
SS 2022

Efficient Algorithms
and Data Structures II

Harald Räcke

Fakultät für Informatik
TU München

https://www.moodle.tum.de/course/view.php?id=79534

Summer Term 2022

9. Jul. 2022

Harald Räcke 1/462

Part I

Organizational Matters

9. Jul. 2022

Harald Räcke 2/462

Part I

Organizational Matters

ñ Modul: IN2004

ñ Name: “Efficient Algorithms and Data Structures II”

“Effiziente Algorithmen und Datenstrukturen II”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Wed 10:15–11:45 (Room 00.13.009A)
Fri 10:15–11:45 (MS HS3)

ñ Webpage:

https://www.moodle.tum.de/course/view.php?id=79534

9. Jul. 2022

Harald Räcke 3/462

Part I

Organizational Matters

ñ Modul: IN2004

ñ Name: “Efficient Algorithms and Data Structures II”

“Effiziente Algorithmen und Datenstrukturen II”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Wed 10:15–11:45 (Room 00.13.009A)
Fri 10:15–11:45 (MS HS3)

ñ Webpage:

https://www.moodle.tum.de/course/view.php?id=79534

9. Jul. 2022

Harald Räcke 3/462

Part I

Organizational Matters

ñ Modul: IN2004

ñ Name: “Efficient Algorithms and Data Structures II”

“Effiziente Algorithmen und Datenstrukturen II”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Wed 10:15–11:45 (Room 00.13.009A)
Fri 10:15–11:45 (MS HS3)

ñ Webpage:

https://www.moodle.tum.de/course/view.php?id=79534

9. Jul. 2022

Harald Räcke 3/462

Part I

Organizational Matters

ñ Modul: IN2004

ñ Name: “Efficient Algorithms and Data Structures II”

“Effiziente Algorithmen und Datenstrukturen II”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Wed 10:15–11:45 (Room 00.13.009A)
Fri 10:15–11:45 (MS HS3)

ñ Webpage:

https://www.moodle.tum.de/course/view.php?id=79534

9. Jul. 2022

Harald Räcke 3/462

Part I

Organizational Matters

ñ Modul: IN2004

ñ Name: “Efficient Algorithms and Data Structures II”

“Effiziente Algorithmen und Datenstrukturen II”

ñ ECTS: 8 Credit points

ñ Lectures:
ñ 4 SWS

Wed 10:15–11:45 (Room 00.13.009A)
Fri 10:15–11:45 (MS HS3)

ñ Webpage:

https://www.moodle.tum.de/course/view.php?id=79534

9. Jul. 2022

Harald Räcke 3/462

The Lecturer

ñ Harald Räcke

ñ Email: raecke@in.tum.de

ñ Room: 03.09.044

ñ Office hours: (per appointment)

9. Jul. 2022

Harald Räcke 4/462

Tutorials

ñ Tutor:
ñ Omar AbdelWanis
ñ omar.abdelwanis@tum.de
ñ per appointment

ñ Room: 03.11.018

ñ Time: Mon 14:00–16:00

9. Jul. 2022

Harald Räcke 5/462

Assessment

ñ In order to pass the module you need to pass an exam.

ñ Exam:
ñ 2.5 hours
ñ There are no resources allowed, apart from a hand-written

piece of paper (A4).
ñ Answers should be given in English, but German is also

accepted.

9. Jul. 2022

Harald Räcke 6/462

Assessment

ñ In order to pass the module you need to pass an exam.

ñ Exam:
ñ 2.5 hours
ñ There are no resources allowed, apart from a hand-written

piece of paper (A4).
ñ Answers should be given in English, but German is also

accepted.

9. Jul. 2022

Harald Räcke 6/462

Assessment

ñ In order to pass the module you need to pass an exam.

ñ Exam:
ñ 2.5 hours
ñ There are no resources allowed, apart from a hand-written

piece of paper (A4).
ñ Answers should be given in English, but German is also

accepted.

9. Jul. 2022

Harald Räcke 6/462

Assessment

ñ In order to pass the module you need to pass an exam.

ñ Exam:
ñ 2.5 hours
ñ There are no resources allowed, apart from a hand-written

piece of paper (A4).
ñ Answers should be given in English, but German is also

accepted.

9. Jul. 2022

Harald Räcke 6/462

Assessment

ñ In order to pass the module you need to pass an exam.

ñ Exam:
ñ 2.5 hours
ñ There are no resources allowed, apart from a hand-written

piece of paper (A4).
ñ Answers should be given in English, but German is also

accepted.

9. Jul. 2022

Harald Räcke 6/462

Assessment

ñ Assignment Sheets:
ñ An assignment sheet is usually made available on Monday on

the module webpage.
ñ The first one will be out on Monday, 2 May.

9. Jul. 2022

Harald Räcke 7/462

Assessment

ñ Assignment Sheets:
ñ An assignment sheet is usually made available on Monday on

the module webpage.
ñ The first one will be out on Monday, 2 May.

9. Jul. 2022

Harald Räcke 7/462

Assessment

ñ Assignment Sheets:
ñ An assignment sheet is usually made available on Monday on

the module webpage.
ñ The first one will be out on Monday, 2 May.

9. Jul. 2022

Harald Räcke 7/462

1 Contents

Part 1: Linear Programming

Part 2: Approximation Algorithms

1 Contents 9. Jul. 2022

Harald Räcke 8/462

2 Literatur

V. Chvatal:

Linear Programming,

Freeman, 1983

R. Seidel:

Skript Optimierung, 1996

D. Bertsimas and J.N. Tsitsiklis:

Introduction to Linear Optimization,

Athena Scientific, 1997

Vijay V. Vazirani:

Approximation Algorithms,

Springer 2001

2 Literatur 9. Jul. 2022

Harald Räcke 9/462

David P. Williamson and David B. Shmoys:

The Design of Approximation Algorithms,

Cambridge University Press 2011

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A.

Marchetti-Spaccamela, and M. Protasi:

Complexity and Approximation,

Springer, 1999

2 Literatur 9. Jul. 2022

Harald Räcke 10/462

Part II

Linear Programming

9. Jul. 2022

Harald Räcke 11/462

Brewery Problem

Brewery brews ale and beer.

ñ Production limited by supply of corn, hops and barley malt

ñ Recipes for ale and beer require different amounts of

resources

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 12/462

Brewery Problem

Brewery brews ale and beer.

ñ Production limited by supply of corn, hops and barley malt

ñ Recipes for ale and beer require different amounts of

resources

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 12/462

Brewery Problem

Brewery brews ale and beer.

ñ Production limited by supply of corn, hops and barley malt

ñ Recipes for ale and beer require different amounts of

resources

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 12/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 13/462

Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 14/462

Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 14/462

Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 14/462

Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 14/462

Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 14/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 15/462

Standard Form LPs

Original LP
max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Standard Form

Add a slack variable to every constraint.

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 16/462

Standard Form LPs

Original LP
max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Standard Form

Add a slack variable to every constraint.

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 16/462

Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 17/462

Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 17/462

Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 17/462

Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 17/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 18/462

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 19/462

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 19/462

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 19/462

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 19/462

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 19/462

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 19/462

Standard Form LPs

Observations:

ñ a linear program does not contain x2, cos(x), etc.

ñ transformations between standard forms can be done

efficiently and only change the size of the LP by a small

constant factor

ñ for the standard minimization or maximization LPs we could

include the nonnegativity constraints into the set of ordinary

constraints; this is of course not possible for the standard

form

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 20/462

Standard Form LPs

Observations:

ñ a linear program does not contain x2, cos(x), etc.

ñ transformations between standard forms can be done

efficiently and only change the size of the LP by a small

constant factor

ñ for the standard minimization or maximization LPs we could

include the nonnegativity constraints into the set of ordinary

constraints; this is of course not possible for the standard

form

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 20/462

Standard Form LPs

Observations:

ñ a linear program does not contain x2, cos(x), etc.

ñ transformations between standard forms can be done

efficiently and only change the size of the LP by a small

constant factor

ñ for the standard minimization or maximization LPs we could

include the nonnegativity constraints into the set of ordinary

constraints; this is of course not possible for the standard

form

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 20/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 21/462

Geometry of Linear Programming

ale a

beer b

Geometry of Linear Programming

ale a

beer b

Geometry of Linear Programming

ale a

beer b

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

5a+ 15b ≤ 480

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

5a+ 15b ≤ 480

35a+ 20b ≤ 1190

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

4a+ 4b ≤ 160

5a+ 15b ≤ 480

35a+ 20b ≤ 1190

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

4a+ 4b ≤ 160

5a+ 15b ≤ 480

35a+ 20b ≤ 1190

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

13a+ 23b = 1400

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

13a+ 23b = 442

13a+ 23b = 1400

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

13a+ 23b = 442

13a+ 23b = 800

13a+ 23b = 1400

a ≥ 0

b ≥ 0

Geometry of Linear Programming

ale a

beer b

13a+ 23b = 442

13a+ 23b = 800

13a+ 23b = 1400

a ≥ 0

b ≥ 0

pr
ofi

t

Geometry of Linear Programming

ale a

beer b

pr
ofi

t

Regardless of the objective function an

optimum solution occurs at a vertex

(Ecke).

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ ∅ then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 24/462

Definition 2

Given vectors/points x1, . . . , xk ∈ Rn,
∑
λixi is called

ñ linear combination if λi ∈ R.

ñ affine combination if λi ∈ R and
∑
i λi = 1.

ñ convex combination if λi ∈ R and
∑
i λi = 1 and λi ≥ 0.

ñ conic combination if λi ∈ R and λi ≥ 0.

Note that a combination involves only finitely many vectors.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 25/462

Definition 3

A set X ⊆ Rn is called

ñ a linear subspace if it is closed under linear combinations.

ñ an affine subspace if it is closed under affine combinations.

ñ convex if it is closed under convex combinations.

ñ a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 26/462

Definition 4

Given a set X ⊆ Rn.

ñ span(X) is the set of all linear combinations of X
(linear hull, span)

ñ aff(X) is the set of all affine combinations of X
(affine hull)

ñ conv(X) is the set of all convex combinations of X
(convex hull)

ñ cone(X) is the set of all conic combinations of X
(conic hull)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 27/462

Definition 5

A function f : Rn → R is convex if for x,y ∈ Rn and λ ∈ [0,1] we

have

f(λx + (1− λ)y) ≤ λf(x)+ (1− λ)f(y)

Lemma 6

If P ⊆ Rn, and f : Rn → R convex then also

Q = {x ∈ P | f(x) ≤ t}

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 28/462

Definition 5

A function f : Rn → R is convex if for x,y ∈ Rn and λ ∈ [0,1] we

have

f(λx + (1− λ)y) ≤ λf(x)+ (1− λ)f(y)

Lemma 6

If P ⊆ Rn, and f : Rn → R convex then also

Q = {x ∈ P | f(x) ≤ t}

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 28/462

Dimensions

Definition 7

The dimension dim(A) of an affine subspace A ⊆ Rn is the

dimension of the vector space {x − a | x ∈ A}, where a ∈ A.

Definition 8

The dimension dim(X) of a convex set X ⊆ Rn is the dimension

of its affine hull aff(X).

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 29/462

Definition 9

A set H ⊆ Rn is a hyperplane if H = {x | aTx = b}, for a ≠ 0.

Definition 10

A set H′ ⊆ Rn is a (closed) halfspace if H = {x | aTx ≤ b}, for

a ≠ 0.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 30/462

Definition 9

A set H ⊆ Rn is a hyperplane if H = {x | aTx = b}, for a ≠ 0.

Definition 10

A set H′ ⊆ Rn is a (closed) halfspace if H = {x | aTx ≤ b}, for

a ≠ 0.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 30/462

Definitions

Definition 11

A polytop is a set P ⊆ Rn that is the convex hull of a finite set of

points, i.e., P = conv(X) where |X| = c.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 31/462

Definitions

Definition 12

A polyhedron is a set P ⊆ Rn that can be represented as the

intersection of finitely many half-spaces

{H(a1, b1), . . . ,H(am, bm)}, where

H(ai, bi) =
{
x ∈ Rn | aix ≤ bi

}
.

Definition 13

A polyhedron P is bounded if there exists B s.t. ‖x‖2 ≤ B for all

x ∈ P .

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 32/462

Definitions

Definition 12

A polyhedron is a set P ⊆ Rn that can be represented as the

intersection of finitely many half-spaces

{H(a1, b1), . . . ,H(am, bm)}, where

H(ai, bi) =
{
x ∈ Rn | aix ≤ bi

}
.

Definition 13

A polyhedron P is bounded if there exists B s.t. ‖x‖2 ≤ B for all

x ∈ P .

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 32/462

Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 33/462

Definition 15

Let P ⊆ Rn, a ∈ Rn and b ∈ R. The hyperplane

H(a,b) = {x ∈ Rn | aTx = b}

is a supporting hyperplane of P if max{aTx | x ∈ P} = b.

Definition 16

Let P ⊆ Rn. F is a face of P if F = P or F = P ∩H for some

supporting hyperplane H.

Definition 17

Let P ⊆ Rn.

ñ a face v is a vertex of P if {v} is a face of P .

ñ a face e is an edge of P if e is a face and dim(e) = 1.

ñ a face F is a facet of P if F is a face and dim(F) = dim(P)− 1.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 34/462

Definition 15

Let P ⊆ Rn, a ∈ Rn and b ∈ R. The hyperplane

H(a,b) = {x ∈ Rn | aTx = b}

is a supporting hyperplane of P if max{aTx | x ∈ P} = b.

Definition 16

Let P ⊆ Rn. F is a face of P if F = P or F = P ∩H for some

supporting hyperplane H.

Definition 17

Let P ⊆ Rn.

ñ a face v is a vertex of P if {v} is a face of P .

ñ a face e is an edge of P if e is a face and dim(e) = 1.

ñ a face F is a facet of P if F is a face and dim(F) = dim(P)− 1.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 34/462

Definition 15

Let P ⊆ Rn, a ∈ Rn and b ∈ R. The hyperplane

H(a,b) = {x ∈ Rn | aTx = b}

is a supporting hyperplane of P if max{aTx | x ∈ P} = b.

Definition 16

Let P ⊆ Rn. F is a face of P if F = P or F = P ∩H for some

supporting hyperplane H.

Definition 17

Let P ⊆ Rn.

ñ a face v is a vertex of P if {v} is a face of P .

ñ a face e is an edge of P if e is a face and dim(e) = 1.

ñ a face F is a facet of P if F is a face and dim(F) = dim(P)− 1.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 34/462

Equivalent definition for vertex:

Definition 18

Given polyhedron P . A point x ∈ P is a vertex if ∃c ∈ Rn such

that cTy < cTx, for all y ∈ P , y ≠ x.

Definition 19

Given polyhedron P . A point x ∈ P is an extreme point if

 a,b ≠ x, a,b ∈ P , with λa+ (1− λ)b = x for λ ∈ [0,1].

Lemma 20

A vertex is also an extreme point.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 35/462

Equivalent definition for vertex:

Definition 18

Given polyhedron P . A point x ∈ P is a vertex if ∃c ∈ Rn such

that cTy < cTx, for all y ∈ P , y ≠ x.

Definition 19

Given polyhedron P . A point x ∈ P is an extreme point if

 a,b ≠ x, a,b ∈ P , with λa+ (1− λ)b = x for λ ∈ [0,1].

Lemma 20

A vertex is also an extreme point.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 35/462

Observation

The feasible region of an LP is a Polyhedron.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 36/462

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then

there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 37/462

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then

there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 37/462

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then

there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 37/462

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then

there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 37/462

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then

there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 37/462

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then

there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 37/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P)

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 38/462

Algebraic View

ale a

beer b

An extreme point in Rd is uniquely de-

fined by d linearly independent equa-

tions.

Notation

Suppose B ⊆ {1 . . . n} is a set of column-indices. Define AB as the

subset of columns of A indexed by B.

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 40/462

Notation

Suppose B ⊆ {1 . . . n} is a set of column-indices. Define AB as the

subset of columns of A indexed by B.

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 40/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 41/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 42/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}. If

AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 43/462

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1

From now on we will always assume that the

constraint matrix of a standard form LP has full

row rank.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 45/462

Theorem 24

Given P = {x | Ax = b,x ≥ 0}. x is extreme point iff there exists

B ⊆ {1, . . . , n} with |B| =m and

ñ AB is non-singular

ñ xB = A−1
B b ≥ 0

ñ xN = 0

where N = {1, . . . , n} \ B.

Proof

Take B = {j | xj > 0} and augment with linearly independent

columns until |B| =m; always possible since rank(A) =m.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 46/462

Theorem 24

Given P = {x | Ax = b,x ≥ 0}. x is extreme point iff there exists

B ⊆ {1, . . . , n} with |B| =m and

ñ AB is non-singular

ñ xB = A−1
B b ≥ 0

ñ xN = 0

where N = {1, . . . , n} \ B.

Proof

Take B = {j | xj > 0} and augment with linearly independent

columns until |B| =m; always possible since rank(A) =m.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 46/462

Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 47/462

Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 47/462

Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 47/462

Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 47/462

Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 47/462

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n−m of the xi’s are zero. The

corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 48/462

Basic Feasible Solutions

Definition 25

For a general LP (max{cTx | Ax ≤ b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 49/462

Algebraic View

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}
(34|0|30|24|0)

{b, sh, sm}
(0|32|0|32|550)

{a, b, sm}
(12|28|0|0|210)

{sc , sh, sm}
(0|0|480|160|1190)

{a, b, sh}
(19.41|25.53|0|-19.76|0)

{a, b, sc}
(26|14|140|0|0)

{b, sc , sm}
(0|40|-120|0|390)

{a, sc , sm}
(40|0|280|0|-210)

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Fundamental Questions

Linear Programming Problem (LP)

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP? yes!

ñ Is LP in co-NP?

ñ Is LP in P?

Proof:

ñ Given a basis B we can compute the associated basis solution

by calculating A−1
B b in polynomial time; then we can also

compute the profit.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 51/462

Fundamental Questions

Linear Programming Problem (LP)

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP? yes!

ñ Is LP in co-NP?

ñ Is LP in P?

Proof:

ñ Given a basis B we can compute the associated basis solution

by calculating A−1
B b in polynomial time; then we can also

compute the profit.

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 51/462

Observation

We can compute an optimal solution to a linear program in time

O
((
n
m

)
· poly(n,m)

)
.

ñ there are only
(
n
m

)
different bases.

ñ compute the profit of each of them and take the maximum

What happens if LP is unbounded?

3 Introduction to Linear Programming 9. Jul. 2022

Harald Räcke 52/462

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the

optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective

function.

Two BFSs are called adjacent if the bases just differ in one

variable.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 53/462

4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find the

optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective

function.

Two BFSs are called adjacent if the bases just differ in one

variable.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 53/462

4 Simplex Algorithm

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 54/462

4 Simplex Algorithm

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 54/462

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable can

be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable can

be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable can

be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable can

be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable can

be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable can

be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

sc

b

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

sc

b

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).

max Z
− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 59/462

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 59/462

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 59/462

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 59/462

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 59/462

4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 59/462

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 60/462

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 60/462

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 60/462

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 60/462

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r
{b, sh, sm}

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r
{b, sh, sm}

{a, b, sm}

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}
{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}
{sc , sh, sm}

{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Geometric View of Pivoting

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}

{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 62/462

Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)

Let B be a basis, and let j ∉ B. The vector d with dj = 1 and

d` = 0, ` ∉ B, ` ≠ j and dB = −A−1
B A∗j is called the j-th basis

direction for B.

Going from x∗ to x∗ + θ · d the objective function changes by

θ · cTd = θ(cj − cTBA−1
B A∗j)

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 63/462

Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)

Let B be a basis, and let j ∉ B. The vector d with dj = 1 and

d` = 0, ` ∉ B, ` ≠ j and dB = −A−1
B A∗j is called the j-th basis

direction for B.

