmann,
Hansen, Zwick 2011).
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Remarks about Simplex

Conjecture (Hirsch 1957)
The edge-vertex graph of an m-facet polytope in d-dimensional
Euclidean space has diameter no more than m — d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form
O(poly(m,d)) is open.
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8 Seidels LP-algorithm

> Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € RY and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (my:’ld)) ~ (m + d)™. (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.

» In the following we develop an algorithm with running time
O(d! - m), i.e., linear in m.
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8 Seidels LP-algorithm

Setting:

> We assume an LP of the form

min c¢Tx
st. Ax = b
x = 0

» We assume that the LP is bounded.
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Ensuring Conditions

Given a standard minimization LP

min c¢Tx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution.

‘m 8 Seidels LP-algorithm
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of
entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Agxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).
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Theorem 46 (Cramers Rule)

Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

 det(M;)
Y= et(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:
> Define | Dl |
Xi = (e1 Ceeio] X eip ---en>
| | |
Note that expanding along the i-th column gives that
det(X;) = x;.

» Further, we have

| b |
MX; = (Mel -+~ Me;_ 1 Mx Mej - - - Men) =M;
| o |
det(M;)

xi = det(Xy) = g

» Hence,

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let C
denote the matrix obtained from A by replacing the j-th column
with vector b (for some j).

Observe that

|det(C)| = | > sgn(m) [] Cirnai
TESM l<ism
< > J] ICinw!

meSK 1<i<m

<m!.-zm : Here sgn(mr) denotes the sign of the permu—:
:tation, which is 1 if the permutation can be:
1 generated by an even number of transposi-!
:tions (exchanging two elements), and —1 if:
! the number of transpositions is odd. ;
1 The first identity is known as Leibniz formula.

1
N R A Y LY RSy ROy R R 1
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Bounding the Determinant

Alternatively, Hadamards inequality gives

m m
|det(C)| < n ICxill < H(MZ)
io1 io1
<mmiZzm

Hadamards Inequality

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black cube
(if llex ]l = llaxll, lle2ll = llazll, llesll = llasll).
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Ensuring Conditions

Given a standard minimization LP

min c¢Tx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution. Add the constraint ¢’ x > ~dZ(m! - Z™) — 1. Note
that this constraint is superfluous unless the LP is
unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.
> If the costis c'x = —(dZ)(m!- Z™) — 1 we know that the

original LP is unbounded.

> Otw. we have an optimum basis.

m 8 Seidels LP-algorithm
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In the following we use #{ to denote the set of all constraints
apart from the constraint c’x > —~dZ(m!- z™) — 1.

We give a routine SeidelLP(7, d) that is given a set H of explicit,
non-degenerate constraints over d variables, and minimizes ¢’ x
over all feasible points.

In addition it obeys the implicit constraint
cT'x=—-(dz)(m!-zm) 1.
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Al

orithm 1 SeidelLP(#,d)

—_ —
N =

S

0 N O Ul A W N =

9

e v

if d = 1 then solve 1-dimensional problem and return;

if 7{ = @ then return x on implicit constraint hyperplane
choose random constraint h € 7

H — H\ {h}

X* < SeidelLP(H,d)

if X* = infeasible then return infeasible

if x* fulfills h then return x*

// optimal solution fulfills h with equality, i.e., aZx = by
solve aPTLx = by, for some variable xy;

eliminate x in constraints from #{ and in implicit constr.;

. X* < SeidelLP(H,d — 1)
. if X* = infeasible then

—_
w

return infeasible

: else

15:

add the value of xp to X* and return the solution




8 Seidels LP-algorithm 5t o] ieselion, 1) 5 6] 26 | 8 Seidels LP-algorithm
forthecasem =0. ___________ l

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

» If d > 1 and m = 0 we take time @ (d) to return

. . This gives the recurrence
d-dimensional vector x.

> The first recursive call takes time T'(m — 1,d) for the call ‘9(315"‘{11”"}) ':Z =1 .
: : . o(d) ifd>1and m =0
lus O(d) for checking whether the solution fulfills h. =
plus O(d) 9 Tm,d) =1 o) + Tom - 1,d)+
> If we are unlucky and X* does not fulfill h we need time %(O(dm) +Tm-1,d-1)) otw.
O(d(m +1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T(m — 1,d — 1). Note that T'(m, d) denotes the expected running time.

» The probability of being unlucky is at most d/m as there are
at most d constraints whose removal will decrease the
objective function
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8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the O-notations.

We show T (m,d) < Cf(d) max{l, m}.

Let C be the largest constant in the O-notations. d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) > 1
Cmax{l,m} ifd=1
T q) - cd ifd>1andm =0
(m,d) = Cd+Tm-1,d)+ d>1m=0:

4(Cdm+T(m—-1,d—1)) otw.
T(0,d) < 0(d) < Cd <Cf(d) max{1,m} for f(d) = d

Note that T'(m, d) denotes the expected running time.
d>1m=1:
T(1,d) = O(d) + T(0,d) + d(O(d) +T(0,d — 1))
<Cd+Cd+Cd*>+dCf(d-1)

T PES— < Cf(d)max{1,m} for f(d) = 3d*> +df(d—1)
Harald Racke




8 Seidels LP-algorithm

d>1,m>1:
(by induction hypothesis statm. true for d’ < d,m’ = 0;
and ford’ =d, m' <m)

T(m,d) = O(d) + T(m —1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m-1)+Cd*+ %Cf(d— 1)(m—1)
<2Cd* +Cf(d)(m—1) +dCf(d—1)
<Cf(dm

if f(d)>df(d-1)+2d2.

8 Seidels LP-algorithm

> Define f(1) =3-12and f(d) = df(d — 1) + 3d? ford > 1.
Then
f(d)=3d°+dfd-1)
=3d% +d[3(d—-1)?+ (d-1)f(d-2)]
=3d?+d[3(d-1)%+(d-1)[3d-2)%+(d-2)f(d-3)]]
=3d?+3d(d-1)?+3dd—-1)(d—-2)*+...
+3dd-1)(d-2)-...-4-3-2-1?

2 _ 2 _ 2
:3d!(d (d-1)?*  (d-2) +>

AT d— T -2
— O(d)

.
since >;.; 7 is a constant.

8 Seidels LP-algorithm
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Complexity

LP Feasibility Problem (LP feasibility A)
Given A € 7™*" b € 7™. Does there exist x € R™ with Ax < b,
x >07?

LP Feasiblity Problem (LP feasibility B)
Given A € 7Z"™*" h € 7™, Find x € R™ with Ax < b, x > 0!

LP Optimization A
Given A € 7Z"*" b € 7™, ¢ € 7. What is the maximum value of
cTx for a feasible point x € R"?

LP Optimization B
Given A € 7ZM™*" b € 7™, c € 7". Return feasible point x € R"
with maximum value of ¢ x?

__________________________________________________________ .
: Note that allowing A, b to contain rational numbers does not make a difference, as we can,

! multiply every number by a suitable large constant so that everything becomes integral but the |
| feasible region does not change. !

The Bit Model

Input size

» The number of bits to represent a number a € Z is

[log,(lal)]+1

> Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

(M) = >[log, (Imy;]) + 11
i,]
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is L = O({A) + (b)).




» In the following we sometimes refer to L := (A) + (b) as the
input size (even though the real input size is something in
O((A) + (b))).

> Sometimes we may also refer to L := (A) + (b) + nlog, n as
the input size. Note that nlog, n = ©((A) + (b)).

» In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L).

' Note that mlog, m may be much Iarger !
|than (A) + (b).

Suppose that Ax = b; x > 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xp = Aglb

and all other entries in x are O.

| In the following we show that this x has small encoding length |
| and we give an explicit bound on this length. So far we havel
: only been handwaving and have said that we can compute x via 1
1 Gaussian elimination and it will be short...
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Note that n in the theorem denote5|

Size of a Basic Feasible Solutlon,the number of columns in A Wh.ch

may be much smaller than m.

> A: original input matrix
» A: transformation of A into standard form

> Ap: submatrix of A corresponding to basis B

Lemma 47

Let Ag € 7M™ gnd b € 7™. Define L = (A) + (b) + nlog, n.
Then a solution to Agxg = b has rational components x; of the
form %, where |D;| <2t and |D| < 2L.

Proof:
Cramers rules says that we can compute x; as

.. _ det(A})
7 det(Ap)

where Aé is the matrix obtained from Ag by replacing the j-th
column by the vector b.

Bounding the Determinant

Let X = Agp. Then

|det(X)| = |det(X)]
=1 > sgn(m) [] Xira
mTeESH l<i<n
< > ]| Xirwl
TESH 1<i<n IWhen computing the determinant of X = AB )
< n! . 2(A+D) - oL .we first do expansions along columns that !

1 were introduced when transforming A mton

! standard form, i.e., into A. 1

Here X is an 71 X 71 submatrix of A : Such a column contains a single 1 and:
. - "'the remaining entries of the column are 0.|
with 7 < n. |Therefore these expansions do not increase |
| the absolute value of the determinant. After j
'we did expansions for all these columns we |
| are left with a square sub-matrix of A of size |
| at most n x n. !

Analogously for det(A‘lé).
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Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax < b;x = 0} do a binary search for the
optimum solution

(Add constraint ¢’ x > M). Then checking for feasibility shows
whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22t’ ,
10g2 (W) =0(") ,
as the range of the search is at most —n22L' ..., n22L" and the

. . . 1 1
distance between two adjacent values is at least gz = 517

Here we use L’ = (A) + (b) + (c) + nlog, n (it also includes the
encoding size of c).

How do we detect whether the LP is unbounded?

Let Mmax = n22L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢’ x > Mpax + 1 and check for feasibility.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

> Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.

> REPEAT

Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?

» How do you measure progress? By how much does the
volume decrease in each iteration?

» When can you stop? What is the minimum volume of a
non-empty polytop?
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Definition 48
A mapping f: R"™ — R" with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.

Definition 49
A ball in R™ with center ¢ and radius 7 is given by

B(c,v) ={x]| (x-0)T(x-¢c) <7r?}

={x|D(x-0)Fr*<1}

B(0,1) is called the unit ball.
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Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L~L(f(x) — t).

S(B(0,1)) = {f(x) | x €B(0,1)}
={y eR"| LY (y-t) €B(0,1)}

—{yeR" | (y-0)TL VL Y y—1) <1}
={yeR"|(y-lQ ' (y-t) <1}

where Q = LLT is an invertible matrix.

How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x1. Hence, ¢’ = tey fort > 0.

» The vectors ey, e»,... have to fulﬁlllthe ellipsoid constraint
with equality. Hence (e; — ¢)TQ’" (ej —¢') = 1.

The Easy Case

. oA, A, .,
> To obtain the matrix Q"  for our ellipsoid E’ note that E’ is
axis-parallel.

> Let a denote the radius along the x;-axis and let b denote
the (common) radius for the other axes.

» The matrix

a 0 0
- b
o]

: . . 0

0O ... 0 b

maps the unit ball (via function /' (x) = L'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.
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The Easy Case

> As Q' = i'1’" the matrix Q’_l is of the form

5 0 0

Q,lz 0 ﬁ
' 0
0 0

The Easy Case

> (e1 — CA')TQ'71(61 —¢') =1 gives

1
1-t r 2 0 ... 0 1-t¢
(5) 0 bliz ..' E . (i) :]_
. . 0 :
0 0 0 % 0

> This gives (1 — )2 = a?.
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The Easy Case

> For i = 1 the equation (e; — c”)TQ’_l(el- —¢") =1 looks like

(here i = 2)
—t\ 1 ¢
1 a0 0 1
0o L
b? 0 =1
: ) 0
: 1
0 0 0 4 0
> This gives;—i+l}—2=1,and hence
i—l—ﬁ—l— 2 1-2t
b2 a? (1-1)2 (1-1)2

Summary

So far we have
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The Easy Case

We still have many choices for t:

Choose t such that the volume of E’ is minimal!!!

The Easy Case

We want to choose t such that the volume of E’ is minimal.

Lemma 51
Let L be an dffine transformation and K < R™. Then

vol(L(K)) = [det(L)]| - vol(K) .
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n-dimensional volume
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The Easy Case

> We want to choose t such that the volume of £’ is minimal.

vol(E") = vol(B(0,1)) - |det(L")] ,

» Recall that

a 0 0
. b
L' = 0
0
0 0 b

> Note that a and b in the above equations depend on t, by
the previous equations.

‘m 9 The Ellipsoid Algorithm
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L))|
=vol(B(0,1)) - ab™ !

