6 Recurrences

Algorlthm 2 mergesort(listL)

O IO A

n — size(L)

if n<1returnL

Ly —L[1---|%]]

Ly~ L[ 31+1-n]
mergesort(Ly)
mergesort(Ly)

L — merge(L1,L>)
return L

This algorithm requires

T(n) =7(|

n

f]) n T([gJ) +0n) < 2T([g]) +0(n)

comparisons when n > 1 and 0 comparisons when n < 1.
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Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

For this we need to solve the recurrence.
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Methods for Solving Recurrences

1. Guessing+Induction
Guess the right solution and prove that it is correct via
induction. It needs experience to make the right guess.

2. Master Theorem
For a lot of recurrences that appear in the analysis of
algorithms this theorem can be used to obtain tight
asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial
Linear homogenous recurrences can be solved via this
method.
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Methods for Solving Recurrences

4. Generating Functions
A more general technique that allows to solve certain types
of linear inhomogenous relations and also sometimes
non-linear recurrence relations.

5. Transformation of the Recurrence
Sometimes one can transform the given recurrence relations
so that it e.g. becomes linear and can therefore be solved
with one of the other techniques.
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6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

n
T(n) < 2T([5]) +cn nzZI
0 otherwise

Informal way:
Assume that instead we have

2T(5) +cn n=2
0 otherwise

T(n) < {

One way of solving such a recurrence is to guess a solution, and
check that it is correct by plugging it in.

‘m 6.1 Guessing+Induction
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6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T<§> +cn
n n
< 2<d§10g§) +cn
=dn(logn—-1)+cn

=dnlogn+ (c—dn

<dnlogn
if we choose d > c.

Formally, this is not correct if n is not a power of 2. Also even in
this case one would need to do an induction proof.
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6.1 Guessing+Induction T(n) < { 2T (%) +cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.

> induction step n/2 — n:

Let n = 2K > 16. Suppose statem. is true for n’ = n/2. We
prove it for n:

T(n) < ZT(E) +cn
1?1 n o Note that this proves the
< 2(df]0gf> +cn statement for n = 2%, k € N>1,
2 2 as the statement is wrong for
e The base case is usually omitted,
as it is the same for different

< d?’l lOgn ] recurrences.

=dn(logn-1) +cn E n=1 E
=dnlogn+ (c —d)n i |

Hence, statement is true if we choose d > c.



6.1 Guessing+Induction

How do we get a result for all values of n?

We consider the following recurrence instead of the original one:

2T([5]) +cn n =16
b otherwise

T(n) < {

Note that we can do this as for constant-sized inputs the running
time is always some constant (b in the above case).
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6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [E

2]>+cn

[3]<3+1| <2(d(n/2+1)log(n/2+1)) +cn

n <9 9

7+1l<qn sdnlog(En)JerlognJrcn
log%n=logn+<log9—4)| =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn
<dnlogn —0.33dn +cn
<dnlogn

for a suitable choice of d.
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_________________________

1 Note that the cases do not cover all pos- |

6.2 Master Theorem ! sibilities. !
Lemma 1
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence

T(n) = aT( ) +f(n) .

Case 1.
If f(n) = O(n'°%@-€) then T(n) = O(nlosra),

Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'osr 21ogk ™1 n),
k>0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n
af(y) <cf(n) for some constant c <1 then T(n) = O(f(n)).

‘m 6.2 Master Theorem
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6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:
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6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a?(%) :

i=0

‘m 6.2 Master Theorem
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Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1 ]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bs)l
i=0

Zl 0‘1 i O Cnlogba—E(beloghn . 1)/(196 _ 1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n)

Hence,

Cc

T(n) < <

pe g > T(n) = 08 9).
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Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
_ . logpa _ i had
T(n)-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
pi
i=0
log, n—-1
=cnlogra X
i=0
cnl°8 4log, n

IA

Hence,

T(n) = 08 log,n)  |= T(n) = 08 logn).
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Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 ' n
T —nloswe =Y atp(r)
i=0
logp n—1
>c > al<£

)logb a
i=0

logy n—1
=cnlo®a X
i=0
= cnlo%2og, n

Hence,

T(n) = Qn'%%log,n) |= T(n) = Q% 4logn).
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Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

logp n—1 n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1 log, a k
(o) (om (57))
<c i;) a(bi 0gp | 4,7
-1

b{’ k
n:h”:E:logbn‘ = cnlogra Z (logb (ﬁ))
i=0

£-1
_ Cnlogba Z (‘g _ l)k
i=0

?
_ Cnlogh az ik ~ %ngrl
i=1

c

~ Enlogh apk+l = T(n) = O(n'°% 4 1ogk 1 n).
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Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

o e =S at (1
3 ar(y)
logp n—1
< > cif(n) +omona)
i=0

q<112?_oql=1’lq_"q“ = <7 log a)
Hence,

T(n) <0O0(f(n)) =>Tn) = ®(f(n)).‘
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000]01100]01111 B
1011001000