Going from x∗ to x∗ + θ · d the objective function changes by

θ · cTd = θ(cj − cTBA−1
B A∗j)

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 63/462

Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)

For a basis B the value

c̃j = cj − cTBA−1
B A∗j

is called the reduced cost for variable xj.

Note that this is defined for every j. If j ∈ B then the above term

is 0.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 64/462

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 65/462

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 65/462

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 65/462

Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 65/462

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 66/462

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 66/462

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 66/462

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 66/462

4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 66/462

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 68/462

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 68/462

Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 68/462

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 69/462

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 69/462

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 69/462

Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is degenerate).

Definition 28 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 69/462

Non Degenerate Example

hops

m
alt

corn

ale

b
ee

r

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r
p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec.

p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec.

p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is minimal

among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 72/462

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is minimal

among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 72/462

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is minimal

among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 72/462

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is minimal

among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 72/462

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is minimal

among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 72/462

Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is minimal

among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a

degenerate vertex.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 72/462

Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the LP

is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails and

we can conclude that the LP is unbounded, or we terminate

because the vector of reduced cost is non-positive. In the latter

case we have an optimum solution.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 73/462

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack form for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of slack

variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 74/462

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack form for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of slack

variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 74/462

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack form for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of slack

variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 74/462

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack form for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of slack

variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 74/462

How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack form for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of slack

variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 74/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 75/462

Optimality

Lemma 29

Let B be a basis and x∗ a BFS corresponding to basis B. c̃ ≤ 0

implies that x∗ is an optimum solution to the LP.

4 Simplex Algorithm 9. Jul. 2022

Harald Räcke 76/462

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of a,b ≥ 0

gives us a lower bound (e.g. a = 12, b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ cj then

∑
iyibi will be an upper

bound.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 77/462

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of a,b ≥ 0

gives us a lower bound (e.g. a = 12, b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ cj then

∑
iyibi will be an upper

bound.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 77/462

Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of a,b ≥ 0

gives us a lower bound (e.g. a = 12, b = 28 gives us a lower

bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ cj then

∑
iyibi will be an upper

bound.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 77/462

Duality

Definition 30

Let z =max{cTx | Ax ≤ b,x ≥ 0} be a linear program P (called

the primal linear program).

The linear program D defined by

w =min{bTy | ATy ≥ c,y ≥ 0}

is called the dual problem.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 78/462

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bTy | ATy ≥ c,y ≥ 0}
ñ w = −max{−bTy | −ATy ≤ −c,y ≥ 0}

The dual problem is

ñ z = −min{−cTx | −Ax ≥ −b,x ≥ 0}
ñ z =max{cTx | Ax ≤ b,x ≥ 0}

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 79/462

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bTy | ATy ≥ c,y ≥ 0}
ñ w = −max{−bTy | −ATy ≤ −c,y ≥ 0}

The dual problem is

ñ z = −min{−cTx | −Ax ≥ −b,x ≥ 0}
ñ z =max{cTx | Ax ≤ b,x ≥ 0}

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 79/462

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bTy | ATy ≥ c,y ≥ 0}
ñ w = −max{−bTy | −ATy ≤ −c,y ≥ 0}

The dual problem is

ñ z = −min{−cTx | −Ax ≥ −b,x ≥ 0}
ñ z =max{cTx | Ax ≤ b,x ≥ 0}

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 79/462

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bTy | ATy ≥ c,y ≥ 0}
ñ w = −max{−bTy | −ATy ≤ −c,y ≥ 0}

The dual problem is

ñ z = −min{−cTx | −Ax ≥ −b,x ≥ 0}
ñ z =max{cTx | Ax ≤ b,x ≥ 0}

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 79/462

Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bTy | ATy ≥ c,y ≥ 0}
ñ w = −max{−bTy | −ATy ≤ −c,y ≥ 0}

The dual problem is

ñ z = −min{−cTx | −Ax ≥ −b,x ≥ 0}
ñ z =max{cTx | Ax ≤ b,x ≥ 0}

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 79/462

Weak Duality

Let z =max{cTx | Ax ≤ b,x ≥ 0} and

w =min{bTy | ATy ≥ c,y ≥ 0} be a primal dual pair.

x is primal feasible iff x ∈ {x | Ax ≤ b,x ≥ 0}

y is dual feasible, iff y ∈ {y | ATy ≥ c,y ≥ 0}.

Theorem 32 (Weak Duality)

Let x̂ be primal feasible and let ŷ be dual feasible. Then

cT x̂ ≤ z ≤ w ≤ bT ŷ .

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 80/462

Weak Duality

Let z =max{cTx | Ax ≤ b,x ≥ 0} and

w =min{bTy | ATy ≥ c,y ≥ 0} be a primal dual pair.

x is primal feasible iff x ∈ {x | Ax ≤ b,x ≥ 0}

y is dual feasible, iff y ∈ {y | ATy ≥ c,y ≥ 0}.

Theorem 32 (Weak Duality)

Let x̂ be primal feasible and let ŷ be dual feasible. Then

cT x̂ ≤ z ≤ w ≤ bT ŷ .

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 80/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.

5.1 Weak Duality 9. Jul. 2022

Harald Räcke 81/462

5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z =max{cTx | Ax = b,x ≥ 0}
w =min{bTy | ATy ≥ c}

This means for computing the dual of a standard form LP, we do

not have non-negativity constraints for the dual variables.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 82/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}

=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}
=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}
=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}
=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}
=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}
=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof

Primal:

max{cTx | Ax = b,x ≥ 0}
=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT]y | [AT −AT]y ≥ c,y ≥ 0}

=min

{[
bT −bT] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 83/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B)TcB ≥ c

y∗ = (A−1
B)TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B)Ty∗
= (ABx∗B)T (A−1

B)
TcB = (x∗B)TATB (A−1

B)
TcB

= cTx∗

Hence, the solution is optimal.

5.2 Simplex and Duality 9. Jul. 2022

Harald Räcke 84/462

5.3 Strong Duality

P =max{cTx | Ax ≤ b,x ≥ 0}
nA: number of variables, mA: number of constraints

We can put the non-negativity constraints into A (which gives us

unrestricted variables): P̄ =max{cTx | Āx ≤ b̄}
nĀ = nA, mĀ =mA +nA

Dual D =min{b̄Ty | ĀTy = c,y ≥ 0}.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 85/462

5.3 Strong Duality

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t
c

{a, b, sm}

The profit vector c lies in the cone generated by the normals for

the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z∗

and w∗ denote the optimal solution to P and D, respectively.

Then

z∗ = w∗

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 87/462

Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on

X. Then min{f(x) : x ∈ X} exists.

(without proof)

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 88/462

Lemma 35 (Projection Lemma)

Let X ⊆ Rm be a non-empty convex set, and let y ∉ X. Then there

exist x∗ ∈ X with minimum distance from y. Moreover for all

x ∈ X we have (y − x∗)T (x − x∗) ≤ 0.

y

x∗

x′

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 89/462

Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ ∅. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.
ñ Applying Weierstrass gives the existence.

y

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 90/462

Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ ∅. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.
ñ Applying Weierstrass gives the existence.

y

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 90/462

Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ ∅. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.
ñ Applying Weierstrass gives the existence.

y

x′

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 90/462

Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ ∅. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.
ñ Applying Weierstrass gives the existence.

y

x′

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 90/462

Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ ∅. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y −x‖ ≤ ‖y −x′‖}. This set is closed

and bounded.
ñ Applying Weierstrass gives the existence.

y

x∗

x′

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 90/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2

≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 91/462

Theorem 36 (Separating Hyperplane)

Let X ⊆ Rm be a non-empty closed convex set, and let y ∉ X.

Then there exists a separating hyperplane {x ∈ R : aTx = α}
where a ∈ Rm, α ∈ R that separates y from X. (aTy < α;

aTx ≥ α for all x ∈ X)

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 92/462

Proof of the Hyperplane Lemma
ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = aTx∗.

ñ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

ñ Also, aTy = aT (x∗ − a) = α− ‖a‖2 < α

H = {x | aTx = α}

y

x∗

x

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 93/462

Proof of the Hyperplane Lemma
ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = aTx∗.

ñ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

ñ Also, aTy = aT (x∗ − a) = α− ‖a‖2 < α

H = {x | aTx = α}

y

x∗

x

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 93/462

Proof of the Hyperplane Lemma
ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = aTx∗.

ñ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

ñ Also, aTy = aT (x∗ − a) = α− ‖a‖2 < α

H = {x | aTx = α}

y

x∗

x

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 93/462

Proof of the Hyperplane Lemma
ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = aTx∗.

ñ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

ñ Also, aTy = aT (x∗ − a) = α− ‖a‖2 < α

H = {x | aTx = α}

y

x∗

x

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 93/462

Proof of the Hyperplane Lemma
ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = aTx∗.

ñ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

ñ Also, aTy = aT (x∗ − a) = α− ‖a‖2 < α

H = {x | aTx = α}

y

x∗

x

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 93/462

Lemma 37 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > yTb = yTAx ≥ 0

Hence, at most one of the statements can hold.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 94/462

Lemma 37 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > yTb = yTAx ≥ 0

Hence, at most one of the statements can hold.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 94/462

Lemma 37 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > yTb = yTAx ≥ 0

Hence, at most one of the statements can hold.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 94/462

Farkas Lemma

b

y

a1

a2

a3

a4

If b is not in the cone generated by the columns of A, there exists

a hyperplane y that separates b from the cone.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.

Lemma 38 (Farkas Lemma; different version)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax ≤ b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0, y ≥ 0

Rewrite the conditions:

1. ∃x ∈ Rn with
[
A I

]
·
[
x
s

]
= b, x ≥ 0, s ≥ 0

2. ∃y ∈ Rm with

[
AT

I

]
y ≥ 0, bTy < 0

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 97/462

Lemma 38 (Farkas Lemma; different version)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax ≤ b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0, y ≥ 0

Rewrite the conditions:

1. ∃x ∈ Rn with
[
A I

]
·
[
x
s

]
= b, x ≥ 0, s ≥ 0

2. ∃y ∈ Rm with

[
AT

I

]
y ≥ 0, bTy < 0

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 97/462

Proof of Strong Duality

P : z =max{cTx | Ax ≤ b,x ≥ 0}

D: w =min{bTy | ATy ≥ c,y ≥ 0}

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

z = w .

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 98/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 99/462

Proof of Strong Duality

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

If the solution y,v has v = 0 we have that

∃y ∈ Rm

s.t. ATy ≥ 0

bTy < 0

y ≥ 0

is feasible.

By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 100/462

Proof of Strong Duality

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

If the solution y,v has v = 0 we have that

∃y ∈ Rm

s.t. ATy ≥ 0

bTy < 0

y ≥ 0

is feasible.

By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 100/462

Proof of Strong Duality

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

If the solution y,v has v = 0 we have that

∃y ∈ Rm

s.t. ATy ≥ 0

bTy < 0

y ≥ 0

is feasible. By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 100/462

Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 101/462

Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 101/462

Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 101/462

Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 101/462

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP? yes!

ñ Is LP in P?

Proof:

ñ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
ñ We can prove this by providing an optimal basis for the dual.

ñ A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 102/462

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP? yes!

ñ Is LP in P?

Proof:

ñ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
ñ We can prove this by providing an optimal basis for the dual.

ñ A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 102/462

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP? yes!

ñ Is LP in P?

Proof:

ñ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
ñ We can prove this by providing an optimal basis for the dual.

ñ A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 102/462

Fundamental Questions

Definition 40 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn

s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP? yes!

ñ Is LP in P?

Proof:

ñ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
ñ We can prove this by providing an optimal basis for the dual.

ñ A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost < α.

5.3 Strong Duality 9. Jul. 2022

Harald Räcke 102/462

Complementary Slackness

Lemma 41

Assume a linear program P =max{cTx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bTy | ATy ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i) has slack if x∗j > 0 (y∗i > 0), (i.e.,

the corresponding variable restriction is not tight) and a contraint

has slack if it is not tight, then the above says that for a

primal-dual solution pair it is not possible that a constraint and

its corresponding (dual) variable has slack.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 103/462

Complementary Slackness

Lemma 41

Assume a linear program P =max{cTx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bTy | ATy ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i) has slack if x∗j > 0 (y∗i > 0), (i.e.,

the corresponding variable restriction is not tight) and a contraint

has slack if it is not tight, then the above says that for a

primal-dual solution pair it is not possible that a constraint and

its corresponding (dual) variable has slack.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 103/462

Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cTx∗ ≤ y∗TAx∗ ≤ bTy∗

Because of strong duality we then get

cTx∗ = y∗TAx∗ = bTy∗

This gives e.g. ∑

j
(yTA− cT)jx∗j = 0

From the constraint of the dual it follows that yTA ≥ cT . Hence

the left hand side is a sum over the product of non-negative

numbers. Hence, if e.g. (yTA− cT)j > 0 (the j-th constraint in

the dual is not tight) then xj = 0 (2.). The result for (1./3./4.)

follows similarly.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 104/462

Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cTx∗ ≤ y∗TAx∗ ≤ bTy∗

Because of strong duality we then get

cTx∗ = y∗TAx∗ = bTy∗

This gives e.g. ∑

j
(yTA− cT)jx∗j = 0

From the constraint of the dual it follows that yTA ≥ cT . Hence

the left hand side is a sum over the product of non-negative

numbers. Hence, if e.g. (yTA− cT)j > 0 (the j-th constraint in

the dual is not tight) then xj = 0 (2.). The result for (1./3./4.)

follows similarly.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 104/462

Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cTx∗ ≤ y∗TAx∗ ≤ bTy∗

Because of strong duality we then get

cTx∗ = y∗TAx∗ = bTy∗

This gives e.g. ∑

j
(yTA− cT)jx∗j = 0

From the constraint of the dual it follows that yTA ≥ cT . Hence

the left hand side is a sum over the product of non-negative

numbers. Hence, if e.g. (yTA− cT)j > 0 (the j-th constraint in

the dual is not tight) then xj = 0 (2.). The result for (1./3./4.)

follows similarly.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 104/462

Interpretation of Dual Variables

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160
35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160
35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160
35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C + 4H + 35M < 13 as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{cTx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bT + εT)y
s.t. ATy ≥ c

y ≥ 0

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 106/462

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{cTx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bT + εT)y
s.t. ATy ≥ c

y ≥ 0

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 106/462

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{cTx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bT + εT)y
s.t. ATy ≥ c

y ≥ 0

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 106/462

Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{cTx | Ax ≤ b + ε;x ≥ 0}. Because of

strong duality this is equal to

min (bT + εT)y
s.t. ATy ≥ c

y ≥ 0

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 106/462

Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 107/462

Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 107/462

Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 107/462

Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 107/462

Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 107/462

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.

{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Example
hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.{a, b, sm}

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Of course, the previous argument about the increase in the primal

objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of

one resource may not allow the objective value to increase.

5.4 Interpretation of Dual Variables 9. Jul. 2022

Harald Räcke 109/462

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is a

function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 110/462

Flows

Definition 42

An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is a

function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 110/462

Flows

Definition 43

The value of an (s, t)-flow f is defined as

val(f) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 111/462

Flows

Definition 43

The value of an (s, t)-flow f is defined as

val(f) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 111/462

LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 112/462

LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 112/462

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− 1+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ 1 ≥ 0

fty (y ≠ s, t) : 1`ty− 0+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ 0 ≥ 0

fst : 1`st− 1+ 0 ≥ 0

fts : 1`ts− 0+ 1 ≥ 0

`xy ≥ 0

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 113/462

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− ps+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ ps ≥ 0

fty (y ≠ s, t) : 1`ty− pt+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ pt ≥ 0

fst : 1`st− ps+ pt ≥ 0

fts : 1`ts− pt+ ps ≥ 0

`xy ≥ 0

with pt = 0 and ps = 1.

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 114/462

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 115/462

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 115/462

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 115/462

LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 115/462

One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut

in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 116/462

One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut

in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 116/462

One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut

in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

5.5 Computing Duals 9. Jul. 2022

Harald Räcke 116/462

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{cTx,Ax = b;x ≥ 0} into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 117/462

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{cTx,Ax = b;x ≥ 0} into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 117/462

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r
p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec.

p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec.

p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degenerate Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

a-direc.

b
-d

ir
e
c.

p
ro

fi
t

sm-direc.

b
-d

irec. p
ro

fi
t

s
h -d

irec.

sm
-direc.

p
ro

fi
t

sc -direc.

sh -direc.

{a, sc , sh}

{a, b, sm}

{sc , sh, sm}
{a, b, sc}

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Given feasible LP :=max{cTx,Ax = b;x ≥ 0}. Change it into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP′ is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP′ has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 119/462

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Given feasible LP :=max{cTx,Ax = b;x ≥ 0}. Change it into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP′ is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP′ has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 119/462

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Given feasible LP :=max{cTx,Ax = b;x ≥ 0}. Change it into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP′ is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP′ has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 119/462

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Given feasible LP :=max{cTx,Ax = b;x ≥ 0}. Change it into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP′ is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP′ has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 119/462

Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Given feasible LP :=max{cTx,Ax = b;x ≥ 0}. Change it into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP′ is feasible

II. If a set B of basis variables corresponds to an infeasible basis

(i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible basis in

LP′ (note that columns in AB are linearly independent).

III. LP′ has no degenerate basic solutions

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 119/462

Perturbation

Let B be index set of some basis with basic solution

x∗B = A−1
B b ≥ 0, x∗N = 0 (i.e. B is feasible)

Fix

b′ := b +AB



ε
...

εm


 for ε > 0 .

This is the perturbation that we are using.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 120/462

Perturbation

Let B be index set of some basis with basic solution

x∗B = A−1
B b ≥ 0, x∗N = 0 (i.e. B is feasible)

Fix

b′ := b +AB



ε
...

εm


 for ε > 0 .

This is the perturbation that we are using.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 120/462

Property I

The new LP is feasible because the set B of basis variables

provides a feasible basis:

A−1
B


b +AB



ε
...

εm





 = x∗B +



ε
...

εm


 ≥ 0 .

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 121/462

Property I

The new LP is feasible because the set B of basis variables

provides a feasible basis:

A−1
B


b +AB



ε
...

εm





 = x∗B +



ε
...

εm


 ≥ 0 .

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 121/462

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0


A−1

B̃


b +AB



ε
...

εm









i

= (A−1
B̃ b)i +


A−1

B̃ AB



ε
...

εm






i

< 0

Hence, B̃ is not feasible.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 122/462

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0


A−1

B̃


b +AB



ε
...

εm









i

= (A−1
B̃ b)i +


A−1

B̃ AB



ε
...

εm






i

< 0

Hence, B̃ is not feasible.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 122/462

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0


A−1

B̃


b +AB



ε
...

εm









i

= (A−1
B̃ b)i +


A−1

B̃ AB



ε
...

εm






i

< 0

Hence, B̃ is not feasible.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 122/462

Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0


A−1

B̃


b +AB



ε
...

εm









i

= (A−1
B̃ b)i +


A−1

B̃ AB



ε
...

εm






i

< 0

Hence, B̃ is not feasible.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 122/462

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 123/462

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 123/462

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 123/462

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 123/462

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 123/462

Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots (Nullstellen).

Hence, ε > 0 small enough gives that no component of the above

vector is 0. Hence, no degeneracies.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 123/462

Since, there are no degeneracies Simplex will terminate when run

on LP′.

ñ If it terminates because the reduced cost vector fulfills

c̃ = (cT − cTBA−1
B A) ≤ 0

then we have found an optimal basis.

Note that this basis is

also optimal for LP, as the above constraint does not depend

on b.

