

03 – Randomization

Randomization

- Types of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography
- Verifying matrix multiplication

1. Types of randomized algorithms

Las Vegas algorithms

Always correct; expected running time

Example: randomized Quicksort

Monte Carlo algorithms (mostly correct) Probably correct; guaranteed running time

Example: randomized primality test

2. Quicksort

Input: List *S* of *n* distinct elements over a totally ordered universe.

Output: The elements of S in (ascending) sorted order.

Idea of Quicksort: Identify a splitter $v \in S$.

Determine set S_i of elements of S that are < v.

Determine set S_r of elements of S that are > V.

Sort S_t , S_r recursively.

Output sorted sequence of S_{l} , followed by V,

followed by sorted sequence S_r

Quicksort


```
S
                               S_{\mathsf{r}} \, > v
 S_i < V
function Quick (S: sequence): sequence;
{returns the sorted sequence S}
begin
     if \#S \le 1 then Quick:=S;
     else { choose splitter element v in S;
           partition S into S_i with elements < V,
           and S_r with elements > V;
           Quick:= |Quick(S_i)|v|Quick(S_r)}
end;
```

Worst-case input

n elements

Running time: (n-1) + (n-2) + ... + 2 + 1 = n(n-1)/2

Choice of the splitter element

Suppose that a splitter v with $|S_1| \le n/2$ and $|S_r| \le n/2$ can be found in cn step.

Then $T(n) \le 2 T(n/2) + an$, for some $a \ge c$, and $T(n) \le an \log n$.

T(k) = worst-case number of steps to sort k elements

Problem: Find splitter *v* with above property.

But: Running time of O($n \log n$) can be maintained if S₁, S_r have roughly equal size, i.e. $\frac{1}{4} |S| \le |S_f|$, $|S_r| \le \frac{3}{4} |S|$.

Thus randomly chosen splitter is "good" with probability ≥ ½.

Randomized Quicksort


```
S
 S_i < V
                             S_r > V
function RandQuick (S: sequence): sequence;
{returns the sorted sequence S}
begin
     if \#S \le 1 then Quick:=S;
     else { choose splitter element v in S uniformly at random;
           partition S into S, with elements < V,
           and S_r with elements > V;
           RandQuick:= | RandQuick(S_i) | v | RandQuick(S_r) | 
end;
```


n elements; let s_i be the *i*-th smallest element

With probability 1/n, s_1 is the splitter element: subproblems of sizes 0 and n-1

•

With probability 1/n, s_k is the splitter element: subproblems of sizes k-1 and n-k

•

•

•

With probability 1/n, s_n is the splitter element: subproblems of sizes n-1 and 0

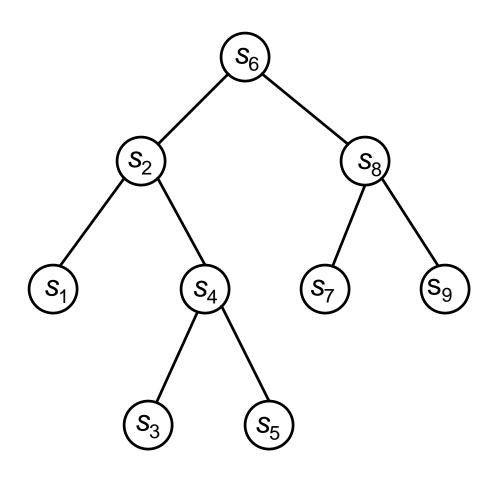
Expected running time:

$$T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)) + \Theta(n)$$

$$=\frac{2}{n}\sum_{k=1}^{n}T(k-1)+\Theta(n)$$

$$= O(n \log n)$$

Analysis 2: Representation of QS as a tree



WS 2020/21 © S. Albers 11

Analysis 2: expected #comparisons

Running time is linear in the number of element comparisons.

$$X_{ij} = \begin{cases} 1 & \text{if } s_i \text{ is compared to } s_j \\ 0 & \text{otherwise} \end{cases}$$

$$E\left[\sum_{i=1}^{n} \sum_{j>i} X_{ij}\right] = \sum_{i=1}^{n} \sum_{j>i} E[X_{ij}]$$

 p_{ij} = probability that s_i is compared to s_i

$$E[X_{ij}] = 1 \cdot p_{ij} + 0 \cdot (1 - p_{ij}) = p_{ij}$$

Computing p_{ii}

• s_i is compared to s_j iff s_i or s_j are chosen as pivot element before any s_i , i < l < j.

$$\{S_i \ldots S_l \ldots S_j\}$$

■ Any element s_i , ..., s_j is chosen as pivot element with the same probability. Hence $p_{ij} = 2 / (j-i+1)$

Expected number of comparisons:

$$\sum_{i=1}^{n} \sum_{j>i} p_{ij} = \sum_{i=1}^{n} \sum_{j>i} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$

$$= 2n \sum_{k=1}^{n} \frac{1}{k}$$

$$H_n = \sum_{k=1}^n 1/k \approx \ln n$$

3. Primality test

Definition:

A natural number $p \ge 2$ is prime iff $a \mid p$ implies that a = 1 or a = p.