. n-1
— vol(B(0,1)) - (1 - t) - (%)
B L d-or
—VOl(B(O,l)) (m)n—l

We use the shortcut ® := vol(B(0,1)).

‘m 9 The Ellipsoid Algorithm
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The Easy Case

dvol(£)) d ((b (1-t)" )

T Aa+ —r\yn—1
dt dq)t (Vi=21) _y
=52 =D R R o
- derivative of numerator ’ denominator ]
N = denominator 1-t

/(n—l)W-ﬁ (2T (AT
A=E
P inner derivative
=Nz (W1-20"7-a —_
. ((n -1 -t)—n(l - 2t)>

= % SW1=20 3. a -t ((n + 1)t — 1)
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The Easy Case

> We obtain the minimum for t = ﬁ

> For this value we obtain

n 1-t n
a=1-t= and b = =
n+1 1-2t n? -1
To see the equation for b, observe that
1
n2 _ (1 -1)? _ (1—m)2 _ (%)2 _ n?
1-2t  —— n-l n2 -1
n+1 n+1

The Easy Case

Let yn = #féi%)) = ab™ ! be the ratio by which the volume
changes:
2
2 n 2 n n—1
Yo = <n+1> <n2—1>
1 2 1 n-1
= (1- I+ ——
( n+1 ( (n—l)(n+1)>

where we used (1 + x)¢ < e?* for x € R and a > 0.

_ 1
This gives y, < e 20+,
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

Our progress is the same:

J—— vol(E") _ vol(E") _ vol(R(E"))
vol(B(0,1))  vol(E)  vol(R(F))

_ VOl(E") _ vol(f(E"))  vol(E")

~ vol(E)  vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx +t changes the volume by factor det(L).
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The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

fHE) = {ftx) laT(x—c) <0}
={f Y fo) lal(f(¥)—c) <0}
={yla'(f(y)-c) <0}
={ylalLy+c-c) <0}
={yl(a'L)y <0}

This means d@ = L7a.
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative x1-direction. Hence,

For computing the matrix Q' of the new ellipsoid we assume in
the following that £/, £ and E’ refer to the ellispoids centered in
the origin.
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LTa LT(l
-1
<|ILTa||) ILTall
Hence,
, . 1 1 LTa
C=R-C =R- e] = —
n+1} n+1|LTa|
¢ =fE)=L-¢"+c
1 LTa
= — L +c
n+1"||LTal
1
=C - — Q&l
n+1 aTQa
Recall that
a? 0 0
A, | 0 b2
0
0 0 b2
This gives , [ Note that ere is a matrix

n T | M that has M1 = 1 and all |
I - 181 1 A 1
ne—1 n+1 , other entries equal to 0.

Q' =

because for a2 = n?/(n+1)2 and b? = n?/n2_1

b2 2 2 _ n? 2n?

n+1 n2-1 Mm-1)n+1)2

_nPm+1)-2n>  n’(m-1) )

m-1n+12 @m-1Dmn+1)2




9 The Ellipsoid Algorithm

E' =R(E)
= {R() | xTO" 'x <1}
-y I RIWTQT Ry < 13
— (¥ 1 yT®RNH QTR < 1)
={y 1 ¥yT(RQ'RT) 1y <1}
T
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9 The Ellipsoid Algorithm

Hence,

- <I_nilelelT)'RT

n? 2
(R -RT — il (Rel)(Rel)T>

2 2 LTaaTL)
n+1|LTal?

Il
S
OIS
—

]
: Here we used the equation for Re; proved before, and the fact that RRT = I, which holds for
: any rotation matrix. To see this observe that the length of a rotated vector x should not change,:
1i.e., y
: xTIx = Rx)T(Rx) = xT(RTR)x :
I I
: which means xT (I - RTR)x = 0 for every vector x. It is easy to see that this can only be fulfilled '
1ifI-RTR = 0. |
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E' =L(E")
= {Lx) | xTQ 'x <1}
=y I Ly < 1
— (v 1yTaH QL y < 13
={ylyTaQ'Lh 1y <1}
o

‘m 9 The Ellipsoid Algorithm
Harald Réacke
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Hence,
Q' =1Q'L’
2 T, T
_;..n <_ 2 LaaL>_LT
nz -1 n+1 alQa
_ n2 (Q— 2 QaaTQ)
T n2-1 n+1 alQa
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R", convex set K < R"
2: output: point x € K or “K is empty”

3:Q — 77

4: repeat

5: if c € K then return ¢

6: else

7: choose a violated hyperplane a

1 Qa
8: cC —cCc— ] W
n? 2 Qaa’qQ

% Q(_n2—1(Q_n+1 aTQa>
10: endif
11: until 777
12: return “K is empty”

Repeat: Size of basic solutions

Lemma 52

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let
L:=2(A) +(b) +2n(1 + log, n). Then every entry x; in a basic
solution fulfills |x ;| = —j with Dj, D < 2L,

In the following we use § := 2L,

Proof:

We can replace P by P’ := {x | A’x < b;x = 0} where

A = [A —A]. The lemma follows by applying Lemma 47, and
observing that (A") = 2(A) and n’ = 2n.

‘m 9 The Ellipsoid Algorithm
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube —6 < x; < 6.

A vector in this cube has at most distance R := \/nd from the
origin.

Starting with the ball Ey := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R™"vol(B(0,1)) < (nd)"vol(B(0,1)).
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When can we terminate?

Let P:= {x | Ax < b} with A€ Z and b € 7Z be a bounded
polytop.

Consider the following polyhedron

1

P,\:={x|Axsb+}1\ : }
1

where A = 52 + 1.

Note that the volume of P, cannot be 0
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Making P full-dimensional

Lemma 53
Py is feasible if and only if P is feasible.

< obvious!
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Making P full-dimensional

=

Consider the polyhedrons
P=1{x|[A-AlLn|x=bx =0}

and
1
PA:{XI[A—AIm]x:b+% tlix =0} .
1

P is feasible if and only if P is feasible, and P, feasible if and only
if P, feasible.

P, is bounded since P, and P are bounded.

Making P full-dimensional
Let A=A -Aln|.
P, feasible implies that there is a basic feasible solution

represented by

1

_ 1.
xg=Ag'b + XAgl

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for
P is that one of the basic variables becomes negative.

Hence, there exists i with

- - 1 - .-
(Ag'b)i <0 < (Ag'b); + X(Agll)i

Making P full-dimensional

By Cramers rule we get

(A3'h)i <0 = (A3'b); < -1/6

1
det(Ap)

and '
(Ag'l); < det(A}) <&,

where Aé is obtained by replacing the j-th column of Az by 1.
But then
_ 1 - -
(Az'b); + X(Agll)i <-1/6§+6/A<0,

as we chose A = 2 + 1. Contradiction.
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Lemma 54

If Py is feasible then it contains a ball of radius v := 1/5°. This

has a volume of at least v"'vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with || /]| < 7. Then

He

(A(x +0)); = (Ax); + (Al); < b; + diTg
< by + ld@ll - 1]l < by + V/n - 2%amax)

. 2{@max)
-2 _, 1

Shir s

bi—l-

el

nce, x + U is feasible for Py which proves the lemma.

m Harald Racke
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How many iterations do we need until the volume becomes too
small?

e 201 - vol(B(0,R)) < vol(B(0,7))
Hence,

Vol(B(O,R))>
vol(B(0,7))
=2(n+1)In(n"s" - 5°")
=8nn+1)In(d) + 2(n + 1)nln(n)
= O(poly(n) - L)

i>2(n+1)ln<

9 The Ellipsoid Algorithm
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Algorithm 1 ellipsoid-algorithm

12
13

1
2
3
4
5:
6
7
8
9:

10:

11:

: input: point ¢ € R™, convex set K < R", radii R and
with K < B(c,R), and B(x,r) < K for some x
: output: point x € K or “K is empty”
. Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)
repeat

if c € K then return c

else

choose a violated hyperplane a

C < C—

Q —
endif
- until det(Q) < 2" //i.e., det(L) <™
: return “K is empty”

Separation Oracle

Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

> certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
> a guarantee that a ball of radius ¥ is contained in K,
> an initial ball B(c,R) with radius R that contains K,

> a separation oracle for K.

The Ellipsoid algorithm requires @ (poly(n) - log(R/v)) iterations.
Each iteration is polytime for a polynomial-time Separation oracle.




Example )
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10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
» P={x|Ax <b}; P°:= {x| Ax < b}
> interior point algorithm: x € P° throughout the algorithm
> for x € P° define
si(x):==b;i—alx

as the slack of the i-th constraint

logarithmic barrier function:

P (x) = - > In(si(x))

i=1

Penalty for point x; points close to the boundary have a very large
penalty.

_________________________ |

:Throughout this section a; denotes the

1 i-th row as a column vector. 1

Penalty Function

Penalty Function

‘H\IHJ“—“ | l‘

Il )‘ HmHhinW‘ [
|

Sl

i ,,mll‘

ﬂﬂm Harald Ricke
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Gradient and Hessian

Taylor approximation:

Pp(x+€)~¢p(x)+Vp(x)Te+ %ETVZ(I)(X)E

Gradient:
LU |
v = ca; = AT
P(x) 1';1 510 a; dy
where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)
Hessian:
UL |
Hy:=V?p(x) = > ———=a;a; = ATD2A

si(x)2

i=1"t

with Dy = diag(dy).

Proof for Gradient

op(x)

0Xi

(- 3 in(s, (x)))

0
T o
;aa(ln(sr(x))> ;sy(x) 8xl< T(X))
;Sy(x)axl( ar ) ;sr(x) axl< Ex)
-3t

= T(X)

The i-th entry of the gradient vector is >, 1/s,(x) - A,;. This
gives that the gradient is

Ve (x) =D 1/sr(x)ar = Aldy

Proof for Hessian

aij(zsr(lx) )

( ﬁ) aaacj (57(’())

Ys, (x)2 Arj

2.Ar
" 2An

Note that >, A, A, = (ATA)ij. Adding the additional factors
1/sy(x)? can be done with a diagonal matrix.

Hence the Hessian is
H, = ATD?A

Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|[DxAull3 = 0

This gives that ¢ (x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = Dy Aull3 > 0 for u # 0
This gives that ¢ (x) is strictly convex.

llullg, == vuTHyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.
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Dikin Ellipsoid
Ex={y|(v-x)THy(y —x) <1} ={y | lly - xllg, <1}

Points in E, are feasible!!

(v —x)THy(y —x) = (v = x)TATDZA(y - x)

m

(al (y - x))?
si(x)?2

I
]

1

-
Il

(change of distance to i-th constraint going from x to y)?
(distance of x to i-th constraint)?

IA Il

In order to become infeasible when going from x to y one of the
terms in the sum would need to be larger than 1.

Dikin Ellipsoids
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Analytic Center

Xac 1= argmin,. cp. ¢p(x)

> Xx,c is solution to

L |
Vp(x)= D> ——a;=0
1'; si(x)

» depends on the description of the polytope

> x,c exists and is unique iff P° is nonempty and bounded

Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = oo: optimum solution

x*(t) exists and is unique for all t > 0.
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Different Central Paths
y

A

\
’)/Z/’/
|

\
\
\

7 [\
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Central Path

Intuitive Idea:
Find point on central path for large value of t. Should be close to
optimum solution.

Questions:
» Is this really true? How large a t do we need?

» How do we find corresponding point x*(t) on central path?

10 Karmarkars Algorithm
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The Dual

primal-dual pair:

— max -blz
min c'x T
st. A'z+c¢c=0
s.t. Ax<b
z=0
Assumptions

» primal and dual problems are strictly feasible;

» rank(A) = n.

| Note that the right LP in standard form
lis equal to max{-bTy | ATy =c,x >
1 0}. The dual of this is min{cTx | —Ax >
: —b} (variables x are unrestricted).

Force Field Interpretation

Point x*(t) on central path is solution to tc + V¢p(x) =0

» We can view each constraint as generating a repelling force.
The combination of these forces is represented by V¢ (x).

» In addition there is a force tc pulling us towards the
optimum solution.

L 1
1 The “gravitational force” actually pulls

| us in direction — V& (x). We are minimiz-,
: ing, hence, optimizing in direction —c. 1

10 Karmarkars Algorithm
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How large should t be?

Point x*(t) on central path is solution to tc + V¢ (x) = 0.

