A Priority Queue *S* is a dynamic set data structure that supports the following operations:

S. build(x₁,..., x_n): Creates a data-structure that contains just the elements x₁,..., x_n.

- S. build(x₁,..., x_n): Creates a data-structure that contains just the elements x₁,..., x_n.
- S. insert(x): Adds element x to the data-structure.

- S. build (x_1, \ldots, x_n) : Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S. insert(x): Adds element x to the data-structure.
- element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].

- S. build (x_1, \ldots, x_n) : Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S. insert(x): Adds element x to the data-structure.
- element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.

- S. build (x_1, \ldots, x_n) : Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S. insert(x): Adds element x to the data-structure.
- element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

- S. build (x_1, \ldots, x_n) : Creates a data-structure that contains just the elements x_1, \ldots, x_n .
- S. insert(x): Adds element x to the data-structure.
- element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

• S. merge(S'): $S := S \cup S'$; $S' := \emptyset$.

An addressable Priority Queue also supports:

An addressable Priority Queue also supports:

handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.

An addressable Priority Queue also supports:

- handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- **S. delete(***h***):** Deletes element specified through handle *h*.

An addressable Priority Queue also supports:

- handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- **S. delete(***h***):** Deletes element specified through handle *h*.
- S. decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

Dijkstra's Shortest Path Algorithm

```
Algorithm 1 Shortest-Path(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: key-field of every node contains distance from s;
 3: S.build(); // build empty priority queue
4: for all v \in V \setminus \{s\} do
5: v \cdot \ker - \infty;
6: h_v \leftarrow S.insert(v);
7: s.key \leftarrow 0; S.insert(s);
8: while S.is-empty() = false do
9:
        v \leftarrow S.delete-min():
10: for all x \in V s.t. (v, x) \in E do
               if x. key > v. key + d(v, x) then
11:
12:
                     S.decrease-key(h_x, v. key + d(v, x));
13:
                     x.key \leftarrow v.key + d(v, x):
```

Prim's Minimum Spanning Tree Algorithm

```
Algorithm 2 Prim-MST(G = (V, E, d), s \in V)
1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: pred-fields encode MST;
 3: S.build(); // build empty priority queue
4: for all v \in V \setminus \{s\} do
5: v \cdot \ker - \infty;
6: h_v \leftarrow S.insert(v);
 7: s.key \leftarrow 0; S.insert(s);
8: while S.is-empty() = false do
9:
    v \leftarrow S.delete-min();
10: for all x \in V s.t. \{v, x\} \in E do
11:
               if x. key > d(v, x) then
                     S.decrease-key(h_x, d(v, x));
12:
                     x.key \leftarrow d(v, x);
13:
                     x.pred \leftarrow v;
14:
```

Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- |V| insert() operations
- |V| delete-min() operations
- ▶ |V| is-empty() operations
- ► |*E*| decrease-key() operations

Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- |V| insert() operations
- |V| delete-min() operations
- ▶ |V| is-empty() operations
- |E| decrease-key() operations

How good a running time can we obtain?

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap [*]
build	п	$n\log n$	$n\log n$	п
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n\log n$	$\log n$	1

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap [*]
build	n	$n\log n$	$n\log n$	п
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n\log n$	$\log n$	1

Note that most applications use $\mathbf{build}()$ only to create an empty heap which then costs time 1.

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	п	$n\log n$	$n\log n$	п
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n\log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	п	$n\log n$	$n\log n$	п
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n\log n$	$\log n$	1

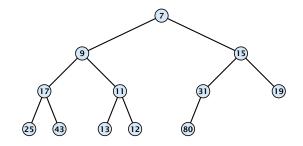
Note that most applications use **build()** only to create an empty heap which then costs time 1.

The standard version of binary heaps is not addressable, and hence does not support a delete operation.

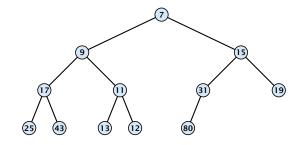
Fibonacci heaps only give an amortized guarantee.

Using Binary Heaps, Prim and Dijkstra run in time $O((|V| + |E|) \log |V|)$.

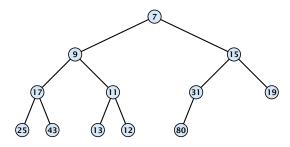
Using Fibonacci Heaps, Prim and Dijkstra run in time $O(|V| \log |V| + |E|)$.



Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.



- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



Binary Heaps

Operations:

Binary Heaps

Operations:

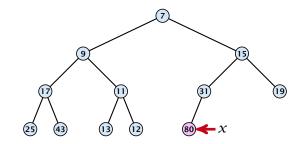
• **minimum()**: return the root-element. Time $\mathcal{O}(1)$.