We consider primality tests for numbers $n \ge 2$.

Algorithm: Deterministic primality test (naive approach)

```
Input: Natural number n \ge 2
```

Output: Answer to the question "Is *n* prime?"

```
if n = 2 then return true;
if n even then return false;
for i = 1 to \lfloor \sqrt{n}/2 \rfloor do
if 2i + 1 divides n
then return false;
return true;
```

Running time: $\Theta(\sqrt{n})$

Primality test

Goal:

Randomized algorithm

- Polynomial running time.
- If it returns "not prime", then *n* is not prime.
- If it returns "prime", then with probability at most p, p>0,
 n is composite.

After k iterations: If algorithm always returns "prime", then with probability at most p^k , n is composite.

WS 2020/21 © S. Albers 16

Simple primality test

Fact: For any odd prime number $p: 2^{p-1} \mod p = 1$.

Examples:
$$p = 17$$
, $2^{16} - 1 = 65535 = 17 * 3855$
 $p = 23$, $2^{22} - 1 = 4194303 = 23 * 182361$

Simple primality test:

- **1** Compute $z = 2^{n-1} \mod n$;
- 2 if z = 1
- **3** then *n* is possibly prime
- 4 **else** *n* is composite

Advantage: polynomial running time.

Simple primality test

Definition:

A natural number $n \ge 2$ is a base-2 pseudoprime if n is composite and $2^{n-1} \mod n = 1$.

Example: n = 11 * 31 = 341

 $2^{340} \mod 341 = 1$

Randomized primality test


```
Theorem: (Fermat's little theorem)
If p is prime and 0 < a < p, then a^{p-1} \mod p = 1.
```

Example: n = 341, a = 3: $3^{340} \mod 341 = 56 \neq 1$

Algorithm: Randomized primality test

- 1 Choose *a* in the range [2, *n*-1] uniformly at random;
- 2 Compute a^{n-1} mod n;
- 3 if $a^{n-1} \mod n = 1$
- 4 then *n* is probably prime
- 5 else *n* is composite

Prob(n is composite but $a^{n-1} \mod n = 1$) ?

Problem: Carmichael numbers

Definition:

A natural number $n \ge 2$ is a base-a pseudoprime if n is composite and $a^{n-1} \mod n = 1$.

Definition: A number $n \ge 2$ is a Carmichael number if n is composite and for any a with GCD(a, n) = 1 we have $a^{n-1} \mod n = 1$.

Example:

Smallest Carmichael number: 561 = 3 * 11 * 17

Randomized primality test

Theorem: If p is prime and 0 < a < p, then the equation

$$a^2 \mod p = 1$$

has exactly the two solutions a = 1 and a = p - 1.

Definition: A number a is a non-trivial square root mod n if $a^2 \mod n = 1$ and $a \ne 1$, n - 1.

Example: n = 35 $6^2 \mod 35 = 1$

Idea: While computing a^{n-1} , where 0 < a < n is chosen uniformly at random, check if a non-trivial square root mod n exists.

Fast exponentiation

Method for computing aⁿ:

Case 1: [*n* is even]

$$a^n = a^{n/2} * a^{n/2}$$

Case 2: [*n* is odd]

$$a^n = a^{(n-1)/2} * a^{(n-1)/2} * a$$

Running time: O(log²an log n)

Fast exponentiation

Example:

$$a^{62} = (a^{31})^2$$

$$a^{31} = (a^{15})^2 * a$$

$$a^{15} = (a^7)^2 * a$$

$$a^7 = (a^3)^2 * a$$

$$a^3 = (a)^2 * a$$

Fast exponentiation

boolean isProbablyPrime;

```
function power(int a, int p, int n){
   /* computes a^p mod n and checks if a number x with x^2 mod n = 1
   and x \neq 1, n-1 occurs during the computation */
   if p = 0 then return 1;
   x := power(a, p div 2, n);
   result := x * x \mod n;
   /* check if x^2 \mod n = 1 and x \neq 1, n-1 */
   if result = 1 and x \neq 1 and x \neq n-1 then is Probably Prime := false;
   if p \mod 2 = 1 then result := a * result mod n;
   return result;
Running time: O(\log p \cdot \log^2 n)
```

Miller Rabin primality test


```
primeTest(int n) {
   /* executes the randomized primality test for a chosen at random */
   a := random(2, n-1);
   isProbablyPrime: = true;
   result := power(a, n-1, n);
   if result ≠ 1 or !isProbablyPrime then
       return false;
   else return true;
```

Miller Rabin primality test

Theorem:

If *n* is composite, then there are at most

$$\frac{n-9}{4}$$

numbers 0 < a < n for which the algorithm primeTest fails.

