TUTI

08 — Amortized Analysis

Amortization TI.ITI

- Consider a sequence a,, a,, ..., a, of
n operations performed on a data structure D

« T,= execution time of a,

« T=T,+T,+..+T,total execution time

« The execution time of a single operation can vary within a large
range, e.g. in 1,...,n, but the worst case does not occur for all
operations of the sequence.

* Average execution time of an operation, i.e. 1/n - 2., T;, IS small
even though a single operation can have a high execution time.

WS 2020/21 © S. Albers 2

Analysis of algorithms TI.ITI

 Best case (Too optimistic)

 Worst case (Sometimes very pessimistic)
 Average case (Input drawn according to a probability distribution.
However, distribution might not be known, or

Input is not generated by a distribution.)

« Amortized worst case

What is the average cost of an operation in a worst case
sequence of operations?

WS 2020/21 ©S. Albers 3

Amortization TI.ITI

ldea:

« Pay more for inexpensive operations
« Use the credit to cover the cost of expensive operations
Three methods:

1. Aggregate method

2. Accounting method
3. Potential method

WS 2020/21 © S. Albers 4

1. Aggregate method: binary counter TI.ITI

Incrementing a binary counter: determine the bit flip cost

Operation Counter value Cost
00000
1 00001 1
2 00010 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 1
8 01000 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1

WS 2020/21 © S. Albers 5

Binary counter TI.ITI

In gneral:
For any n, estimate the total time of n increment operations.

Show:
Amortized cost of an operation is upper bounded by c.

—> Total cost is upper bounded by cn.

WS 2020/21 ©S. Albers 6

2. The accounting method TI.ITI

Observation:
In each operation exactly one 0 flips to 1.

ldea:
Pay two cost units for flippingaOtoal
— each 1 has one cost unit deposited in the banking account

WS 2020/21 © S. Albers 7

The accounting method

WS 2020/21

Operation

Counter value

© 00 N o O & WO DN PP

=
o

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010

© S. Albers

8

The accounting method

TUTI

Operation Counter value Actual cost Payment Credit
00000
1 00001 1 2 1
2 00010 2 0+2 1
3 00011 1 2 2
4 00100 3 0+0+2 1
5 00101 1 2 2
6 00110 2 0+2 2
7 00111 1 2 3
8 01000 4 0+0+0+2 1
9 01001 1 2 2
10 01010 1 0+2 2

We only pay from the credit when flipping a 1 to a 0.

WS 2020/21

© S. Albers

9

3. The potential method TI.ITI

Potential function ®

Data structure D - ®(D)

t. = actual cost of the i-th operation

@, = potential after execution of the i-th operation (= (D)))
a; = amortized cost of the i-th operation

Definition:
a=t+®-d,

WS 2020/21 © S. Albers 10

Example: binary counter

D, = counter value after the i-th operation

®, = P(D,) =#of 1's in D,

i—th operation #of 1's
Dy ... 0/1....01.....1 B.,
S
1
D.: ... 0/1.....10.....0 B.=B;—-Db+1

t. = actual bit flip cost of operationi =b+1

a; = ti + CD(Dl) - CID(Di-l)

WS 2020/21

© S. Albers 11

Binary counter TI.ITI

t; = actual bit flip cost of operation i
a; = amortized bit flip cost of operation i

=(b+1)+ (B —b +1)-
2

n
= D & =2n

=Y a=>_(t+®(D)-®(D,))<2n

= 5" =" a-®(D,)+®(D,) < 2n—d(D,)+D(D,) < 2n

WS 2020/21 © S. Albers 12

Dynamic tables TI.ITI

Problem:
Maintain a table supporting the operations insert and delete such that

» the table size can be adjusted dynamically to the number of items

* the used space in the table is always at least a constant fraction of
the total space

« the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor o.;: number of items stored in the table divided by the size
of the table

WS 2020/21 © S. Albers 13

Dynamic tables

Dynamic table T

size[T]; I/ size of the table
num|T]; /[number of items

Initially there is an empty table with 1 slot, i.e.

size[T] = 1 and num([T] = 0.

WS 2020/21

© S. Albers 14

Implementation of ‘insert’ TI.ITI

insert (T, X)

1. if num[T] = size[T] then

2. allocate new tableT‘ with 2-size[T] slots;
3. Insert all items in T into T,

4. free table T;

5. T:=T5

6. size[T] := 2-size[T];

7. endif;

8. Insert x into T;
9. num[T] := num[T]+1;

WS 2020/21 © S. Albers 15

Cost of n insertions into an initially emptyum

t. = cost of the i-th insert operation
Worst case:

t=1 If the table is not full prior to operation i
t=(—-1)+1 if the table is full prior to operation i.

Thus n insertions incur a total cost of at most
n
>i= @(nz).
i=1
Amortized worst case:

Aggregate method, accounting method, potential method

WS 2020/21 © S. Albers 16

Potential method TI.ITI

T table with

« k=num[T] items
s =size[T] size

Potential function

P(M)=2k-s

WS 2020/21 © S. Albers 17

Potential method TI.ITI

Properties
o @, =P(Ty) = O (empty table) = -1

* Immediately before a table expansion we have k = s,
thus O(T) =k =s.

* Immediately after a table expansion we have k = s/2,
thus ©(T) =2k —s = 0.