This means
m 1
e 2 st 0
or
m 1
* — i * T e k()
c+ Z z; ()ai = 0 with Zi () tsi(x*(t))

i=1

> z*(t) is strictly dual feasible: (ATz* + ¢ = 0; z* > 0)

> duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(-Ax)Tz= %

> if gap is less than 1/2%L) we can snap to optimum point

How to find x* (1)

First idea:
> start somewhere in the polytope

> use iterative method (Newtons method) to minimize
fr(x) i=tcTx + p(x)

10 Karmarkars Algorithm
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Newton Method
Quadratic approximation of f;

Frlx +6) = fi00) + Vi) e+ e Hy (x) €

Suppose this were exact:

frix +€) = fi(x) + Vfi(x)Te+ %ETHfr(X)E

Then gradient is given by:

Vft(x +€) =Vfi(x)+Hp(x)-€
i Note that for the one-dimensional case
1 g(€) = f(xX) + f(x)e+ 5 £ (x)€?, then
1g'(e) = f(x) + f (x)e.

10 Karmarkars Algorithm

| Observe that Hy, (x) = H(x), where H(x) is the Hessian 1

'for the function ¢(x) (adding a linear term like tcTx
1 does not affect the Hessian). !
1

Newton Method

:Also Vft(x) =tc+ Vp(x).

___________________________________

We want to move to a point where this gradient is O:

Newton Step at x € P°
Axne = —H' (x)V fr (x)

- —Hj:tl(x)(tc + V(x))
= —(ATD2A) M(tc + ATdy)

Newton Iteration:
X =X + AXnt




Measuring Progress of Newton Step

Newton decrement:

At (x) = [[Dx AAXntll

= lAxntll

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

At (x)? = V()T Axne

> Ar(x) =0iff x = x™(t)

> A;(x) is measure of proximity of x to x™*(t)

Convergence of Newtons Method

Theorem 55
If At(x) < 1 then

> x, =X+ Axpu € P° (new point feasible)

> Ar(xs) < Ap(x)?

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

> At(x) = |Axntlla, < 1; hence x4 lies in the Dikin ellipsoid
around x.

Convergence of Newtons Method

bound on As(x™*):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(d+)

At(x*)? = DL AAX |12
< D+ AAXI? + 1Dy AAX, + (I = D7'D)DAAX |1
= |(I = D;'D)DAAXy ||

To see the last equality we use Pythagoras
lall? + lla + bl|* = |Ib]|?

if al (a + b) = 0.




Convergence of Newtons Method
DAAxp = DA(x™ — x)
=D(b - Ax — (b — Ax™"))
= DD 'T-D;')
= (I-D;'D)I

al(a+b)
= Axi ATD., (D AAX + (I - DT'D)DAAX)
= Axil (ATD2 AAX — ATD? AAxn + ATD, DAAX )
= Ax (Hy Axfy — HAxn + ATD. T - ATDT)
= Al (= V) + Vi) + Vh(xT) - V(x))
=0

Convergence of Newtons Method

bound on As(x7):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(d+)

At(x™)? = IDy AAX I
< |IDLAAXI? + 1D+ AAX + (I — DI'D)DAAX |2
= | (I - D;'D)DAAX ||
= |I(I - D:'D)*T)?
<0 -D'D)I|?
= |IDAAX|I*
= Ar(x)?

The second inequality follows from 3, v < (3, 2)*

If As(x) is large we do not have a guarantee.

Try to avoid this case!!!
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Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function
4 recenter to return to central path




Short Step Barrier Method

simplifying assumptions:
> a first central point x*(tg) is given

> x*(t) is computed exactly in each iteration

€ is approximation we are aiming for

start at t = tg, repeat until m/t < e
> compute x*(ut) using Newton starting from x*(t)
> = ut

where py=1+1/(2/m)

Short Step Barrier Method

gradient of f;+ at (x = x*(t))

Vfr+(x) = Vfi(x) + (u—1tc

—(u-1)ATD,1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is
A+ (x)2 = Ve () THIV 1+ (x)
=(u-1)°1"B(BTB)"'BTT B=DIA
<(u-1%°m
=1/4

This means we are in the range of quadratic convergence!!!

: Explanation for previous slide

1P = B(BTB)"1BT is a symmet-
:ric real-valued matrix; it has n
!'linearly independent Eigenvec-
the number of Newton iterations per outer | tors. Since it is a projection ma-
iteration is very small: in practise only 1 or 2i ' (P? = P) it can only have
:Elgenvalues 0 and 1 (because

) ) i the Eigenvalues of P2 are A2,
Number of outer iterations: 'where A; is Eigenvalue of P).

We need t; = ukto = m/e. This holds when ! The expression

Number of Iterations

1 T
_ log(m/(eto)) | s L
log(u) | voviv
I gives the largest Eigenvalue for
: ITpT < T7 =
We get a bound of R N
m
O (x/mlog —)
€lp

We show how to get a starting point with to = 1/2%. Together
with € = 271 we get O(L./m) iterations.
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L 2 1
1We assume that the polytope (not just

:the LP) is bounded. Then Av < 0 is not :
: possible. y

Damped Newton Method

For x € P° and direction v # O define taTv is the change on the left
:hand side of the i-th constraint
a.Tv when moving in direction of v.
Ox (V) 1= max L LOf ox(v) > 1 then for one coor-
t Si(X) :dinate this change is larger than
1 the slack in the constraint at posi-
:tion X.
' By downscaling v we can en-

1
1 sure to stay in the polytope. ;
R

Observation:

x+aveP forxe{0,1/ox(v)}
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate says
that f; (x) should change by V f; (x)T av.

The following argument shows that f; is well behaved. For small
« the reduction of f;(x) is close to linear estimate.

frix +av) — fi(x) =tcTov + Pp(x + av) — p(x)

b(x +ov) — Pp(x) = - Zilog(si(x +av)) + Zilog(si(x))
= > log(si(x + av) /5i(x))

- Zilog(l —alov/si(x))

______________________________

|sl(x+ow) bi—alx-alow =si(x) —alav

V1 )T ow :
= (tcT 4 Zia;r/si(x))ow I
=tclTav + 3 qw; :

Note that |w| = llvIg ]
Define w; = a; v/s;(x) and o = max; w;. Then L ------------- o
fi(x + av) = fr(x) = Vfi(x) aw
= —Zi(cxwi+log(1—cxwi))
2.2
oKEW?
<— > (ow;i+log(l — ow;)) + > 5 L
wi>0 w;<0
2 2 2
w; (xo) w;
< - Z —E(a0+log(l—o<(7)>+ Z —5
2 o
w;i>0 w;<0
For x| <1,x<0: oo :
2 3 4 2 2 2 !
' ox+log(l-x) =-% - % - % _2_%=_y7% :
For x| <1,0<x=<y: I
2 3 4 2 2 2 ) 1
IR EEE Sk T R (S B
! 2 2 3 4 x2
! 2o (- % -% -4 -...)=5(+logl-) |

Damped Newton Method

w?
-2 U—; (cxa +log(1 - cxa))

1
_;HUHEIX (o«r +log(1 - o«r))

Damped Newton Iteration:
In a damped Newton step we choose

Xi=X+—"——""AXx
* 1 +Ux(AXnt) nt

______________________________________________________

.Thls means that in the above expressions we choose « = 1+1o and v = Axnt. Note that

|t wouldn’t make sense to choose « larger than 1 as this would mean that our real target :
(x + Axny) is inside the polytope but we overshoot and go further than this target. i

_____________________________________________________
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Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

Ar(x) —log(1 + A¢(x))

Proof: The decrease in cost is

—aVfi(x)Tv + éllv\léx(txcr +log(1l — xo))

Choosing o = m and v = Axp gives

A 2
At(x)2+t((:;)< T tlog(1- ))

1+0 1+0

l1+0

:With vV = Axnpe we have w2 = [Vilg, = A¢(x); further:
i recall that 0 = |w|l«; hence o < A¢(x). |

__________________________________




i The first inequality follows since the

: function X%(x —log(1+x))is monoton—:
: ically decreasing. !

> Ap(x) —log(1 + A¢(x))
> 0.09

Damped Newton Method

for A¢(x) = 0.5

Centering Algorithm:

Input: precision §; starting point x
1. compute Axne and A (x)
2. if Ay(x) < 6 return x
3. set x := X + xAxnt with

1
o = T+0x (Axnt) Ap = 1/2
1 otw.

Centering

Lemma 56
The centering algorithm starting at xo reaches a point with
At (x) < 6 after

Sft(xo) —miny fi(y)
0.09

+ O(loglog(1/6))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = (A) + (b) + (c¢) (encoding
length) and A = 22L. Recall that a basis is feasible in the old LP iff
it is feasible in the new LP.

Lemma [without proof]
The inverse of a matrix M can be represented with rational
numbers that have denominators z;; = det(M).

For two basis solutions xg, xj, the cost-difference cTxp — CTXB
can be represented by a rational number that has denominator
z = det(Ap) - det(Ap).

This means that in the perturbed LP it is sufficient to decrease the
duality gap to 1/2%L (i.e., t ~ 2%L). This means the previous
analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective
value ¢ x is at most n2M2L, where M < L is the encoding length
of the largest entry in C.

m 10 Karmarkars Algorithm
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How to get close to analytic center?

Start at xo.

Choose ¢:

xo = x*(1) is point on central path for ¢ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ~ 1/2%L) This requires O (/mL) outer iterations.

Let x; denote this point.

Let x. denote the point that minimizes

t-clx +p(x)

(i.e., same value for t but different ¢, hence, different central

path).

' This holds since the slack in every constraint i
1at xp is at least A = 1/22L, and the gradient |
=-Vp(x). | is the vector of inverse slacks.

How to get close to analytic center?
Clearly,

t-ETxe+ Pplxe) <t-éTxe+ Pplxe)
The difference between f:(x:) and fi(x.) is

teTxs + plxe) — teTxe — plxe)
<t(cTxe+Txe —Txs —clTxe)
< 4tn23L

For t = 1/22) the last term becomes constant. Hence, using
damped Newton we can move from x; to x. quickly.

In total for this analysis we require @(,/mL) outer iterations for
the whole algorithm.

One iteration can be implemented in O (m3) time.

Part Il

Approximation Algorithms

m Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
> Heuristics.
> Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.

‘m 11 Introduction to Approximation
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Definition 57

An x-approximation for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of « of the
value of an optimal solution.

m 11 Introduction to Approximation
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Why approximation algorithms?

» We need algorithms for hard problems.
> It gives a rigorous mathematical base for studying heuristics.

> |t provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

> Sometimes the results are very pessimistic due to the fact
that an algorithm has to provide a close-to-optimum solution
on every instance.

‘m 11 Introduction to Approximation
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Definition 58
An optimization problem P = (7, sol, m, goal) is in NPO if

x €7 can be decided in polynomial time

>
» v € sol(7) can be verified in polynomial time
» m can be computed in polynomial time

>

goal € {min, max}

In other words: the decision problem is there a solution y with
m(x,y) at most/at least z is in NP.

m 11 Introduction to Approximation
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» x is problem instance
> v is candidate solution

> m*(x) cost/profit of an optimal solution

Definition 59 (Performance Ratio)

R(x,y) := max{m(x’y) m*(x) }

m*(x)  m(x,y)

‘m 11 Introduction to Approximation
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Definition 60 (r-approximation)
An algorithm A is an v-approximation algorithm iff

Vx e€1:R(x,Alx)) <r ,

and A runs in polynomial time.

Definition 61 (PTAS)
A PTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+e¢€.

The running time is polynomial in |x]|.

approximation with arbitrary good factor... fast?
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Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the
jobs on n machines such that the MAKESPAN is minimized.

Definition 62 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution v for x with

R(x,yv)<1+¢€.

The running time is polynomial in |x| and 1/€.

approximation with arbitrary good factor... fast!
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Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
subset of total weight at most W s.t. the profit is maximized.

m Harald Racke

11 Introduction to Approximation

Definition 63 (APX - approximable)
A problem P from NPO is in APX if there exist a constant r > 1
and an r-approximation algorithm for P.

constant factor approximation...

‘_I—I_Hm Harald Racke

11 Introduction to Approximation

Problems that are in APX

MAXCUT. Given a graph G = (V,E); partition V into two disjoint
pieces A and B s.t. the number of edges between both pieces is

maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the
variables that satisfies the maximum number of clauses.

m Harald Racke

11 Introduction to Approximation

Problems with polylogarithmic approximation guarantees

» Set Cover

Minimum Multicut

>
> Sparsest Cut
>

Minimum Bisection

There is an r-approximation with » < @(log®(|x|)) for some

constant c.

Note that only for some of the above problem a matching lower

bound is known.

lm Harald Racke
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There are really difficult problems!