Binary Heaps

Operations:

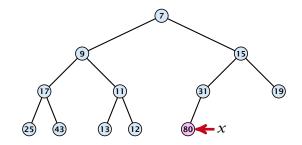
- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time O(1).

Maintain a pointer to the last element *x*.



Maintain a pointer to the last element *x*.

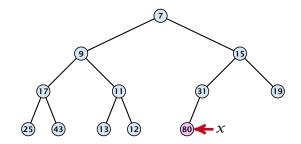
 We can compute the predecessor of x (last element when x is deleted) in time O(log n).



Maintain a pointer to the last element *x*.

 We can compute the predecessor of x (last element when x is deleted) in time O(log n).

go up until the last edge used was a right edge. go left; go right until you reach a leaf

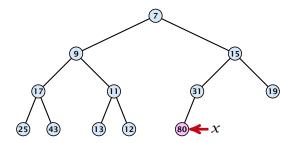


Maintain a pointer to the last element *x*.

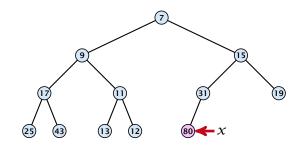
We can compute the predecessor of x (last element when x is deleted) in time O(log n).

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element

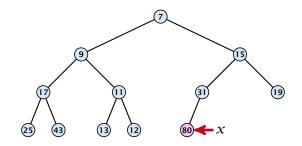


Maintain a pointer to the last element *x*.



Maintain a pointer to the last element *x*.

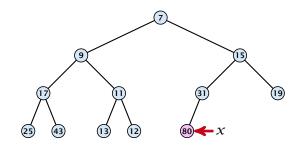
We can compute the successor of x (last element when an element is inserted) in time O(log n).



Maintain a pointer to the last element *x*.

We can compute the successor of x (last element when an element is inserted) in time O(log n).

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

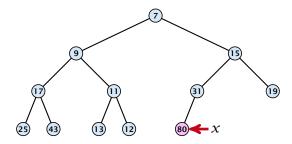


Maintain a pointer to the last element *x*.

 We can compute the successor of x (last element when an element is inserted) in time O(log n).

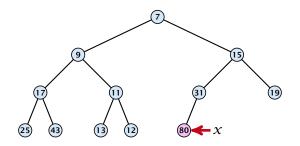
go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



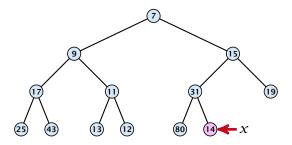
Insert

1. Insert element at successor of *x*.



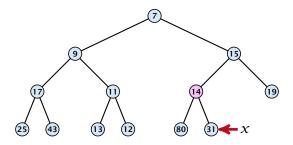
Insert

- **1.** Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.



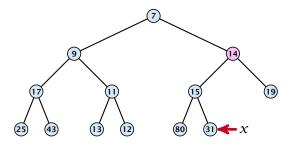
Insert

- **1.** Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.



Insert

- **1.** Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.



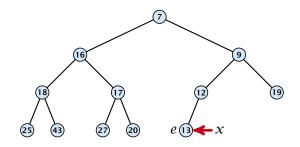
Insert

- 1. Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.

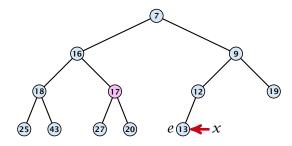


Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

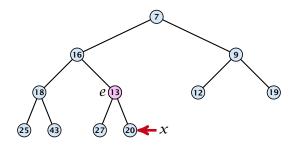
1. Exchange the element to be deleted with the element *e* pointed to by *x*.



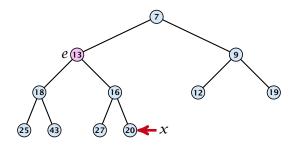
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.



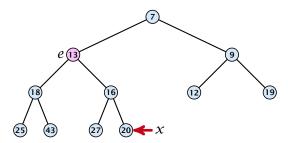
- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.



- 1. Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.



- Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.

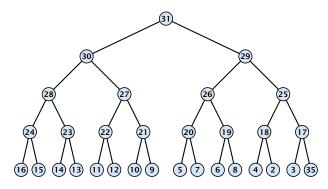


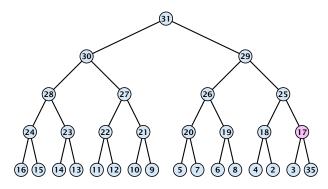
At its new position e may either travel up or down in the tree (but not both directions).