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X1T0T11
______________________ 10001

] 1
e This is also nown as the “school ,
method” for multiplying integers. | 1 0 0 0 1 0

1
|
1 . . 1
o Note that the intermediate num-
' ' aenum-, ) 0 0 0O 0OO0O
1
1

bers that are generated can have'!

| _atmostmin=2nbis. 1 0001 0O O
10111011

Time requirement:
» Computing intermediate results: O(nm).

» Adding m numbers of length < 2n: O((m + n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By ‘ X | Aj Ao

Then it holds that

A=A, -27 + Agand B=B; - 27 + By

Hence,

A-B=AB;-2"+ (A1By + AoBy) - 27 + AoBo

‘m 6.2 Master Theorem
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2: return ag - bg O(1)
3: split A into Ag and A, O(n)
4: split B into By and B; O(n)
5. Z» — mult(Aq,B7) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By) ZT(%) +O(n)
7: Zo — mult(Ag, Bo) T(%)
8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n

T(n) = 4T<2

)+0(n).
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
> Case 1: f(n) = O(nlogra-¢) T(n) = O(nlosra)
> Case 2: f(n) = O@(nlo%ralogn) T(n) = O(nlo8ralogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©(n?) for our algorithm.

=> Not better then the “school method”.
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Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,
Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
A more precise | | 5 Z2 — mult(Ay, B1) T(%)
:(correct) analysis ! | 6: Zg — mult(Ag, Bo) T(%)
E?g;lsui?:gtgit E 7. 71 < mult(Ao +Al’BO;:—Bl) —Z>—Zp T(%) + (9(11)
i needs time '] 8: return Zp - 2" + 71 - 22 + Zp O(n)

T(%+1)+0(n).

I
I
I ey S, |
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).

> Case 1: f( n) = O(n'ogra-c) T(n) = ©(n'osr @)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.

n)
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6.3 The Characteristic Polynomial
Consider the recurrence relation:

coTm)+caiTm—-1)+c2Tm—-2)+---+cxT(m—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cop, cx + 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) =0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
> First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.

> First consider the homogenous case.

m 6.3 The Characteristic Polynomial
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7> € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

COA"+C1)\TL71 +Cp - AVL*Z + e+ )\?’L*k =0

for all n > k.
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The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = )\?
is a solution to the recurrence relation.

Let Ay,...,Ag be the k (complex) roots of P[A]. Then, because of
the vector space property

0(17\711 + 0(27\721 + -+ O(kA;;l
is a solution for arbitrary values «;.

m 6.3 The Characteristic Polynomial
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The Homogenous Case

Lemma 2
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of the
form

1A+ AT + -+ gAY

Proof.
There is one solution for every possible choice of boundary

conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution for
every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the os such that these conditions are met:

®1-A1 + o2-A2 4+ -+ oAy = TI[1]
oA+ AR+ e+ oA = T([2]
o AN 4+ - AS o+ o+ AR = TR

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke

35/82



The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the cx%s such that these conditions are met:

Al A2 - A o1 T[1]
AT A3 - A2 o0 T[2]
Ak oAb Ak o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.
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Computing the Determinant

A1 Az Ak-1
ATAS e AR
AY A% Ak

Ak 1 1
A7k AL A
=TT . .
:k = k: k

1 A

k 1 A

=[] )

i=1 :

1 Ax

k-1

AyZ

m Ernst Mayr, Harald Racke
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Computing the Determinant

1A Ak=2 ket

1 A Ak=2 Akt

1 Ak Ak=2 A
IoAp=Ap-1 - A2 q b Akt Ak
1o Ap=Ap-1 -0 AK2Zo A Al AK oA Ak
ToAg=Ap-1 - A2 Af oAy ake?

m 6.3 The Characteristic Polynomial
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Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2

I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2

Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
1 0 0 0
1 (A=A)-1 -+ (A2=A)-A53 (A —2Ay)-A52
1 A=AD-1 -+ A=A - A% (A —2Ap) - Af?
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Computing the Determinant

1 0 0 0

I A=A 1 - (A2=Ap-A53 (Ap—Aap)-25 7

I A=A 1 -+ QAg=Ap A3 QA=A AL
. 1 Ay -e- AK3 Ak
[Tai-an-|: : :
= R L
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Computing the Determinant

Repeating the above steps gives:

A Az e Apor Ag

AZOA3 - A2 AR k

. SRR S o VIO I (Y7 VR
.k .k k. .k i=1 i>l

AT A e A A

Hence, if all A;’s are different, then the determinant is hon-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is AI" a solution to the recurrence but also nA’.

