Definition 1

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.

Definition 1

- 1. The root is black.
- 2. All leaf nodes are black.

Definition 1

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.

Definition 1

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example 30 29 50 26 0 5 **P** Ø Ø **99** 20

Lemma 2

A red-black tree with n internal nodes has height at most $O(\log n)$.

Lemma 2

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

Lemma 2

A red-black tree with n internal nodes has height at most $O(\log n)$.

Definition 3

The black height bh(v) of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:

Lemma 4

A sub-tree of black height bh(v) in a red black tree contains at least $2^{bh(v)} - 1$ internal vertices.

Proof of Lemma 4.

Proof of Lemma 4.

Induction on the height of *v*.

Proof of Lemma 4.

Induction on the height of *v*.

base case (height(v) = 0)

If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.

Proof of Lemma 4.

Induction on the height of *v*.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.

Proof of Lemma 4.

Induction on the height of *v*.

base case (height(v) = 0)

- If height(v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0.
- ► The sub-tree rooted at v contains 0 = 2^{bh(v)} 1 inner vertices.

Proof (cont.)

Proof (cont.)

induction step

Supose v is a node with height(v) > 0.

Proof (cont.)

- Supose v is a node with $\operatorname{height}(v) > 0$.
- \triangleright v has two children with strictly smaller height.

Proof (cont.)

- Supose v is a node with $\operatorname{height}(v) > 0$.
- \triangleright v has two children with strictly smaller height.
- ► These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- These children (c₁, c₂) either have bh(c_i) = bh(v) or bh(c_i) = bh(v) 1.
- ▶ By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.

Proof (cont.)

- Supose v is a node with height(v) > 0.
- \triangleright v has two children with strictly smaller height.
- These children (c_1 , c_2) either have $bh(c_i) = bh(v)$ or $bh(c_i) = bh(v) 1$.
- **b** By induction hypothesis both sub-trees contain at least $2^{bh(v)-1} 1$ internal vertices.
- ► Then T_v contains at least $2(2^{bh(v)-1} 1) + 1 \ge 2^{bh(v)} 1$ vertices.

Proof of Lemma 2.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least $2^{h/2} - 1$ internal vertices. Hence, $2^{h/2} - 1 \le n$.

Hence, $h \leq 2\log(n+1) = O(\log n)$.

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

- 1. The root is black.
- 2. All leaf nodes are black.
- **3.** For each node, all paths to descendant leaves contain the same number of black nodes.
- 4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert RB-Insert(root, 18) Ø 0 5 22 24

- first make a normal insert into a binary search tree
- then fix red-black properties

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert RB-Insert(root, 18) 0 5 2 22 24

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert RB-Insert(root, 18) **9** . 0 5 (19) <u>@</u> @

- first make a normal insert into a binary search tree
- then fix red-black properties
Red Black Trees: Insert RB-Insert(root, 18) 0 5 2 22 24

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert RB-Insert(root, 18) 0 5 2 22 24

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Invariant of the fix-up algorithm:

z is a red node

- z is a red node
- the black-height property is fulfilled at every node

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
 - either both of them are red (most important case)
 - or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Algorithm 10 InsertFix(z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$	
2:	if $parent[z] = left[gp[z]]$ then	
3:	$uncle \leftarrow right[grandparent[z]]$	
4:	<pre>if col[uncle] = red then</pre>	
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$	
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$	
7:	else	
8:	if $z = right[parent[z]]$ then	
9:	$z \leftarrow p[z]$; LeftRotate(z);	
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$	
11:	RightRotate($gp[z]$);	
12:	else same as then-clause but right and left exchanged	
13:	$col(root[T]) \leftarrow black;$	

Algorithm 10 InsertFix(z)			
1:	1: while parent[z] \neq null and col[parent[z]] = red do		
2:	if $parent[z] = left[gp[z]]$ then z in left subtree of grandparent		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	<pre>if col[uncle] = red then</pre>		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if <i>z</i> = right[parent[<i>z</i>]] then		
9:	$z \leftarrow p[z]$; LeftRotate (z) ;		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

Algorithm 10 InsertFix(<i>z</i>)			
1:	while $parent[z] \neq null and col[parent[z]] = red do$		
2:	if $parent[z] = left[gp[z]]$ then		
3:	$uncle \leftarrow right[grandparent[z]]$		
4:	if col[<i>uncle</i>] = red then Case 1: uncle red		
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$		
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$		
7:	else		
8:	if $z = right[parent[z]]$ then		
9:	$z \leftarrow p[z]$; LeftRotate (z) ;		
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$		
11:	RightRotate $(gp[z]);$		
12:	else same as then-clause but right and left exchanged		
13:	$col(root[T]) \leftarrow black;$		

