
7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data

Red Black Trees: Example
25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most

O(logn).

Definition 3

The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most

O(logn).

Definition 3

The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

7.2 Red Black Trees

Lemma 2

A red-black tree with n internal nodes has height at most

O(logn).

Definition 3

The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not

counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at

least 2bh(v) − 1 internal vertices.

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.

base case (height(v) = 0)

ñ If height(v) (maximum distance btw. v and a node in the

sub-tree rooted at v) is 0 then v is a leaf.

ñ The black height of v is 0.

ñ The sub-tree rooted at v contains 0 = 2bh(v) − 1 inner

vertices.

7.2 Red Black Trees

Proof (cont.)

induction step

ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees

Proof (cont.)

induction step
ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees

Proof (cont.)

induction step
ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees

Proof (cont.)

induction step
ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees

Proof (cont.)

induction step
ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees

Proof (cont.)

induction step
ñ Supose v is a node with height(v) > 0.

ñ v has two children with strictly smaller height.

ñ These children (c1, c2) either have bh(ci) = bh(v) or

bh(ci) = bh(v)− 1.

ñ By induction hypothesis both sub-trees contain at least

2bh(v)−1 − 1 internal vertices.

ñ Then Tv contains at least 2(2bh(v)−1 − 1)+ 1 ≥ 2bh(v) − 1

vertices.

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a

path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node

must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2h/2 − 1 internal vertices. Hence,

2h/2 − 1 ≤ n.

Hence, h ≤ 2 log(n+ 1) = O(logn).

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color,

such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the

same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers

to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red

black properties are maintained.

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

Red Black Trees: Insert

RB-Insert(root, 18)

25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17 20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

RB-Insert(root, 18) 25

13 30

6 21 27 48

3 9 16 23 26 29 43 50

0 5 7 11 14 19 22 24

12 17

18

20

z

Insert:

ñ first make a normal insert into a binary search tree

ñ then fix red-black properties

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]

ñ either both of them are red
(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]
ñ either both of them are red

(most important case)

ñ or the parent does not exist
(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]
ñ either both of them are red

(most important case)
ñ or the parent does not exist

(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

Red Black Trees: Insert

Invariant of the fix-up algorithm:

ñ z is a red node

ñ the black-height property is fulfilled at every node

ñ the only violation of red-black properties occurs at z and
parent[z]
ñ either both of them are red

(most important case)
ñ or the parent does not exist

(violation since root must be black)

If z has a parent but no grand-parent we could simply color the

parent/root black; however this case never happens.

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

z in left subtree of grandparent

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

Case 1: uncle red

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

Case 2: uncle black

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

2a: z right child

Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] ≠ null and col[parent[z]] = red do

2: if parent[z] = left[gp[z]] then

3: uncle← right[grandparent[z]]
4: if col[uncle] = red then

5: col[p[z]]← black; col[u]← black;

6: col[gp[z]]← red; z ← grandparent[z];
7: else

8: if z = right[parent[z]] then

9: z ← p[z]; LeftRotate(z);
10: col[p[z]]← black; col[gp[z]]← red;

11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged

13: col(root[T])← black;

2b: z left child

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

z

A B C D E

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

A B C D E

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z

4. you made progress

13

6 21

3

A B C D E

uncle

z

13

6 21

3

A B C D E

z

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

A B

C

D E

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

A B

C

D E

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3 z

A B

C

D E

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that

black height property holds

3. you have a red black tree

13

6 21

3

A B C D E

z

uncle

6

13

21

3

A B

C

D E

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

A
B

C
D E

13

3 21

6

B CA D E

z

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

A
B

C
D E

13

3 21

6

B CA D E

z

uncle

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

3. you have Case 2b.

13

6 21

3

A
B

C
D E

z

13

3 21

6

B CA D E

z

uncle

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case at

most once, we get a red-black tree. Hence O(logn) re-colorings

and at most 2 rotations.

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case at

most once, we get a red-black tree. Hence O(logn) re-colorings

and at most 2 rotations.

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case at

most once, we get a red-black tree. Hence O(logn) re-colorings

and at most 2 rotations.

Red Black Trees: Insert

Running time:

ñ Only Case 1 may repeat; but only h/2 many steps, where h is

the height of the tree.

ñ Case 2a → Case 2b → red-black tree

ñ Case 2b → red-black tree

Performing Case 1 at most O(logn) times and every other case at

most once, we get a red-black tree. Hence O(logn) re-colorings

and at most 2 rotations.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

ñ Parent and child of x were red; two adjacent red vertices.

ñ If you delete the root, the root may now be red.

ñ Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property

might be violated.

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 30

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

41

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

Case 3:

Element has two children
ñ do normal delete

ñ when replacing content by content of successor, don’t

change color of node

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete
25

13 41

6

3

0 5

9

7 11

12

21

16

14 19

17 20

23

22 24

27

26 29

48

43

42

47

50

49 55

z

Delete:
ñ deleting black node messes up black-height property

ñ if z is red, we can simply color it black and everything is fine

ñ the problem is if z is black (e.g. a dummy-leaf); we call a

fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

Red Black Trees: Delete

Invariant of the fix-up algorithm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

Red Black Trees: Delete

Invariant of the fix-up algorithm

ñ the node z is black

ñ if we “assign” a fake black unit to the edge from z to its

parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can

remove the fake black unit from the edge.

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

A B C D

E F

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 1: Sibling of z is red

1. left-rotate around parent of z

2. recolor nodes b and c

3. the new sibling is black

(and parent of z is red)

4. Case 2 (special),

or Case 3, or Case 4

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

A B

C D E F

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 2: Sibling is black with two black children

1. re-color node c

2. move fake black

unit upwards

3. move z upwards

4. we made progress

5. if b is red we color

it black and are done

Here b is either black or red. If it is red
we are in a special case that directly
leads to a red-black tree.

b

a c

d e

z

A B

C D E F

sibling

b

a c

d e

z

A B

C D E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

A B C

D

E F

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

A B C

D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. new sibling is black with

red right child (Case 4)

Again the blue color of b indicates that
it can either be black or red.

xb

a c

d e

z

A B

C D E F

sibling

b

a d

c

e

z

A B C

D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

A B C D

E F

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Case 4: Sibling is black with red right child

1. left-rotate around b

2. remove the fake black unit

3. recolor nodes b, c, and e

4. you have a valid

red black tree

• Here b and d are either red or
black but have possibly different
colors.

• We recolor c by giving it the
color of b.

b

a c

d e

z

A B

C D E F

sibling

c

b

a d

e

z

A B C D

E F

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

[tikzpicture optimized away because it does not contribute to

exported PDF]

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

Running time:

ñ only Case 2 can repeat; but only h many steps, where h is

the height of the tree

ñ Case 1 → Case 2 (special) → red black tree

Case 1 → Case 3 → Case 4 → red black tree

Case 1 → Case 4 → red black tree

ñ Case 3 → Case 4 → red black tree

ñ Case 4 → red black tree

Performing Case 2 at most O(logn) times and every other step at

most once, we get a red black tree. Hence, O(logn) re-colorings

and at most 3 rotations.

	Red Black Trees