ñ If it terminates because it finds a variable xj with c̃j > 0 for

which the j-th basis direction d, fulfills d ≥ 0 we know that

LP′ is unbounded. The basis direction does not depend on b.

Hence, we also know that LP is unbounded.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 124/462

Since, there are no degeneracies Simplex will terminate when run

on LP′.
ñ If it terminates because the reduced cost vector fulfills

c̃ = (cT − cTBA−1
B A) ≤ 0

then we have found an optimal basis.

Note that this basis is

also optimal for LP, as the above constraint does not depend

on b.

ñ If it terminates because it finds a variable xj with c̃j > 0 for

which the j-th basis direction d, fulfills d ≥ 0 we know that

LP′ is unbounded. The basis direction does not depend on b.

Hence, we also know that LP is unbounded.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 124/462

Since, there are no degeneracies Simplex will terminate when run

on LP′.
ñ If it terminates because the reduced cost vector fulfills

c̃ = (cT − cTBA−1
B A) ≤ 0

then we have found an optimal basis. Note that this basis is

also optimal for LP, as the above constraint does not depend

on b.

ñ If it terminates because it finds a variable xj with c̃j > 0 for

which the j-th basis direction d, fulfills d ≥ 0 we know that

LP′ is unbounded. The basis direction does not depend on b.

Hence, we also know that LP is unbounded.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 124/462

Since, there are no degeneracies Simplex will terminate when run

on LP′.
ñ If it terminates because the reduced cost vector fulfills

c̃ = (cT − cTBA−1
B A) ≤ 0

then we have found an optimal basis. Note that this basis is

also optimal for LP, as the above constraint does not depend

on b.

ñ If it terminates because it finds a variable xj with c̃j > 0 for

which the j-th basis direction d, fulfills d ≥ 0 we know that

LP′ is unbounded. The basis direction does not depend on b.

Hence, we also know that LP is unbounded.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 124/462

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP′ without explicitly doing a perturbation.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 125/462

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP′ without explicitly doing a perturbation.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 125/462

Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP′ without explicitly doing a perturbation.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 125/462

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (c̃e > 0, of

course).

If we do not have a choice for the leaving variable then LP′ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 126/462

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (c̃e > 0, of

course).

If we do not have a choice for the leaving variable then LP′ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 126/462

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (c̃e > 0, of

course).

If we do not have a choice for the leaving variable then LP′ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 126/462

Lexicographic Pivoting

We choose the entering variable arbitrarily as before (c̃e > 0, of

course).

If we do not have a choice for the leaving variable then LP′ and LP

do the same (i.e., choose the same variable).

Otherwise we have to be careful.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 126/462

Lexicographic Pivoting

In the following we assume that b ≥ 0. This can be obtained by

replacing the initial system (A | b) by (A−1
B A | A−1

B b) where B is

the index set of a feasible basis (found e.g. by the first phase of

the Two-phase algorithm).

Then the perturbed instance is

b′ = b +



ε
...

εm




6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 127/462

Lexicographic Pivoting

In the following we assume that b ≥ 0. This can be obtained by

replacing the initial system (A | b) by (A−1
B A | A−1

B b) where B is

the index set of a feasible basis (found e.g. by the first phase of

the Two-phase algorithm).

Then the perturbed instance is

b′ = b +



ε
...

εm




6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 127/462

Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 128/462

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Â`e > 0 and

minimizes

θ` =
b̂`
Â`e

= (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 129/462

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Â`e > 0 and

minimizes

θ` =
b̂`
Â`e

= (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 129/462

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Â`e > 0 and

minimizes

θ` =
b̂`
Â`e

= (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 129/462

Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Â`e > 0 and

minimizes

θ` =
b̂`
Â`e

= (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 129/462

Lexicographic Pivoting

Definition 44

u ≤lex v if and only if the first component in which u and v differ

fulfills ui ≤ vi.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 130/462

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ`

=


A−1

B


b +



ε
...

εm









`

(A−1
B A∗e)`

=



A−1
B (b | I)




1

ε
...

εm






`

(A−1
B A∗e)`

= `-th row of A−1
B (b | I)

(A−1
B A∗e)`




1

ε
...

εm




6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 131/462

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ` =


A−1

B


b +



ε
...

εm









`

(A−1
B A∗e)`

=



A−1
B (b | I)




1

ε
...

εm






`

(A−1
B A∗e)`

= `-th row of A−1
B (b | I)

(A−1
B A∗e)`




1

ε
...

εm




6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 131/462

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ` =


A−1

B


b +



ε
...

εm









`

(A−1
B A∗e)`

=



A−1
B (b | I)




1

ε
...

εm






`

(A−1
B A∗e)`

= `-th row of A−1
B (b | I)

(A−1
B A∗e)`




1

ε
...

εm




6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 131/462

Lexicographic Pivoting

LP′ chooses an index that minimizes

θ` =


A−1

B


b +



ε
...

εm









`

(A−1
B A∗e)`

=



A−1
B (b | I)




1

ε
...

εm






`

(A−1
B A∗e)`

= `-th row of A−1
B (b | I)

(A−1
B A∗e)`




1

ε
...

εm




6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 131/462

Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector
`-th row of A−1

B (b | I)
(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` > 0.

This technique guarantees that your pivoting is the same as in the

perturbed case. This guarantees that cycling does not occur.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 132/462

Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector
`-th row of A−1

B (b | I)
(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` > 0.

This technique guarantees that your pivoting is the same as in the

perturbed case. This guarantees that cycling does not occur.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 132/462

Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector
`-th row of A−1

B (b | I)
(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` > 0.

This technique guarantees that your pivoting is the same as in the

perturbed case. This guarantees that cycling does not occur.

6 Degeneracy Revisited 9. Jul. 2022

Harald Räcke 132/462

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 133/462

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 133/462

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 133/462

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 133/462

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 133/462

Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 133/462

Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 134/462

Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 134/462

Example

max cTx
s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1
...

0 ≤ xn ≤ 1

x1
x2

x3

2n constraint on n variables define an n-dimensional hypercube

as feasible region.

The feasible region has 2n vertices.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 135/462

Example

max cTx
s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1
...

0 ≤ xn ≤ 1

x1
x2

x3

However, Simplex may still run quickly as it usually does not visit

all feasible bases.

In the following we give an example of a feasible region for which

there is a bad Pivoting Rule.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 136/462

Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving

variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable

the leaving variable is unique.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 137/462

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2
...

εxn−1 ≤ xn ≤ 1− εxn−1

xi ≥ 0

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Observations

ñ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.

Analysis

ñ In the following we specify a sequence of bases (identified by

the corresponding hypercube node) along which the

objective function strictly increases.

ñ The basis (0, . . . ,0,1) is the unique optimal basis.

ñ Our sequence Sn starts at (0, . . . ,0) ends with (0, . . . ,0,1)
and visits every node of the hypercube.

ñ An unfortunate Pivoting Rule may choose this sequence, and,

hence, require an exponential number of iterations.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 140/462

Analysis

ñ In the following we specify a sequence of bases (identified by

the corresponding hypercube node) along which the

objective function strictly increases.

ñ The basis (0, . . . ,0,1) is the unique optimal basis.

ñ Our sequence Sn starts at (0, . . . ,0) ends with (0, . . . ,0,1)
and visits every node of the hypercube.

ñ An unfortunate Pivoting Rule may choose this sequence, and,

hence, require an exponential number of iterations.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 140/462

Analysis

ñ In the following we specify a sequence of bases (identified by

the corresponding hypercube node) along which the

objective function strictly increases.

ñ The basis (0, . . . ,0,1) is the unique optimal basis.

ñ Our sequence Sn starts at (0, . . . ,0) ends with (0, . . . ,0,1)
and visits every node of the hypercube.

ñ An unfortunate Pivoting Rule may choose this sequence, and,

hence, require an exponential number of iterations.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 140/462

Analysis

ñ In the following we specify a sequence of bases (identified by

the corresponding hypercube node) along which the

objective function strictly increases.

ñ The basis (0, . . . ,0,1) is the unique optimal basis.

ñ Our sequence Sn starts at (0, . . . ,0) ends with (0, . . . ,0,1)
and visits every node of the hypercube.

ñ An unfortunate Pivoting Rule may choose this sequence, and,

hence, require an exponential number of iterations.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 140/462

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)

Analysis

The sequence Sn that visits every node of the hypercube is

defined recursively

(0, . . . ,0,0,0)

(0, . . . ,0,1,0)

(0, . . . ,0,1,1)

(0, . . . ,0,0,1)

Sn−1

Srev
n−1

Sn

The non-recursive case is S1 = 0→ 1

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 142/462

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1, hence

−εxn−1 is increasing along Srev
n−1.

Remarks about Simplex

Observation

The simplex algorithm takes at most
(
n
m

)
iterations. Each

iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 144/462

Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for

choosing entering and leaving variables) there exist lower bounds

that require the algorithm to have exponential running time

(Ω(2Ω(n))) (e.g. Klee Minty 1972).

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 145/462

Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Ω(2Ω(nα)) for α > 0) (Friedmann,

Hansen, Zwick 2011).

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 146/462

Remarks about Simplex

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional

Euclidean space has diameter no more than m− d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form

O(poly(m,d)) is open.

7 Klee Minty Cube 9. Jul. 2022

Harald Räcke 147/462

8 Seidels LP-algorithm

ñ Suppose we want to solve min{cTx | Ax ≥ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (slightly better bounds on

the running time exist, but will not be discussed here).

ñ If d is much smaller than m one can do a lot better.

ñ In the following we develop an algorithm with running time

O(d! ·m), i.e., linear in m.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 148/462

8 Seidels LP-algorithm

ñ Suppose we want to solve min{cTx | Ax ≥ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (slightly better bounds on

the running time exist, but will not be discussed here).

ñ If d is much smaller than m one can do a lot better.

ñ In the following we develop an algorithm with running time

O(d! ·m), i.e., linear in m.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 148/462

8 Seidels LP-algorithm

ñ Suppose we want to solve min{cTx | Ax ≥ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (slightly better bounds on

the running time exist, but will not be discussed here).

ñ If d is much smaller than m one can do a lot better.

ñ In the following we develop an algorithm with running time

O(d! ·m), i.e., linear in m.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 148/462

8 Seidels LP-algorithm

ñ Suppose we want to solve min{cTx | Ax ≥ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+ d)
(
m+d
m

)
) ≈ (m+ d)m. (slightly better bounds on

the running time exist, but will not be discussed here).

ñ If d is much smaller than m one can do a lot better.

ñ In the following we develop an algorithm with running time

O(d! ·m), i.e., linear in m.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 148/462

8 Seidels LP-algorithm

Setting:

ñ We assume an LP of the form

min cTx
s.t. Ax ≥ b

x ≥ 0

ñ We assume that the LP is bounded.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 149/462

Ensuring Conditions

Given a standard minimization LP

min cTx
s.t. Ax ≥ b

x ≥ 0

how can we obtain an LP of the required form?

ñ Compute a lower bound on cTx for any basic feasible

solution.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 150/462

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of

entries in A,b.

Multiply entries in A,b by s to obtain integral entries. This does

not change the feasible region.

Add slack variables to A; denote the resulting matrix with Ā.

If B is an optimal basis then xB with ĀBxB = b̄, gives an optimal

assignment to the basis variables (non-basic variables are 0).

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 151/462

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of

entries in A,b.

Multiply entries in A,b by s to obtain integral entries. This does

not change the feasible region.

Add slack variables to A; denote the resulting matrix with Ā.

If B is an optimal basis then xB with ĀBxB = b̄, gives an optimal

assignment to the basis variables (non-basic variables are 0).

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 151/462

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of

entries in A,b.

Multiply entries in A,b by s to obtain integral entries. This does

not change the feasible region.

Add slack variables to A; denote the resulting matrix with Ā.

If B is an optimal basis then xB with ĀBxB = b̄, gives an optimal

assignment to the basis variables (non-basic variables are 0).

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 151/462

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of

entries in A,b.

Multiply entries in A,b by s to obtain integral entries. This does

not change the feasible region.

Add slack variables to A; denote the resulting matrix with Ā.

If B is an optimal basis then xB with ĀBxB = b̄, gives an optimal

assignment to the basis variables (non-basic variables are 0).

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 151/462

Theorem 46 (Cramers Rule)

Let M be a matrix with det(M) ≠ 0. Then the solution to the

system Mx = b is given by

xi =
det(Mj)
det(M)

,

where Mi is the matrix obtained from M by replacing the i-th
column by the vector b.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 152/462

Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 153/462

Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 153/462

Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 153/462

Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 153/462

Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 153/462

Bounding the Determinant

Let Z be the maximum absolute entry occuring in Ā, b̄ or c. Let C
denote the matrix obtained from ĀB by replacing the j-th column

with vector b̄ (for some j).

Observe that

|det(C)|

=
∣∣∣∣∣∣
∑

π∈Sm
sgn(π)

∏

1≤i≤m
Ciπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sm

∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 154/462

Bounding the Determinant

Let Z be the maximum absolute entry occuring in Ā, b̄ or c. Let C
denote the matrix obtained from ĀB by replacing the j-th column

with vector b̄ (for some j).

Observe that

|det(C)| =
∣∣∣∣∣∣
∑

π∈Sm
sgn(π)

∏

1≤i≤m
Ciπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sm

∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 154/462

Bounding the Determinant

Let Z be the maximum absolute entry occuring in Ā, b̄ or c. Let C
denote the matrix obtained from ĀB by replacing the j-th column

with vector b̄ (for some j).

Observe that

|det(C)| =
∣∣∣∣∣∣
∑

π∈Sm
sgn(π)

∏

1≤i≤m
Ciπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sm

∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 154/462

Bounding the Determinant

Let Z be the maximum absolute entry occuring in Ā, b̄ or c. Let C
denote the matrix obtained from ĀB by replacing the j-th column

with vector b̄ (for some j).

Observe that

|det(C)| =
∣∣∣∣∣∣
∑

π∈Sm
sgn(π)

∏

1≤i≤m
Ciπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sm

∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 154/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)|

≤
m∏

i=1

‖C∗i‖ ≤
m∏

i=1

(
√
mZ)

≤mm/2Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 155/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| ≤
m∏

i=1

‖C∗i‖

≤
m∏

i=1

(
√
mZ)

≤mm/2Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 155/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| ≤
m∏

i=1

‖C∗i‖ ≤
m∏

i=1

(
√
mZ)

≤mm/2Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 155/462

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| ≤
m∏

i=1

‖C∗i‖ ≤
m∏

i=1

(
√
mZ)

≤mm/2Zm .

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 155/462

Hadamards Inequality

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)|

Hadamards inequality says that the volume of the red

parallelepiped (Spat) is smaller than the volume in the black cube

(if ‖e1‖ = ‖a1‖, ‖e2‖ = ‖a2‖, ‖e3‖ = ‖a3‖).

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 156/462

Ensuring Conditions

Given a standard minimization LP

min cTx
s.t. Ax ≥ b

x ≥ 0

how can we obtain an LP of the required form?

ñ Compute a lower bound on cTx for any basic feasible

solution. Add the constraint cTx ≥ −dZ(m! · Zm)− 1. Note

that this constraint is superfluous unless the LP is

unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

ñ If the cost is cTx = −(dZ)(m! · Zm)− 1 we know that the

original LP is unbounded.

ñ Otw. we have an optimum basis.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 158/462

In the following we use H to denote the set of all constraints

apart from the constraint cTx ≥ −dZ(m! · Zm)− 1.

We give a routine SeidelLP(H , d) that is given a set H of explicit,

non-degenerate constraints over d variables, and minimizes cTx
over all feasible points.

In addition it obeys the implicit constraint

cTx ≥ −(dZ)(m! · Zm)− 1.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 159/462

In the following we use H to denote the set of all constraints

apart from the constraint cTx ≥ −dZ(m! · Zm)− 1.

We give a routine SeidelLP(H , d) that is given a set H of explicit,

non-degenerate constraints over d variables, and minimizes cTx
over all feasible points.

In addition it obeys the implicit constraint

cTx ≥ −(dZ)(m! · Zm)− 1.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 159/462

In the following we use H to denote the set of all constraints

apart from the constraint cTx ≥ −dZ(m! · Zm)− 1.

We give a routine SeidelLP(H , d) that is given a set H of explicit,

non-degenerate constraints over d variables, and minimizes cTx
over all feasible points.

In addition it obeys the implicit constraint

cTx ≥ −(dZ)(m! · Zm)− 1.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 159/462

In the following we use H to denote the set of all constraints

apart from the constraint cTx ≥ −dZ(m! · Zm)− 1.

We give a routine SeidelLP(H , d) that is given a set H of explicit,

non-degenerate constraints over d variables, and minimizes cTx
over all feasible points.

In addition it obeys the implicit constraint

cTx ≥ −(dZ)(m! · Zm)− 1.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 159/462

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H

4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}

5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)

6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh

9: solve aThx = bh for some variable x`;
10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)

12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = ∅ then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution

8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will decrease the

objective function

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 161/462

8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will decrease the

objective function

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 161/462

8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will decrease the

objective function

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 161/462

8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will decrease the

objective function

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 161/462

8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there are

at most d constraints whose removal will decrease the

objective function

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 161/462

8 Seidels LP-algorithm

This gives the recurrence

T(m,d) =




O(max{1,m}) if d = 1
O(d) if d > 1 and m = 0
O(d)+ T(m− 1, d)+
d
m (O(dm)+ T(m− 1, d− 1)) otw.

Note that T(m,d) denotes the expected running time.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 162/462

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

T(m,d) =




Cmax{1,m} if d = 1
Cd if d > 1 and m = 0
Cd+ T(m− 1, d)+
d
m (Cdm+ T(m− 1, d− 1)) otw.

Note that T(m,d) denotes the expected running time.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 163/462

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1)

≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}

≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m}

for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d)

≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd

≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m}

for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d) = O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d) = O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d) = O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m}

for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d) ≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d) = O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)

8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d)

= O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 165/462

8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d) = O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 165/462

8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d) = O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 165/462

8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d) = O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 165/462

8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d) = O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 165/462

8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d) = O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 165/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d)

= 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant.

8 Seidels LP-algorithm 9. Jul. 2022

Harald Räcke 166/462

Complexity

LP Feasibility Problem (LP feasibility A)

Given A ∈ Zm×n, b ∈ Zm. Does there exist x ∈ Rn with Ax ≤ b,

x ≥ 0?

LP Feasiblity Problem (LP feasibility B)

Given A ∈ Zm×n, b ∈ Zm. Find x ∈ Rn with Ax ≤ b, x ≥ 0!

LP Optimization A

Given A ∈ Zm×n, b ∈ Zm, c ∈ Zn. What is the maximum value of

cTx for a feasible point x ∈ Rn?

LP Optimization B

Given A ∈ Zm×n, b ∈ Zm, c ∈ Zn. Return feasible point x ∈ Rn

with maximum value of cTx?

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a|)e + 1

ñ Let for an m×n matrix M, L(M) denote the number of bits

required to encode all the numbers in M.

〈M〉 :=
∑

i,j
dlog2(|mij|)+ 1e

ñ In the following we assume that input matrices are encoded

in a standard way, where each number is encoded in binary

and then suitable separators are added in order to separate

distinct number from each other.

ñ Then the input length is L = Θ(〈A〉 + 〈b〉).

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a|)e + 1

ñ Let for an m×n matrix M, L(M) denote the number of bits

required to encode all the numbers in M.

〈M〉 :=
∑

i,j
dlog2(|mij|)+ 1e

ñ In the following we assume that input matrices are encoded

in a standard way, where each number is encoded in binary

and then suitable separators are added in order to separate

distinct number from each other.

ñ Then the input length is L = Θ(〈A〉 + 〈b〉).

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a|)e + 1

ñ Let for an m×n matrix M, L(M) denote the number of bits

required to encode all the numbers in M.