Theorem 64

For any constant € > O there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

m 11 Introduction to Approximation
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There are weird problems!
Asymmetric k-Center admits an O(log™ n)-approximation.

There is no o(log* n)-approximation to Asymmetric k-Center
unless NP € DTIME (nlogloglogny

‘m 11 Introduction to Approximation
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Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits
a 4-approximation.

One only says that a problem is APX-hard.
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A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a vital
role in the design of many approximation algorithms.
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Definition 65
An Integer Linear Program or Integer Program is a Linear Program
in which all variables are required to be integral.

Definition 66
A Mixed Integer Program is a Linear Program in which a subset of
the variables are required to be integral.

12 Integer Programs

m Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

‘_I—I_Hm Harald Racke

12 Integer Programs

Set Cover

Given a ground set U, a collection of subsets Sq,...,S5y € U,
where the i-th subset S; has weight/cost w;. Find a collection
I <{1,...,k} such that

YueU3diel: ues; (every element is covered)
and

Z w; is minimized.
iel

12 Integer Programs

Set Cover
: ¥ ’ . : L) .: ° o. .._L...
o.o D ¢ ¢ ) 3 ° ;
:.. :. o: IO : 0 :
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IP-Formulation of Set Cover

Vertex Cover

Given a graph G = (V,E) and a weight w, for every node. Find a
vertex subset S < V of minimum weight such that every edge is

incident to at least one vertex in S.

12 Integer Programs

‘m Harald Racke

min > WiXg
s.t. VueU Xiyes, Xi > 1
Vie {l,..., k} Xi > 0
vie{l,... k} x; integral
m 12 Integer Programs
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IP-Formulation of Vertex Cover
min 2. vev WoXy
s.t. Ve=(i,j) €E xi+xj = 1
Yvev xy € {0,1}

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

max > ecE WeXe
st. Yv eV  Y.ieceXe
Ve e E Xe

< 1

e {0,1}

12 Integer Programs
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Maximum Independent Set

Given a graph G = (V, E), and a weight w,, for every node v € V.
Find a subset S = V of nodes of maximum weight such that no

two vertices in S are adjacent.

max Dvey WyXy
s.t. Ve=(i,j) €E Xi+ Xj
Vv eV Xy

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight w;
and profit p;, and given a threshold K. Find a subset
I < {1,...,n} of items of total weight at most K such that the

profit is maximized.

max St piXi
s.t. Stiwixi < K
Vie{l,...,n} x; € {0,1}

m 12 Integer Programs
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Relaxations

Definition 67

instead of x; € {0, 1}.

A linear program LP is a relaxation of an integer program IP if any
feasible solution for IP is also feasible for LP and if the objective
values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing x; € [0, 1]

By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization

problem.

m 12 Integer Programs
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Relations

Maximization Problems:

\ OPT(DUAL) \ IFEASIBLE(DUAL) |
0o ! !
Minimization Problems:
| FEASIBLE(DUAL) | ] OPT(DUAL) \

0o

m 12 Integer Programs
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Siq wix
s.t. VueU Siyes;Xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {f,,} be the maximum
frequency.

‘m 13.1 Deterministic Rounding
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Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > J% to 1. Set all other x;-values to 0.

m 13.1 Deterministic Rounding
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Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that > ;. cq, X; = 1.
» The sum contains at most f,, < f elements.
» Therefore one of the sets that contain u must have x; > 1/7.
>

This set will be selected. Hence, u is covered.

m 13.1 Deterministic Rounding
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wi(f - xq)
icl i=1
= f - cost(x)
<f-OPT.

m 13.1 Deterministic Rounding
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Qiel WiXi max 2uet Yu
S.t.Vu  Diyes, Xi =1 s.t. Vi Dyues, Yu < Wi
xi =0 yu =0

‘m 13.2 Rounding the Dual
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means forall i € I

> yu=w;

UUES;

m 13.2 Rounding the Dual
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Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

> Suppose there is a u that is not covered.
> This means > ,.,cs, Yu < w; for all sets S; that contain u.

» But then y,, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.

‘m 13.2 Rounding the Dual
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Technique 2: Rounding the Dual Solution.

Proof:

Jwi=2, > Yu

iel ieluwues;

=>{iel:uesSi} -y
Squyu
5f23’u

< fcost(x™)
< f-OPT

m 13.2 Rounding the Dual
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Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

Icr .

This means I’ is never better than I.

v

v

v

This means x; > %

Suppose that we take S; in the first algorithm. l.e., i € I.

Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

‘_I—I_Hm Harald Racke

13.2 Rounding the Dual

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an

f-approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,

Zyu < cost(x™*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.
Of course, we also need that I is a cover.

m 13.3 Primal Dual Technique
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

%}

1. y<0

2.1 -9

3: while exists u ¢ |J;c; S; do

4 increase dual variable vy, until constraint for some
new set Sy becomes tight

I-T1uU{¥}

lm Harald Racke

13.3 Primal Dual Technique




Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

.19

2.8 S; forallj

3: while I not a set cover do
q wi

4: { — arg min;.s .o ﬁ

5: I —Tu{{}

6: Sj—Sj—5Sp forallj

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 70
Given positive numbers a,...,ay and by, ..., by, and
Sc{l,...,k} then

‘m 13.4 Greedy
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n1 = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wy ZjeOPT w OPT OPT
min —— < = = — <
i 1S Xjeorr 1Si1 0 Xjeort ISi1 0 e
since an optimal algorithm can cover the remaining n, elements
with cost OPT.

Let §,' be a subset that minimizes this ratio. Hence,

& OPT
wi/l1Sjl = S

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — Ifjl.

- |.§j|OPT Ny —Nypyy

wj < - OPT
ny ny

jﬂ ﬂﬂ 13.4 Greedy
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Technique 4: The Greedy Algorithm

|/\
= u [\/]u,

:OPTz%

=Hy, - OPT < OPT(Inn+1) .

Technique 4: The Greedy Algorithm

A tight example:

m 13.4 Greedy
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] =-xj)= ] e
JUEeS; Jues;

e*Zj:u,eSij S671 )

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < 5 -
e

m 13.5 Randomized Rounding
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Pr[3u € U not covered after £ round]
= Pr[u; not covered V u» not covered V ... V u, not covered]

< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 71
With high probability O (logn) rounds suffice.

With high probability:
For any constant « the number of rounds is at most @ (logn) with
probability at least 1 — n~%.

m 13.5 Randomized Rounding
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Proof: We have

Pr[#rounds > (x + 1) Inn] < ne (¥+*Dnn _ p-a

‘m 13.5 Randomized Rounding
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Expected Cost

> Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (ex+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT

m 13.5 Randomized Rounding
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Expected Cost

> Version B.
Repeat for s = (&« + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.
E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

1

= 7(E[Cost] — Pr[no success] - E[cost | no success])
Pr[succ.]

1 1
< mE[COSt] < m(ﬂ( + 1) Inn - COSt(LP)

<2(x+1)Inn - OPT

form>2and x> 1.
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Randomized rounding gives an O (log n) approximation. The
running time is polynomial with high probability.

Theorem 72 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
ppoly(logn) )
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Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

> n=2k_1
> Elements are all vectors X over GF[2] of length k (excluding
zero vector).

> Every vector v defines a set as follows

Sy =1{x|xTy =1}

» each set contains 2K~1 vectors; each vector is contained in
2k=1 sets

Xi = 2,%1 = % is fractional solution.

‘m 13.5 Randomized Rounding
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Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).

m 13.5 Randomized Rounding
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Techniques:

> Deterministic Rounding
Rounding of the Dual
Primal Dual
Greedy
Randomized Rounding

Local Search

vV V. v v Vv Y

Rounding Data + Dynamic Programming
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Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,1n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi X;p;-x;; < L
Vjobs j 2ixji=1
Vi, j xji € {0,1}

Here the variable x ; is the decision variable that describes
whether job j is assigned to machine 1.

m 14.1 Local Search
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Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
J, and let Cpax be the makespan.

Let C;f.x denote the makespan of an optimal solution.

Clearly
Clax = maxp;
J

as the longest job needs to be scheduled somewhere.

‘m 14.1 Local Search
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Lower Bounds on the Solution

The average work performed by a machine is % 2.iPj-
Therefore,

1
Cr?lax 2 m %Pj

m 14.1 Local Search
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Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not find
such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.
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Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

REPEAT

m 14.1 Local Search
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Local Search Analysis

Let ¢ be the job that finishes last in the produced schedule.
Let Sy be its start time, and let Cyp be its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule would
not be locally optimal.

‘m 14.1 Local Search
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We can split the total processing time into two intervals one from
0 to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cl.«

During the first interval [0, Sy] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp<> pj.
jl
Hence, the length of the schedule is at most
1

! _ 1 1, Lo
p€+mJ§€pJ—(1 m)pﬁ"'m%pjg(z m)Cmax

m 14.1 Local Search
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A Tight Example
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A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the
local optimally condition of our local search algorithm. Hence,
these also give 2-approximations.

m 14.2 Greedy
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A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.

‘m 14.2 Greedy
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Proof:

> Let p; = - - - > py denote the processing times of a set of
jobs that form a counter-example.

> Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

> If py < Cihax/3 the previous analysis gives us a schedule
length of at most

4

3

Hence, pyn > Ci /3.

» This means that all jobs must have a processing time
> Clax/3-

» But then any machine in the optimum schedule can handle at
most two jobs.

» For such instances Longest-Processing-Time-First is optimal.

m 14.2 Greedy
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When in an optimal solution a machine can have at most 2 jobs
the optimal solution looks as follows.

P14 P13 P12 P11 P10 14} ps

p1 p2 p3 p4 ps Pe p7
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» We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let pa and pp be the other job scheduled on A and B,
respectively.

> p1+Pn <p1+paand pa+ pp < p1+ pa, hence scheduling
p1 and p, on one machine and p4 and pp on the other,
cannot increase the Makespan.

> Repeat the above argument for the remaining machines.
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Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m —1,2m - 2,...,m+1 (2m — 2 jobs in
total)

> 3 jobs of length m

‘m 14.2 Greedy
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15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w; € N and profit p; € N, and given a threshold W. Find a subset
I <{1,...,n} of items of total weight at most W such that the
profit is maximized (we can assume each w; < W).

max D (e
s.t. Stiwix; < W
Vie{l,...,n} x; € {0,1}
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15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1- A(1) < [(0,0), (p1,w1)]

2: forj — 2 to ndo

3 A(j) - AG-1)

4: for each (p,w) € A(j— 1) do
5

6

7

if w+w; <W then
add (p +pj,w +wj) to A(j)
: remove dominated pairs from A(j)
8: return maxp w)ca(n) P

The running time is O(n - min{W, P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.
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15 Rounding Data + Dynamic Programming

Definition 74

An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the
input is encoded in unary.
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15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u :=eM/n.
Set p; := | pi/u] for all i.

vV v.v Y

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

O(nP') = O(nzip;> =o(ny, [d\flj;np < 0<£3> :

‘m 15.1 Knapsack
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15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
D pi=p P
ieS ieS
=12 P
i€e0
> > pi— |0l
i€0
= > pi—nu
ieO
Z pi — €M
i€c0
(1 -€)OPT .

v
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Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
— > pi+tpe
mj:#[)

where £ is the last job to complete.

Together with the obervation that if each p; > %Cg‘lax then LPT is
optimal this gave a 4/3-approximation.

‘m 15.2 Scheduling Revisited
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15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

1
Pjﬁmzipi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,
always assigning the next job to the least loaded machine.
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We still have a cost of

1
- Zvj+w
j#l

where £ is the last job (this only requires that all machines are
busy before time S)).

If £ is a long job, then the schedule must be optimal, as it consists
of an optimal schedule of long jobs plus a schedule for short jobs.

If £ is a short job its length is at most

pe <2 pjl(mk)

which is at most CJ../k.
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Hence we get a schedule of length at most

(1 + ) Citax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mX™ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [%].
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How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1 + %)T or
certifies that no schedule of length at most T exists (assume
Tz 3P

We partition the jobs into long jobs and short jobs:
» A job is long if its size is larger than T/k.
> Otw. it is a short job.
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v

We round all long jobs down to multiples of T/k?.

v

For these rounded sizes we first find an optimal schedule.

v

If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

v

If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.
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After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.
their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at most

(1+%)T.
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During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that the
new load is at most
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Running Time for scheduling large jobs: There should not be a
job with rounded size more than T as otw. the problem becomes
trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’®
(described by a vector of length k? where, the i-th entry describes
the number of jobs of size k—izT). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k%T assigned to x. There are
only (k + l)k2 different vectors.