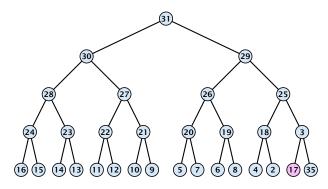
Binary Heaps

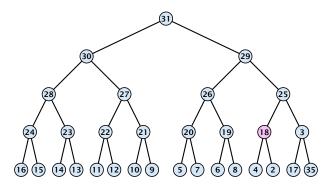
Operations:

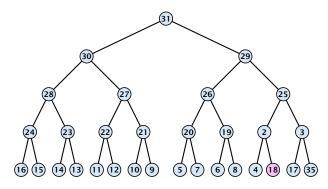
- **minimum()**: return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time O(1).
- insert(k): insert at successor of x and bubble up. Time $O(\log n)$.
- delete(h): swap with x and bubble up or sift-down. Time O(log n).

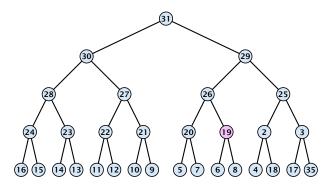


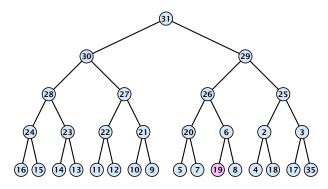


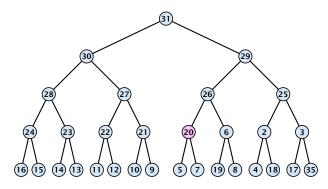


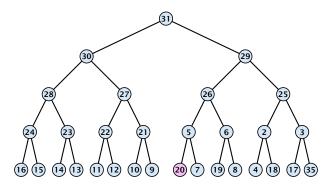


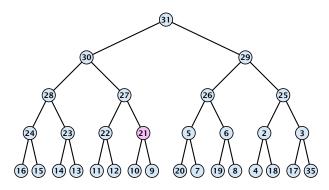


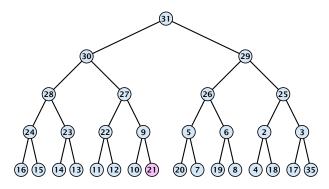


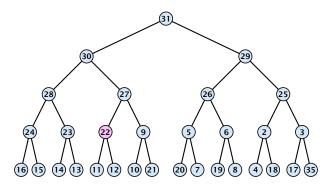


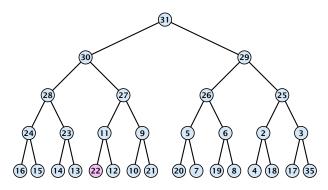


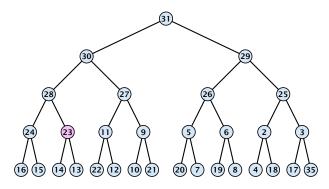


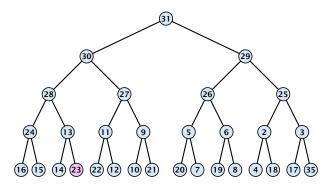


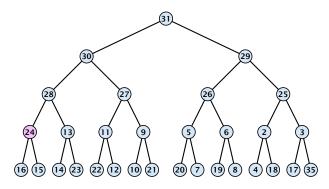


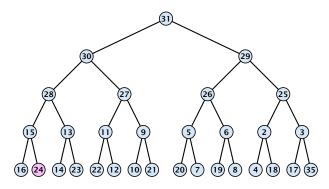


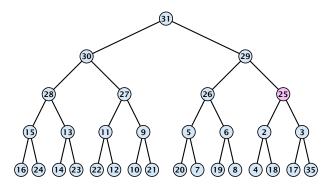


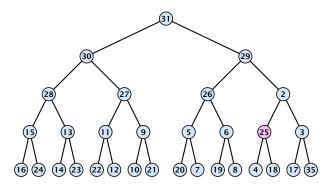


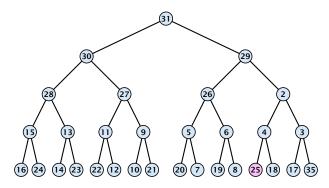


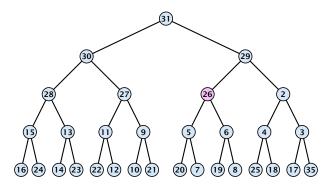


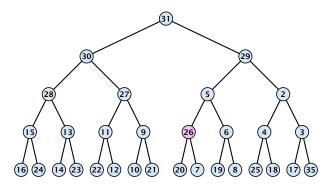


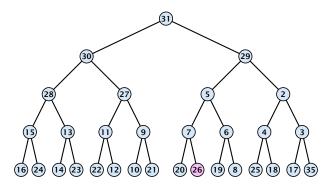


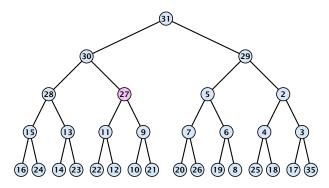


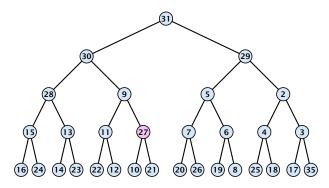


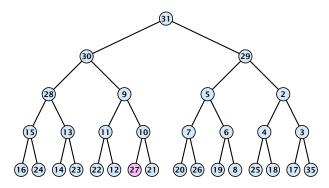


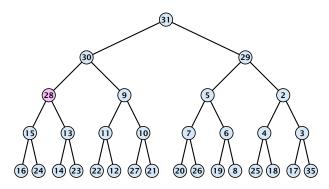


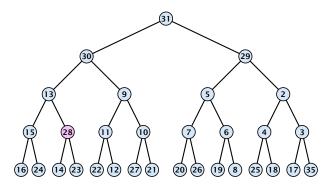


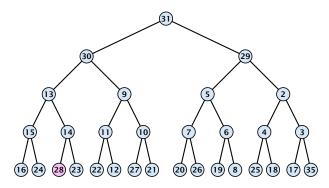


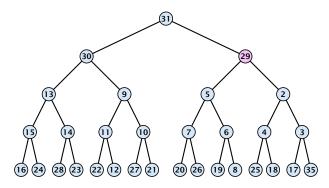


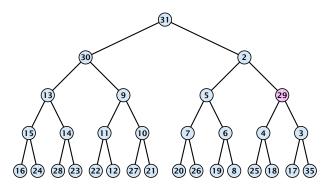


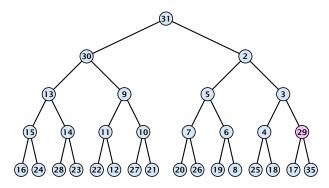


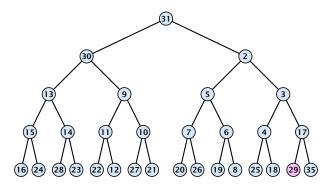


