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6.3 The Characteristic Polynomial

Consider the recurrence relation:

coTm)+caiTm—-1)+c2T(n—-2)+---+cxT(m—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

> In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
> First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.
> First consider the homogenous case.
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The Homogenous Case

The solution space
§=1{7T =T[1],T[2],T[3],... | T fulfills recurrence relation |

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A™, A = 0, and see what
happens. In order for this guess to fulfill the recurrence we need

CoAn+C1?\n71 + C2 -An72+ s+ Ck -Anfk =0

for all n > k.
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The Homogenous Case

Dividing by A" gives that all these constraints are identical to

oA+ ciAR v A2 4 =0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A”
is a solution to the recurrence relation.

Let Aq,..., A be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
XA + 0AY + -+ oAy

is a solution for arbitrary values «;.
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The Homogenous Case

Lemma 1
Assume that the characteristic polynomial has k distinct roots
A1, ...,Ak. Then all solutions to the recurrence relation are of the
form

0(1}\? + 0(2}\? + -+ (X]J\? .

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution for
every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the (x;s such that these conditions are met:

x1-A1 + x2-A2 4+ -+ XAy = T[1]
o - A+ s AF o+ e+ oA = TI[2]

o - AR 4 Ak o+ o cxk-/\ﬁ = TI[k]
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

Al A2 - A X1 T[1]
AT A3 - A2 o | | TI2]
A oAb oAk o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.
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Computing the Determinant

1 Ay --- )\11{*2
1Ay --- Ak2
1 Ax 7\’,:_2
1 A=A
1 Ar—Aq
1 Ar—A1

Ay =AY
572 oAb

ACE=Ar- A

AfFt—ag a2
ASTE Ay - Ak2

A=A AR



Computing the Determinant

I o Ap=Ar-1 - ARZ o aks3 Ak ake2
I Ap—Ap-1 --- AK2Ap-ak3 Akt oAy a2

T Ag=2Ap-1 - AKZo g Ak3 Akel oy ake2



Computing the Determinant

I A =Ar-1 --- Ak 2o ak=3 Akl

I Ap—=Ap-1 --- AK2—a a3 Akt

I Ag=Ar-1 -0 AF2-Ap-Ak3 Akl
1 0 0

1 A2-A)-1 -+ (A2-2Ap)-A57°

T Qe =2a)-1 -0 (A=A- A7
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Computing the Determinant

1 0 0 0

1 Ae=AD-1 -+ Aa=ApD-AE3 A=Ay -k 2

T QA=A 1 - Ag=AD-A3 A=Ay -Af?
) 1 Ay -e- )\’2<—3 Ak-2
[TAai-an- : :

Moo AR AL

-
Il
N
—_



Computing the Determinant

Repeating the above steps gives:

A1 Az e A1 Ag

NN a, a

. ; =TT [T @i=ap)
3k 5k h 9 i=1 i>{

AT Az e A A

Hence, if all A;’s are different, then the determinant is non-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A" a solution to the recurrence but also nA’'.

To see this consider the polynomial

PIAT - A" K = coA™ + ] A" L4 oA 2 4 oo AR

Since A; is a root we can write this as Q[A] - (A — A;)2. Calculating
the derivative gives a polynomial that still has root A;.
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conAP Ly -DAM 24t (n—k)ATR L =0

Hence,

Con)\? +c1(n— 1)}\?71 +o+cg(n— k))\?fk -0



This means

conA™ !+ ci(n - DA 2 ... 4 cr(n— k)}\’."_k_l -0
1 i i

Hence,

Con)\? +c1(n— 1)}\?71 + it op(n— k))\?fk -0
— —_— - -
T[n] TIn-1] TIn-k]
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The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +ci(n— DA+ rg(n—k)AM k=0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

conz)\” +c1(n— 1)2)\7."’] + i tox(n - k)Z)\nfk =0
1 i i

We can continue j — 1 times.

Hence, "né)\’i1 is a solution for £ €0,...,j — 1.



The Homogeneous Case

Lemma 2
Let P[A] denote the characteristic polynomial to the recurrence

coTn]+ca1iTn—-1]1+---+cxT[n—k]=0

Let Aj,i=1,...,m be the (complex) roots of P[A] with
multiplicities £;. Then the general solution to the recurrence is
given by

l,

-3 5w

The full proof is omitted. We have only shown that any choice of
«;ij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tnl=Tn-11+T[n-2]forn=2

The characteristic polynomial is
|

Finding the roots, gives

1
)\1/2251

=
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Example: Fibonacci Sequence

Hence, the solution is of the form

() ()

2 2

T[0] =0 gives x+ = 0.

T[1] =1 gives

a<1+2£>+,3(1_2£)=1=>a—3:

Gl



Example: Fibonacci Sequence

Hence, the solution is

ACSRCEN




The Inhomogeneous Case

Consider the recurrence relation:
coT(n) +aTn—1)+c2T(M—-2)+---+cxT(n—k)=f(n)
with f(n) = 0.

While we have a fairly general technique for solving homogeneous,
linear recurrence relations the inhomogeneous case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n) =Th(n)+Tp(n) ,

where Tj, is any solution to the homogeneous equation, and T is
one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:
ITn]l=Tn-1]+1 Tol=1

Then,
Tin-1]1=T[n-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tnl-Tn-1]=Tn-11-T[n - 2] (n=2)

or
Tn]=2Tn-1]-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1]=2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2_2A+1=0
hﬂ_.J
(A-1)2

Then the solution is of the form

Tn] =l +Bnl" =x+ pn

T[0] =1 gives xx = 1.

T[1]=2givesl1 +=2= B =1.
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Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tn]=3Tn-1]-3T[n-2]+T[n-3]+2

and so on...
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