
Winter Semester 2020/21

Advanced Algorithms

http://www14.in.tum.de/lehre/2020WS/ada/index.html.en

Susanne Albers

Department of Informatics

TU München

2WS 2020/21

Organization

Lectures: 3 SWS
Online, recorded lectures; available via Moodle.

Exercises: 2 SWS

Online sessions

Teaching assistants:

Dr. Waldo Gálvez (galvez@in.tum.de)
Sebastian Schubert (sebastian.schubert@tum.de)

Problem sets: Made available on Monday by 10:00 am via Moodle
and on the course webpage.

Must be turned in one week later by 10:00 am via
Moodle.

Submissions by teams of two students are
encouraged.

© S. Albers

mailto:galvez@in.tum.de

3WS 2020/21

Organization

Bonus: If at least 50% of the maximum number of points of
the homework assignments are attained,
then the grade of the final exam, if passed, improves
by 0.3 (or 0.4).

Exam: Written exam, on site (Präsenzprüfung),
date will be announced.

Valuation: 6 ECTS (3 + 2 SWS)

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen GAD)
Diskrete Strukturen (DS)
Diskrete Wahrscheinlichkeitstheorie (DWT)

© S. Albers

4WS 2020/21

Literature

 Th. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

Algorithms, Third Edition, MIT Press, 2009.

 J. Kleinberg and E. Tardos. Algorithm Design. Pearson, Addison

Wesley, 2006.

 M. Mitzenmacher and E. Upfal. Probability and Computing:

Randomization and Probabilistic Techniques in Algorithms and Data

Analysis. Second Edition, Cambridge University Press, 2017.

 Th. Ottmann und P. Widmayer: Algorithmen und Datenstrukturen.

6. Auflage, Springer Verlag, 2017.

 Research papers

© S. Albers

5WS 2020/21

Content

Design and analysis techniques for algorithms

• Divide and conquer

• Greedy approaches

• Dynamic programming

• Randomization

• Amortized analysis

© S. Albers

6WS 2020/21

Content

Problems and application areas:

• Geometric algorithms

• Algebraic algorithms

• Graph algorithms

• Data structures

• Algorithms on strings

• Optimization problems

• Complexity

© S. Albers

01 - Divide and Conquer

8WS 2020/21

The divide-and-conquer paradigm

• Quicksort

• Formulation and analysis of the paradigm

• Geometric divide-and-conquer

- Closest pair problem

- Line segment intersection

- Voronoi diagrams

© S. Albers

9WS 2020/21

function Quick (S: sequence): sequence;

{returns the sorted sequence S}

begin

if #S ≤ 1 then Quick:=S;

else { choose pivot/splitter element v in S;

partition S into Sl with elements ≤ v,

and Sr with elements ≥ v;

Quick:= }

end;

Quicksort: Sorting by partitioning

S

Sl ≤ v v Sr ≥ v

v

Quick(Sl) v Quick(Sr)

© S. Albers

10WS 2020/21

Formulation of the D&C paradigm

Divide-and-conquer method for solving a

problem instance of size n:

1. Divide

n > c: Divide the problem into k subproblems of

sizes n1,...,nk (k  2).

n  c: Solve the problem directly.

2. Conquer

Solve the k subproblems in the same way

(recursively).

3. Merge

Combine the partial solutions to generate a

solution for the original instance.

© S. Albers

11WS 2020/21

Analysis

T(n) : maximum number of steps necessary for solving an instance of

size n

T(n) =

Special case: k = 2, n1 = n2 = n/2

cost for divide and merge: DM(n)

T(1) = a

T(n) = 2T(n/2) + DM(n)

© S. Albers

12WS 2020/21

Geometric divide-and-conquer

Closest Pair Problem:

Given a set S of n points in the plane, find a pair of points with the

smallest distance.

© S. Albers

13WS 2020/21

Divide-and-conquer method

1. Divide: Divide S into two equal sized sets Sl und Sr .

2. Conquer: dl = mindist(Sl) dr = mindist(Sr)

3. Merge: dlr = min{ d(pl ,pr) | pl  Sl , pr  Sr }

return min{dl , dr , dlr }

Sr
Sl

S
dl

dlr

dr

© S. Albers

14WS 2020/21

Divide-and-conquer method

SrSl

S

p d

d = min {dl , dr }

1. Divide: Divide S into two equal sets Sl und Sr .

2. Conquer: dl = mindist(Sl) dr = mindist(Sr)

3. Merge: dlr = min{ d(pl ,pr) | pl  Sl , pr  Sr }

return min{dl , dr , dlr }

Computation of dlr :

15WS 2020/21

Merge step

1. Consider only points within distance d of the bisection line,

in the order of increasing y-coordinates.

2. For each point p consider all points q within y-distance

at most d; there are at most 7 such points.

© S. Albers

16WS 2020/21

Merge step

d

d

d d

d = min { dl , dr }

p

S

Sl Sr

p1

p3

p4

p2

© S. Albers

17WS 2020/21

Implementation

 Initially sort the points in S in order of increasing x-coordinates

O(n log n).