〈M〉 :=
∑

i,j
dlog2(|mij|)+ 1e

ñ In the following we assume that input matrices are encoded

in a standard way, where each number is encoded in binary

and then suitable separators are added in order to separate

distinct number from each other.

ñ Then the input length is L = Θ(〈A〉 + 〈b〉).

The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a|)e + 1

ñ Let for an m×n matrix M, L(M) denote the number of bits

required to encode all the numbers in M.

〈M〉 :=
∑

i,j
dlog2(|mij|)+ 1e

ñ In the following we assume that input matrices are encoded

in a standard way, where each number is encoded in binary

and then suitable separators are added in order to separate

distinct number from each other.

ñ Then the input length is L = Θ(〈A〉 + 〈b〉).

ñ In the following we sometimes refer to L := 〈A〉 + 〈b〉 as the

input size (even though the real input size is something in

Θ(〈A〉 + 〈b〉)).
ñ Sometimes we may also refer to L := 〈A〉 + 〈b〉 +n log2n as

the input size. Note that n log2n = Θ(〈A〉 + 〈b〉).
ñ In order to show that LP-decision is in NP we show that if

there is a solution x then there exists a small solution for

which feasibility can be verified in polynomial time

(polynomial in L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 169/462

Suppose that Āx = b; x ≥ 0 is feasible.

Then there exists a basic feasible solution. This means a set B of

basic variables such that

xB = Ā−1
B b

and all other entries in x are 0.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 170/462

Suppose that Āx = b; x ≥ 0 is feasible.

Then there exists a basic feasible solution. This means a set B of

basic variables such that

xB = Ā−1
B b

and all other entries in x are 0.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 170/462

Size of a Basic Feasible Solution

ñ A: original input matrix

ñ Ā: transformation of A into standard form

ñ ĀB: submatrix of Ā corresponding to basis B

Lemma 47

Let ĀB ∈ Zm×m and b ∈ Zm. Define L = 〈A〉 + 〈b〉 +n log2n.

Then a solution to ĀBxB = b has rational components xj of the

form
Dj
D , where |Dj| ≤ 2L and |D| ≤ 2L.

Proof:

Cramers rules says that we can compute xj as

xj =
det(ĀjB)
det(ĀB)

where ĀjB is the matrix obtained from ĀB by replacing the j-th
column by the vector b.

Size of a Basic Feasible Solution

ñ A: original input matrix

ñ Ā: transformation of A into standard form

ñ ĀB: submatrix of Ā corresponding to basis B

Lemma 47

Let ĀB ∈ Zm×m and b ∈ Zm. Define L = 〈A〉 + 〈b〉 +n log2n.

Then a solution to ĀBxB = b has rational components xj of the

form
Dj
D , where |Dj| ≤ 2L and |D| ≤ 2L.

Proof:

Cramers rules says that we can compute xj as

xj =
det(ĀjB)
det(ĀB)

where ĀjB is the matrix obtained from ĀB by replacing the j-th
column by the vector b.

Bounding the Determinant

Let X = ĀB. Then

|det(X)|

= |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉

≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Bounding the Determinant

Let X = ĀB. Then

|det(X)| = |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 172/462

Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax ≤ b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint cTx ≥ M). Then checking for feasibility shows

whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥ 1

2L′ .

Here we use L′ = 〈A〉 + 〈b〉 + 〈c〉 +n log2n (it also includes the

encoding size of c).

Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax ≤ b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint cTx ≥ M). Then checking for feasibility shows

whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥ 1

2L′ .

Here we use L′ = 〈A〉 + 〈b〉 + 〈c〉 +n log2n (it also includes the

encoding size of c).

Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax ≤ b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint cTx ≥ M). Then checking for feasibility shows

whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥ 1

2L′ .

Here we use L′ = 〈A〉 + 〈b〉 + 〈c〉 +n log2n (it also includes the

encoding size of c).

Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax ≤ b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint cTx ≥ M). Then checking for feasibility shows

whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥ 1

2L′ .

Here we use L′ = 〈A〉 + 〈b〉 + 〈c〉 +n log2n (it also includes the

encoding size of c).

Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax ≤ b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint cTx ≥ M). Then checking for feasibility shows

whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥ 1

2L′ .

Here we use L′ = 〈A〉 + 〈b〉 + 〈c〉 +n log2n (it also includes the

encoding size of c).

How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint cTx ≥ Mmax + 1 and check for feasibility.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 174/462

How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint cTx ≥ Mmax + 1 and check for feasibility.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 174/462

How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint cTx ≥ Mmax + 1 and check for feasibility.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 174/462

Ellipsoid Method

ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z

E

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z

E

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z

E

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z

E

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z

E

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z

E

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

K

z′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 175/462

Issues/Questions:

ñ How do you choose the first Ellipsoid? What is its volume?

ñ How do you measure progress? By how much does the

volume decrease in each iteration?

ñ When can you stop? What is the minimum volume of a

non-empty polytop?

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 176/462

Definition 48

A mapping f : Rn → Rn with f(x) = Lx + t, where L is an

invertible matrix is called an affine transformation.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 177/462

Definition 49

A ball in Rn with center c and radius r is given by

B(c, r) = {x | (x − c)T (x − c) ≤ r2}
= {x |

∑

i
(x − c)2i /r2 ≤ 1}

B(0,1) is called the unit ball.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 178/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1))

= {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}

= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}

= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 179/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

a

ĉ′

Ê′

Ē′E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 180/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

ĉ′

Ê′

Ē′E′

ā

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 180/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

â

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 180/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 180/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

c̄′

Ê′

Ē′

E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 180/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

c′

Ê′ Ē′

E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 180/462

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.

ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 181/462

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.

ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 181/462

The Easy Case

ñ To obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′ is

axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 182/462

The Easy Case

ñ To obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′ is

axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 182/462

The Easy Case

ñ To obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′ is

axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 182/462

The Easy Case

ñ As Q̂′ = L̂′L̂′t the matrix Q̂′
−1

is of the form

Q̂′
−1 =




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2




9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 183/462

The Easy Case

ñ (e1 − ĉ′)T Q̂′−1
(e1 − ĉ′) = 1 gives




1− t
0
...

0




T

·




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



·




1− t
0
...

0



= 1

ñ This gives (1− t)2 = a2.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 184/462

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1 looks like

(here i = 2)




−t
1

0
...

0




T

·




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



·




−t
1

0
...

0



= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2

= 1− t2

(1− t)2 =
1− 2t
(1− t)2

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 185/462

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1 looks like

(here i = 2)




−t
1

0
...

0




T

·




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



·




−t
1

0
...

0



= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2

= 1− 2t
(1− t)2

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 185/462

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1 looks like

(here i = 2)




−t
1

0
...

0




T

·




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



·




−t
1

0
...

0



= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2 =
1− 2t
(1− t)2

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 185/462

Summary

So far we have

a = 1− t and b = 1− t√
1− 2t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 186/462

The Easy Case

We still have many choices for t:

Ê

e1

e2

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We still have many choices for t:

Ê

e1

e2ĉ′ Ê′

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We still have many choices for t:

Ê

e1

e2

ĉ′
Ê′

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We still have many choices for t:

Ê

e1

e2

ĉ′
Ê′

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We still have many choices for t:

Ê

e1

e2

ĉ′
Ê′

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We still have many choices for t:

Ê

e1

e2

ĉ′
Ê′

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We still have many choices for t:

Ê

e1

e2

ĉ′
Ê′

Choose t such that the volume of Ê′ is minimal!!!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 187/462

The Easy Case

We want to choose t such that the volume of Ê′ is minimal.

Lemma 51

Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)| · vol(K) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 188/462

The Easy Case

We want to choose t such that the volume of Ê′ is minimal.

Lemma 51

Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)| · vol(K) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 188/462

n-dimensional volume

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)|

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 189/462

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

ñ Recall that

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




ñ Note that a and b in the above equations depend on t, by

the previous equations.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 190/462

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

ñ Recall that

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




ñ Note that a and b in the above equations depend on t, by

the previous equations.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 190/462

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

ñ Recall that

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




ñ Note that a and b in the above equations depend on t, by

the previous equations.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 190/462

The Easy Case

vol(Ê′)

= vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 191/462

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|

= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 191/462

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 191/462

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 191/462

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 191/462

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 191/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2

·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1

· (
√

1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2

· 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2)

· (1− t)n
)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 192/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a

= 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t

= n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b =

1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2

= (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t

= (1−
1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 193/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n

=
(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 194/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

a

ĉ′

Ê′

Ē′E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

a

ĉ′

Ê′

Ē′E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

ĉ′

Ê′

Ē′E′

ā

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

â

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ

Ê

ĉ′

Ê′

Ē′E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē

c̄′

Ê′

Ē′

E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

Ê′ Ē′E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx+ t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

c′

Ê′ Ē′

E′

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 195/462

Our progress is the same:

e−
1

2(n+1)

≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 196/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H)

= {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H)

= {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H)

= {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H) = {f−1(x) | aT (x − c) ≤ 0}

= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H) = {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}

= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H) = {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}

= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H) = {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}

= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H) = {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H) = {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 197/462

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′

= R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′

= R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1

= − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′

= f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′)

= L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa

For computing the matrix Q′ of the new ellipsoid we assume in

the following that Ê′, Ē′ and E′ refer to the ellispoids centered in

the origin.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 199/462

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

9 The Ellipsoid Algorithm

Ē′

= R(Ê′)
= {R(x) | xT Q̂′−1

x ≤ 1}
= {y | (R−1y)T Q̂′

−1
R−1y ≤ 1}

= {y | yT (RT)−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 201/462

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xT Q̂′−1
x ≤ 1}

= {y | (R−1y)T Q̂′
−1
R−1y ≤ 1}

= {y | yT (RT)−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 201/462

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)
= {R(x) | xT Q̂′−1

x ≤ 1}

= {y | (R−1y)T Q̂′
−1
R−1y ≤ 1}

= {y | yT (RT)−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 201/462

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)
= {R(x) | xT Q̂′−1

x ≤ 1}
= {y | (R−1y)T Q̂′

−1
R−1y ≤ 1}

= {y | yT (RT)−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 201/462

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)
= {R(x) | xT Q̂′−1

x ≤ 1}
= {y | (R−1y)T Q̂′

−1
R−1y ≤ 1}

= {y | yT (RT)−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 201/462

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)
= {R(x) | xT Q̂′−1

x ≤ 1}
= {y | (R−1y)T Q̂′

−1
R−1y ≤ 1}

= {y | yT (RT)−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 201/462

9 The Ellipsoid Algorithm

Hence,

Q̄′

= RQ̂′RT

= R · n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)
· RT

= n2

n2 − 1

(
R · RT − 2

n+ 1
(Re1)(Re1)T

)

= n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
‖LTa‖2

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 202/462

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′RT

= R · n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)
· RT

= n2

n2 − 1

(
R · RT − 2

n+ 1
(Re1)(Re1)T

)

= n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
‖LTa‖2

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 202/462

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′RT

= R · n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)
· RT

= n2

n2 − 1

(
R · RT − 2

n+ 1
(Re1)(Re1)T

)

= n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
‖LTa‖2

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 202/462

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′RT

= R · n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)
· RT

= n2

n2 − 1

(
R · RT − 2

n+ 1
(Re1)(Re1)T

)

= n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
‖LTa‖2

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 202/462

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′RT

= R · n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)
· RT

= n2

n2 − 1

(
R · RT − 2

n+ 1
(Re1)(Re1)T

)

= n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
‖LTa‖2

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 202/462

9 The Ellipsoid Algorithm

E′

= L(Ē′)
= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT)−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 203/462

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT)−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 203/462

9 The Ellipsoid Algorithm

E′ = L(Ē′)
= {L(x) | xT Q̄′−1x ≤ 1}

= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT)−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 203/462

9 The Ellipsoid Algorithm

E′ = L(Ē′)
= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}

= {y | yT (LT)−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 203/462

9 The Ellipsoid Algorithm

E′ = L(Ē′)
= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT)−1Q̄′−1L−1y ≤ 1}

= {y | yT (LQ̄′LT︸ ︷︷ ︸
Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 203/462

9 The Ellipsoid Algorithm

E′ = L(Ē′)
= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT)−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 203/462

9 The Ellipsoid Algorithm

Hence,

Q′

= LQ̄′LT

= L · n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
aTQa

)
· LT

= n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 204/462

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′LT

= L · n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
aTQa

)
· LT

= n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 204/462

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′LT

= L · n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
aTQa

)
· LT

= n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 204/462

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′LT

= L · n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
aTQa

)
· LT

= n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 204/462

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn

2: output: point x ∈ K or “K is empty”

3: Q ← ???

4: repeat

5: if c ∈ K then return c
6: else

7: choose a violated hyperplane a

8: c ← c − 1
n+ 1

Qa√
aTQa

9: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

10: endif

11: until ???

12: return “K is empty”

Repeat: Size of basic solutions

Lemma 52

Let P = {x ∈ Rn | Ax ≤ b} be a bounded polyhedron. Let

L := 2〈A〉 + 〈b〉 + 2n(1+ log2n). Then every entry xj in a basic

solution fulfills |xj| = Dj
D with Dj ,D ≤ 2L.

In the following we use δ := 2L.

Proof:

We can replace P by P ′ := {x | A′x ≤ b;x ≥ 0} where

A′ =
[
A −A

]
. The lemma follows by applying Lemma 47, and

observing that 〈A′〉 = 2〈A〉 and n′ = 2n.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 206/462

Repeat: Size of basic solutions

Lemma 52

Let P = {x ∈ Rn | Ax ≤ b} be a bounded polyhedron. Let

L := 2〈A〉 + 〈b〉 + 2n(1+ log2n). Then every entry xj in a basic

solution fulfills |xj| = Dj
D with Dj ,D ≤ 2L.

In the following we use δ := 2L.

Proof:

We can replace P by P ′ := {x | A′x ≤ b;x ≥ 0} where

A′ =
[
A −A

]
. The lemma follows by applying Lemma 47, and

observing that 〈A′〉 = 2〈A〉 and n′ = 2n.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 206/462

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 207/462

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 207/462

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 207/462

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 207/462

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 207/462

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 207/462

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop.

Consider the following polyhedron

Pλ :=
{
x | Ax ≤ b + 1

λ




1
...

1



}
,

where λ = δ2 + 1.

Note that the volume of Pλ cannot be 0

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 208/462

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop.

Consider the following polyhedron

Pλ :=
{
x | Ax ≤ b + 1

λ




1
...

1



}
,

where λ = δ2 + 1.

Note that the volume of Pλ cannot be 0

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 208/462

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop.

Consider the following polyhedron

Pλ :=
{
x | Ax ≤ b + 1

λ




1
...

1



}
,

where λ = δ2 + 1.

Note that the volume of Pλ cannot be 0

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 208/462

Making P full-dimensional

Lemma 53

Pλ is feasible if and only if P is feasible.

⇐= : obvious!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 209/462

Making P full-dimensional

Lemma 53

Pλ is feasible if and only if P is feasible.

⇐= : obvious!

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 209/462

Making P full-dimensional

=⇒:

Consider the polyhedrons

P̄ =
{
x |

[
A −A Im

]
x = b;x ≥ 0

}

and

P̄λ =
{
x |

[
A −A Im

]
x = b + 1

λ




1
...

1


 ;x ≥ 0

}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

Making P full-dimensional

=⇒:

Consider the polyhedrons

P̄ =
{
x |

[
A −A Im

]
x = b;x ≥ 0

}

and

P̄λ =
{
x |

[
A −A Im

]
x = b + 1

λ




1
...

1


 ;x ≥ 0

}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

Making P full-dimensional

=⇒:

Consider the polyhedrons

P̄ =
{
x |

[
A −A Im

]
x = b;x ≥ 0

}

and

P̄λ =
{
x |

[
A −A Im

]
x = b + 1

λ




1
...

1


 ;x ≥ 0

}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

Making P full-dimensional

=⇒:

Consider the polyhedrons

P̄ =
{
x |

[
A −A Im

]
x = b;x ≥ 0

}

and

P̄λ =
{
x |

[
A −A Im

]
x = b + 1

λ




1
...

1


 ;x ≥ 0

}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and only

if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

Making P full-dimensional

Let Ā =
[
A −A Im

]
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B




1
...

1




(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for

P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i

Making P full-dimensional

Let Ā =
[
A −A Im

]
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B




1
...

1




(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for

P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i

Making P full-dimensional

Let Ā =
[
A −A Im

]
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B




1
...

1




(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for

P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i

Making P full-dimensional

By Cramers rule we get

(Ā−1
B b)i < 0 =⇒ (Ā−1

B b)i ≤ −
1

det(ĀB)
≤ −1/δ

and

(Ā−1
B ~1)i ≤ det(ĀjB) ≤ δ ,

where ĀjB is obtained by replacing the j-th column of ĀB by ~1.

But then

(Ā−1
B b)i +

1
λ
(Ā−1
B ~1)i ≤ −1/δ+ δ/λ < 0 ,

as we chose λ = δ2 + 1. Contradiction.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 212/462

Making P full-dimensional

By Cramers rule we get

(Ā−1
B b)i < 0 =⇒ (Ā−1

B b)i ≤ −
1

det(ĀB)
≤ −1/δ

and

(Ā−1
B ~1)i ≤ det(ĀjB) ≤ δ ,

where ĀjB is obtained by replacing the j-th column of ĀB by ~1.

But then

(Ā−1
B b)i +

1
λ
(Ā−1
B ~1)i ≤ −1/δ+ δ/λ < 0 ,

as we chose λ = δ2 + 1. Contradiction.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 212/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i

= (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i

≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖

≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3

≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 213/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i

> 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 214/462

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn, radii R and r
2: with K ⊆ B(c,R), and B(x, r) ⊆ K for some x
3: output: point x ∈ K or “K is empty”

4: Q ← diag(R2, . . . , R2) // i.e., L = diag(R, . . . , R)
5: repeat

6: if c ∈ K then return c
7: else

8: choose a violated hyperplane a

9: c ← c − 1
n+ 1

Qa√
aTQa

10: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

11: endif

12: until det(Q) ≤ r2n // i.e., det(L) ≤ rn
13: return “K is empty”

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r)) iterations.

Each iteration is polytime for a polynomial-time Separation oracle.

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

Example

9 The Ellipsoid Algorithm 9. Jul. 2022

Harald Räcke 217/462

10 Karmarkars Algorithm

ñ inequalities Ax ≤ b; m×n matrix A with rows aTi
ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
m∑

i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very large

penalty.

10 Karmarkars Algorithm

ñ inequalities Ax ≤ b; m×n matrix A with rows aTi
ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
m∑

i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very large

penalty.

10 Karmarkars Algorithm

ñ inequalities Ax ≤ b; m×n matrix A with rows aTi
ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
m∑

i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very large

penalty.

10 Karmarkars Algorithm

ñ inequalities Ax ≤ b; m×n matrix A with rows aTi
ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
m∑

i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very large

penalty.

10 Karmarkars Algorithm

ñ inequalities Ax ≤ b; m×n matrix A with rows aTi
ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
m∑

i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very large

penalty.

Penalty Function

−2 −1 0 1 2 3 4 5

−2

−1

0

1

2

−2

0

2

4

6

8

10

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 219/462

Penalty Function

−2 0 2 4 −2

0
2

0

5

10

−2

0

2

4

6

8

10

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 220/462

Gradient and Hessian

Taylor approximation:

φ(x + ε) ≈ φ(x)+∇φ(x)Tε+ 1
2
εT∇2φ(x)ε

Gradient:

∇φ(x) =
m∑

i=1

1
si(x)

· ai = ATdx

where dTx = (1/s1(x), . . . ,1/sm(x)). (dx vector of inverse slacks)

Hessian:

Hx := ∇2φ(x) =
m∑

i=1

1
si(x)2

aiaTi = ATD2
xA

with Dx = diag(dx).