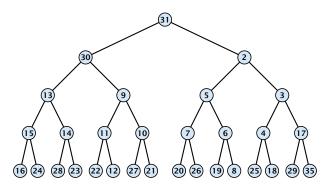


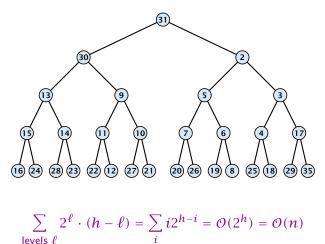












Operations:

- **minimum():** Return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** Check whether root-pointer is null. Time O(1).
- **insert**(*k*): Insert at *x* and bubble up. Time $O(\log n)$.
- delete(*h*): Swap with x and bubble up or sift-down. Time $O(\log n)$.
- build(x₁,..., x_n): Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time O(n).

The standard implementation of binary heaps is via arrays. Let A[0,...,n-1] be an array

- The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- The left child of *i*-th element is at position 2i + 1.
- The right child of *i*-th element is at position 2i + 2.

The standard implementation of binary heaps is via arrays. Let A[0, ..., n-1] be an array

- The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- The left child of *i*-th element is at position 2i + 1.
- The right child of *i*-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

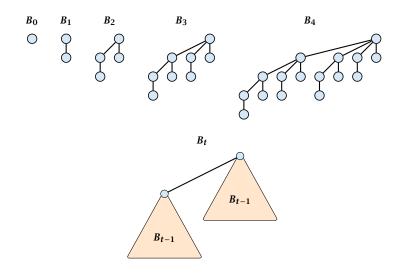
The standard implementation of binary heaps is via arrays. Let A[0, ..., n-1] be an array

- The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- The left child of *i*-th element is at position 2i + 1.
- The right child of *i*-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	п	$n\log n$	$n\log n$	п
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n\log n$	log n	1



Properties of Binomial Trees

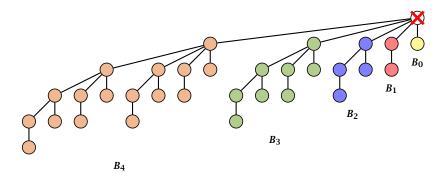
▶ B_k has 2^k nodes.

- ▶ B_k has 2^k nodes.
- \triangleright B_k has height k.