This means there are a constant number of different machine
configurations.
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Let OPT(n1,...,1ny2) be the number of machines that are required

to schedule input vector (ny,...,n,2) with Makespan at most T.
If OPT(ny,...,n,2) < m we can schedule the input.
We have

OPT(ny,...,ng2)

0 (nl,...,nkz):O
_ 1+ min OPT(n; —s1,...,n2 — Sk2) (My1,...,M2) 20
($1,-008,2)EC
0 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1)K nk* ~ (nk)x".

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/€.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

Theorem 76
There is no FPTAS for problems that are strongly NP-hard.
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> Suppose we have an instance with polynomially bounded
processing times p; < q(n)

> Wesetk:=[2nqg(n)| =20PT

> Then 1 1
ALG < (1 n E> OPT < OPT +

» But this means that the algorithm computes the optimal
solution as the optimum is integral.

» This means we can solve problem instances if processing
times are polynomially bounded

» Running time is O(poly(n,k)) = O(poly(n))

> For strongly NP-complete problems this is not possible
unless P=NP
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More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,n4) with Makespan at most T
(A: number of different sizes).

If OPT(nq,...,m14) < m we can schedule the input.

OPT(TL[,...,TLA)

(ny,...,ma) =0
_J 1+ min OPT(ny—351,...,Mm4—54) M1,...,m14) 20
(S[ ..... SA)EC
00 otw.

where C is the set of all configurations.

|C| < (B + 1)4, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)An?) because the dynamic
programming table has just n# entries.




Bin Packing

Given n items with sizes sq,..., s, where
1>81=2--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 77
There is no p-approximation for Bin Packing with p < 3/2 unless
P = NP.
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Bin Packing

Proof

> In the partition problem we are given positive integers
b1,...,by with B =3, b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

> A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

> Hence, such an algorithm can solve Partition.
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Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense to
differentiate between the notion of a PTAS or an APTAS
because of scaling.

» However, we will develop an APTAS for Bin Packing.
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Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into £ bins can be extended with items of
size at most y s.t. we use only max{?{, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

> |If after Greedy we use more than ¥ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, ¥ (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

> This gives the lemma.
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Choose y = ¢/2. Then we either use £ bins or at most

1
1-¢€/2

-OPT+1<(1+€)-0PT+1
bins.

It remains to find an algorithm for the large items.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
> Order large items according to size.

> Let the first k items belong to group 1; the following k items
belong to group 2; etc.

> Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.
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Linear Grouping
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Lemma 80
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

> Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

> Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;
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Lemma 81
OPT(I') < OPT(I) < OPT(I") + k

Proof 2:
> Any bin packing for I’ gives a bin packing for I as follows.
> Pack the items of group 1 into k new bins;

> Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = | eSIZE(]) |.
Then n/k < n/|le’n/2] < 4/e? (note that | ¢| > /2 for o > 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the previous
Dynamic Programming approach.

> cost (for large items) at most
OPT(I") + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time O((%n)4/62).

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ©(log? (SIZE(I))) .

Note that this is usually better than a guarantee of

(1+e€)OPTU) +1 .
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Configuration LP

Change of Notation:
> Group pieces of identical size.

> Let 51 denote the largest size, and let b; denote the number
of pieces of size s;.

> s is second largest size and b> number of pieces of size s;

> s, smallest size and b, number of pieces of size sy,.
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Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-sisl .
i

We call a vector that fulfills the above constraint a configuration.
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Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}j; pieces of size s;).

min Z’}lzlxj

S.t. Vie{l...m} Z];Ll Tjin > b;
Vje{l,...,N} X > 0
Vje{l,...,N} x;j integral

‘m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

How to solve this LP?

later...
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We can assume that each item has size at least 1/SIZE([).
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Harmonic Grouping

» Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new

group.
> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for Go,...,Gy_1.

> Only the size of items in the last group G, may sum up to
less than 2.
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Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

» Delete all items from group G; and G, .
» For groups Go,...,Gy_1 delete n; — n;_; items.

» Observe that n; > n;_;.
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Lemma 82
The number of different sizes in 1’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

> All items in a group have the same size in I'.
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Lemma 83
The total size of deleted items is at most O (log(SIZE(I))).

> The total size of items in G and G, is at most 6 as a group
has total size at most 3.

> Consider a group G; that has strictly more items than G;_;.

> |t discards n; — n;_; pieces of total size at most

n; — n; L3
3 i i—1 < Z 2
1 j=nia+17

since the average piece size is only 3/n;.
» Summing over all i that have n; > n;_; gives a bound of at
most g
> = < 0(og(SIZE())) .
=17
(note that n, < SIZE(I) since we assume that the size of each
item is at least 1/SIZE(I)).




Algorithm 1 BinPack

: if SIZE(I) < 10 then
pack remaining items greedily

3: Apply harmonic grouping to create instance I’; pack
discarded items in at most O (log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack |x;| bins in configuration T; for all j; call the
packed instance I.

6: Let I> be remaining pieces from I’

7: Pack I» via BinPack(I>)
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Analysis

OPTrp (11) + OPTip (12) < OPTyp (I’) < OPTLP(I)

Proof:

» Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTp(I") < OPTp(I)

> [xj]| is feasible solution for I} (even integral).

> xj—|xj]|is feasible solution for I5.
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Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I» are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into
at most OPTrp many bins.

Pieces of type 1 are packed into at most
O(log(SIZE(I))) - L

many bins where L is the number of recursion levels.
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Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(10g(SIZE(Iorigina1))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

» The total size of items in I> can be at most le\f:l xj—Llxj]
which is at most the number of non-zero entries in the
solution to the configuration LP.
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How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has T}; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min ijzlxj
At Vie{l...m} Z?IZITJ'I'XJ' > b
Vje{l,...,N} xj = 0
Dual
max S yib;
stt. Vje{l,....N} X Tiyi < 1
Vie{l,...,m} yi = 0
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Separation Oracle

Suppose that | am given variable assignment y for the dual.
How do I find a violated constraint?

| have to find a configuration T; = (Tj1,..., Tj;;) that
> is feasible, i.e.,

m
D Tji-yi<1,
i=1

» and has a large profit

m
Z Tjiyi > 1
i=1

But this is the Knapsack problem.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + €' =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max Sty Vibi
stt. Vje{l,....N} SN Tjiyvi < 1+¢€
Vie{l,...,m} yvi = 0
Primal’
min (1+¢€") 21}’:1 X
s.t. Vie{l...m} Z?leTﬁXj > b
vjeil,...,N} xj = 0

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL’.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL'.

» Let DUAL” be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

» The optimum value for PRIMAL" is at most (1 + ¢’)OPT.

> We can compute the corresponding solution in polytime.




This gives that overall we need at most
(1 + €")OPTip(I) + O(log? (SIZE(I)))
bins.

We can choose €’ = ﬁ as OPT < #items and since we have a fully
polynomial time approximation scheme (FPTAS) for knapsack.
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16.1 MAXSAT

Problem definition:
> 1 Boolean variables

» m clauses Cq,...,Cy. For example

C7 = X3V X5 V X9

> Non-negative weight w; for each clause Cj.

> Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.
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16.1 MAXSAT

Terminology:
> A variable x; and its negation X; are called literals.

> Hence, each clause consists of a set of literals (i.e., no
duplications: x; V x; V X; is not a clause).

> We assume a clause does not contain x; and x; for any i.

> x; is called a positive literal while the negation X; is called a
negative literal.

> For a given clause C; the number of its literals is called its
length or size and denoted with ;.

» Clauses of length one are called unit clauses.
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MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).
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Define random variable X; with

Xi = 1 if Cj satisfied
7L 0 otw.

Then the total weight W of satisfied clauses is given by

W = sz'Xj
J
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E[W] = ijE[Xj]
J
= ijPr[Cj is satisified]

Su(1-(3)")
PR

1
> OPT

v

\%
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MAXSAT: LP formulation

> Let for a clause C;, P; be the set of positive literals and N;
the set of negative literals.

CJ'= \/XiV \/)_Ci

iEPJ' iENJ'
max 2 iWjzj
st. Vj Xiep; Vit 2ien;(1—>i) = zj
Vi vi € {0,1}
Vj zZj = 1

m 16.1 MAXSAT
Harald Racke

MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and, hence,
to false with probability (1 — y;)).
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Lemma 84 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay
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Definition 85
A function f on an interval I is concave if for any two points s and
v from I and any A € [0, 1] we have

FAs+ (1 =A)7r)=Af(s)+ (1 —=A)f(r)

Lemma 86
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) = a+ b. Then

S(A) = f((1-2A)0+ A1)
(1 -A)f(0) +Af(1)
a+Ab

%

for A € [0,1].
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Pr[C; not satisfied]

[Ta-») [T »i

iEPj iENj
— y]
1
sl 2 -2+ 2 v
| J iEPJ' iENJ'
_ ¢
1
== | 2>+ 2. (0=>)
| I \iep; iEN;
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The function f(z) =1 — (1 — %)3 is concave. Hence,

B2,
Pr[C; satisfied] = 1 — (1 — ZJ)
4

[r-(-3) -

rr #—1 z 0_2 H
f(z) = —7[1 - 7] <0 for z € [0,1]. Therefore, f is
concave.

m 16.1 MAXSAT
Harald Racke




E[W] = ijPr[Cj is satisfied]

J
1 L)J'
Zijzj [1— (1—#> }
i J
> (1—%) OPT .
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MAXSAT: The better of two

Theorem 87

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.
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Let W; be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, W2} ]
> E[3W1 + 3W>]

s (g) | iz -0
[-(-8)")20-0))

3 .
> for all integers

%

v

2. Wz
J

,
N | —

J

[\

| w
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S
1 —
—
0.9 \
0.7
N
0.6
—— randomized rounding
0.5 —— flipping coins |
——— average
I I
1 2 3 4 5 6

¢
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MAXSAT: Nonlinear Randomized Rounding MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

1-47% < f(x) <41

We could define a function f:[0,1] — [0, 1] and set x; to true

with probability f(y;). Theorem 88
Rounding the LP-solution with a function f of the above form

gives a %-approximation.
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1
Pr[C; not satisfied] = [ [ (1 - f(y)) [ | fO)
iEPJ' iENj
< H 47Yi l_[ 4vi-1
0.5 i€P; iEN;
_ 4_(Zier Yit2ien; (1-¥i))
P <477
e
0 0r5 1
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,
. .. 3
Pr[C;j satisfied] =1 -47%/ > izj .
Therefore,

E[W] =) w;Pr[C; satisfied] > %ZW\]’ZJ’ > %OPT
J J
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Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.

Lemma 90
Our ILP-formulation for the MAXSAT problem has integrality gap
at most 5.
max Zj w;zj
st. Vj Xiep; Vit 2ien;(L->i) = zj
Vi Yi € {0, 1}
Vj Zj < 1

Consider: (x1 VvV x2) A (X1 VX2) A(X]VX2)A(X]VX2)
> any solution can satisfy at most 3 clauses
> we can set 1 = yv» = 1/2 in the LP; this allows to set
21=22=23=Z4=1

> hence, the LP has value 4.

MaxCut

MaxCut

Given a weighted graph G = (V,E,w), w(v) = 0, partition the
vertices into two parts. Maximize the weight of edges between
the parts.

Trivial 2-approximation
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Semidefinite Programming

max / min 2.i,j CijXij
st Vk 2ijkdijkXij = bk
Vi, j Xij = Xji

X = (xij) is psd.

> linear objective, linear contraints

> we can constrain a square matrix of variables to be
symmetric positive definite

Note that wlog. we can assume that all variables appear in this matrix. Suppose
we have a non-negative scalar z and want to express something like

Zij AjjkXij +Zz = by
1 Where x;; are variables of the positive semidefinite matrix. We can add z as a
, diagonal entry xpp, and additionally introduce constraints xg, = 0 and x, ¢y = 0. 1

Vector Programming

max / min >4 cij(Vivj)
s.t. Vk Y ixaik(vivy) = by
v; € R"

> variables are vectors in n-dimensional space

> objective functions and contraints are linear in inner
products of the vectors

This is equivalent!
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Fact [without proof]
We (essentially) can solve Semidefinite Programs in polynomial
time...

Quadratic Programs

Quadratic Program for MaxCut:

max 3 24 Wi (1 - %;75)
Vi yvi € {-1,1}

This is exactly MaxCut!
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Semidefinite Relaxation

T ;
max 2 2 wij(1 - vivy)
‘ t
Vi v;vi = 1
Vi Vi € R™

> this is clearly a relaxation

> the solution will be vectors on the unit sphere

Rounding the SDP-Solution

» Choose a random vector v such that r/||7|| is uniformly
distributed on the unit sphere.