Gradient and Hessian

Taylor approximation:

φ(x + ε) ≈ φ(x)+∇φ(x)Tε+ 1
2
εT∇2φ(x)ε

Gradient:

∇φ(x) =
m∑

i=1

1
si(x)

· ai = ATdx

where dTx = (1/s1(x), . . . ,1/sm(x)). (dx vector of inverse slacks)

Hessian:

Hx := ∇2φ(x) =
m∑

i=1

1
si(x)2

aiaTi = ATD2
xA

with Dx = diag(dx).

Gradient and Hessian

Taylor approximation:

φ(x + ε) ≈ φ(x)+∇φ(x)Tε+ 1
2
εT∇2φ(x)ε

Gradient:

∇φ(x) =
m∑

i=1

1
si(x)

· ai = ATdx

where dTx = (1/s1(x), . . . ,1/sm(x)). (dx vector of inverse slacks)

Hessian:

Hx := ∇2φ(x) =
m∑

i=1

1
si(x)2

aiaTi = ATD2
xA

with Dx = diag(dx).

Proof for Gradient

∂φ(x)
∂xi

= ∂
∂xi

(
−
∑
r

ln(sr (x))
)

= −
∑
r

∂
∂xi

(
ln(sr (x))

)
= −

∑
r

1
sr (x)

∂
∂xi

(
sr (x)

)

= −
∑
r

1
sr (x)

∂
∂xi

(
br − aTr x

)
=
∑
r

1
sr (x)

∂
∂xi

(
aTr x

)

=
∑
r

1
sr (x)

Ari

The i-th entry of the gradient vector is
∑
r 1/sr (x) ·Ari. This

gives that the gradient is

∇φ(x) =
∑
r

1/sr (x)ar = ATdx

Proof for Hessian

∂
∂xj

(∑
r

1
sr (x)

Ari
)
=
∑
r
Ari

(
− 1
sr (x)2

)
· ∂
∂xj

(
sr (x)

)

=
∑
r
Ari

1
sr (x)2

Arj

Note that
∑
r AriArj = (ATA)ij. Adding the additional factors

1/sr (x)2 can be done with a diagonal matrix.

Hence the Hessian is

Hx = ATD2A

Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 224/462

Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 224/462

Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 224/462

Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 224/462

Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 224/462

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.

Dikin Ellipsoids

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 226/462

Analytic Center

xac := arg minx∈P◦ φ(x)

ñ xac is solution to

∇φ(x) =
m∑

i=1

1
si(x)

ai = 0

ñ depends on the description of the polytope

ñ xac exists and is unique iff P◦ is nonempty and bounded

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 227/462

Central Path

In the following we assume that the LP and its dual are strictly

feasible and that rank(A) = n.

Central Path:

Set of points {x∗(t) | t > 0} with

x∗(t) = argminx{tcTx +φ(x)}

ñ t = 0: analytic center

ñ t = ∞: optimum solution

x∗(t) exists and is unique for all t ≥ 0.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 228/462

Central Path

In the following we assume that the LP and its dual are strictly

feasible and that rank(A) = n.

Central Path:

Set of points {x∗(t) | t > 0} with

x∗(t) = argminx{tcTx +φ(x)}

ñ t = 0: analytic center

ñ t = ∞: optimum solution

x∗(t) exists and is unique for all t ≥ 0.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 228/462

Central Path

In the following we assume that the LP and its dual are strictly

feasible and that rank(A) = n.

Central Path:

Set of points {x∗(t) | t > 0} with

x∗(t) = argminx{tcTx +φ(x)}

ñ t = 0: analytic center

ñ t = ∞: optimum solution

x∗(t) exists and is unique for all t ≥ 0.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 228/462

Different Central Paths

x

y

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 229/462

Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to

optimum solution.

Questions:

ñ Is this really true? How large a t do we need?

ñ How do we find corresponding point x∗(t) on central path?

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 230/462

The Dual

primal-dual pair:

min cTx

s.t. Ax ≤ b

max −bTz
s.t. ATz + c = 0

z ≥ 0

Assumptions

ñ primal and dual problems are strictly feasible;

ñ rank(A) = n.

Force Field Interpretation

Point x∗(t) on central path is solution to tc +∇φ(x) = 0

ñ We can view each constraint as generating a repelling force.

The combination of these forces is represented by ∇φ(x).
ñ In addition there is a force tc pulling us towards the

optimum solution.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 232/462

How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point

How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point

How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point

How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point

How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point

How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point

How to find x∗(t)

First idea:

ñ start somewhere in the polytope

ñ use iterative method (Newtons method) to minimize

ft(x) := tcTx +φ(x)

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 234/462

Newton Method

Quadratic approximation of ft

ft(x + ε) ≈ ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Suppose this were exact:

ft(x + ε) = ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Then gradient is given by:

∇ft(x + ε) = ∇ft(x)+Hft(x) · ε

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 235/462

Newton Method

Quadratic approximation of ft

ft(x + ε) ≈ ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Suppose this were exact:

ft(x + ε) = ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Then gradient is given by:

∇ft(x + ε) = ∇ft(x)+Hft(x) · ε

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 235/462

Newton Method

Quadratic approximation of ft

ft(x + ε) ≈ ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Suppose this were exact:

ft(x + ε) = ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Then gradient is given by:

∇ft(x + ε) = ∇ft(x)+Hft(x) · ε

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 235/462

Newton Method

We want to move to a point where this gradient is 0:

Newton Step at x ∈ P◦

∆xnt = −H−1
ft (x)∇ft(x)

= −H−1
ft (x)(tc +∇φ(x))

= −(ATD2
xA)−1(tc +ATdx)

Newton Iteration:

x := x +∆xnt

Measuring Progress of Newton Step

Newton decrement:

λt(x) = ‖DxA∆xnt‖
= ‖∆xnt‖Hx

Square of Newton decrement is linear estimate of reduction if we

do a Newton step:

−λt(x)2 = ∇ft(x)T∆xnt

ñ λt(x) = 0 iff x = x∗(t)
ñ λt(x) is measure of proximity of x to x∗(t)

Measuring Progress of Newton Step

Newton decrement:

λt(x) = ‖DxA∆xnt‖
= ‖∆xnt‖Hx

Square of Newton decrement is linear estimate of reduction if we

do a Newton step:

−λt(x)2 = ∇ft(x)T∆xnt

ñ λt(x) = 0 iff x = x∗(t)
ñ λt(x) is measure of proximity of x to x∗(t)

Measuring Progress of Newton Step

Newton decrement:

λt(x) = ‖DxA∆xnt‖
= ‖∆xnt‖Hx

Square of Newton decrement is linear estimate of reduction if we

do a Newton step:

−λt(x)2 = ∇ft(x)T∆xnt

ñ λt(x) = 0 iff x = x∗(t)
ñ λt(x) is measure of proximity of x to x∗(t)

Convergence of Newtons Method

Theorem 55

If λt(x) < 1 then

ñ x+ := x +∆xnt ∈ P◦ (new point feasible)

ñ λt(x+) ≤ λt(x)2

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

ñ λt(x) = ‖∆xnt‖Hx < 1; hence x+ lies in the Dikin ellipsoid

around x.

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)2~1‖2

≤ ‖(I −D−1+ D)~1‖4

= ‖DA∆xnt‖4

= λt(x)4

The second inequality follows from
∑
iy4
i ≤

(∑
iy2
i
)2

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)2~1‖2

≤ ‖(I −D−1+ D)~1‖4

= ‖DA∆xnt‖4

= λt(x)4

The second inequality follows from
∑
iy4
i ≤

(∑
iy2
i
)2

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)2~1‖2

≤ ‖(I −D−1+ D)~1‖4

= ‖DA∆xnt‖4

= λt(x)4

The second inequality follows from
∑
iy4
i ≤

(∑
iy2
i
)2

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)2~1‖2

≤ ‖(I −D−1+ D)~1‖4

= ‖DA∆xnt‖4

= λt(x)4

The second inequality follows from
∑
iy4
i ≤

(∑
iy2
i
)2

Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)2~1‖2

≤ ‖(I −D−1+ D)~1‖4

= ‖DA∆xnt‖4

= λt(x)4

The second inequality follows from
∑
iy4
i ≤

(∑
iy2
i
)2

If λt(x) is large we do not have a guarantee.

Try to avoid this case!!!

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 243/462

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing
1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function

4: recenter to return to central path

Short Step Barrier Method

simplifying assumptions:

ñ a first central point x∗(t0) is given

ñ x∗(t) is computed exactly in each iteration

ε is approximation we are aiming for

start at t = t0, repeat until m/t ≤ ε
ñ compute x∗(µt) using Newton starting from x∗(t)
ñ t := µt

where µ = 1+ 1/(2
√
m)

Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!

Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!

Number of Iterations

the number of Newton iterations per outer

iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need tk = µkt0 ≥m/ε. This holds when

k ≥ log(m/(εt0))
log(µ)

We get a bound of

O
(√
m log

m
εt0

)

We show how to get a starting point with t0 = 1/2L. Together

with ε ≈ 2−L we get O(L√m) iterations.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 247/462

Damped Newton Method

For x ∈ P◦ and direction v ≠ 0 define

σx(v) :=max
i

aTi v
si(x)

Observation:

x +αv ∈ P for α ∈ {0,1/σx(v)}

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 248/462

Damped Newton Method

Suppose that we move from x to x+αv. The linear estimate says

that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 249/462

Damped Newton Method

Suppose that we move from x to x+αv. The linear estimate says

that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 249/462

Damped Newton Method

Suppose that we move from x to x+αv. The linear estimate says

that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 249/462

Damped Newton Method

Suppose that we move from x to x+αv. The linear estimate says

that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 249/462

Damped Newton Method

Suppose that we move from x to x+αv. The linear estimate says

that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 249/462

Damped Newton Method

Define wi = aTi v/si(x) and σ =maxiwi. Then

ft(x +αv)− ft(x)−∇ft(x)Tαv
= −

∑
i(αwi + log(1−αwi))

≤ −
∑

wi>0

(αwi + log(1−αwi))+
∑

wi≤0

α2w2
i

2

≤ −
∑

wi>0

w2
i
σ2

(
ασ + log(1−ασ)

)
+ (ασ)

2

2

∑

wi≤0

w2
i
σ2

Damped Newton Method

Define wi = aTi v/si(x) and σ =maxiwi. Then

ft(x +αv)− ft(x)−∇ft(x)Tαv
= −

∑
i(αwi + log(1−αwi))

≤ −
∑

wi>0

(αwi + log(1−αwi))+
∑

wi≤0

α2w2
i

2

≤ −
∑

wi>0

w2
i
σ2

(
ασ + log(1−ασ)

)
+ (ασ)

2

2

∑

wi≤0

w2
i
σ2

Damped Newton Method

Define wi = aTi v/si(x) and σ =maxiwi. Then

ft(x +αv)− ft(x)−∇ft(x)Tαv
= −

∑
i(αwi + log(1−αwi))

≤ −
∑

wi>0

(αwi + log(1−αwi))+
∑

wi≤0

α2w2
i

2

≤ −
∑

wi>0

w2
i
σ2

(
ασ + log(1−ασ)

)
+ (ασ)

2

2

∑

wi≤0

w2
i
σ2

Damped Newton Method

Define wi = aTi v/si(x) and σ =maxiwi. Then

ft(x +αv)− ft(x)−∇ft(x)Tαv
= −

∑
i(αwi + log(1−αwi))

≤ −
∑

wi>0

(αwi + log(1−αwi))+
∑

wi≤0

α2w2
i

2

≤ −
∑

wi>0

w2
i
σ2

(
ασ + log(1−ασ)

)
+ (ασ)

2

2

∑

wi≤0

w2
i
σ2

Damped Newton Method

≤ −
∑
i

w2
i
σ2

(
ασ + log(1−ασ)

)

= − 1
σ2 ‖v‖2

Hx

(
ασ + log(1−ασ)

)

Damped Newton Iteration:

In a damped Newton step we choose

x+ = x + 1
1+ σx(∆xnt)

∆xnt

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 251/462

Damped Newton Method

≤ −
∑
i

w2
i
σ2

(
ασ + log(1−ασ)

)

= − 1
σ2 ‖v‖2

Hx

(
ασ + log(1−ασ)

)

Damped Newton Iteration:

In a damped Newton step we choose

x+ = x + 1
1+ σx(∆xnt)

∆xnt

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 251/462

Damped Newton Method

≤ −
∑
i

w2
i
σ2

(
ασ + log(1−ασ)

)

= − 1
σ2 ‖v‖2

Hx

(
ασ + log(1−ασ)

)

Damped Newton Iteration:

In a damped Newton step we choose

x+ = x + 1
1+ σx(∆xnt)

∆xnt

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 251/462

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

λt(x)− log(1+ λt(x))

Proof: The decrease in cost is

−α∇ft(x)Tv + 1
σ2 ‖v‖2

Hx(ασ + log(1−ασ))

Choosing α = 1
1+σ and v = ∆xnt gives

1
1+ σ λt(x)

2+λt(x)
2

σ2

(
σ

1+ σ + log
(
1− σ

1+ σ
))

=λt(x)
2

σ2

(
σ − log(1+ σ)

)

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

λt(x)− log(1+ λt(x))

Proof: The decrease in cost is

−α∇ft(x)Tv + 1
σ2 ‖v‖2

Hx(ασ + log(1−ασ))

Choosing α = 1
1+σ and v = ∆xnt gives

1
1+ σ λt(x)

2+λt(x)
2

σ2

(
σ

1+ σ + log
(
1− σ

1+ σ
))

=λt(x)
2

σ2

(
σ − log(1+ σ)

)

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

λt(x)− log(1+ λt(x))

Proof: The decrease in cost is

−α∇ft(x)Tv + 1
σ2 ‖v‖2

Hx(ασ + log(1−ασ))

Choosing α = 1
1+σ and v = ∆xnt gives

1
1+ σ λt(x)

2+λt(x)
2

σ2

(
σ

1+ σ + log
(
1− σ

1+ σ
))

=λt(x)
2

σ2

(
σ − log(1+ σ)

)

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

λt(x)− log(1+ λt(x))

Proof: The decrease in cost is

−α∇ft(x)Tv + 1
σ2 ‖v‖2

Hx(ασ + log(1−ασ))

Choosing α = 1
1+σ and v = ∆xnt gives

1
1+ σ λt(x)

2+λt(x)
2

σ2

(
σ

1+ σ + log
(
1− σ

1+ σ
))

=λt(x)
2

σ2

(
σ − log(1+ σ)

)

Damped Newton Method

≥ λt(x)− log(1+ λt(x))
≥ 0.09

for λt(x) ≥ 0.5

Centering Algorithm:

Input: precision δ; starting point x

1. compute ∆xnt and λt(x)

2. if λt(x) ≤ δ return x

3. set x := x +α∆xnt with

α =
{ 1

1+σx(∆xnt)
λt ≥ 1/2

1 otw.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 253/462

Damped Newton Method

≥ λt(x)− log(1+ λt(x))
≥ 0.09

for λt(x) ≥ 0.5

Centering Algorithm:

Input: precision δ; starting point x

1. compute ∆xnt and λt(x)

2. if λt(x) ≤ δ return x

3. set x := x +α∆xnt with

α =
{ 1

1+σx(∆xnt)
λt ≥ 1/2

1 otw.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 253/462

Centering

Lemma 56

The centering algorithm starting at x0 reaches a point with

λt(x) ≤ δ after

ft(x0)−miny ft(y)
0.09

+O(log log(1/δ))

iterations.

This can be very, very slow...

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 254/462

How to get close to analytic center?

Let P = {Ax ≤ b} be our (feasible) polyhedron, and x0 a feasible

point.

We change b → b + 1
λ · ~1, where L = 〈A〉 + 〈b〉 + 〈c〉 (encoding

length) and λ = 22L. Recall that a basis is feasible in the old LP iff

it is feasible in the new LP.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 255/462

How to get close to analytic center?

Let P = {Ax ≤ b} be our (feasible) polyhedron, and x0 a feasible

point.

We change b → b + 1
λ · ~1, where L = 〈A〉 + 〈b〉 + 〈c〉 (encoding

length) and λ = 22L. Recall that a basis is feasible in the old LP iff

it is feasible in the new LP.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 255/462

Lemma [without proof]

The inverse of a matrix M can be represented with rational

numbers that have denominators zij = det(M).

For two basis solutions xB, xB̄, the cost-difference cTxB − cTxB̄
can be represented by a rational number that has denominator

z = det(AB) · det(AB̄).

This means that in the perturbed LP it is sufficient to decrease the

duality gap to 1/24L (i.e., t ≈ 24L). This means the previous

analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective

value c̄Tx is at most n2M2L, where M ≤ L is the encoding length

of the largest entry in c̄.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 256/462

Lemma [without proof]

The inverse of a matrix M can be represented with rational

numbers that have denominators zij = det(M).

For two basis solutions xB, xB̄, the cost-difference cTxB − cTxB̄
can be represented by a rational number that has denominator

z = det(AB) · det(AB̄).

This means that in the perturbed LP it is sufficient to decrease the

duality gap to 1/24L (i.e., t ≈ 24L). This means the previous

analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective

value c̄Tx is at most n2M2L, where M ≤ L is the encoding length

of the largest entry in c̄.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 256/462

Lemma [without proof]

The inverse of a matrix M can be represented with rational

numbers that have denominators zij = det(M).

For two basis solutions xB, xB̄, the cost-difference cTxB − cTxB̄
can be represented by a rational number that has denominator

z = det(AB) · det(AB̄).

This means that in the perturbed LP it is sufficient to decrease the

duality gap to 1/24L (i.e., t ≈ 24L). This means the previous

analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective

value c̄Tx is at most n2M2L, where M ≤ L is the encoding length

of the largest entry in c̄.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 256/462

Lemma [without proof]

The inverse of a matrix M can be represented with rational

numbers that have denominators zij = det(M).

For two basis solutions xB, xB̄, the cost-difference cTxB − cTxB̄
can be represented by a rational number that has denominator

z = det(AB) · det(AB̄).

This means that in the perturbed LP it is sufficient to decrease the

duality gap to 1/24L (i.e., t ≈ 24L). This means the previous

analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective

value c̄Tx is at most n2M2L, where M ≤ L is the encoding length

of the largest entry in c̄.

10 Karmarkars Algorithm 9. Jul. 2022

Harald Räcke 256/462

How to get close to analytic center?

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).

How to get close to analytic center?

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).

How to get close to analytic center?

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).

How to get close to analytic center?

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).

How to get close to analytic center?

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).

How to get close to analytic center?

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.

Part III

Approximation Algorithms

9. Jul. 2022

Harald Räcke 259/462

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 260/462

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 260/462

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 260/462

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 260/462

There are many practically important optimization problems that

are NP-hard.

What can we do?

ñ Heuristics.

ñ Exploit special structure of instances occurring in practise.

ñ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 260/462

Definition 57

An α-approximation for an optimization problem is a

polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the

value of an optimal solution.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 261/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Why approximation algorithms?

ñ We need algorithms for hard problems.

ñ It gives a rigorous mathematical base for studying heuristics.

ñ It provides a metric to compare the difficulty of various

optimization problems.