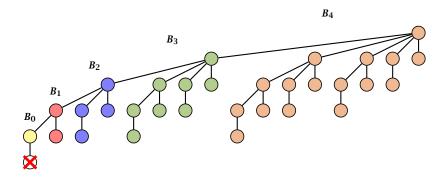
- ▶ B_k has 2^k nodes.
- \triangleright B_k has height k.
- The root of B_k has degree k.

- ▶ B_k has 2^k nodes.
- \triangleright B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .

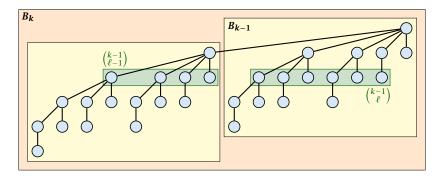
- \triangleright B_k has 2^k nodes.
- \triangleright B_k has height k.
- The root of B_k has degree k.
- B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- Deleting the root of B_k gives trees $B_0, B_1, \ldots, B_{k-1}$.



Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

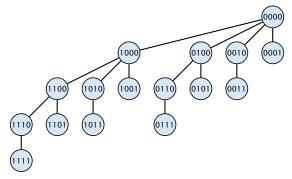


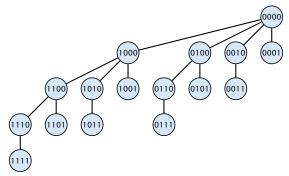
Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .



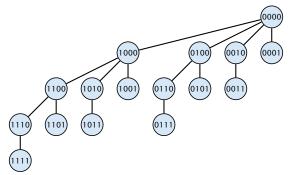
The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1} + \binom{k-1}{\ell} = \binom{k}{\ell}$$



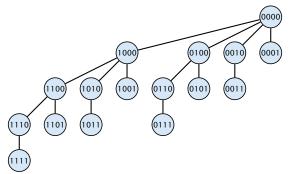


The binomial tree B_k is a sub-graph of the hypercube H_k .



The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.



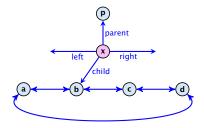
The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

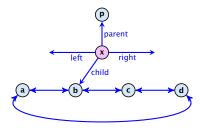
How do we implement trees with non-constant degree?

The children of a node are arranged in a circular linked list.



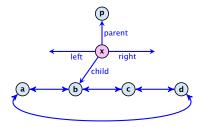
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.



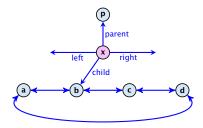
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.

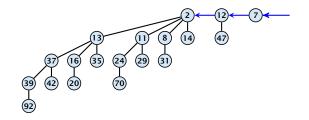


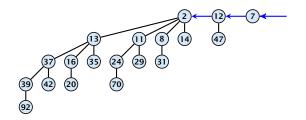
How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have siblings then x.left = x.right = x).

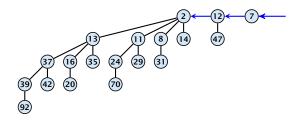


- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.



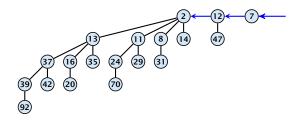


In a binomial heap the keys are arranged in a collection of binomial trees.



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

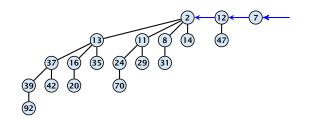
Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

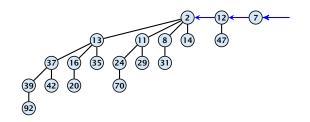
Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

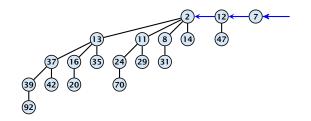


Properties of a heap with *n* keys:

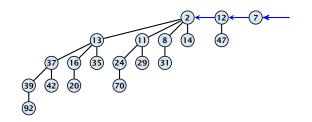
• Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.



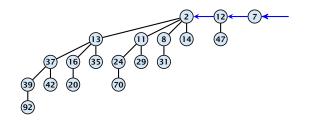
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.



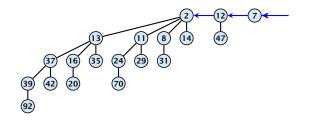
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.



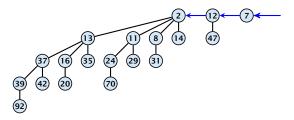
- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.



- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.



The merge-operation is instrumental for binomial heaps.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

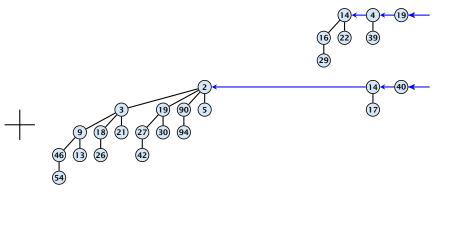
The merge-operation is instrumental for binomial heaps.