> If rfv; > 0set y; =1elseset y; = —1
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Rounding the SDP-Solution

Choose the i-th coordinate 7; as a Gaussian with mean 0 and
variance 1, i.e., i ~ N (0, 1).

Density function:

P(x) = \/%exz/z
Then
Pr(v = (x1,...,xXn)]
= (\/2711_r)nex12/2 LeX2 L L eXn2dxy ... - dxy,
- et L,
Hence the probability for a point only depends on its distance to
the origin.

Rounding the SDP-Solution

Fact
The projection of ¥ onto two unit vectors e; and e are
independent and are normally distributed with mean 0 and

variance 1 iff e; and e, are orthogonal.

Note that this is clear if e; and e» are standard basis vectors.
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Rounding the SDP-Solution

Corollary

If we project » onto a hyperplane its normalized projection
(" /1Ir"|l) is uniformly distributed on the unit circle within the
hyperplane.
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Rounding the SDP-Solution

Vi

vj

r' /7|

» if the normalized projection falls into the shaded region, v;
and v; are rounded to different values

> this happens with probability 0/

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

> contribution of edge (i, j) to the SDP-relaxation:

%wij(l - vitvj>

> (expected) contribution of edge (i, j) to the rounded
instance w;; arccos(viv;) /T

> ratio is at most

2 arccos(x)

> 0.878
erP—lm] (1l - x)
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Rounding the SDP-Solution

1 I
— %arccos(x)
— (1 -x)
0.75 —
0.5 —
0.25 —
0
-1 -0.5 0 0.5 1
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Rounding the SDP-Solution

2
1.5
1
0.5
—— ratio(x)
——0.878
0 I
-1 -0.5 0 0.5 1

Rounding the SDP-Solution

Theorem 91
Given the unique games conjecture, there is no x-approximation
for the maximum cut problem with constant

. 2 arccos(x)
x> min ———=
xe[-1,1] 1(1l —Xx)

unless P = NP.
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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Sk wixg
s.t. VueU Xiyes;Xi = 1
Vie{l,..., k} x; = 0
Dual Formulation:
max et Yu
sit. Vie{l,...,k} Duues,yu = w;
yu = 0

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with » = 0 (feasible dual solution).
Start with x = O (integral primal solution that may be
infeasible).
» While x not feasible
> |dentify an element e that is not covered in current primal
integral solution.
> Increase dual variable y, until a dual constraint becomes
tight (maybe increase by 0!).
> If this is the constraint for set Sj set x; = 1 (add this set to
your solution).

m 17.1 Primal Dual Revisited
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Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D, Ve =wj

E€Sj

» Hence our cost is

Swii=> S ve=Sl{j:e €S}y
j

Jj e€s; e

<f > ¥e<f-OPT
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Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj>0= > ye=w;j

eeSj

If we would also fulfill dual slackness conditions

Ye>0= > xj=1
Jiees;

then the solution would be optimal!!!

‘m 17.1 Primal Dual Revisited
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We don’t fulfill these constraint but we fulfill an approximate
version:
Ye>0=1< > xj<f

Jiees;

This is sufficient to show that the solution is an f-approximation.
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Suppose we have a primal/dual pair

min 2. CiXj max >ibivyi
s.t. Vi Zj: aijxj = b; s.t. Vj Zi aijyi = Cj
Vj X; = 0 Vi yi = 0

and solutions that fulfill approximate slackness conditions:

lc-
xJ

[\

Xj >0= Zaijyi

1

IA

yi>0:>2aijxj Bbi

J
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Then right hand side of j-th
dual constraint
[

ST oS (zauyi) .
Jj i

J

o3 (S

i \j
< aB > biyi
i

dual objective

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

m 17.1 Primal Dual Revisited
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We can encode this as an instance of Set Cover

» Each vertex can be viewed as a set that contains some cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.

» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

Let € denote the set of all cycles (where a cycle is identified by its
set of vertices)

Primal Relaxation:

m 17.2 Feedback Vertex Set for Undirected Graphs
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min Zv Wy Xv
st. VCel€ S,cexy = 1
Yv Xy =
Dual Formulation:
max 2.cec YC
st. YveV DcuecYe < wy
vC yc = 0
‘m 17.2 Feedback Vertex Set for Undirected Graphs
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If we perform the previous dual technique for Set Cover we get
the following:
> Startwithx =0and y =0
» While there is a cycle C that is not covered (does not contain
a chosen vertex).

> Increase y¢ until dual constraint for some vertex v becomes
tight.
> set xy = 1.

m 17.2 Feedback Vertex Set for Undirected Graphs
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Then

Zwvxv :Z Z YcXv
v vV CwveC
=2 > >
veSCveC
=>.1SnCl-yc
C

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this
is unrealistic.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
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Algorithm 1 FeedbackVertexSet
vy <0
x <0
while exists cycle C in G do
increase yc until thereis v € C s.t. Y c.pec Yo = Wy
xyp =1
remove v from G
repeatedly remove vertices of degree 1 from G

N OO 1 AW N =

m 17.2 Feedback Vertex Set for Undirected Graphs
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Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm chooses
at most one vertex from P.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
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Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most & we get a 2x-approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=>15nC|<0O(ogn) .
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Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R* find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
st. VSeS DossXe = 1
VeeE x. € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m 17.3 Primal Dual for Shortest Path
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Primal Dual for Shortest Path

The Dual:
max 25 Ys
sit. Ve€E Xgeess)¥s =< cle)
vSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS§ t¢S}.
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Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.
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Algorithm 1 PrimalDualShortestPath

A oW N =

: Let

N O

vy <0
F—o
while there is no s-t path in (V,F) do

Let C be the connected component of (V,F) con-
taining s

Increase yc¢ until there is an edge ¢’ € 6(C) such
that X g.eres(5) Vs = c(e).

F—Fu{e'}
P be an s-t path in (V,F)

8: return P

Lemma 93
At each point in time the set F forms a tree.

Proof:
> |n each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

m Harald Racke
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If we can

D=2 > s

ecP ecP S:ee6(S)
= > IPnsS|-ys .

S:seS,t¢S
show that ys > 0 implies [P n 6(S)| = 1 gives

> c(e) => ys < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

If 6(S) contains two edges from P then there must exist a
subpath P’ of P that starts and ends with a vertex from S (and all
interior vertices are not in S).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F’ U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.
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Steiner Forest Problem:

Given a graph G = (V,E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R" on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min Decl(e)xe
s.t. VScV:SeS;forsomei D,csi)Xe = 1
Ve e E xe € {0,1}

Here S; contains all sets S such that s; € Sand t; ¢ S.
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max 2S:3istSes; Vs
s.t. Vee€E Dsecss)Ys =< cle)
ys =2 0

The difference to the dual of the shortest path problem is that we
have many more variables (sets for which we can generate a moat
of non-zero width).

‘m 17.4 Steiner Forest
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Algorithm 1 FirstTry

1y <0

2. F—g

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V, F) such
that |C N {s;,t;}| = 1 for some i.

5: Increase yc¢ until there is an edge ¢’ € 6(C) s.t.
2.5eSpe’es(S) VS = Ce’

6: F —Ful{e'}

7: return | J; P;

m 17.4 Steiner Forest
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deley=> > ys=>18(S)NF|-ys .

ecF ecF S:ecH(S) S

If we show that ys > 0 implies that |6(S) N F| < « we are in good
shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, v1,..., Uk.
The i-th pair is vo-v;.
The first component C could be {vg}.
We only set y(y,; = 1. All other dual variables stay 0.
The final set F contains all edges {vo,v;},i=1,...,k.
Yiver > 0 but [6({vo}) NF| = k.

vV v. v v Vv
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Algorithm 1 SecondTry

11 y<0;F—a; 40

2: while not all s;-t; pairs connected in F do

3: £ —L0+1

4 Let € be set of all connected components C of (V,F)
such that |C N {s;,t;}| = 1 for some i.

Increase y¢ for all C € € uniformly until for some edge
ep € 6(C"), C" € Cs.t. Yge)es(5) Vs = Cey

6: F —Fu{ep}

7. F' — F

8: for k — £ downto 1 do // reverse deletion
9

0

1

%}

if I’ — ey is feasible solution then
: remove ¢y from F’
: return F’

1
1
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The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges in
any order.
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Harald Ricke

Example
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Lemma 94
For any C in any iteration of the algorithm

> I8(C)nF'| < 2|C]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...
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D= D> ys=>IFnsS)| ys .

ecF’ ecF’ S:eed(S) S

We want to show that

SIF NS -ys<2> ys
S S

> In the i-th iteration the increase of the left-hand side is

€ > |IF nsO)
ceC
and the increase of the right hand side is 2¢|C].

> Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.
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Lemma 95
For any set of connected components C in any iteration of the
algorithm
> 18(C) nF'| < 2|C]
ceC
Proof:

> At any point during the algorithm the set of edges forms a
forest (why?).

> Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

> Let H = F' — Fi.

> All edges in H are necessary for the solution.

‘m 17.4 Steiner Forest
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> Contract all edges in F; into single vertices V'.

> We can consider the forest H on the set of vertices V’.

v

Let deg(v) be the degree of a vertex v € V' within this forest.

> Color a vertex v € V' red if it corresponds to a component from €
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

v

We have

?
> deg(v) = > |8(C) nF'| <2|C| = 2[R
VER ceC
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> Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) - > deg(v)

vVER veERUB VEB

2(IR| + |Bl) = 2|B| = 2|R|

IA

> Every blue vertex with non-zero degree must have degree at
least two.

> Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

> But this means that the cluster corresponding to b must
separate a source-target pair.

> But then it must be a red node.
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18 Cuts & Metrics
Shortest Path

min Decle)xe
s.t. vV§SesS 2665(5) Xe = 1
Ve c E x. € {0,1}

S is the set of subsets that separate s from ¢.

The Dual:
max 2.8 Ys
st. Ve€E Xgeesis)Vs = cle)
vSes ys = 0

The Separation Problem for the Shortest Path LP is the Minimum
Cut Problem.
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18 Cuts & Metrics

Minimum Cut

min Dec(e)xe
st. VPe?P DecpXe = 1
Ve e E xe € {0,1}
P is the set of path that connect s and t.
The Dual:
max 2.pYp
st. Vec€E Dpecpyp =< cle)
VPeP yp = 0

The Separation Problem for the Minimum Cut LP is the Shortest
Path Problem.
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18 Cuts & Metrics

Observations:

Suppose that £.-values are solution to Minimum Cut LP.
> We can view ¥, as defining the length of an edge.

> Define d(u, V) = miNpath P btw. u and v 2.ecp Le as the Shortest
Path Metric induced by £,.

> We have d(u,v) = ¥, for every edge e = (u,v), as otw. we

could reduce ¥, without affecting the distance between s and
t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.
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How do we round the LP?

> Let B(s,7) be the ball of radius » around s (w.r.t. metric d).
Formally:

B={veV|d(s,v)<r}

» ForO0 <7r <1, B(s,r) is an s-t-cut.

Which value of » should we choose? choose randomly!!!

Formally:
choose ¥ u.a.r. (uniformly at random) from interval [0, 1)
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What is the probability that an edge (u, v) is in the cut?

2/
<

> asssume wlog. d(s,u) < d(s,v)

da(s,v) —d(s,u)

Prle is cut] = Pr(r € [d(s,u),d(s,v))] < 120

<¥,

What is the expected size of a cut?
E[size of cut] = E[ Ze c(e) Prle is cut]]
< Ze c(e)l,
On the other hand:
Ze c(e)¥, < size of mincut

as the £, are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.
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Minimum Multicut:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function ¢ : E — R" on the edges. Find
a subset F ¢ E of the edges such that all s;-t; pairs lie in different
components in G = (V,E \ F).

min >ecle)le
s.t. VPeP;forsomei D,cple = 1
Ve € E t. € {0,1}

Here P; contains all path P between s; and t;.

Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

> |If for some R the balls B(s;,R) are disjoint between different
sources, we get a 1/R approximation.

» However, this cannot be guaranteed.
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> Assume for simplicity that all edge-length £, are multiples of
o< 1.

> Replace the graph G by a graph G, where an edge of length
L, is replaced by £./5 edges of length 6.

> Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z6.