ñ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

ñ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 262/462

Definition 58

An optimization problem P = (I, sol,m,goal) is in NPO if

ñ x ∈ I can be decided in polynomial time

ñ y ∈ sol(I) can be verified in polynomial time

ñ m can be computed in polynomial time

ñ goal ∈ {min,max}

In other words: the decision problem is there a solution y with

m(x,y) at most/at least z is in NP.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 263/462

ñ x is problem instance

ñ y is candidate solution

ñ m∗(x) cost/profit of an optimal solution

Definition 59 (Performance Ratio)

R(x,y) :=max

{
m(x,y)
m∗(x)

,
m∗(x)
m(x,y)

}

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 264/462

Definition 60 (r -approximation)

An algorithm A is an r -approximation algorithm iff

∀x ∈ I : R(x,A(x)) ≤ r ,

and A runs in polynomial time.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 265/462

Definition 61 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as

input x ∈ I and ε > 0 and produces a solution y for x with

R(x,y) ≤ 1+ ε .

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 266/462

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the

jobs on n machines such that the MAKESPAN is minimized.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 267/462

Definition 62 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as

input x ∈ I and ε > 0 and produces a solution y for x with

R(x,y) ≤ 1+ ε .

The running time is polynomial in |x| and 1/ε.

approximation with arbitrary good factor... fast!

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 268/462

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a

subset of total weight at most W s.t. the profit is maximized.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 269/462

Definition 63 (APX – approximable)

A problem P from NPO is in APX if there exist a constant r ≥ 1

and an r -approximation algorithm for P .

constant factor approximation...

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 270/462

Problems that are in APX

MAXCUT. Given a graph G = (V , E); partition V into two disjoint
pieces A and B s. t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the

variables that satisfies the maximum number of clauses.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 271/462

Problems with polylogarithmic approximation guarantees

ñ Set Cover

ñ Minimum Multicut

ñ Sparsest Cut

ñ Minimum Bisection

There is an r -approximation with r ≤ O(logc(|x|)) for some

constant c.

Note that only for some of the above problem a matching lower

bound is known.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 272/462

There are really difficult problems!

Theorem 64

For any constant ε > 0 there does not exist an

Ω(n1−ε)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 273/462

There are really difficult problems!

Theorem 64

For any constant ε > 0 there does not exist an

Ω(n1−ε)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 273/462

There are really difficult problems!

Theorem 64

For any constant ε > 0 there does not exist an

Ω(n1−ε)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 273/462

There are weird problems!

Asymmetric k-Center admits an O(log∗n)-approximation.

There is no o(log∗n)-approximation to Asymmetric k-Center

unless NP ⊆ DTIME(nlog log logn).

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 274/462

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits

a 4-approximation.

One only says that a problem is APX-hard.

11 Introduction to Approximation 9. Jul. 2022

Harald Räcke 275/462

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a vital

role in the design of many approximation algorithms.

12 Integer Programs 9. Jul. 2022

Harald Räcke 276/462

A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a vital

role in the design of many approximation algorithms.

12 Integer Programs 9. Jul. 2022

Harald Räcke 276/462

Definition 65

An Integer Linear Program or Integer Program is a Linear Program

in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of

the variables are required to be integral.

12 Integer Programs 9. Jul. 2022

Harald Räcke 277/462

Definition 65

An Integer Linear Program or Integer Program is a Linear Program

in which all variables are required to be integral.

Definition 66

A Mixed Integer Program is a Linear Program in which a subset of

the variables are required to be integral.

12 Integer Programs 9. Jul. 2022

Harald Räcke 277/462

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

12 Integer Programs 9. Jul. 2022

Harald Räcke 278/462

Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is

NP-complete!

12 Integer Programs 9. Jul. 2022

Harald Räcke 278/462

Set Cover

Given a ground set U , a collection of subsets S1, . . . , Sk ⊆ U ,

where the i-th subset Si has weight/cost wi. Find a collection

I ⊆ {1, . . . , k} such that

∀u ∈ U∃i ∈ I : u ∈ Si (every element is covered)

and ∑

i∈I
wi is minimized.

12 Integer Programs 9. Jul. 2022

Harald Räcke 279/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

Set Cover

12 Integer Programs 9. Jul. 2022

Harald Räcke 280/462

IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

∀i ∈ {1, . . . , k} xi integral

12 Integer Programs 9. Jul. 2022

Harald Räcke 281/462

Vertex Cover

Given a graph G = (V , E) and a weight wv for every node. Find a

vertex subset S ⊆ V of minimum weight such that every edge is

incident to at least one vertex in S.

12 Integer Programs 9. Jul. 2022

Harald Räcke 282/462

IP-Formulation of Vertex Cover

min
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≥ 1

∀v ∈ V xv ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 283/462

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V ∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 284/462

Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V ∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 284/462

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 285/462

Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1

∀v ∈ V xv ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 285/462

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight wi
and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 286/462

Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight wi
and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}

12 Integer Programs 9. Jul. 2022

Harald Räcke 286/462

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective

values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.

12 Integer Programs 9. Jul. 2022

Harald Räcke 287/462

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective

values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.

12 Integer Programs 9. Jul. 2022

Harald Räcke 287/462

By solving a relaxation we obtain an upper bound for a

maximization problem and a lower bound for a minimization

problem.

12 Integer Programs 9. Jul. 2022

Harald Räcke 288/462

Relations

Maximization Problems:

OPT(IP) OPT(LP)

OPT(DUAL)ALG(IP) FEASIBLE(DUAL)

0

Minimization Problems:

OPT(IP)OPT(LP)

OPT(DUAL) ALG(IP)FEASIBLE(DUAL)

0

12 Integer Programs 9. Jul. 2022

Harald Räcke 289/462

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 290/462

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 290/462

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f =maxu{fu} be the maximum

frequency.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 290/462

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all xi-values with xi ≥ 1
f to 1. Set all other xi-values to 0.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 291/462

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 292/462

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 292/462

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 292/462

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 292/462

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 292/462

Technique 1: Round the LP solution.

Lemma 68

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

ñ We know that
∑
i:u∈Si xi ≥ 1.

ñ The sum contains at most fu ≤ f elements.

ñ Therefore one of the sets that contain u must have xi ≥ 1/f .
ñ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 292/462

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑

i∈I
wi ≤

k∑

i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 293/462

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑

i∈I
wi

≤
k∑

i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 293/462

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑

i∈I
wi ≤

k∑

i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 293/462

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑

i∈I
wi ≤

k∑

i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 293/462

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑

i∈I
wi ≤

k∑

i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .

13.1 Deterministic Rounding 9. Jul. 2022

Harald Räcke 293/462

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 294/462

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 294/462

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 294/462

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I
∑

u:u∈Si
yu = wi

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 295/462

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 296/462

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 296/462

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 296/462

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 296/462

Technique 2: Rounding the Dual Solution.

Lemma 69

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

ñ Suppose there is a u that is not covered.

ñ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

ñ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 296/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi

=
∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi =

∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi =

∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi =

∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi =

∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi =

∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Technique 2: Rounding the Dual Solution.

Proof:

∑

i∈I
wi =

∑

i∈I

∑

u:u∈Si
yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 297/462

Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 298/462

Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 298/462

Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 298/462

Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 298/462

Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

ñ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
ñ This means xi ≥ 1

f .

ñ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

ñ Hence, the second algorithm will also choose Si.

13.2 Rounding the Dual 9. Jul. 2022

Harald Räcke 298/462

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,

∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 9. Jul. 2022

Harald Räcke 299/462

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,

∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 9. Jul. 2022

Harald Räcke 299/462

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,

∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 9. Jul. 2022

Harald Räcke 299/462

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,

∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 9. Jul. 2022

Harald Räcke 299/462

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,

∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.

13.3 Primal Dual Technique 9. Jul. 2022

Harald Räcke 299/462

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1: y ← 0

2: I ← ∅
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yu until constraint for some

new set S` becomes tight

5: I ← I ∪ {`}

13.3 Primal Dual Technique 9. Jul. 2022

Harald Räcke 300/462

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy
1: I ← ∅
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ` ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {`}
6: Ŝj ← Ŝj − S` for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.

13.4 Greedy 9. Jul. 2022

Harald Räcke 301/462

Technique 4: The Greedy Algorithm

Lemma 70

Given positive numbers a1, . . . , ak and b1, . . . , bk, and

S ⊆ {1, . . . , k} then

min
i

ai
bi
≤
∑
i∈S ai∑
i∈S bi

≤max
i

ai
bi

13.4 Greedy 9. Jul. 2022

Harald Räcke 302/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Let n` denote the number of elements that remain at the

beginning of iteration `. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the `-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
n`

since an optimal algorithm can cover the remaining n` elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
n`

.

13.4 Greedy 9. Jul. 2022

Harald Räcke 303/462

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

13.4 Greedy 9. Jul. 2022

Harald Räcke 304/462

Technique 4: The Greedy Algorithm

Adding this set to our solution means n`+1 = n` − |Ŝj|.

wj ≤
|Ŝj|OPT

n`
= n` −n`+1

n`
·OPT

13.4 Greedy 9. Jul. 2022

Harald Räcke 304/462

Technique 4: The Greedy Algorithm

∑

j∈I
wj

≤
s∑

`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑

`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑

i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 9. Jul. 2022

Harald Räcke 305/462

Technique 4: The Greedy Algorithm

∑

j∈I
wj ≤

s∑

`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑

`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑

i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 9. Jul. 2022

Harald Räcke 305/462

Technique 4: The Greedy Algorithm

∑

j∈I
wj ≤

s∑

`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑

`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑

i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 9. Jul. 2022

Harald Räcke 305/462

Technique 4: The Greedy Algorithm

∑

j∈I
wj ≤

s∑

`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑

`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑

i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 9. Jul. 2022

Harald Räcke 305/462

Technique 4: The Greedy Algorithm

∑

j∈I
wj ≤

s∑

`=1

n` −n`+1

n`
·OPT

≤ OPT
s∑

`=1

(
1
n`
+ 1
n` − 1

+ · · · + 1
n`+1 + 1

)

= OPT
n∑

i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .

13.4 Greedy 9. Jul. 2022

Harald Räcke 305/462

Technique 4: The Greedy Algorithm

A tight example:

1 1
2

1
3

1
4

1 + ε

1
n−1

1
n−2

1
n−3

1
n

13.4 Greedy 9. Jul. 2022

Harald Räcke 306/462

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 307/462

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 307/462

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 307/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj)

≤
∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj

≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏

j:u∈Sj
e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ` rounds):

Pr[u not covered after ` round] ≤ 1

e`
.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 308/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds]

≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Pr[∃u ∈ U not covered after ` round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑

i
Pr[ui not covered after ` rounds] ≤ ne−` .

Lemma 71

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 309/462

Proof: We have

Pr[#rounds ≥ (α+ 1) lnn] ≤ ne−(α+1) lnn = n−α .

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 310/462

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 311/462

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost]

≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 311/462

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α

= O(lnn)·OPT

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 311/462

Expected Cost

ñ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 311/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Expected Cost

ñ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)

≤ 1
Pr[succ.]

E[cost] ≤ 1
1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 312/462

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 313/462

Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 72 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 313/462

Integrality Gap

The integrality gap of the SetCover LP is Ω(logn).

ñ n = 2k − 1

ñ Elements are all vectors ~x over GF[2] of length k (excluding

zero vector).

ñ Every vector ~y defines a set as follows

S~y := {~x | ~xT ~y = 1}

ñ each set contains 2k−1 vectors; each vector is contained in

2k−1 sets

ñ xi = 1
2k−1 = 2

n+1 is fractional solution.

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 314/462

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Ω(logn).

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 315/462

Techniques:

ñ Deterministic Rounding

ñ Rounding of the Dual

ñ Primal Dual

ñ Greedy

ñ Randomized Rounding

ñ Local Search

ñ Rounding Data + Dynamic Programming

13.5 Randomized Rounding 9. Jul. 2022

Harald Räcke 316/462

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

14.1 Local Search 9. Jul. 2022

Harald Räcke 317/462

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.

14.1 Local Search 9. Jul. 2022

Harald Räcke 317/462

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

14.1 Local Search 9. Jul. 2022

Harald Räcke 318/462

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

14.1 Local Search 9. Jul. 2022

Harald Räcke 318/462

Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥max
j
pj

as the longest job needs to be scheduled somewhere.

14.1 Local Search 9. Jul. 2022

Harald Räcke 318/462

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑

j
pj

14.1 Local Search 9. Jul. 2022

Harald Räcke 319/462

Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑

j
pj

14.1 Local Search 9. Jul. 2022

Harald Räcke 319/462

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 9. Jul. 2022

Harald Räcke 320/462

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 9. Jul. 2022

Harald Räcke 320/462

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 9. Jul. 2022

Harald Räcke 320/462

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.

14.1 Local Search 9. Jul. 2022

Harald Räcke 320/462

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

14.1 Local Search 9. Jul. 2022

Harald Räcke 321/462

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

14.1 Local Search 9. Jul. 2022

Harald Räcke 321/462

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT

14.1 Local Search 9. Jul. 2022

Harald Räcke 321/462

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

14.1 Local Search 9. Jul. 2022

Harald Räcke 322/462

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

14.1 Local Search 9. Jul. 2022

Harald Räcke 322/462

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

14.1 Local Search 9. Jul. 2022

Harald Räcke 322/462

Local Search Analysis

Let ` be the job that finishes last in the produced schedule.

Let S` be its start time, and let C` be its completion time.

Note that every machine is busy before time S`, because

otherwise we could move the job ` and hence our schedule would

not be locally optimal.

14.1 Local Search 9. Jul. 2022

Harald Räcke 322/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

We can split the total processing time into two intervals one from

0 to S` the other from S` to C`.

The interval [S`, C`] is of length p` ≤ C∗max.

During the first interval [0, S`] all processors are busy, and,

hence, the total work performed in this interval is

m · S` ≤
∑

j≠`

pj .

Hence, the length of the schedule is at most

p` +
1
m

∑

j≠`

pj = (1− 1
m
)p` +

1
m

∑

j
pj ≤ (2− 1

m
)C∗max

14.1 Local Search 9. Jul. 2022

Harald Räcke 323/462

A Tight Example

p` ≈ S` +
S`

m− 1

ALG
OPT

= S` + p`
p`

≈ 2+ 1
m−1

1+ 1
m−1

= 2− 1
m

p`

p`

S`

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

14.2 Greedy 9. Jul. 2022

Harald Räcke 325/462

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

14.2 Greedy 9. Jul. 2022

Harald Räcke 325/462

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

14.2 Greedy 9. Jul. 2022

Harald Räcke 325/462

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.

14.2 Greedy 9. Jul. 2022

Harald Räcke 325/462

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times

the approximation guarantee of the list scheduling strategy

improves to 4/3.

14.2 Greedy 9. Jul. 2022

Harald Räcke 326/462

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 9. Jul. 2022

Harald Räcke 327/462

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 9. Jul. 2022

Harald Räcke 327/462

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 9. Jul. 2022

Harald Räcke 327/462

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 9. Jul. 2022

Harald Räcke 327/462

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 9. Jul. 2022

Harald Räcke 327/462

Proof:

ñ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

ñ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

ñ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

ñ This means that all jobs must have a processing time

> C∗max/3.

ñ But then any machine in the optimum schedule can handle at

most two jobs.

ñ For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 9. Jul. 2022

Harald Räcke 327/462

When in an optimal solution a machine can have at most 2 jobs

the optimal solution looks as follows.

p1 p2 p3 p4 p5 p6 p7

p8p9p10p11p12p13p14

14.2 Greedy 9. Jul. 2022

Harald Räcke 328/462

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 9. Jul. 2022

Harald Räcke 329/462

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 9. Jul. 2022

Harald Räcke 329/462

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 9. Jul. 2022

Harald Räcke 329/462

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 9. Jul. 2022

Harald Räcke 329/462

ñ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

ñ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

ñ Let pA and pB be the other job scheduled on A and B,

respectively.

ñ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

ñ Repeat the above argument for the remaining machines.

14.2 Greedy 9. Jul. 2022

Harald Räcke 329/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

Tight Example

ñ 2m+ 1 jobs

ñ 2 jobs with length 2m− 1,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

ñ 3 jobs of length m

14.2 Greedy 9. Jul. 2022

Harald Räcke 330/462

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a subset

I ⊆ {1, . . . , n} of items of total weight at most W such that the

profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

15.1 Knapsack 9. Jul. 2022

Harald Räcke 331/462

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a subset

I ⊆ {1, . . . , n} of items of total weight at most W such that the

profit is maximized (we can assume each wi ≤ W).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}

15.1 Knapsack 9. Jul. 2022

Harald Räcke 331/462

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1)← [(0,0), (p1,w1)]
2: for j ← 2 to n do

3: A(j)← A(j − 1)
4: for each (p,w) ∈ A(j − 1) do

5: if w +wj ≤ W then

6: add (p + pj ,w +wj) to A(j)
7: remove dominated pairs from A(j)
8: return max(p,w)∈A(n) p

The running time is O(n ·min{W,P}), where P =∑i pi is the

total profit of all items. This is only pseudo-polynomial.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 332/462

15 Rounding Data + Dynamic Programming

Definition 74

An algorithm is said to have pseudo-polynomial running time if

the running time is polynomial when the numerical part of the

input is encoded in unary.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 333/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.

ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′)

= O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)

= O
(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)

≤ O
(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

ñ Let M be the maximum profit of an element.

ñ Set µ := εM/n.

ñ Set p′i := bpi/µc for all i.
ñ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p
′
i

)
= O

(
n
∑
i

⌊ pi
εM/n

⌋)
≤ O

(n3

ε

)
.

15.1 Knapsack 9. Jul. 2022

Harald Räcke 334/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi

≥ µ
∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi ≥ µ

∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi ≥ µ

∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi ≥ µ

∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi ≥ µ

∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi ≥ µ

∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.
∑

i∈S
pi ≥ µ

∑

i∈S
p′i

≥ µ
∑

i∈O
p′i

≥
∑

i∈O
pi − |O|µ

≥
∑

i∈O
pi −nµ

=
∑

i∈O
pi − εM

≥ (1− ε)OPT .

15.1 Knapsack 9. Jul. 2022

Harald Räcke 335/462

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑

j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 336/462

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑

j≠`

pj + p`

where ` is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C
∗
max then LPT is

optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 336/462

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 337/462

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 337/462

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 337/462

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 337/462

We still have a cost of

1
m

∑

j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 338/462

We still have a cost of

1
m

∑

j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 338/462

We still have a cost of

1
m

∑

j≠`

pj + p`

where ` is the last job (this only requires that all machines are

busy before time S`).

If ` is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ` is a short job its length is at most

p` ≤
∑
j pj/(mk)

which is at most C∗max/k.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 338/462

Hence we get a schedule of length at most

(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 339/462

Hence we get a schedule of length at most

(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 339/462

Hence we get a schedule of length at most

(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = d1
ε e.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 339/462

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 340/462

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 340/462

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 340/462

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

ñ A job is long if its size is larger than T/k.

ñ Otw. it is a short job.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 340/462

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 341/462

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 341/462

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 341/462

ñ We round all long jobs down to multiples of T/k2.

ñ For these rounded sizes we first find an optimal schedule.

ñ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

ñ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 341/462

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most

(
1+ 1

k

)
T .

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 342/462

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most

(
1+ 1

k

)
T .

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 342/462

After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most

(
1+ 1

k

)
T .

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 342/462

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the

new load is at most

T + T
k
≤
(
1+ 1

k

)
T .

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 343/462

During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the

new load is at most

T + T
k
≤
(
1+ 1

k

)
T .

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 343/462

Running Time for scheduling large jobs: There should not be a

job with rounded size more than T as otw. the problem becomes

trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 344/462

Running Time for scheduling large jobs: There should not be a

job with rounded size more than T as otw. the problem becomes

trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 344/462

Running Time for scheduling large jobs: There should not be a

job with rounded size more than T as otw. the problem becomes

trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 344/462

Running Time for scheduling large jobs: There should not be a

job with rounded size more than T as otw. the problem becomes

trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 344/462

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=




0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 345/462

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=




0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 345/462

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=




0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 345/462

Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=




0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2)∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) Û 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 345/462

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 346/462

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 346/462

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 346/462

We can turn this into a PTAS by choosing k = d1/εe and using

binary search. This gives a running time that is exponential in

1/ε.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 76

There is no FPTAS for problems that are strongly NP-hard.