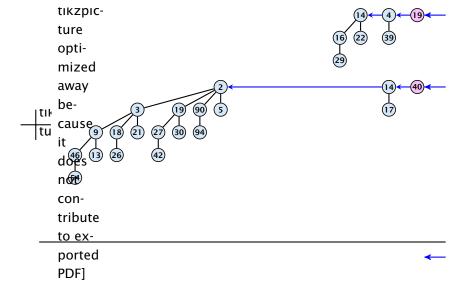
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

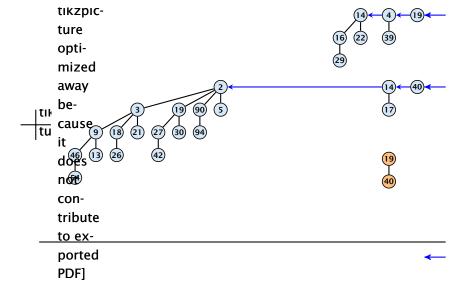
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

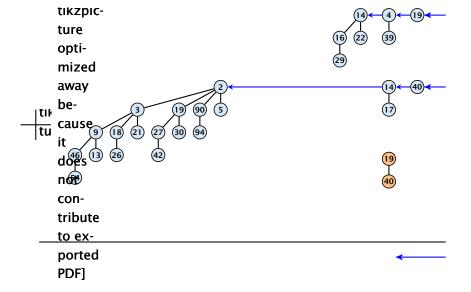
Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

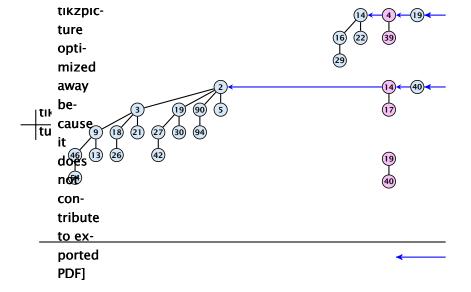
For more trees the technique is analogous to binary addition.