Algorithm 1 RegionGrowing(s;, p)
1. z<0

2: repeat
3 flip a coin (Pr[heads] = p)
4: z—z+1
5
6

: until heads
: return B(s;, z)
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Algorithm 1 Multicut(G’)

1: while 3s;-t; pair in G’ do

2 C — RegionGrowing(s;, p)

3: G’ = G'\ C // cuts edges leaving C
4: return B(s;,z)

» probability of cutting an edge is only p

> a source either does not reach an edge during Region
Growing; then it is not cut

» if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

> if we choose p = ¢ the probability of cutting an edge is only
its LP-value; our expected cost are at most OPT.
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Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

If we ensure that we cut before reaching radius 1/2 we are in
good shape.
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» choose p =6Ink - o
> we make % trials before reaching radius 1/2.

> we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

L p\® _-f L
Pr[not successful] < (1-p)2s = ((1—p)-'P <e 2% < o

> Hence,

. . 1
Pr[3i that is not successful] < X2

m 18 Cuts & Metrics
Harald Racke




What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]|

+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] =

Pr[success]
< Eleutsize]l 1 _61k. OPT < 8Ink - OPT
Pr[success] 1- 4

Note: success means all source-target pairs separated

We assume k > 2.
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If we are not successful we simply perform a trivial
k-approximation.

This only increases the expected cost by at most
& - kOPT < OPT/k.

Hence, our final cost is O(Ink) - OPT in expectation.
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Traveling Salesman

Given a set of cities ({1,...,n}) and a symmetric matrix C = (c;;),
¢ij = 0 that specifies for every pair (i, j) € [n] x [n] the cost for
travelling from city i to city j. Find a permutation 1 of the cities
such that the round-trip cost

n-1

Cn()ym(n) + Z Crr(i)m(i+1)
i=1

is minimized.
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Traveling Salesman

Theorem 96
There does not exist an O (2™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V,E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

> If (i,j) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

> There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than n2".

> An O(2™)-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.
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Gap Introducing Reduction

HAM TSP
Reduction from Hamiltonian cycle to TSP

» instance that has Hamiltonian cycle is mapped to TSP
instance with small cost

> otherwise it is mapped to instance with large cost

» — there is no 2" /n-approximation for TSP

PCP theorem: Approximation View

Theorem 97 (PCP Theorem A)

There exists € > 0 for which there is gap introducing reduction
between 3SAT and MAX3SAT.

'The standard formula- m
"tion of the PCP theo-

irem looks very differ-
| ent but the above theo-
'rem is equivalent. Orig-
i inally, the PCP theorem

| is a result about interac- 3SAT MAX3SAT

:tive proof systems and | m o o m o e e e oo \
| its importance to hard- 1 Here the goal of the MAX3SAT-problem is to:
: ness of approximation : : maximize the fraction of satisfied clauses. The :
: is somewhat a side ef—: "above theorem implies that we cannot approxi—:
| fect. 1 1 mate MAX3SAT with a ratio better than 1 —€.

______________________________________________

PCP theorem: Proof System View

Definition 98 (NP)
A language L € NP if there exists a polynomial time, deterministic
verifier V (a Turing machine), s.t.

[x € L] completeness
There exists a proof string v, || = poly(|x|),
s.t. V(x,y) = “accept”.

[x ¢ L] soundness
For any proof string vy, V(x,y) = “reject’”.

Note that requiring |y | = poly(|x|) for x ¢ L does not make a
difference (why?).

m 19 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access
to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle 1r7sp would allow M to
write a TSP-instance x on a special oracle tape and obtain the
answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query
complexity, i.e., how often the machine queries the oracle.

For a proof string v, 11, is an oracle that upon given an index i
returns the i-th character y; of y.
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|Non adaptive means that e.g. the sec- h

Probabilistic Checkable Proofs !4 proof-bit read by the verifier may!

: not depend on the value of the first bit. 1

Definition 99 (PCP)
A language L € PCP. () s(n) (¥ (n),q(n)) if there exists a
polynomial time, non-adaptive, randomized verifier V, s.t.

[x € L] There exists a proof string y, s.t. V™ (x) =
“accept” with probability > c(n).

[x ¢ L] For any proof string v, V™™ (x) = “accept” with
probability < s(n).

The verifier uses at most @ (v (7)) random bits and makes at most
O(q(n)) oracle queries.

__________________________________________________________

I Note that the proof itself does not count towards the input of the verifier. The verifier has to write '
| the number of a bit- position it wants to read onto a special tape, and then the corresponding .
' bit from the proof is returned to the verifier. The proof may only be exponentially long, as aI
I ponnomlaI time verifier cannot address longer proofs. !

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.
Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.
s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random
bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.
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'RP = cORP = P is a commonly believed '

PrObabiliStiC CheCkabIe PrOOfS 'conjecture RP stands for randomlzedl
| polynomial time (with a non-zero prob- .
» P = PCP(0,0) 1 ability of rejecting a YES-instance). !

verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) =P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P
we can simulate short proofs in polynomial time

> PCP(poly(n),0) = coRP 2 P
by definition; coRP is randomized polytime with one sided
error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality
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Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries
» PCP(logn,poly(n)) = NP
NP-verifier can simulate @ (logn) random bits
2!
» PCP(poly(n),0) = coRP < NP

» NP c PCP(logn,1)
hard part of the PCP-theorem
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PCP theorem: Proof System View

Theorem 100 (PCP Theorem B)
NP = PCP(logn, 1)

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs
Verifier gets input (Go, G1) (two graphs with n-nodes)

It expects a proof of the following form:
» For any labeled n-node graph H the H’s bit P[H] of the
proof fulfills

Go=H = P[H]=0

Gi1=H = P[H]=1
Go,G1 + H = P[H] = arbitrary
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Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

> take graph G}, and apply a random permutation to obtain a
labeled graph H

» check whether P[H] = b

If Go # G1 then by using the obvious proof the verifier will always
accept.

If Go = G1 a proof only accepts with probability 1/2.
» suppose 1T(Go) = Gy
> if we accept for b = 1 and permutation 7130 We reject for
b = 0 and permutation Trgng o T

Version B = Version A

> For 3SAT there exists a verifier that uses clogn random bits,
reads g = O(1) bits from the proof, has completeness 1 and
soundness 1/2.

» fix x and 7:

input proof bits
X,v 1Tj1,...,‘lqu

l

computation

T (MW T
P
reject accept
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Version B = Version A

» transform Boolean formula fy, into 3SAT formula Cx
(constant size, variables are proof bits)

> consider 3SAT formula Cx = A\, Cx»

[x € L] There exists proof string v, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in Cy satisfied.

[x ¢ L1 For any proof string v, at most 50% of formulas
Cxr evaluate to 1. Since each contains only a
constant number of clauses, a constant fraction
of clauses in Cy are not satisfied.

> this means we have gap introducing reduction

19 Hardness of Approximation
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Version A = Version B

We show: Version A = NP < PCPy1_c(logn,1).
given L € NP we build a PCP-verifier for L

Verifier:
> 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

map I, to MAX3SAT instance Cyx (PCP Thm. Version A)
interpret proof as assignment to variables in Cy
choose random clause X from Cy

query variable assignment o for X;

vV V. v v Vv

accept if X (o) = true otw. reject

Version A = Version B

[x € L] There exists proof string y, s.t. all clauses in Cy
evaluate to 1. In this case the verifier returns 1.

[x ¢ L] For any proof string v, at most a (1 — €)-fraction
of clauses in Cy evaluate to 1. The verifier will
reject with probability at least €.

To show Theorem B we only need to run this verifier a constant
number of times to push rejection probability above 1/2.

_________________________

1 Note that this approach has strong con-
1 . .
| nections to error correction codes.

NP < PCP(poly(n), 1)

PCP(poly(n), 1) means we have a potentially exponentially long
proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment
(say n bits)) by a code whose code-words have 2" bits.

A wrong proof is either

» a code-word whose pre-image does not correspond to a
satisfying assignment

> or, a sequence of bits that does not correspond to a
code-word

We can detect both cases by querying a few positions.
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The Code

u € {0, 1}" (satisfying assignment)

Walsh-Hadamard Code:
WH,, : {0, 13" - {0,1}, x — xTu (over GE(2))

The code-word for u is WH,,. We identify this function by a
bit-vector of length 2",

The Code

Lemma 101
If u + u’ then WHy, and WH,, differ in at least 2! bits.

Proof:
Suppose that u — u’ = 0. Then

WH,, (x) = WHy (x) < (u-u)Tx 0

This holds for 2"~1 different vectors x.
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The Code

Suppose we are given access to a function f: {0,1}" — {0,1} and
want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions {0,1}"
to {0, 1} we can check

fix+y)=f(x)+ f(y)

for all 22" pairs x, . But that’s not very efficient.

NP < PCP(poly(n), 1)

Can we just check a constant number of positions?
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oD _-_----__-
1 Observe that for two codewords :

NP < PCP(poly(n), 1)

Definition 102
Let p € [0,1]. We say that f,g:{0,1}"™ — {0,1} are p-close if

Xe{Pon‘l}n[f(x) =gx)l=p.

Theorem 103 (proof deferred)
Let f:{0,1}" — {0,1} with

N | =

Pr o [f()+f) =fx+)]=zp>

x,y€{0,1}"

Then there is a linear function f such that f andf are p-close.
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NP < PCP(poly(n), 1)

We need O (1/6) trials to be sure that f is (1 — §)-close to a linear
function with (arbitrary) constant probability.
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NP < PCP(poly(n), 1)

Suppose for § < 1/4 f is (1 — §)-close to some linear function f.

£ is uniquely defined by f, since linear functions differ on at least
half their inputs.

Suppose we are given x € {0,1}"™ and access to f. Can we
compute f(x) using only constant number of queries?
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NP < PCP(poly(n), 1)

Suppose we are given x € {0,1}"™ and access to f. Can we
compute f(x) using only constant number of queries?

1. Choose x" € {0,1}" u.a.r.

2. Setx" :==x+x'.

3. Let v’ = f(x') and v = f(x").
4. Output y' + y".

x" and x’" are uniformly distributed (albeit dependent). With
probability at least 1 — 26 we have f(x’) = f(x’) and

f(xll) :f(X”).
Then the above routine returns f(x).

This technique is known as local decoding of the Walsh-Hadamard
code.




NP < PCP(poly(n), 1)

We show that QUADEQ € PCP(poly(n),1). The theorem follows
since any PCP-class is closed under polynomial time reductions.

QUADEQ
Given a system of quadratic equations over GF(2). Is there a
solution?
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QUADEQ is NP-complete

> given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VXx3)A(X3VXaVX5)AI(X6VX7VX8)

» add variable for every wire

» add constraint for every gate
OR: ij+ix+i1-i2 =0 Q
AND: i1 . i2 =0 d
NEG: i=1-o0

» add constraint out = 1

re=g

> system is feasible iff
C is satisfiable

X1 X2 X3 X4 X5 X6 X7 X8
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1
: Note that over GF(2) x = x2. Therefore,

:we can assume that there are no terms :
, of degree 1. |

NP < PCP(poly(n), 1)

We encode an instance of QUADEQ by a matrix A that has n?
columns; one for every pair i, j; and a right hand side vector b.

For an n-dimensional vector x we use x ® x to denote the
n?-dimensional vector whose i, j-th entry is XiXj.

Then we are asked whether
Ax®x)=Db

has a solution.

NP < PCP(poly(n), 1)

Let A, b be an instance of QUADEQ. Let u be a satisfying
assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u
and u ® u. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not
correspond to codewords for vectors of the form u, and u ® u.

We also have to reject proofs that correspond to codewords for
vectors of the form z, and z ® z, where z is not a satisfying
assignment.
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: Recall that for a correct proof there is no :

1 difference between f and f. 1
L e e e e e e e e e e e e e e e e ==

NP < PCP(poly(n), 1)

Step 1. Linearity Test.
The proof contains 2™ + 27 bits. This is interpreted as a pair of
functions f: {0,1}" — {0,1} and g : {0,1}”2 - {0,1}.

We do a 0.999-linearity test for both functions (requires a
constant number of queries).

We also assume that for the remaining constant number of
accesses WH-decoding succeeds and we recover f(x).

Hence, our proof will only ever see f To simplify notation we use
f for f, in the following (similar for g, g).