4. Application

Public-Key Cryptosystems

Secret key cryptosystems

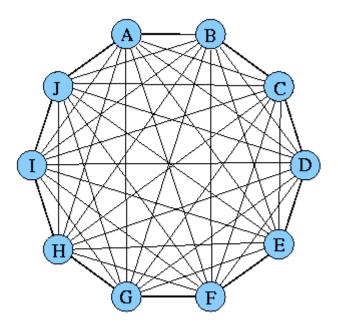
Traditional encryption of messages

Disadvantages:

1. Prior to transmission of the message, the key *k* has to be exchanged between the parties A und B.

2. For encryption of messages between *n* parties, $\frac{n(n-1)}{2}$ keys are

required.



WS 2020/21 © S. Albers 28

Secret key encryption systems

Advantage:

Encryption and decryption are fast.

Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A holds two keys:

- 1. A public key P_A , accessible to all other participants.
- 2. A secret key S_A that is kept secret.

Public-key cryptosystems

D = Set of all valid messages,e.g. set of all bitstrings of finite length

$$P_{A}(), S_{A}(): D \xrightarrow{1-1} D$$

Three constraints:

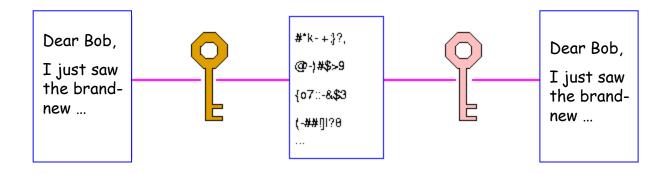
1. $P_A()$, $S_A()$ efficiently computable

2. $S_A(P_A(M)) = M$ and $P_A(S_A(M)) = M$

3. $S_A()$ is not computable from $P_A()$ (with realistic effort)

Encryption in a public-key system

A sends a message M to B:



Encryption in a public key system

- 1. A receives B's public key P_B from a public directory or directly from B.
- 2. A computes the ciphertext $C = P_B(M)$ and sends it to B.
- 3. After receiving message C, B decrypts the message using his secret key S_B : $M = S_B(C)$

Generating a digital signature

A sends a digitally signed message M' to B:

1. A computes the digital signature σ for M using her secret key:

$$\sigma = S_A(M')$$

- 2. A sends the pair (M', σ) to B.
- 3. After receiving (M', σ) , B checks the digital signature: $P_A(\sigma) = M'$

Anybody is able to check σ using P_{A} (e.g. for bank checks).

RSA cryptosystem

R. Rivest, A. Shamir, L. Adleman

Generating the public and secret keys:

- 1. Select at random two large primes p and q of l+1 bits (l > 2000).
- 2. Compute n = pq.
- 3. Select a natural number e is that is relatively prime to (p-1)(q-1).
- 4. Compute $d = e^{-1}$ $d^*e = 1 \pmod{(p-1)(q-1)}$

RSA cryptosystem

- 5. Publish P = (e, n) as public key.
- 6. Keep S = (d, n) as secret key.

Split the (binary coded) message into blocks of length 2*I*. Interpret each block *M* as a binary number: $0 \le M < 2^{2l}$

$$P(M) = M^e \mod n$$
 $S(C) = C^d \mod n$

Recovering a message

To show: $S_A(P_A(M)) = P_A(S_A(M)) = M^{ed} \mod n = M$, for any $0 \le M < 2^{2/2}$.

Theorem: (Fermat's little theorem)

If p is prime, then for any integer a that is not divisible by p, $a^{p-1} \mod p = 1.$

Since $d \cdot e \equiv 1 \mod (p-1)(q-1)$ there holds ed = 1+k(p-1)(q-1), for some integer k.

Suppose that $M \mod p \neq 0$. Then by Fermat's little theorem, $M^{p-1} \mod p = 1$ and thus $M^{k(p-1)(q-1)} \mod p = 1$.

Hence $M^{ed} \mod p = M^{1+k(p-1)(q-1)} \mod p = M \mod p$, and $M^{ed} - M = I_1 p$, for some integer I_1 .