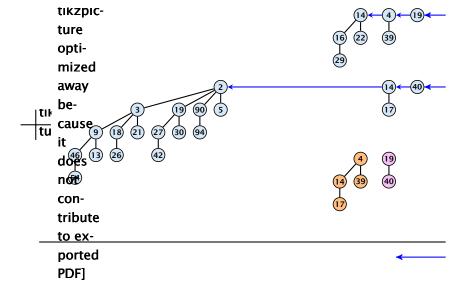


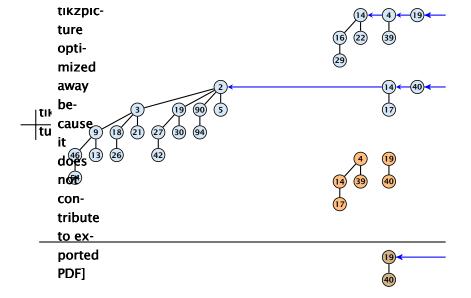


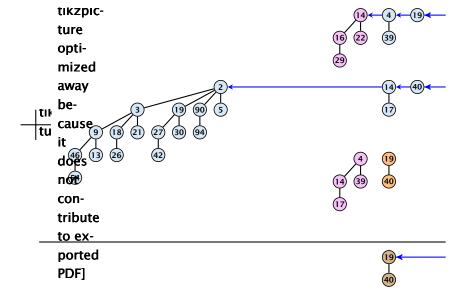


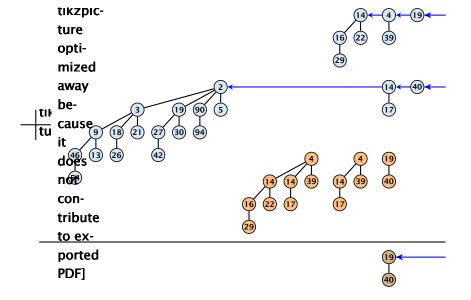


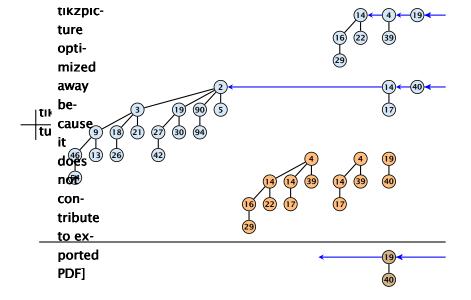


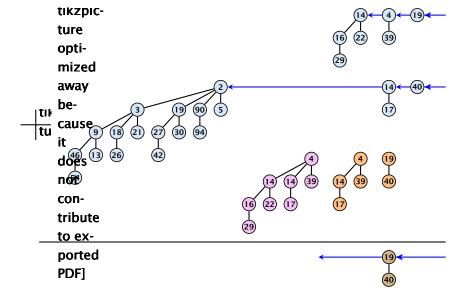


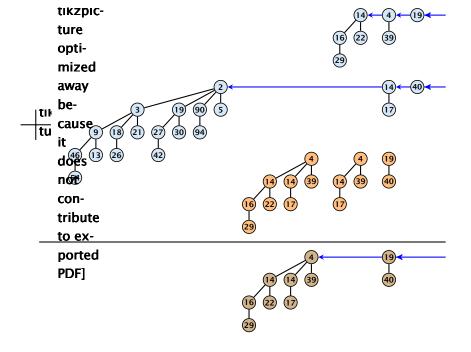


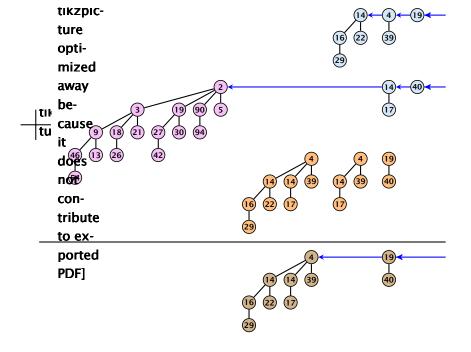


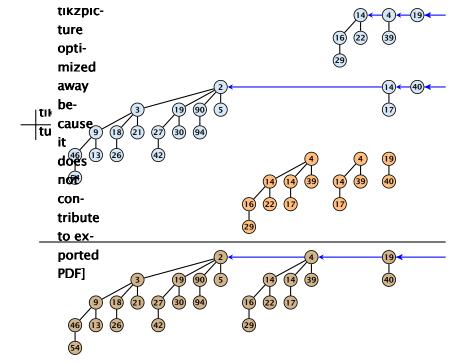


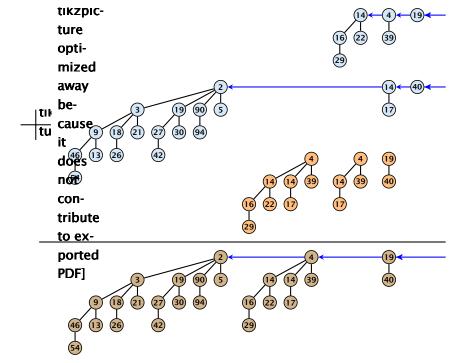












- S_1 . merge(S_2):
 - Analogous to binary addition.

- S_1 . merge(S_2):
 - Analogous to binary addition.
 - Time is proportional to the number of trees in both heaps.

- S_1 . merge(S_2):
 - Analogous to binary addition.
 - Time is proportional to the number of trees in both heaps.
 - Time: $\mathcal{O}(\log n)$.

All other operations can be reduced to merge().

S. insert(x):

Create a new heap S' that contains just the element x.

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- Execute S. merge(S').

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- Execute S. merge(S').
- Time: $\mathcal{O}(\log n)$.

S. minimum():

- Find the minimum key-value among all roots.
- Time: $\mathcal{O}(\log n)$.

S. delete-min():

Find the minimum key-value among all roots.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- ► Create a new heap S' that contains the trees obtained from T_{min} after deleting the root (note that these are just O(log n) trees).

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- ► Create a new heap S' that contains the trees obtained from T_{min} after deleting the root (note that these are just O(log n) trees).
- ► Compute *S*.merge(*S*′).

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- ► Create a new heap S' that contains the trees obtained from T_{min} after deleting the root (note that these are just O(log n) trees).
- ► Compute *S*.merge(*S*′).
- Time: $\mathcal{O}(\log n)$.

S. decrease-key(handle *h*):

- *S*. decrease-key(handle *h*):
 - Decrease the key of the element pointed to by h.

- S. decrease-key(handle h):
 - Decrease the key of the element pointed to by h.
 - Bubble the element up in the tree until the heap property is fulfilled.

- S. decrease-key(handle h):
 - Decrease the key of the element pointed to by h.
 - Bubble the element up in the tree until the heap property is fulfilled.
 - Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

S. delete(handle h):

- S. delete(handle h):
 - Execute *S*. decrease-key($h, -\infty$).

S. delete(handle h):

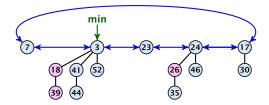
- Execute *S*. decrease-key($h, -\infty$).
- **Execute** *S*. delete-min().