NP < PCP(poly(n), 1)

| We need to show that the probability of accepting a wrong proof is small. |
| This first step means that in order to fool us with reasonable probability a wrong proof needs |
: to be very close to a linear function. The probability that we accept a proof when the functions :
: are not close to linear is just a small constant. 1
1 Similarly, if the functions are close to linear then the probability that the Walsh Hadamard :
| decoding fails (for any of the remaining accesses) is just a small constant. If we ignore this:
:small constant error then a malicious prover could also provide a linear function (as a near,
i linear function f is “rounded” by us to the corresponding linear function f). If this rounding is |
: successful it doesn’t make sense for the prover to provide a function that is not linear. !
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NP < PCP(poly(n), 1)

Step 2. Verify that g encodes u ® u where u is string encoded
by f.

fr)=ur and g(z) = w'z since f, g are linear.
» choose 7,7’ independently, u.a.r. from {0, 1}"
> if f(r)f(r') +g(rer’) reject
> repeat 3 times
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NP < PCP(poly(n), 1)

fo) - fa) =ulr - uly’
- () (S
1 J
= Zuiujrirj’-

ij
=rTur’

where U is matrix with U;j = u; - u;
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NP < PCP(poly(n), 1)

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u ® u).

grer)=wlrer) =3 wjrr,=r'wr
ij

fofa) =ulr-ulr’ =vTur’

If U = W then W' = Ur’ with probability at least 1/2. Then
rTwr’ = vTUr’ with probability at least 1/4.

: For a non-zero vector x and a random vector v (both with elements from :
: GF(2)), we have Pr[xTr # 0] = % This holds because the product is zero iff:

NP < PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check
Ar(ue®u) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A}).

We can handle this by a single query but checking all constraints
would take O(m) steps.

We compute T A, where » € {0,1}™. If u is not a satisfying
assignment then with probability 1/2 the vector » will hit an odd
number of violated constraints.

In this case ¥TA(u ® u) # v b. The left hand side is equal to
g(ATr).

NP < PCP(poly(n), 1)

We used the following theorem for the linearity test:

Theorem 103
Let f:{0,1}" — {0,1} with

Pro [fx)+fO)=fx+y)]=p>

x,y€{0,1}n

N | =

Then there is a linear function f such that f andf are p-close.
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NP < PCP(poly(n), 1)

Fourier Transform over GF(2)

In the following we use {—1,1} instead of {0,1}. We map
b € {0,1} to (-1)L.

This turns summation into multiplication.

The set of function f: {—1,1}" — R form a 2"-dimensional
Hilbert space.
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NP < PCP(poly(n), 1)

Hilbert space
> addition (f + g)(x) = f(x) + g(x)
> scalar multiplication («f)(x) = af(x)

> inner product (f,g) = Exe(-1,1;n[f(x)g(x)]
(bilinear, (f, f) = 0,and (f,f) =0= f =0)

> completeness: any sequence X} of vectors for which

N
L - Zxk
k=1

(o)
> lIxkll < oo fulfills
k=1

-0

for some vector L.
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NP < PCP(poly(n), 1)

standard basis

1 x=vy
eX(y):{ 0 otw.

Then, f(x) = >; oje;(x) where &y = f(x), this means the
functions ¢; form a basis. This basis is orthonormal.
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NP < PCP(poly(n), 1)

fourier basis

For @ < [n] define

Xa(x) = 1_[ Xi
iex
Note that
1 =
(X XB) = Ex|[ XX () | = Ex| Xanp () ] = { 0 f)(tW.B

This means the x«’s also define an orthonormal basis. (since we
have 2" orthonormal vectors...)
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NP < PCP(poly(n), 1)

A function x« multiplies a set of x;’s. Back in the GF(2)-world this

means summing a set of z;’s where x; = (—1)%i.

This means the function x correspond to linear functions in the

GF(2) world.

m 19 Hardness of Approximation
Harald Ricke




NP < PCP(poly(n), 1)

We can write any function f: {—-1,1}" — R as

f= Zf(xX(x
(6.4
We call fo( the ' Fourier coefficient.

Lemma 104
1. (f,9) = 2.« faI«
2. <fif> = Zafg(

Note that for Boolean functions f: {—1,1}" — {-1,1}, (f,f) = 1.

Linearity Test

in GF(2):
We want to show that if Pry o [ f(x) + f(y) = f(x + )] is large
than f has a large agreement with a linear function.

in Hilbert space: (we will prove)
Suppose f: {x1}" — {—1,1} fulfills

PELFOOSO) = flx o )] = % re.

Then there is some x < [n], s.t. fa > 2€.

| m m m e e e e e e e e e o -
1 Here x o v denotes the n-dimensional vector with entry

| X; ;i in position i (Hadamard product).
: Observe that we have xx(x o) = Xa (X)X (V).
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Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < fa = (f,X«) = agree — disagree = 2agree — 1

This gives that the agreement between f and x is at least % + €.

Linearity Test

Prif(xey) = fGOf ] = 5 +e

means that the fraction of inputs x,y on which f(x o ) and
f(x)f(y) agree is at least 1/2 + €.

This gives

Exylf(xoy)f(x)f(y)] = agreement — disagreement
= 2agreement — 1

> 2€
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2€ < Exy | flx o y)f(X)f(y)]

= Exy _<Z‘Xfo<X¢x(x o)) (25 fexs(x)) '(nyyXY(y))]

= Exy Za,ﬁ,yfafgfyxa(x)xa<y)><5<x>xy<y>]

- Zaﬁ’y Fofpfy - Ex [Xa(X)XB(X)] Ey[xo((y)xy(y)]
=2 fa
<max fo - > f& = max fu
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Label Cover

Input:
> bipartite graph G = (V1, V>, E)

> label sets Li,L»

> for every edge (u,v) € E arelation Ry S L1 X Ly that
describe assignments that make the edge happy.

» maximize number of happy edges

__________________________________

= {m,m,0,m}

e =1(m3,0), (m,0), (m0)}

L, = {o,0,0,0,0}

IThe label cover problem also has its origin in proof systems. It encodes a 2PR1
|(2 prover 1 round system). Each side of the graph corresponds to a prover. An '
edge is a query consisting of a question for prover 1 and prover 2. If the answers |

' are consistent the verifer accepts otw. it rejects.

Label Cover

> an instance of label coveris (d,d>)-regular if every vertex in
Ly has degree d; and every vertex in L> has degree d>.

> if every vertex has the same degree d the instance is called
d-regular
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MAX E3SAT via Label Cover

instance:

P(x)=(x1VX2VX3)A(XqVX2VX3)A(X1V X2V Xyg)

corresponding graph:

le v;'czvxgl quvxzvy'cgl I:‘clvxzv:'ql

IThe verifier accepts if the la- ]
! bellmg (assignment to vari-i
|ables in clauses at the top |
|+ assignment to variables at!
i the bottom) causes the clause |
| to evaluate to true and is con-

| sistent, i.e., the a55|gnmentl
'of e.g. x4 at the bottom is
.the same as the assignment |
i " given to x4 in the labelling ofl
1 the clause. !

label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)

relation: Rc x;, = {((uj, uj, ur), ui)}, where the clause C is over
variables x;, x;, xi and assignment (u;, uj, uy) satisfies C

R ={((F,F,F),F),((F,T,F),F),((F,F,T),T),((F,T,T),T),
«r,1,7),T),(T,T,F),F), (T,F,F),F)}




MAX E3SAT via Label Cover

Lemma 105

If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

> for Vo use the setting of the assignment that satisfies k
clauses

» for satisfied clauses in V] use the corresponding assignment
to the clause-variables (gives 3k happy edges)

» for unsatisfied clauses flip assignment of one of the
variables; this makes one incident edge unhappy (gives
2(m — k) happy edges)
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MAX E3SAT via Label Cover

Lemma 106
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) =2m + k edges happy.

Proof:
> the labeling of nodes in V> gives an assignment

> every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges

> hence at most 3m — (m — k) = 2m + k edges are happy
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_________________________

: Here € > 0 is the constant from PCP The-
yorem A.

Hardness for Label Cover

We cannot distinguish between the following two cases
> all 3m edges can be made happy

» at most 2m + (1 —€)m = (3 — €)m out of the 3m edges can
be made happy

3—€

Hence, we cannot obtain an approximation constant o > =5-.
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(3, 5)-regular instances

Theorem 107
There is a constant p s.t. MAXE3SAT is hard to approximate with

a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

Then our reduction has the following properties:
» the resulting Label Cover instance is (3, 5)-regular
> it is hard to approximate for a constant «x < 1

> given a label ¢; for x there is at most one label £, for y that
makes edge (x, y) happy (uniqueness property)

19 Hardness of Approximation

lm Harald Racke




(3, 5)-regular instances

The previous theorem can be obtained with a series of
gap-preserving reductions:

> MAX3SAT < MAX3SAT(< 29)

> MAX3SAT(< 29) < MAX3SAT(<5)
> MAX3SAT(< 5) < MAX3SAT(=5)
> MAX3SAT(=5) < MAXE3SAT(=5)

Here MAX3SAT (< 29) is the variant of MAX3SAT in which a
variable appears in at most 29 clauses. Similar for the other
problems.
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lar i | We take the (3,5)-regular instance. We make 3 copies of !
ReQ ular instances : every clause vertex and 5 copies of every variable vertex.:
:Then we add edges between clause vertex and variable ,
1 vertex iff the clause contains the variable. This increases |
: the size by a constant factor. The gap instance can still :
i either only satisfy a constant fraction of the edges or all ,
1 edges. The uniqueness property still holds for the new:
"instance.
Theorem 108 e e e e
There is a constant x < 1 such if there is an x-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label £, for x € V| there is at most one label £, for y that
makes (x,y) happy. (uniqueness property)
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Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance
probability of a wrong proof (or as here: a pair of wrong proofs)
one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a
single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several
rounds in parallel and hope that the acceptance probability of
wrong proofs goes down.
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Parallel Repetition

Given Label Cover instance I with G = (V1,V>,E), label sets L;
and L, we construct a new instance I':

> Vi =VE=Vix- . xV;

Vi=VEk=Vax.-.xVp

Ly=1Y=L1x- - xL

Ly=I1Kk=Lyx---xL

E =EK=Ex---xE

An edge ((x1,...,Xk), (V1,...,Yk)) whose end-points are labelled

by (¢5,..., %) and (£7,...,07) is happy if (£¥,07) € Ry, ,, for
all 1.

vV v. v Y
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Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
> Suppose we have labelling 1, > that satisfies just an
«-fraction of edges in I.

> We transfer this labelling to instance I":
vertex (xi,...,xx) gets label (1(x1),...,¢1(xk)),
vertex (v1,...,vk) gets label (£2(v1),...,02(k)).
» How many edges are happy?
only (x|E)* out of |[E[¥1! (just an ok fraction)

Does this always work?

Counter Example

Non interactive agreement:
» Two provers A and B

» The verifier generates two random bits b4, and bg, and
sends one to A and one to B.

» Each prover has to answer one of Agy, A1, Bg, By with the
meaning Ag := prover A has been given a bit with value 0.

» The provers win if they give the same answer and if the
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answer is correct.
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Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0 A
1 1 A

Regardless what we do 50% of edges are unhappy!
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Counter Example

In the repeated game the provers can

also win with probability 1/2:

A
Ap,Bo 0,0

Ao,Bp 0,1

A1,B1 1,0

A1,B1 1,1

B

m———-—-—--—----—------—-——<-
1 For the first game/coordinate the :

: provers give an answer of the form :
:“A has received...” (Ag or Ay) and :
1 for the second an answer of the,
: form “B has received...” (By or By). :
: If the answer a prover has to:
1 give is about himself a prover can ,
| answer correctly. If the answer to j
I be given is about the other prover

0,0 AO,BO: the same bit is returned. This,

:means e.g. Prover B answers A1:
1 for the first game iff in the second |

| game he receives a 1-bit. 1

1 i -
],0 Ao, Bo! By this method the provers al :

0,] Al,Bl:

1,1 A1,By

1ways win if Prover A gets the same ,
| bit in the first game as Prover B
: in the second game. This happens :
1 with probability 1/2. |
This strategy is not possible for:
! the provers if the game is repeated !
1 sequentially. How should prover B :
:know (for her answer in the first |
: game) which bit she is going to re-1
| ceive in the second game? \




Boosting

Theorem 109

There is a constant ¢ > 0 such if OPT(I) = |E|(1 — ) then
ck
OPT(I") < |E"|(1 — &)eL  where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial

m Harald Racke
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Hardness of Label Cover

Theorem 110
There are constants ¢ > 0, 6 < 1 s.t. for any k we cannot
distinguish regular instances for Label Cover in which either
» OPT(I) = |E|, or
> OPT(I) = |E[(1 — §)°k

unless each problem in NP has an algorithm running in time
O(nO(k)).

Corollary 111

There is no x-approximation for Label Cover for any constant «.
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