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 346/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

ñ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
ñ We set k := d2nq(n)e ≥ 2 OPT

ñ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

ñ But this means that the algorithm computes the optimal

solution as the optimum is integral.

ñ This means we can solve problem instances if processing

times are polynomially bounded

ñ Running time is O(poly(n, k)) = O(poly(n))
ñ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 9. Jul. 2022

Harald Räcke 347/462

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=




0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic
programming table has just nA entries.

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=




0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic
programming table has just nA entries.

More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=




0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) Û 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic
programming table has just nA entries.

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 77

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 349/462

Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 77

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 349/462

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.

∑

i∈S
bi =

∑

i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 350/462

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.

∑

i∈S
bi =

∑

i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 350/462

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.

∑

i∈S
bi =

∑

i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 350/462

Bin Packing

Proof

ñ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.

∑

i∈S
bi =

∑

i∈T
bi ?

ñ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

ñ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

ñ Hence, such an algorithm can solve Partition.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 350/462

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aε} along with a constant c such that Aε
returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 351/462

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aε} along with a constant c such that Aε
returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 351/462

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aε} along with a constant c such that Aε
returns a solution of value at most (1+ ε)OPT+ c for

minimization problems.

ñ Note that for Set Cover or for Knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

ñ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 351/462

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 352/462

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 352/462

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 352/462

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into ` bins can be extended with items of

size at most γ s.t. we use only max{`, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

ñ If after Greedy we use more than ` bins, all bins (apart from

the last) must be full to at least 1− γ.

ñ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

ñ This gives the lemma.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 352/462

Choose γ = ε/2. Then we either use ` bins or at most

1
1− ε/2 ·OPT+ 1 ≤ (1+ ε) ·OPT+ 1

bins.

It remains to find an algorithm for the large items.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 353/462

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 354/462

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 354/462

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 354/462

Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

ñ Order large items according to size.

ñ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

ñ Delete items in the first group;

ñ Round items in the remaining groups to the size of the

largest item in the group.

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 354/462

Linear Grouping

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 355/462

Linear Grouping

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 355/462

Linear Grouping

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 355/462

Linear Grouping

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 355/462

Lemma 80

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 356/462

Lemma 80

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 356/462

Lemma 80

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 356/462

Lemma 80

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 356/462

Lemma 80

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

ñ Any bin packing for I gives a bin packing for I′ as follows.

ñ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

ñ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 356/462

Lemma 81

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 357/462

Lemma 81

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 357/462

Lemma 81

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 357/462

Lemma 81

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

ñ Any bin packing for I′ gives a bin packing for I as follows.

ñ Pack the items of group 1 into k new bins;

ñ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

ñ . . .

15.3 Bin Packing 9. Jul. 2022

Harald Räcke 357/462

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Assume that our instance does not contain pieces smaller than

ε/2. Then SIZE(I) ≥ εn/2.

We set k = bεSIZE(I)c.

Then n/k ≤ n/bε2n/2c ≤ 4/ε2 (note that bαc ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ε2) and at most a constant number (2/ε) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

ñ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ εSIZE(I) ≤ (1+ ε)OPT(I)

ñ running time O((2
εn)

4/ε2).

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 359/462

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 359/462

Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ε)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 359/462

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 360/462

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 360/462

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 360/462

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 360/462

Configuration LP

Change of Notation:

ñ Group pieces of identical size.

ñ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

ñ s2 is second largest size and b2 number of pieces of size s2;

ñ . . .
ñ sm smallest size and bm number of pieces of size sm.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 360/462

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 361/462

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 361/462

Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 361/462

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 362/462

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 362/462

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 362/462

Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 362/462

How to solve this LP?

later...

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 363/462

We can assume that each item has size at least 1/SIZE(I).

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 364/462

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 365/462

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 365/462

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 365/462

Harmonic Grouping

ñ Sort items according to size (monotonically decreasing).

ñ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

ñ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

ñ Only the size of items in the last group Gr may sum up to

less than 2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 365/462

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 366/462

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 366/462

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 366/462

Harmonic Grouping

From the grouping we obtain instance I′ as follows:

ñ Round all items in a group to the size of the largest group

member.

ñ Delete all items from group G1 and Gr .
ñ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

ñ Observe that ni ≥ ni−1.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 366/462

Lemma 82

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 367/462

Lemma 82

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 367/462

Lemma 82

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 367/462

Lemma 82

The number of different sizes in I′ is at most SIZE(I)/2.

ñ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

ñ Hence, the number of surviving groups is at most SIZE(I)/2.

ñ All items in a group have the same size in I′.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 367/462

Lemma 83

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑

j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑

j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

Lemma 83

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑

j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑

j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

Lemma 83

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑

j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑

j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

Lemma 83

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑

j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑

j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

Lemma 83

The total size of deleted items is at most O(log(SIZE(I))).

ñ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

ñ Consider a group Gi that has strictly more items than Gi−1.

ñ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑

j=ni−1+1

3
j

since the average piece size is only 3/ni.
ñ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑

j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).

Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I′; pack

discarded items in at most O(log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack bxjc bins in configuration Tj for all j; call the

packed instance I1.

6: Let I2 be remaining pieces from I′

7: Pack I2 via BinPack(I2)

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 369/462

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 370/462

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 370/462

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 370/462

Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

ñ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
ñ bxjc is feasible solution for I1 (even integral).

ñ xj − bxjc is feasible solution for I2.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 370/462

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 371/462

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 371/462

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 371/462

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 371/462

Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 371/462

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 372/462

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 372/462

Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

ñ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

ñ The total size of items in I2 can be at most
∑N
j=1 xj − bxjc

which is at most the number of non-zero entries in the

solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 372/462

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 373/462

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 373/462

How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 373/462

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑

i=1

Tji ·yi ≤ 1 ,

ñ and has a large profit

m∑

i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 374/462

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑

i=1

Tji ·yi ≤ 1 ,

ñ and has a large profit

m∑

i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 374/462

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑

i=1

Tji ·yi ≤ 1 ,

ñ and has a large profit

m∑

i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 374/462

Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

ñ is feasible, i.e.,
m∑

i=1

Tji ·yi ≤ 1 ,

ñ and has a large profit

m∑

i=1

Tjiyi > 1

But this is the Knapsack problem.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 374/462

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ε′ = 1+ ε
1−ε we find it, since we can obtain at

least (1− ε) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ε′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ε′)∑Nj=1 xj
s.t. ∀i ∈ {1 . . .m} ∑N

j=1 Tjixj ≥ bi
∀j ∈ {1, . . . ,N} xj ≥ 0

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ε′)OPT

How do we get good primal solution (not just the value)?

ñ The constraints used when computing z certify that the

solution is feasible for DUAL′.
ñ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
ñ Let DUAL′′ be DUAL without unused constraints.

ñ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

ñ The optimum value for PRIMAL′′ is at most (1+ ε′)OPT.

ñ We can compute the corresponding solution in polytime.

This gives that overall we need at most

(1+ ε′)OPTLP(I)+O(log2(SIZE(I)))

bins.

We can choose ε′ = 1
OPT as OPT ≤ #items and since we have a fully

polynomial time approximation scheme (FPTAS) for knapsack.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 377/462

This gives that overall we need at most

(1+ ε′)OPTLP(I)+O(log2(SIZE(I)))

bins.

We can choose ε′ = 1
OPT as OPT ≤ #items and since we have a fully

polynomial time approximation scheme (FPTAS) for knapsack.

15.4 Advanced Rounding for Bin Packing 9. Jul. 2022

Harald Räcke 377/462

16.1 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 378/462

16.1 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 378/462

16.1 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 378/462

16.1 MAXSAT

Problem definition:

ñ n Boolean variables

ñ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

ñ Non-negative weight wj for each clause Cj.
ñ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 378/462

16.1 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 379/462

16.1 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 379/462

16.1 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 379/462

16.1 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 379/462

16.1 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 379/462

16.1 MAXSAT

Terminology:

ñ A variable xi and its negation x̄i are called literals.

ñ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

ñ We assume a clause does not contain xi and x̄i for any i.
ñ xi is called a positive literal while the negation x̄i is called a

negative literal.

ñ For a given clause Cj the number of its literals is called its

length or size and denoted with `j.
ñ Clauses of length one are called unit clauses.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 379/462

MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 380/462

Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑

j
wjXj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 381/462

Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑

j
wjXj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 381/462

E[W]

=
∑

j
wjE[Xj]

=
∑

j
wjPr[Cj is satisified]

=
∑

j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑

j
wj

≥ 1
2

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 382/462

E[W] =
∑

j
wjE[Xj]

=
∑

j
wjPr[Cj is satisified]

=
∑

j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑

j
wj

≥ 1
2

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 382/462

E[W] =
∑

j
wjE[Xj]

=
∑

j
wjPr[Cj is satisified]

=
∑

j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑

j
wj

≥ 1
2

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 382/462

E[W] =
∑

j
wjE[Xj]

=
∑

j
wjPr[Cj is satisified]

=
∑

j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑

j
wj

≥ 1
2

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 382/462

E[W] =
∑

j
wjE[Xj]

=
∑

j
wjPr[Cj is satisified]

=
∑

j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑

j
wj

≥ 1
2

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 382/462

E[W] =
∑

j
wjE[Xj]

=
∑

j
wjPr[Cj is satisified]

=
∑

j
wj
(
1−

(1
2

)`j)

≥ 1
2

∑

j
wj

≥ 1
2

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 382/462

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨

i∈Pj
xi ∨

∨

i∈Nj
x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 383/462

MAXSAT: LP formulation

ñ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨

i∈Pj
xi ∨

∨

i∈Nj
x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 383/462

MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and, hence,

to false with probability (1−yi)).

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 384/462

Lemma 84 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak


k∏

i=1

ai




1/k

≤ 1
k

k∑

i=1

ai

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 385/462

Definition 85

A function f on an interval I is concave if for any two points s and

r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 386/462

Definition 85

A function f on an interval I is concave if for any two points s and

r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 386/462

Definition 85

A function f on an interval I is concave if for any two points s and

r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 386/462

Definition 85

A function f on an interval I is concave if for any two points s and

r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 86

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 386/462

Pr[Cj not satisfied]

=
∏

i∈Pj
(1−yi)

∏

i∈Nj
yi

≤

 1
`j



∑

i∈Pj
(1−yi)+

∑

i∈Nj
yi






`j

=

1− 1

`j



∑

i∈Pj
yi +

∑

i∈Nj
(1−yi)






`j

≤
(

1− zj
`j

)`j
.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 387/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1−yi)

∏

i∈Nj
yi

≤

 1
`j



∑

i∈Pj
(1−yi)+

∑

i∈Nj
yi






`j

=

1− 1

`j



∑

i∈Pj
yi +

∑

i∈Nj
(1−yi)






`j

≤
(

1− zj
`j

)`j
.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 387/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1−yi)

∏

i∈Nj
yi

≤

 1
`j



∑

i∈Pj
(1−yi)+

∑

i∈Nj
yi






`j

=

1− 1

`j



∑

i∈Pj
yi +

∑

i∈Nj
(1−yi)






`j

≤
(

1− zj
`j

)`j
.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 387/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1−yi)

∏

i∈Nj
yi

≤

 1
`j



∑

i∈Pj
(1−yi)+

∑

i∈Nj
yi






`j

=

1− 1

`j



∑

i∈Pj
yi +

∑

i∈Nj
(1−yi)






`j

≤
(

1− zj
`j

)`j
.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 387/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1−yi)

∏

i∈Nj
yi

≤

 1
`j



∑

i∈Pj
(1−yi)+

∑

i∈Nj
yi






`j

=

1− 1

`j



∑

i∈Pj
yi +

∑

i∈Nj
(1−yi)






`j

≤
(

1− zj
`j

)`j
.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 387/462

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied]

≥ 1−
(

1− zj
`j

)`j

≥

1−

(
1− 1

`j

)`j
 · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 388/462

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥

1−

(
1− 1

`j

)`j
 · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 388/462

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥

1−

(
1− 1

`j

)`j
 · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 388/462

The function f(z) = 1− (1− z
`)
` is concave. Hence,

Pr[Cj satisfied] ≥ 1−
(

1− zj
`j

)`j

≥

1−

(
1− 1

`j

)`j
 · zj .

f ′′(z) = −`−1
`

[
1− z

`

]`−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 388/462

E[W]

=
∑

j
wjPr[Cj is satisfied]

≥
∑

j
wjzj


1−

(
1− 1

`j

)`j


≥
(

1− 1
e

)
OPT .

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 389/462

E[W] =
∑

j
wjPr[Cj is satisfied]

≥
∑

j
wjzj


1−

(
1− 1

`j

)`j


≥
(

1− 1
e

)
OPT .

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 389/462

E[W] =
∑

j
wjPr[Cj is satisfied]

≥
∑

j
wjzj


1−

(
1− 1

`j

)`j


≥
(

1− 1
e

)
OPT .

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 389/462

E[W] =
∑

j
wjPr[Cj is satisfied]

≥
∑

j
wjzj


1−

(
1− 1

`j

)`j


≥
(

1− 1
e

)
OPT .

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 389/462

MAXSAT: The better of two

Theorem 87

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 390/462

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]

≥ E[1
2W1 + 1

2W2]

≥ 1
2

∑

j
wjzj


1−

(
1− 1

`j

)`j
+ 1

2

∑

j
wj

(
1−

(
1
2

)`j)

≥
∑

j
wjzj


 1

2


1−

(
1− 1

`j

)`j
+ 1

2

(
1−

(
1
2

)`j)

︸ ︷︷ ︸
≥ 3

4 for all integers




≥ 3
4

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 391/462

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑

j
wjzj


1−

(
1− 1

`j

)`j
+ 1

2

∑

j
wj

(
1−

(
1
2

)`j)

≥
∑

j
wjzj


 1

2


1−

(
1− 1

`j

)`j
+ 1

2

(
1−

(
1
2

)`j)

︸ ︷︷ ︸
≥ 3

4 for all integers




≥ 3
4

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 391/462

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑

j
wjzj


1−

(
1− 1

`j

)`j
+ 1

2

∑

j
wj

(
1−

(
1
2

)`j)

≥
∑

j
wjzj


 1

2


1−

(
1− 1

`j

)`j
+ 1

2

(
1−

(
1
2

)`j)

︸ ︷︷ ︸
≥ 3

4 for all integers




≥ 3
4

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 391/462

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑

j
wjzj


1−

(
1− 1

`j

)`j
+ 1

2

∑

j
wj

(
1−

(
1
2

)`j)

≥
∑

j
wjzj


 1

2


1−

(
1− 1

`j

)`j
+ 1

2

(
1−

(
1
2

)`j)

︸ ︷︷ ︸
≥ 3

4 for all integers




≥ 3
4

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 391/462

Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]
≥ E[1

2W1 + 1
2W2]

≥ 1
2

∑

j
wjzj


1−

(
1− 1

`j

)`j
+ 1

2

∑

j
wj

(
1−

(
1
2

)`j)

≥
∑

j
wjzj


 1

2


1−

(
1− 1

`j

)`j
+ 1

2

(
1−

(
1
2

)`j)

︸ ︷︷ ︸
≥ 3

4 for all integers




≥ 3
4

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 391/462

1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

`

f(`)

randomized rounding

flipping coins
average

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 392/462

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 393/462

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 393/462

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 88

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 394/462

MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 88

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 394/462

0 0.5 1

0.5

1

4x−1

1− 4−x

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 395/462

Pr[Cj not satisfied]

=
∏

i∈Pj
(1− f(yi))

∏

i∈Nj
f(yi)

≤
∏

i∈Pj
4−yi

∏

i∈Nj
4yi−1

= 4
−(∑i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 396/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1− f(yi))

∏

i∈Nj
f(yi)

≤
∏

i∈Pj
4−yi

∏

i∈Nj
4yi−1

= 4
−(∑i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 396/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1− f(yi))

∏

i∈Nj
f(yi)

≤
∏

i∈Pj
4−yi

∏

i∈Nj
4yi−1

= 4
−(∑i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 396/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1− f(yi))

∏

i∈Nj
f(yi)

≤
∏

i∈Pj
4−yi

∏

i∈Nj
4yi−1

= 4
−(∑i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 396/462

Pr[Cj not satisfied] =
∏

i∈Pj
(1− f(yi))

∏

i∈Nj
f(yi)

≤
∏

i∈Pj
4−yi

∏

i∈Nj
4yi−1

= 4
−(∑i∈Pj yi+

∑
i∈Nj (1−yi))

≤ 4−zj

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 396/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied]

≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj

≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W]

=
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied]

≥ 3
4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj

≥ 3
4

OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑

j
wjPr[Cj satisfied] ≥ 3

4

∑

j
wjzj ≥ 3

4
OPT

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 397/462

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)
ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 399/462

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)
ñ any solution can satisfy at most 3 clauses

ñ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

ñ hence, the LP has value 4.

16.1 MAXSAT 9. Jul. 2022

Harald Räcke 399/462

MaxCut

MaxCut

Given a weighted graph G = (V , E,w), w(v) ≥ 0, partition the

vertices into two parts. Maximize the weight of edges between

the parts.

Trivial 2-approximation

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 400/462

Semidefinite Programming

max /min
∑
i,j cijxij

s.t. ∀k ∑
i,j,k aijkxij = bk

∀i, j xij = xji
X = (xij) is psd.

ñ linear objective, linear contraints

ñ we can constrain a square matrix of variables to be

symmetric positive definite

Vector Programming

max /min
∑
i,j cij(vtivj)

s.t. ∀k ∑
i,j,k aijk(vtivj) = bk

vi ∈ Rn

ñ variables are vectors in n-dimensional space

ñ objective functions and contraints are linear in inner

products of the vectors

This is equivalent!

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 402/462

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial

time...

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 403/462

Quadratic Programs

Quadratic Program for MaxCut:

max 1
2

∑
i,jwij(1−yiyj)

∀i yi ∈ {−1,1}

This is exactly MaxCut!

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 404/462

Semidefinite Relaxation

max 1
2

∑
i,jwij(1− vtivj)

∀i vtivi = 1

∀i vi ∈ Rn

ñ this is clearly a relaxation

ñ the solution will be vectors on the unit sphere

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 405/462

Rounding the SDP-Solution

ñ Choose a random vector r such that r/‖r‖ is uniformly

distributed on the unit sphere.

ñ If r tvi > 0 set yi = 1 else set yi = −1

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 406/462

Rounding the SDP-Solution

Choose the i-th coordinate ri as a Gaussian with mean 0 and

variance 1, i.e., ri ∼N (0,1).

Density function:

ϕ(x) = 1√
2π
ex

2/2

Then

Pr[r = (x1, . . . , xn)]

= 1(√
2π

)n ex
2
1/2 · ex2

2/2 · . . . · ex2
n/2 dx1 · . . . · dxn

= 1(√
2π

)n e
1
2 (x

2
1+...+x2

n) dx1 · . . . · dxn

Hence the probability for a point only depends on its distance to

the origin.

Rounding the SDP-Solution

Choose the i-th coordinate ri as a Gaussian with mean 0 and

variance 1, i.e., ri ∼N (0,1).

Density function:

ϕ(x) = 1√
2π
ex

2/2

Then

Pr[r = (x1, . . . , xn)]

= 1(√
2π

)n ex
2
1/2 · ex2

2/2 · . . . · ex2
n/2 dx1 · . . . · dxn

= 1(√
2π

)n e
1
2 (x

2
1+...+x2

n) dx1 · . . . · dxn

Hence the probability for a point only depends on its distance to

the origin.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e1 and e2 are

independent and are normally distributed with mean 0 and

variance 1 iff e1 and e2 are orthogonal.