To see this consider the polynomial

PIAT - A" K = coA™ + A" L4 A" 2 4 oo Ak

Since A; is a root we can write this as Q[A] - (A — A;)2. Calculating
the derivative gives a polynomial that still has root A;.
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This means

conA i (n - DA + - (n - kAR = 0

Hence,

conA" +ci(m— DA 4+ - p o (n— kA F =0
— —_— L —
T[n] T[n-1] TIn—k]

m 6.3 The Characteristic Polynomial
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The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

We can continue j — 1 times.

Hence, n#)\;4L is a solution for £ €0,...,j — 1.
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The Homogeneous Case

Lemma 3
Let P[A] denote the characteristic polynomial to the recurrence

coTn]l+caiTn—11+---+c,T[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities £;. Then the general solution to the recurrence is

given by
4;

m -1
Tnl=> > a - m/Al) .
i=1 j=0

The full proof is omitted. We have only shown that any choice of
®;;’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]=1
TInl=Tn-1]1+T[n-2]forn =2

The characteristic polynomial is

|
Finding the roots, gives
1 1 1
AMp=-=x,-+1=-(1=x
1/2 > 4 > ( \/g)
| ‘m 6.3 The Characteristic Polynomial
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Example: Fibonacci Sequence
Hence, the solution is of the form

(7)o ()

T[0] =0 gives x+ = 0.

T[1] =1 gives

o(155) s (155) 212w

il
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Example: Fibonacci Sequence

Hence, the solution is

ESRC
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The Inhomogeneous Case

Consider the recurrence relation:
coTm)+caiTm—-1)+c2Tn—-2)+---+cxT(m—k)=f(n)
with f(n) = 0.

While we have a fairly general technique for solving homogeneous,
linear recurrence relations the inhomogeneous case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Ty(n) ,

where Tj, is any solution to the homogeneous equation, and T} is
one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

Then,
Tn-1]=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
ITm]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1]=2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
B —
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

T[0] =1 gives xx = 1.

T[1]=2gives 1+ =2= B =1.
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The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

Difference:

Tnl-Tn-1]=Tn-1]-Tn-2]+2n-1

Tn]l=2Tn-1]1-Tn-2]+2n-1



Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tn]=3Tn-1]-3T[n-2]+T[n-3]+2

and so on...



6.4 Generating Functions

Definition 4 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= > anz";

n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is

._ an _n
F(z):= ) R
n=0
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6.4 Generating Functions

Example 5

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

1
F(Z) 2:.
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f +g:=>,.0(an + by)z™.

> Multiplication: [ - g := 3,.ocnz" with ¢,y = X _gapbn p.
There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:
We view a power series as a function f: C — C.

Then, it is important to think about convergence/convergence
radius etc.
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6.4 Generating Functions

What does > ;.0 z" = 112 mean in the algebraic view?

It means that the power series 1 — z and the power series
D=0 2™ are invers, i.e.,

(1 —z) . (n§02"> =1.

This is well-defined.
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6.4 Generating Functions

Suppose we are given the generating

function

We can compute the derivative:

1 . .

. Formally the derivative of a formal | ;
power series 3,5, anz™ is deﬁned !

I as > psonanz™ L.

IThe known rules for differentiation
:work for this definition. In partic-

rular, e.g. the derivative of ﬁ is:
1
1

1

Z n | T-22- :

n=0 -z : Note that this requires a proof if we |

| consider power series as algebraic :

| objects However, we did not prove .

i | this in the lecture. |

Sonzio
n=1 (1-2)

—_—
Snson+1)zn

Hence, the generating function of the sequence a,, =n +1

is1/(1—2z)2.
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6.4 Generating Functions

We can repeat this

1
m+1)zh"= —"F— .
nzz“o (1 - 2)2
Derivative: >
>nam+zv =
n>1 (1-2)
ano(n+1)(n+2)z"

Hence, the generating function of the sequence

an=m+1)(n+2)is 52557
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6.4 Generating Functions

Computing the k-th derivative of > z".

d>nm-1)-...-m-k+Dz" = > m+k)-...-(m+1)z"
n=k n=0
k!
- (1 —z)k+1 °
Hence:

