Efficient Algorithms and Data Structures I

Deadline: November 4, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (5 Points)

Give tight asymptotic upper and lower bounds for the following recurrence relations.
(a) $T(n)=9 T(n / 3)+n \sqrt{n}+n \log n$.
(b) $T(n)=2 T(n / 4)+\sqrt{n} \log _{2} n$.
(c) $T(n)=4 T(n / 2)+n$!

Homework 2 (5 Points)

Given two $n \times n$ matrices A and B where n is a power of 2 , we know how to find $C=A \cdot B$ by performing n^{3} multiplications. Now let us consider the following approach. We partition A, B and C into equally sized block matrices as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \quad C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Consider the following matrices:

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right) \cdot\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) \cdot B_{11} \\
& M_{3}=A_{11} \cdot\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22} \cdot\left(B_{21}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) \cdot B_{22} \\
& M_{6}=\left(A_{21}-A_{11}\right) \cdot\left(B_{11}+B_{12}\right) \\
& M_{7}=\left(A_{12}-A_{22}\right) \cdot\left(B_{21}+B_{22}\right)
\end{aligned}
$$

Then,

$$
C_{22}=M_{1}-M_{2}+M_{3}+M_{6} .
$$

(a) Construct the matrices C_{11}, C_{12}, C_{21} from the matrices M_{i}, as demonstrated for C_{22}.
(b) Design an efficient algorithm for multiplying two $n \times n$ matrices based on these facts. Analyze its running time.

Homework 3 (5 Points)

Show tight asymptotic upper and lower bounds for $T(n)$, where $T(0)$ is an arbitrary constant, for the following recurrence relations
(a) $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$. Show $T(n) \in \Theta(n)$.
(b) $T(n)=T(n-2)+2 \ln n$. Show $T(n) \in \Theta(n \ln n)$.

As argued in the lecture you may assume that function arguments are always integer. Hint: You may use without proof that $\ln (n+1)<\frac{1}{n}+\ln n$.

Homework 4 (5 Points)

The recursion $T(n)$ is

$$
T(n)=\sqrt{n} T(\sqrt{n})+n .
$$

Assuming that $T(n)$ is constant for sufficiently small n, show by induction that $T(n)=\Theta\left(n \log _{2} \log _{2} n\right)$.

Tutorial Exercise 1

The H-graph of order 0 is just a simple node. The H-graphs of order 1, 2, 3, and 4 are shown in Figure 1, Figure 2, Figure 3, and Figure 4, respectively. Let $f(\ell)$ denote the number of vertices of an H-graph of order ℓ. Develop a recurrence relation for f and solve your relation using techniques from the lecture.

Figure 1: H-graph of order 1

Figure 3: H-graph of order 3

Figure 2: H-graph of order 2

Figure 4: H-graph of order 4

I like trees because they seem more resigned to the way they have to live than other things do.

- W. Cather