Each bisection line can be determined in O(1) time.

 Once the subproblems Sl , Sr are solved, generate a list of the

points in S in order of increasing y-coordinates.

This can be done by merging the sorted lists of points of Sl , Sr

(merge sort).

© S. Albers

18WS 2020/21

Running time (divide-and-conquer)

 Guess the solution by repeated substitution.

 Verify by induction.

Solution: O(n log n)

© S. Albers

19WS 2020/21

Guess by repeated substitution

annT

anannTannT

anannTannT

anannTannTnT

4)16/(16

3)8/)16/(2(83)8/(8

2)4/)8/(2(42)4/(4

)2/)4/(2(2)2/(2)(


















3

3)2/(2
)(

na

nannT
nT

© S. Albers

20WS 2020/21

Verify by induction

1

1

(2) 2 (2) 2

2 2 (1) 2

2 (1) 2

2

log

i i i

i i

i i

i

T T a

a i a

a i a

a i

an n





 

  

  





© S. Albers

21WS 2020/21

Line segment intersection

Find all pairs of intersecting line segments.

...........

......

© S. Albers

22WS 2020/21

Line segment intersection

Find all pairs of intersecting line segments.

A

B
C

D

E

A.

B.

C.

D.

E.

.A
.D

.B
.C

.E

The representation of the horizontal line segments by their endpoints

allows for a vertical partitioning of all objects.

© S. Albers

23WS 2020/21

ReportCuts

Input: Set S of vertical line segments and endpoints of

horizontal line segments.

Output: All intersections of vertical line segments with horizontal

line segments, for which at least one endpoint is in S.

1. Divide

if |S| > 1

then using vertical bisection line L, divide S into equal size

sets S1 (to the left of L) and S2 (to the right of L)

else S contains no intersections

© S. Albers

24WS 2020/21

ReportCuts

A

B

C

D

E

A
D

B
C

ES

S1 S2

1. Divide:

2. Conquer:

ReportCuts(S1); ReportCuts(S2)

© S. Albers

25WS 2020/21

ReportCuts

3. Merge: ???

Possible intersections of a horizontal line segment h in S1

Case 1: both endpoints in S1

h

S1
S2

© S. Albers

26WS 2020/21

ReportCuts

h

S1
S2

Case 2: only one endpoint of h in S1

2 a) right endpoint in S1

© S. Albers

27WS 2020/21

ReportCuts

2 b) left endpoint of h in S1

h
right endpoint in S2

h

right endpoint not in S2

S2S1

S1
S2

© S. Albers

28WS 2020/21

Procedure: ReportCuts(S)

3. Merge:

Return the intersections of vertical line segments in S2 with

horizontal line segments in S1, for which the left endpoint is in S1

and the right endpoint is neither in S1 nor in S2 .

Proceed analogously for S1 .

S1 S2

© S. Albers

29WS 2020/21

Implementation

Set S

L(S): y-coordinates of all segments whose left endpoint in S,

but right endpoint is not in S.

R(S): y-coordinates of all segments whose right endpoint is in S,

but left endpoint is not in S.

V(S): y-intervals of all vertical line segments in S.

© S. Albers

30WS 2020/21

Base cases

S contains only one element e.

Case 1: e = (x,y) is a left endpoint of horizontal line segment s

L(S) = {(y,s)} R(S) =  V(S) = 

Case 2: e = (x,y) is a right endpoint of horizongal line segment s

L(S) =  R(S) = {(y,s)} V(S) = 

Case 3: e = (x, y1, y2) is a vertical line segment s

L(S) =  R(S) =  V(S) = {([y1, y2],s)}

© S. Albers

31WS 2020/21

Merge step

Assume that L(Si), R(Si), V(Si) are known for i = 1,2.

S = S1  S2

L(S) = L(S1)\R(S2)  L(S2)

R(S) = R(S2)\L(S1)  R(S1)

V(S) = V(S1)  V(S2)

L, R: ordered by increasing y-coordinates (and segment number)

linked lists

V: ordered by increasing lower endpoints

linked list

© S. Albers

32WS 2020/21

Output of the intersections

V(S2)

h3

h2

h1

L(S1)

© S. Albers

33WS 2020/21

Running time

Initially, the input (vertical line segments, left/right endpoints of

horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

T(n) = 2T(n/2) + a∙n + size of output

T(1) = O(1)

O(n log n + k) k = # intersections

© S. Albers

34WS 2020/21

Computation of a Voronoi diagram

Input: Set of sites

Output: Partition of the plane into regions, each consisting of the

points closer to one particular site than to any other site.

© S. Albers

35WS 2020/21

Definition of Voronoi diagrams

P : Set of sites

H(p | p’) = {x | x is closer to p than to p’ }

Voronoi region of p:

)'|()(
}\{'


pPp

ppHpVR




© S. Albers

36WS 2020/21

Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.

Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the

whole plane.

Merge: Connect the diagrams by adding new edges.

© S. Albers

37WS 2020/21

Computation of a Voronoi diagram

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.

© S. Albers