If $M \mod p = 0$, then again $M^{ed} - M = I_2 p$, for some integer I_2 .

Recovering a message

In any case, for any M, M^{ed} - $M = l \cdot p$, for some integer l. Similarly, for any M, M^{ed} - $M = l \cdot q$, for some integer l.

Since p and q are prime numbers, M^{ed} - $M = I^*pq$, for some integer I^* .

We conclude that, for any M, there holds $M^{ed} \mod n = M$.

Multiplicative inverse

Theorem: (GCD recursion theorem)

For any numbers a and b with b>0:

 $GCD(a,b) = GCD(b, a \mod b).$

Algorithm: Euclid

Input: Two integers a and b with $b \ge 0$

Output: GCD(a,b)

if b = 0

then return a

else return Euclid(b, a mod b)

Multiplicative inverse

Algorithm: extended-Euclid

Input: Two integers a and b with $b \ge 0$

Output: GCD(a,b) and two integers x and y with

$$xa + yb = GCD(a,b)$$

if b = 0 then return (a, 1, 0);

(d, x', y') := extended-Euclid(b, a mod b);

 $x := y'; \quad y := x' - \lfloor a/b \rfloor y';$

return (*d*, *x*, *y*);

Application: a = (p-1)(q-1), b = e

The algorithm returns numbers x and y with

$$x(p-1)(q-1) + ye = GCD((p-1)(q-1),e) = 1$$

5. Verifying matrix multiplication

Problem: Three $n \times n$ matrices A, B and C. Verify whether or not AB=C.

Simple solution: Multiply A, B and compare to C. $O(n^3)$ multiplications/operations, can be reduced to roughly $O(n^{2.37})$.

Goal: Design fast verification algorithm that may err with a certain probability.

WS 2020/21 © S. Albers 41

Verifying matrix multiplication

Algorithm: Choose $\vec{r} = (r_1, ..., r_n) \in \{0,1\}^n$ uniformly at random.

Compute $AB\vec{r}$ by first computing $B\vec{r}$ and then $A(B\vec{r})$.

Then compute $C\vec{r}$.

If $A(B\vec{r}) \neq C\vec{r}$, then return $AB \neq C$. Otherwise return AB = C.

Running time: $O(n^2)$

Theorem: If $AB \neq C$ and if \vec{r} is chosen uniformly at random from $\{0,1\}^n$, then $\Pr[AB\vec{r} = C\vec{r}] \leq \frac{1}{2}$.

We next prove this theorem.

Law of Total Probability: Let Ω be a probability space and A_1, \dots, A_n be mutually disjoint events. Let B be an event with $B \subseteq \bigcup_{i=1}^n A_i$. Then

$$\Pr[B] = \sum_{i=1}^{n} \Pr[B \cap A_i] = \sum_{i=1}^{n} \Pr[B \mid A_i] \Pr[A_i].$$

By assumption $AB \neq C$. Hence $D := AB - C \neq 0$ and the matrix D contains at least one non-zero entry $d_{ij} \neq 0$.

On the other hand, $AB\vec{r} = C\vec{r}$ translates to $D\vec{r} = 0$.

Let
$$P = D\overrightarrow{r} = (p_1, ..., p_n)^T$$
.

There holds $p_i = \sum_{k=1}^n d_{ik} r_k = d_{ij} r_j + y$, for some constant y.

Hence

$$Pr[P=0]$$

$$\leq \Pr[p_i = 0] = \Pr[p_i = 0 \mid y = 0] \cdot \Pr[y = 0] + \Pr[p_i = 0 \mid y \neq 0] \cdot \Pr[y \neq 0].$$

There holds:

$$Pr[p_i=0 \mid y=0] = Pr[r_i=0] = \frac{1}{2}$$

$$\Pr[p_i=0 \mid y \neq 0] = \Pr[r_i=1 \land d_{ii}=-y] \leq \Pr[r_i=1] = \frac{1}{2}.$$

We conclude

$$Pr[P = 0] \le Pr[p_i = 0] \le \frac{1}{2} \cdot Pr[y = 0] + \frac{1}{2} \cdot Pr[y \neq 0]$$
$$= \frac{1}{2} \cdot Pr[y = 0] + \frac{1}{2} \cdot (1 - Pr[y = 0]) = \frac{1}{2}.$$

Repeating the algorithm k times reduces the error probability to $1/2^k$, using a running time of $O(kn^2)$.

For k=100, the error probability is upper bounded by $1/2^k$, while the running time is still $O(n^2)$.

WS 2020/21 © S. Albers 45