Algorithm 10 InsertFix(z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$	
2:	if $parent[z] = left[gp[z]]$ then	
3:	$uncle \leftarrow right[grandparent[z]]$	
4:	<pre>if col[uncle] = red then</pre>	
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$	
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$	
7:	else Case 2: uncle black	
8:	<pre>if z = right[parent[z]] then</pre>	
9:	$z \leftarrow p[z]$; LeftRotate(z);	
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$	
11:	RightRotate $(gp[z]);$	
12:	else same as then-clause but right and left exchanged	
13:	$col(root[T]) \leftarrow black$	

Algorithm 10 InsertFix (z)		
1:	while $parent[z] \neq null and col[parent[z]] = red do$	
2:	if $parent[z] = left[gp[z]]$ then	
3:	$uncle \leftarrow right[grandparent[z]]$	
4:	<pre>if col[uncle] = red then</pre>	
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$	
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$	
7:	else	
8:	if $z = right[parent[z]]$ then 2a: z right child	
9:	$z \leftarrow p[z]$; LeftRotate (z) ;	
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red;$	
11:	RightRotate $(gp[z]);$	
12:	else same as then-clause but right and left exchanged	
13:	$col(root[T]) \leftarrow black;$	

Algorithm 10 InsertFix(z)		
1:	while parent[z] \neq null and col[parent[z]] = red do	
2:	if $parent[z] = left[gp[z]]$ then	
3:	$uncle \leftarrow right[grandparent[z]]$	
4:	<pre>if col[uncle] = red then</pre>	
5:	$col[p[z]] \leftarrow black; col[u] \leftarrow black;$	
6:	$col[gp[z]] \leftarrow red; z \leftarrow grandparent[z];$	
7:	else	
8:	if $z = right[parent[z]]$ then	
9:	$z \leftarrow p[z]$; LeftRotate (z) ;	
10:	$col[p[z]] \leftarrow black; col[gp[z]] \leftarrow red; 2b: z \text{ left child}$	
11:	RightRotate $(gp[z]);$	
12:	else same as then-clause but right and left exchanged	
13:	$col(root[T]) \leftarrow black;$	

[tikzpicture optimized away because it does not contribute to exported PDF]

1. rotate around grandparent [tikzpicture optimized away because it does not contribute to exported PDF] R С 13 Ε D uncle 2 С D Е R

1. rotate around grandparent 2. ['fik2picture optimized away because it does not contribute to exported in the property holds R С Ε D uncle С D Ε

1. rotate around grandparent 2. [fik2picture optimized away because it does not contribute to exported in property holds R 3. you have a red black tree С Ε D uncle С D Ε

[tikzpicture optimized away because it does not contribute to exported PDF]

Running time:

Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black$ tree

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case $2a \rightarrow Case 2b \rightarrow red-black tree$
- Case 2b → red-black tree
Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only h/2 many steps, where h is the height of the tree.
- Case 2a → Case 2b → red-black tree
- Case $2b \rightarrow red$ -black tree

Performing Case 1 at most $O(\log n)$ times and every other case at most once, we get a red-black tree. Hence $O(\log n)$ re-colorings and at most 2 rotations.

First do a standard delete.

First do a standard delete.

If the spliced out node x was red everything is fine.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

Parent and child of x were red; two adjacent red vertices.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.

First do a standard delete.

If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

- do normal delete
- when replacing content by content of successor, don't change color of node

- do normal delete
- when replacing content by content of successor, don't change color of node

- do normal delete
- when replacing content by content of successor, don't change color of node

- do normal delete
- when replacing content by content of successor, don't change color of node

- do normal delete
- when replacing content by content of successor, don't change color of node

Delete:

deleting black node messes up black-height property

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Invariant of the fix-up algorithm

the node z is black

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Here b is either black or red. If it is red we are in a special case that directly leads to a red-black tree.

Case 3: Sibling black with one black child to the right

Again the blue color of *b* indicates that it can either be black or red.

Case 3: Sibling black with one black child to the right

[tikzpicture optimized away because it does not contribute to exported PDF]

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

- Here b and d are either red or black but have possibly different colors.
- We recolor c by giving it the color of b.

only Case 2 can repeat; but only h many steps, where h is the height of the tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree Case 1 → Case 3 → Case 4 → red black tree Case 1 → Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 Case 1 → Case 3 → Case 4 → red black tree
 Case 1 → Case 4 → red black tree
- Case 3 → Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 \rightarrow Case 2 (special) \rightarrow red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case 1 → Case 2 (special) → red black tree
 - Case 1 \rightarrow Case 3 \rightarrow Case 4 \rightarrow red black tree
 - Case 1 \rightarrow Case 4 \rightarrow red black tree
- Case 3 → Case 4 → red black tree
- Case 4 → red black tree

Performing Case 2 at most $O(\log n)$ times and every other step at most once, we get a red black tree. Hence, $O(\log n)$ re-colorings and at most 3 rotations.