Note that this is clear if e1 and e2 are standard basis vectors.

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 408/462

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection

(r ′/‖r ′‖) is uniformly distributed on the unit circle within the

hyperplane.

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 409/462

Rounding the SDP-Solution

vivj

r ′/‖r ′‖
θ

θ

θ

ñ if the normalized projection falls into the shaded region, vi
and vj are rounded to different values

ñ this happens with probability θ/π

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 410/462

Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 411/462

Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 411/462

Rounding the SDP-Solution

ñ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

ñ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
ñ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 411/462

Rounding the SDP-Solution

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1
1
π arccos(x)
1
2 (1− x)

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 412/462

Rounding the SDP-Solution

−1 −0.5 0 0.5 1
00

0.5

1

1.5

2

ratio(x)
0.878

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 413/462

Rounding the SDP-Solution

Theorem 91

Given the unique games conjecture, there is no α-approximation

for the maximum cut problem with constant

α > min
x∈[−1,1]

2 arccos(x)
π(1− x)

unless P = NP.

16.2 MAXCUT 9. Jul. 2022

Harald Räcke 414/462

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k} ∑
u:u∈Si yu ≤ wi

yu ≥ 0

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 415/462

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k} ∑
u:u∈Si yu ≤ wi

yu ≥ 0

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 415/462

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 416/462

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 416/462

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 416/462

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 416/462

Repetition: Primal Dual for Set Cover

Algorithm:

ñ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

ñ While x not feasible
ñ Identify an element e that is not covered in current primal

integral solution.
ñ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
ñ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 416/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is

∑

j
wjxj =

∑

j

∑

e∈Sj
ye =

∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is

∑

j
wjxj =

∑

j

∑

e∈Sj
ye =

∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is

∑

j
wjxj =

∑

j

∑

e∈Sj
ye =

∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is
∑

j
wjxj

=
∑

j

∑

e∈Sj
ye =

∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is
∑

j
wjxj =

∑

j

∑

e∈Sj
ye

=
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is
∑

j
wjxj =

∑

j

∑

e∈Sj
ye =

∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Repetition: Primal Dual for Set Cover

Analysis:

ñ For every set Sj with xj = 1 we have

∑

e∈Sj
ye = wj

ñ Hence our cost is
∑

j
wjxj =

∑

j

∑

e∈Sj
ye =

∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 417/462

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑

e∈Sj
ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑

j:e∈Sj
xj = 1

then the solution would be optimal!!!

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 418/462

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑

e∈Sj
ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑

j:e∈Sj
xj = 1

then the solution would be optimal!!!

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 418/462

Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑

e∈Sj
ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑

j:e∈Sj
xj = 1

then the solution would be optimal!!!

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 418/462

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 419/462

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 419/462

We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 419/462

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i ∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j ∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑

i
aijyi ≥ 1

α
cj

yi > 0⇒
∑

j
aijxj ≤ βbi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 420/462

Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i ∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j ∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑

i
aijyi ≥ 1

α
cj

yi > 0⇒
∑

j
aijxj ≤ βbi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 420/462

Then

∑

j
cjxj

≤ α
∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxjcj

∑

i
biyi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Then

∑

j
cjxj

≤ α
∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxj

cj

primal cost

∑

i
biyi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Then

∑

j
cjxj

≤ α
∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxjcj

primal cost

right hand side of j-th
dual constraint

∑

i
biyi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Then

∑

j
cjxj ≤ α

∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxj

cj

primal cost

∑

i
biyi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Then

∑

j
cjxj ≤ α

∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxj

cj

primal cost

∑

i
biyi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Then

∑

j
cjxj ≤ α

∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxj

cj

primal cost

∑

i
biyi

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Then

∑

j
cjxj ≤ α

∑

j


∑

i
aijyi


xj

= α
∑

i


∑

j
aijxj


yi

≤ αβ ·
∑

i
biyi

∑

j
cjxj

cj

primal cost

∑

i
biyi

dual objective

17.1 Primal Dual Revisited 9. Jul. 2022

Harald Räcke 421/462

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 422/462

Feedback Vertex Set for Undirected Graphs

ñ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

ñ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 422/462

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 423/462

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 423/462

We can encode this as an instance of Set Cover

ñ Each vertex can be viewed as a set that contains some cycles.

ñ However, this encoding gives a Set Cover instance of

non-polynomial size.

ñ The O(logn)-approximation for Set Cover does not help us

to get a good solution.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 423/462

Let C denote the set of all cycles (where a cycle is identified by its

set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈CyC

s.t. ∀v ∈ V ∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 424/462

Let C denote the set of all cycles (where a cycle is identified by its

set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈CyC

s.t. ∀v ∈ V ∑
C :v∈C yC ≤ wv

∀C yC ≥ 0

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 424/462

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase yC until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 425/462

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).

ñ Increase yC until dual constraint for some vertex v becomes
tight.

ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 425/462

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).
ñ Increase yC until dual constraint for some vertex v becomes

tight.

ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 425/462

If we perform the previous dual technique for Set Cover we get

the following:

ñ Start with x = 0 and y = 0

ñ While there is a cycle C that is not covered (does not contain
a chosen vertex).
ñ Increase yC until dual constraint for some vertex v becomes

tight.
ñ set xv = 1.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 425/462

Then
∑
v
wvxv

=
∑
v

∑

C :v∈C
yCxv

=
∑

v∈S

∑

C :v∈C
yC

=
∑

C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 426/462

Then
∑
v
wvxv =

∑
v

∑

C :v∈C
yCxv

=
∑

v∈S

∑

C :v∈C
yC

=
∑

C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 426/462

Then
∑
v
wvxv =

∑
v

∑

C :v∈C
yCxv

=
∑

v∈S

∑

C :v∈C
yC

=
∑

C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 426/462

Then
∑
v
wvxv =

∑
v

∑

C :v∈C
yCxv

=
∑

v∈S

∑

C :v∈C
yC

=
∑

C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 426/462

Then
∑
v
wvxv =

∑
v

∑

C :v∈C
yCxv

=
∑

v∈S

∑

C :v∈C
yC

=
∑

C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 426/462

Algorithm 1 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 427/462

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses

at most one vertex from P .

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 428/462

Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses

at most one vertex from P .

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 428/462

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get a 2α-approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 429/462

Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get a 2α-approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .

17.2 Feedback Vertex Set for Undirected Graphs 9. Jul. 2022

Harald Räcke 429/462

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}
Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 430/462

Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}
Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 430/462

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 431/462

Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 431/462

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 432/462

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 432/462

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 432/462

Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 432/462

Algorithm 1 PrimalDualShortestPath
1: y ← 0

2: F ← ∅
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 433/462

Lemma 93

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 434/462

Lemma 93

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 434/462

Lemma 93

At each point in time the set F forms a tree.

Proof:

ñ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

ñ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 434/462

∑

e∈P
c(e)

=
∑

e∈P

∑

S:e∈δ(S)
yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives

∑

e∈P
c(e) =

∑

S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 435/462

∑

e∈P
c(e) =

∑

e∈P

∑

S:e∈δ(S)
yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives

∑

e∈P
c(e) =

∑

S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 435/462

∑

e∈P
c(e) =

∑

e∈P

∑

S:e∈δ(S)
yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives

∑

e∈P
c(e) =

∑

S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 435/462

∑

e∈P
c(e) =

∑

e∈P

∑

S:e∈δ(S)
yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives

∑

e∈P
c(e) =

∑

S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 435/462

∑

e∈P
c(e) =

∑

e∈P

∑

S:e∈δ(S)
yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives

∑

e∈P
c(e) =

∑

S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 435/462

If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 436/462

If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 436/462

If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 436/462

If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 436/462

If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.

17.3 Primal Dual for Shortest Path 9. Jul. 2022

Harald Räcke 436/462

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 437/462

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 437/462

Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 437/462

max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that we

have many more variables (sets for which we can generate a moat

of non-zero width).

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 438/462

Algorithm 1 FirstTry
1: y ← 0

2: F ← ∅
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F) such

that |C ∩ {si, ti}| = 1 for some i.
5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑

S∈Si:e′∈δ(S)yS = ce′
6: F ← F ∪ {e′}
7: return

⋃
i Pi

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 439/462

∑

e∈F
c(e)

=
∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS

=
∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.

ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.

ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.

ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

∑

e∈F
c(e) =

∑

e∈F

∑

S:e∈δ(S)
yS =

∑

S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

ñ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
ñ The i-th pair is v0-vi.
ñ The first component C could be {v0}.
ñ We only set y{v0} = 1. All other dual variables stay 0.

ñ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

ñ y{v0} > 0 but |δ({v0})∩ F| = k.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 440/462

Algorithm 1 SecondTry

1: y ← 0; F ← ∅; ` ← 0

2: while not all si-ti pairs connected in F do

3: ` ← ` + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

e` ∈ δ(C′), C′ ∈ C s.t.
∑
S:e`∈δ(S)yS = ce`

6: F ← F ∪ {e`}
7: F ′ ← F
8: for k← ` downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 441/462

The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges in

any order.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 442/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Example

s1 s2

s3

t1

t2

t3

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 443/462

Lemma 94

For any C in any iteration of the algorithm

∑

C∈C

|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed in

the final solution is at most twice the number of moats.

Proof: later...

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 444/462

∑

e∈F ′
ce =

∑

e∈F ′

∑

S:e∈δ(S)
yS =

∑

S
|F ′ ∩ δ(S)| ·yS .

We want to show that

∑

S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑

S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑

C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 445/462

∑

e∈F ′
ce =

∑

e∈F ′

∑

S:e∈δ(S)
yS =

∑

S
|F ′ ∩ δ(S)| ·yS .

We want to show that

∑

S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑

S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑

C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 445/462

∑

e∈F ′
ce =

∑

e∈F ′

∑

S:e∈δ(S)
yS =

∑

S
|F ′ ∩ δ(S)| ·yS .

We want to show that

∑

S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑

S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑

C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 445/462

∑

e∈F ′
ce =

∑

e∈F ′

∑

S:e∈δ(S)
yS =

∑

S
|F ′ ∩ δ(S)| ·yS .

We want to show that

∑

S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑

S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑

C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 445/462

∑

e∈F ′
ce =

∑

e∈F ′

∑

S:e∈δ(S)
yS =

∑

S
|F ′ ∩ δ(S)| ·yS .

We want to show that

∑

S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑

S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑

C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 445/462

∑

e∈F ′
ce =

∑

e∈F ′

∑

S:e∈δ(S)
yS =

∑

S
|F ′ ∩ δ(S)| ·yS .

We want to show that

∑

S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑

S
yS

ñ In the i-th iteration the increase of the left-hand side is

ε
∑

C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ε|C|.
ñ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 445/462

Lemma 95

For any set of connected components C in any iteration of the

algorithm ∑

C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 446/462

Lemma 95

For any set of connected components C in any iteration of the

algorithm ∑

C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 446/462

Lemma 95

For any set of connected components C in any iteration of the

algorithm ∑

C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 446/462

Lemma 95

For any set of connected components C in any iteration of the

algorithm ∑

C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 446/462

Lemma 95

For any set of connected components C in any iteration of the

algorithm ∑

C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

ñ At any point during the algorithm the set of edges forms a

forest (why?).

ñ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

ñ Let H = F ′ − Fi.
ñ All edges in H are necessary for the solution.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 446/462

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑

v∈R
deg(v) ≥

∑

C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 447/462

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑

v∈R
deg(v) ≥

∑

C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 447/462

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑

v∈R
deg(v) ≥

∑

C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 447/462

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑

v∈R
deg(v) ≥

∑

C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 447/462

ñ Contract all edges in Fi into single vertices V ′.

ñ We can consider the forest H on the set of vertices V ′.

ñ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

ñ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

ñ We have

∑

v∈R
deg(v) ≥

∑

C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 447/462

ñ Suppose that no node in B has degree one.

ñ Then

∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then

∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v)

=
∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B|

= 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.

ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.
ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.
ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

ñ Suppose that no node in B has degree one.

ñ Then
∑

v∈R
deg(v) =

∑

v∈R∪B
deg(v)−

∑

v∈B
deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

ñ Every blue vertex with non-zero degree must have degree at
least two.
ñ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

ñ But this means that the cluster corresponding to b must
separate a source-target pair.

ñ But then it must be a red node.

17.4 Steiner Forest 9. Jul. 2022

Harald Räcke 448/462

18 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 449/462

18 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ≥ 0

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 449/462

18 Cuts & Metrics
Shortest Path

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ≥ 0

S is the set of subsets that separate s from t.

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

The Separation Problem for the Shortest Path LP is the Minimum

Cut Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 449/462

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P ∑
e∈P xe ≥ 1

∀e ∈ E xe ∈ {0,1}

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E ∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 450/462

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P ∑
e∈P xe ≥ 1

∀e ∈ E xe ≥ 0

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E ∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 450/462

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)xe

s.t. ∀P ∈ P ∑
e∈P xe ≥ 1

∀e ∈ E xe ≥ 0

P is the set of path that connect s and t.

The Dual:

max
∑
P yP

s.t. ∀e ∈ E ∑
P :e∈P yP ≤ c(e)

∀P ∈ P yP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 450/462

18 Cuts & Metrics
Minimum Cut

min
∑
e c(e)`e

s.t. ∀P ∈ P ∑
e∈P `e ≥ 1

∀e ∈ E `e ≥ 0

P is the set of path that connect s and t.

The Dual:

max
∑
P fP

s.t. ∀e ∈ E ∑
P :e∈P fP ≤ c(e)

∀P ∈ P fP ≥ 0

The Separation Problem for the Minimum Cut LP is the Shortest

Path Problem.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 450/462

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the Shortest

Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s and

t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 451/462

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the Shortest

Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s and

t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 451/462

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the Shortest

Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s and

t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 451/462

18 Cuts & Metrics

Observations:

Suppose that `e-values are solution to Minimum Cut LP.

ñ We can view `e as defining the length of an edge.

ñ Define d(u,v) =minpath P btw. u and v
∑
e∈P `e as the Shortest

Path Metric induced by `e.
ñ We have d(u,v) = `e for every edge e = (u,v), as otw. we

could reduce `e without affecting the distance between s and

t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes u and v
could have distance zero.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 451/462

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 452/462

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 452/462

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 452/462

How do we round the LP?

ñ Let B(s, r) be the ball of radius r around s (w.r.t. metric d).

Formally:

B = {v ∈ V | d(s, v) ≤ r}

ñ For 0 ≤ r < 1, B(s, r) is an s-t-cut.

Which value of r should we choose? choose randomly!!!

Formally:

choose r u.a.r. (uniformly at random) from interval [0,1)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 452/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut]

= Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))]

≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the probability that an edge (u, v) is in the cut?

s u

v

t

ñ asssume wlog. d(s,u) ≤ d(s, v)

Pr[e is cut] = Pr[r ∈ [d(s,u),d(s, v))] ≤ d(s, v)− d(s,u)
1− 0

≤ `e

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 453/462

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:

∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 454/462

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:

∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 454/462

What is the expected size of a cut?

E[size of cut] = E
[∑

e c(e)Pr[e is cut]
]

≤
∑
e c(e)`e

On the other hand:

∑
e c(e)`e ≤ size of mincut

as the `e are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 454/462

Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges. Find

a subset F ⊆ E of the edges such that all si-ti pairs lie in different

components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 455/462

Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges. Find

a subset F ⊆ E of the edges such that all si-ti pairs lie in different

components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 455/462

Minimum Multicut:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a capacity function c : E → R+ on the edges. Find

a subset F ⊆ E of the edges such that all si-ti pairs lie in different

components in G = (V , E \ F).

min
∑
e c(e)`e

s.t. ∀P ∈ Pi for some i
∑
e∈P `e ≥ 1

∀e ∈ E `e ∈ {0,1}

Here Pi contains all path P between si and ti.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 455/462

Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 456/462

Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 456/462

Re-using the analysis for the single-commodity case is

difficult.

Pr[e is cut] ≤ ?

ñ If for some R the balls B(si, R) are disjoint between different

sources, we get a 1/R approximation.

ñ However, this cannot be guaranteed.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 456/462

ñ Assume for simplicity that all edge-length `e are multiples of

δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 457/462

ñ Assume for simplicity that all edge-length `e are multiples of

δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 457/462

ñ Assume for simplicity that all edge-length `e are multiples of

δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 457/462

ñ Assume for simplicity that all edge-length `e are multiples of

δ� 1.

ñ Replace the graph G by a graph G′, where an edge of length

`e is replaced by `e/δ edges of length δ.

ñ Let B(si, z) be the ball in G′ that contains nodes v with

distance d(si, v) ≤ zδ.

Algorithm 1 RegionGrowing(si, p)
1: z ← 0

2: repeat

3: flip a coin (Pr[heads] = p)

4: z ← z + 1

5: until heads

6: return B(si, z)

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 457/462

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 458/462

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 458/462

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 458/462

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 458/462

Algorithm 1 Multicut(G′)
1: while ∃si-ti pair in G′ do

2: C ← RegionGrowing(si, p)
3: G′ = G′ \ C // cuts edges leaving C
4: return B(si, z)

ñ probability of cutting an edge is only p
ñ a source either does not reach an edge during Region

Growing; then it is not cut

ñ if it reaches the edge then it either cuts the edge or protects

the edge from being cut by other sources

ñ if we choose p = δ the probability of cutting an edge is only

its LP-value; our expected cost are at most OPT.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 458/462

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 459/462

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 459/462

Problem:

We may not cut all source-target pairs.

A component that we remove may contain an si-ti pair.

If we ensure that we cut before reaching radius 1/2 we are in

good shape.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 459/462

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 460/462

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 460/462

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 460/462

ñ choose p = 6 lnk · δ
ñ we make 1

2δ trials before reaching radius 1/2.

ñ we say a Region Growing is not successful if it does not

terminate before reaching radius 1/2.

Pr[not successful] ≤ (1−p) 1
2δ =

(
(1−p)1/p

) p
2δ ≤ e− p

2δ ≤ 1
k3

ñ Hence,

Pr[∃i that is not successful] ≤ 1
k2

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 460/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

What is expected cost?

E[cutsize] = Pr[success] · E[cutsize | success]

+ Pr[no success] · E[cutsize | no success]

E[cutsize | succ.] = E[cutsize]− Pr[no succ.] · E[cutsize | no succ.]
Pr[success]

≤ E[cutsize]
Pr[success]

≤ 1

1− 1
k2

6 lnk ·OPT ≤ 8 lnk ·OPT

Note: success means all source-target pairs separated

We assume k ≥ 2.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 461/462

If we are not successful we simply perform a trivial

k-approximation.

This only increases the expected cost by at most
1
k2 · kOPT ≤ OPT/k.

Hence, our final cost is O(lnk) ·OPT in expectation.

18 Cuts & Metrics 9. Jul. 2022

Harald Räcke 462/462

	Organizational Matters
	Contents
	Literatur

	Linear Programming
	Introduction to Linear Programming
	Simplex Algorithm
	Duality
	Weak Duality
	Simplex and Duality
	Strong Duality
	Interpretation of Dual Variables
	Computing Duals

	Degeneracy Revisited
	Klee Minty Cube
	Seidels LP-algorithm
	The Ellipsoid Algorithm
	Karmarkars Algorithm

	Approximation Algorithms
	Introduction to Approximation
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines
	Local Search
	Greedy

	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	Randomized Rounding
	MAXSAT
	MAXCUT

	Primal Dual Techniques
	Primal Dual Revisited
	Feedback Vertex Set for Undirected Graphs
	Primal Dual for Shortest Path
	Steiner Forest

	Cuts & Metrics

