11

Greedy-algorithm:
> start with f(e) = 0 everywhere
» find an s-t path with f(e) < c(e) on every edge
» augment flow along the path

> repeat as long as possible

a

PN

o %0

O/é,o 0\19

N

b

flow value: 0
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Greedy-algorithm:

v

start with f(e) = 0 everywhere
find an s-t path with f(e) < c(e) on every edge
augment flow along the path

vV v Vv

repeat as long as possible

a
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Greedy-algorithm:

v

start with f(e) = 0 everywhere
find an s-t path with f(e) < c(e) on every edge
augment flow along the path

vV v Vv

repeat as long as possible

e / O\ s,
P30 \@
O/é,o ¢\’1«°

b

flow value: 0
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11

Greedy-algorithm:

v

start with f(e) = 0 everywhere
find an s-t path with f(e) < c(e) on every edge
augment flow along the path

vV v Vv

repeat as long as possible

a

PN

Q
10<L 0/30

2030 >@

%o o8

o

flow value: 20
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The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):
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The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey, cy) (the residual graph):

» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.
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The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey, cy) (the residual graph):

» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.

> Gy has edge e} with capacity max{0,c(e;) — f(e1) + f(e2)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)}.
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The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey¢,cy) (the residual graph):
> Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between 1 and v.
> Gy has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)}.

G @ o——22 ®

Gr @ g—2! O

‘m 11.1 The Generic Augmenting Path Algorithm
Harald Racke 127/137



Augmenting Path Algorithm

Definition 4

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.
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Augmenting Path Algorithm

Definition 4

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in Gy do

3: augment as much flow along p as possible.
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Augmenting Paths
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flow value: 0
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Augmenting Paths
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Augmenting Paths
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Augmenting Paths
a 0|4 c
0\10/?\ ?\0/5
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flow value: 8
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Augmenting Paths
a 0|4 c
0\10/?\ ?\0/5
®< 02 %
%10 \ A8
\é 812 k

flow value: 8
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Augmenting Paths

‘m 11.1 The Generic Augmenting Path Algorithm
Harald Racke 129/137



Augmenting Paths
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flow value: 10
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Augmenting Paths
a 0|4 c
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Augmenting Paths

a 0|4
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Augmenting Paths
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flow value: 13
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Augmenting Path Algorithm
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Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.
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Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6

The value of a maximum flow is equal to the value of a minimum
cut.
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Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
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Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f'is a maximum flow.
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Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f'is a maximum flow.

3. There is no augmenting path w.r.t. f.
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Augmenting Path Algorithm
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Augmenting Path Algorithm

1. = 2.
This we already showed.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

> Since there is no augmenting path we have s € A and t ¢ A.
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Augmenting Path Algorithm

val(f)
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Augmenting Path Algorithm

val(f) = > fle)— > fle)

ecout(A) ecinto(A)
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Augmenting Path Algorithm

val(f) = > fle)— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
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Augmenting Path Algorithm

val(f) = > fle— >  fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
=cap(A,V\ A)
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Augmenting Path Algorithm

val(f) = > fle— >  fle)
ecout(A) ecinto(A)
= Z c(e)
ecout(A)
=cap(A,V\ A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the second
exploits the fact that the flow along incoming edges must be O as
the residual graph does not have edges leaving A.
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Analysis

Assumption:
All capacities are integers between 1 and C.
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Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cy(e) remains
integral troughout the algorithm.
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Lemma 7

The algorithm terminates in at most val(f*) < nC jterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).
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Lemma 7

The algorithm terminates in at most val(f*) < nC jterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).

Theorem 8
If all capacities are integers, then there exists a maximum flow
for which every flow value f(e) is integral.
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A Bad Input

Problem: The running time may not be polynomial

a

AN

o o
0\"0 /‘?00

0, Q
/3‘00 0\60

hd

flow value: 0
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A Bad Input

Problem: The running time may not be polynomial

a

AN

o o
0\"0 /“\00

0, Q
/3‘00 0\60
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flow value: 0
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A Bad Input

Problem: The running time may not be polynomial

a

AN

AP s,
° %
1
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s, NPT\
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flow value: 0
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A Bad Input

Problem: The running time may not be polynomial

N
S

o/yoo

s,
%.