« Foralli>1: ¢,=®(T)>0

Since ®,- ®,>0
2t <28

WS 2020/21 © S. Albers 18

Amortized cost a; of the i-th insertion TI.ITI

ki=# items stored in T after the i-th operation
S, = table size of T after the i-th operation

Case 1: iI-th operation does not trigger an expansion
ki=kipt1, 8=5s;
8; =1+ (2k - s) - (Zki.1— Si4)

=1+ 2(k - k1)
=3

WS 2020/21 © S. Albers 19

Case 2: i-th operation does trigger an expansion

8 = kg +1+(2ki-s)-(2ki;—si,)
=2(ki;+1)-ki +1-2s;+s;,
=K1t 3-si4
=3

WS 2020/21 © S. Albers 20

Inserting and deleting items TI.ITI

Now: Contract the table whenever the load becomes too small.

Goal:
(1) The load factor is bounded from below by a constant.
(2) The amortized cost of a table operation is constant.

First approach
 Expansion: as before

 Contraction: Halve the table size when a deletion would cause the
table to become less than half full.

WS 2020/21 © S. Albers 21

,Bad” sequence of table operations TI.ITI

Cost
n/2 ‘insert’ op.
e O > /2
(table is full) EEEE ----- am
I expansion n2+1
EEEN ----- HEE
D, D: contraction o n/2+1
EREE ----- B
[, | . expansion n2 +1
EEEE ----- EEE
D, D: contraction ____ -

Total cost of the sequence of n operations, with n22: 1 ., 1,D,D,1,1,D,D,I

n/2+1/2-(n/2-2)(n/2+1)+1>n"/8

WS 2020/21 © S. Albers 22

Second approach TI.ITI

Expansion: Double the table size when an item is inserted into
a full table.

Contraction: Halve the table size when a deletion causes the table to
become less than Y4 full.

Property: At any time the table is at least Y4 full, i.e.
Va <a(T)<1

What is the cost of a sequence of table operations?

WS 2020/21 © S. Albers 23

Analysis of ‘insert’ and ‘delete’ operationsTuTl

K=num[T], s=size[T],a=k/s

Potential function @

o(T)= 2k —s, ifa>1/2
s/2-k, ifa<1/2

WS 2020/21 © S. Albers 24

Analysis of ‘insert’ and ‘delete’ operationsTuTl

o (T)= 2k —s, if ¢ >1/2
ls/2—k, ifa<1/2

Immediately after a table expansion or contraction:

s=2k, thus®(T)=0

WS 2020/21 © S. Albers 25

Analysis of an ‘insert’ operation TI.ITI

I-th operation: ki =k_; +1
Case 1: o, =%

Potential function before and after the operation is ®(T) = 2k-s. We
have already proved that the amortized cost is equal to 3.

Case 2: a1 <2

Case 2.1: o, < %2
Case 2.2: o, 2 %2

WS 2020/21 © S. Albers 26

Analysis of an ‘insert’ operation TI.ITI

Case 2.1: a;; <%, a;< ¥ no expansion

Potential function @

o (T)= 2k —s, if a>1/2
ls/2-k, ifa<1/2

a =1+ (5/2-k)-(5.4/2-ki,)
=1-(kip+1)+kiy
=0

WS 2020/21 © S. Albers 27

Analysis of an ‘insert’ operation TI.ITI

Case 2.2: a;, <%, a,=% no expansion

Potential function ®

CD(T)— 2k —s, if a>1/2
ls/2-k, ifa<1/2

a; =1+ (2ki-s) - (si.4/2 - ki)
=1+2(K.,+1)-3s,,/2+k
= 3+ 3(Ki1-5.4/2)
<3

The last inequality holds because ki ; / s, ; < %-.

WS 2020/21 © S. Albers 28

Analysis of a ‘delete’ operation TI.ITI

ki =kiq-1

Case 1: o, < %2

Case 1.1: deletion does not trigger a contraction
Si = Sia

Potential function @

o (T)= 2k —s, ifa>1/2
s/2—k, ifa<1/2

a =1+ (s;/2-kj)-(si4/2-k4)
— l - (ki-l = 1) + ki-l
=2

WS 2020/21 © S. Albers 29

Analysis of a ‘delete’ operation TI.ITI
ki = kig - 1

Case 1: o, < %2

Case 1.2: a;, <Y deletion does trigger a contraction

S, =S, 4,/2 k=54

Potential function @

o (T)= 2k —s, if a>1/2
“s/2—k, ifa<1/2

a=1+Kk+(s/2-k)-(5.4/2- ki)
=1+ ki +8i1/4-(Kip-1)-84/2 + k4
=2-s,/4+k,
=2

WS 2020/21 © S. Albers 30

Analysis of a ‘delete’ operation TI.ITI

Case 2: o, 2%

A contraction only occursifs,_; =2 and k;; = 1.

Inthiscasea,=1+s/2—-k —(2Kk_;-Si_;)
=1+1/2-2+2<2.

Therefore, in the following, we may assume that no
contraction occurs.

WS 2020/21 © S. Albers 31

Analysis of a ‘delete’ operation

Case 2: a,; = % no contraction

S.

. =S

o kKi=kig-1

Case 2.1: o, 2 %2

Potential function ®

o (T)= 2k —s, if ¢ >1/2
“s/2—k, ifa<l1/2

a, =1+ (2k;-s) - (2ki;—Si.1)
= 1 + 2(ki-1 - 1) - 2ki-1
<0

WS 2020/21

© S. Albers 32

Analysis of a ‘delete’ operation TI.ITI

Case 2: a,; = % no contraction

S.

. =S,

o ki=kig-1

Case 2.2: ;<%

Potential function ®

o(T)= 2k —s, if ¢ >1/2
“s/2—k, ifa<1/2

a; =1+ (s/2 - k) - (2Ki1- Si.4)
=1+ Si-1/2 - ki-l +] - 2ki-l + Si-l
= 2 +3(s11/2 - ki)
<2

The last inequality holds because ki ; 2 s, ,/2.
WS 2020/21 © S. Albers 33