The generating function of the sequence a, = ("
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6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
1 1
T (1-22 1-z
_ z
- (1-2)2

The generating function of the sequence a, = n is ﬁ
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6.4 Generating Functions

We know

Hence,

The generating function of the sequence f;, = a” is L

l-az*
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Example:a, = an_.1 + 1,a¢9 =1

Suppose we have the recurrence a,, = an-1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0

ao+ Y (an-1+1)z"
nx=1

l+z > anaz™ 1+ > 2"
nx=1 nx=1

zZanz"+ zz"
n=0 n=0

=zA(z) + > "

n=0
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Example:a, = an_.1 + 1,a¢9 =1

Solving for A(z) gives

Z anz" = A(z) =

n=0

= Z (n+1)z"

n=0

I
(1-2)2

Hence, a, = n + 1.
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Some Generating Functions

n-th sequence element generating function
1
1
1-z
1
n+1 —_—
(1-2)?
(n+k) 1
k (1- Z)k+1
- _z
(1-2)?
1
n
a l1-az
z(1+z)
112
(1-2)3
5 e

m Ernst Mayr,
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Some Generating Functions

n-th sequence element

generating function

cfn cF
Jn+9n F+G
Sito fign-i F-G
Fnk (n=k); 0otw. zkF
Sito fi f(_z;
e
c"fn F(cz)

6.4 Generating Functions
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Solving Recursions with Generating Functions

1. Set A(z) = > s0anz™.
2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

> partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

6. The coefficients of the resulting power series are the a,,.
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Example: a, = 2a,_1,a0 = 1
1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be plugged
in:
A(z) =ag + Z anz"
nx=1

2. Plug in:
Az) =1+ > (Rap-1)z"

nx=1
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Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Rap-1)z"

nx=1

=1+2z > an-1z2"!
nx=1

=1+222anz"

n=0
=1+2z-A(z)
4. Solve for A(z).
1
A =
(2) 1-2z
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Example: a, = 2a,-1,a0 = 1

5. Rewrite f(z) as a power series:

Z anz" = A(z) = ] _122 = Z 2"z

n=0 n=0
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Example: a, = 3a,_1 + n,ap =1

1. Set up generating function:

A(z) = Z anz"

n=0
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Example: a, = 3a,_1 + n,ap =1

2./3. Transform right hand side:

A(z) = Z anz"
n=0
=ao+ Z anz"
nx=1
=1+ > (Bap1 +n)z"
nx=1
=1+3z > an1z" 1+ > nz"
nx=1 nx=1
=1+3z > apz"+ > nz"
n=0 n=0
=1+ 3zA(z) + _z
B (1-2)2
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Example: a, = 3a,_1 + n,ap =1
4. Solve for A(z):

z

A(Z) =1+ 3ZA(Z) + m

gives

A(z) = 1-22%+z = z2-z+1
T 1 32)1-22 (1-32)1-2)2
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Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2-z+1 A B C

(1-32)(1-2)2 1-3z 1-z (1-22

This gives
Z2-z41=A1-2%+B(1-32)(1-2)+C(1-32)
=A(1-2z+2%)+B(1-4z+32%) +C(1-32)

=(A+3B)z2+ (-2A-4B-3C)z+ (A+ B+ ()
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Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
which gives
7 1 1
A_Z B__Z C__E

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 77/82



Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 11 1 1
A(z) = = . — . B
)=y 173z 2 1.z 2 (1-272
=Z-Z3"z” Lyl > (n+1)z"
4 4 2
n=0 n=0 n=0
_ 7 a1 1 n
= (4 3"~ 4 2(n+1))z
n=>0

N[V

6. This means a,, = %3" — %n —
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6.5 Transformation of the Recurrence

Example 6
fo=1
fi=2
Sn=Jn-1"fno2forn=2.
Define
gn =108 fn .
Then

In =9gn-1+gn-2forn=2

g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

fn = ZF"

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 79/82



6.5 Transformation of the Recurrence

Example 7
fi=1
fn:?)f% +n; form=2%k>1:
Define
Ik = for .
Then:
go=1

gk =3gk1+2K k=1
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6 Recurrences
We get

gk =3 [gr—1] + 2K
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k
= 33gx_3 + 322k=2 4 32k-1 4k
k .
3\1
k
=263 (3)
i=0
(%)kﬂ -1

k+1 k+1

= 2k .
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6 Recurrences

Let n = 2k:

gk = 381 — 2kl hence
fn=3-3k—2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _2. 2k

=3nlo83 _on .
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