N
Nl

flow value: 1

X
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A Bad Input

Problem: The running time may not be polynomial

o/ 0
\\c’0 "o
G< 1
0 o
/3‘00 \\c,Q
\@/

flow value: 1
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A Bad Input

Problem: The running time may not be polynomial

o
\\c,Q '@3‘0
0
G< 1

4 o
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0 N
\@/

flow value: 1
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A Bad Input

Problem: The running time may not be polynomial

/O\ b‘q‘a/:\

N p

\\c,Q /6\00 ‘ / 39

\ 0 9.
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flow value: 2
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A Bad Input

Problem: The running time may not be polynomial
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A Bad Input

Problem: The running time may not be polynomial

/ C)\ b‘q‘a/ A \
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A Bad Input

Problem: The running time may not be polynomial

/O\ ST
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A Bad Input

Problem: The running time may not be polynomial
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A Bad Input

Problem: The running time may not be polynomial
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flow value: 3
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A Bad Input

Problem: The running time may not be polynomial

e O\ 7 fa\

Q <
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flow value: 4
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A Bad Input

Problem: The running time may not be polynomial

e O\ &7 fa\

o )
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flow value: 4
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A Bad Input

Problem: The running time may not be polynomial

A e
@Dc,@/ Lap 2 :\e %,
G< W e o S
2 :
9 0/ N & 09‘6/
/Soo ”,1\4,0 < q~9<9 /
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flow value: 4
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A Bad Input

Problem: The running time may not be polynomial

/O\ Y PN

N 2
A “Sp
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flow value: 5
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A Bad Input

Problem: The running time may not be polynomial

N 2
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A Bad Input

Problem: The running time may not be polynomial

/G)\e
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flow value: 5
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A Bad Input

Problem: The running time may not be polynomial

/O\ @1/3\

] 3 )
'2,\6’0 Ay 00 5 : 79)
ol © ; >
e N 1 31
“))/3‘ 6)00 N 2 . &
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flow value: 6
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A Bad Input

Problem: The running time may not be polynomial

A SN

) 3
”)\c,Q /J‘oo 5 : N 79)
N z 0 N
o o ; >
e N 1 31
s, N N : »
00\ w qg)\f %
o o
flow value: 6
Question:

Can we tweak the algorithm so that the running time is
polynomial in the input length?
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A Pathological Input

Letr = %(\/3— 1). Then ¥"+2 =y — i+l

00

flow value: 0
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A Pathological Input

Letr = %(\/3— 1). Then ¥"+2 =y — i+l

r2

00
L4

)
0

00

flow value: 0
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A Pathological Input
Letr = %(\/ﬁ— 1). Then ¥"+2 = yn —yn+l,

r2-r2=0

(29
r—r2=13
4
(59
0+ 72 =1¢2
0
(69

flow value: 0
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A Pathological Input

Letr = %(\5— 1). Then ¥"+2 =y — yn+l

) 00

flow value: 72
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A Pathological Input

Letr = %(\5— 1). Then ¥"+2 =y — yn+l

0
)
3
)
TZ
00

flow value: 72
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A Pathological Input
Let ¥ = (/5 — 1). Then y"+2 = ym — i+l

0+73=1¢3
© (@)

(&9
t
8
8
r*-r3i=0 ||
—r (e
4
8
P2 _p3 =4
" (5

flow value: 72
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A Pathological Input

Letr = %(\5— 1). Then ¥"+2 =y — yn+l

3

8
Nt y

) 00

flow value: 2 + 73
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A Pathological Input

Letr = %(\5— 1). Then ¥"+2 =y — yn+l

3 .

[ {d
8
0
0
T4
)

flow value: 2 + 73
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A Pathological Input

Letr = %(\5— 1). Then ¥"+2 =y — yn+l

r3—:‘;:r5
o0

0+7rd=1r4
o0

flow value: 2 + 73
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A Pathological Input

Letr = %(\5— 1). Then ¥"+2 =y — yn+l

ro

) 00

flow value: 2 + 73 + 4

Running time may be infinite!!!
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How to choose augmenting paths?
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» We want to guarantee a small number of iterations.
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» We want to guarantee a small number of iterations.
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How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.
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How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.

» Choose path with sufficiently large bottleneck capacity.
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How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.
» Choose path with sufficiently large bottleneck capacity.
» Choose the shortest augmenting path.
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