S. delete(handle h):

- Execute *S*. decrease-key($h, -\infty$).
- Execute S. delete-min().
- Time: $\mathcal{O}(\log n)$.

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

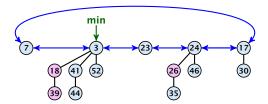


Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x.marked that specifies whether x is marked or not.

The potential function:

- t(S) denotes the number of trees in the heap.
- m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

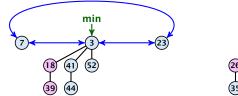
We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

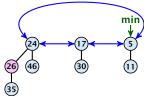
To make this more explicit we use *c* to denote the amount of work that a unit of potential can pay for.

S. minimum()

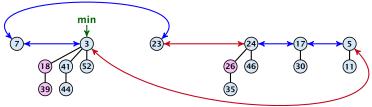
- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer





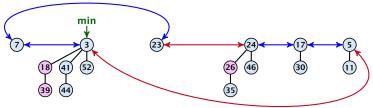
- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer



Running time:

Actual cost $\mathcal{O}(1)$.

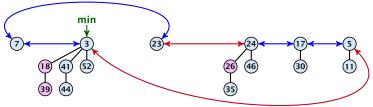
- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer



Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.

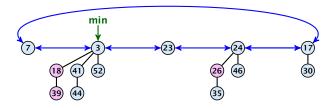
- S.merge(S')
 - Merge the root lists.
 - Adjust the min-pointer



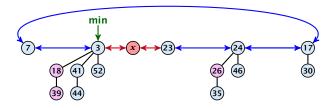
Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Hence, amortized cost is $\mathcal{O}(1)$.

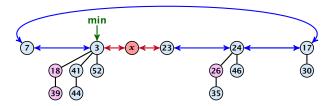
- S. insert(x)
 - Create a new tree containing x.
 - Insert x into the root-list.
 - Update min-pointer, if necessary.



- S. insert(x)
 - Create a new tree containing x.
 - Insert x into the root-list.
 - Update min-pointer, if necessary.

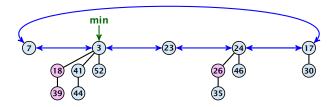


- S. insert(x)
 - Create a new tree containing x.
 - Insert x into the root-list.
 - Update min-pointer, if necessary.



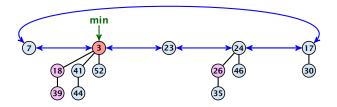
Running time:

- Actual cost $\mathcal{O}(1)$.
- Change in potential is +1.
- Amortized cost is c + O(1) = O(1).

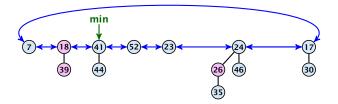


S. delete-min(x)

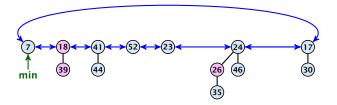
► Delete minimum; add child-trees to heap; time: D(min) · O(1).



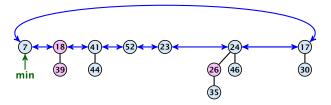
- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.



- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

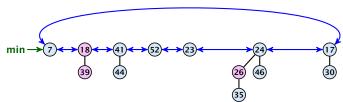


- S. delete-min(x)
 - ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
 - Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

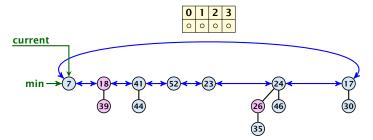


Consolidate root-list so that no roots have the same degree. Time $t \cdot O(1)$ (see next slide).

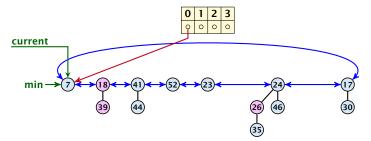
Consolidate:

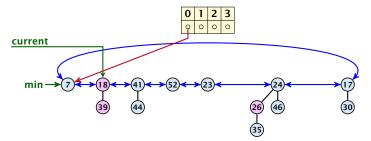


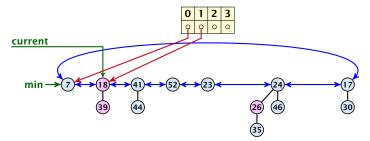
Consolidate:

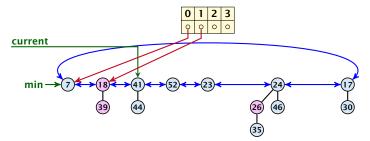


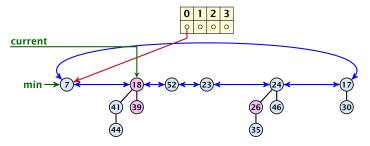
Consolidate:

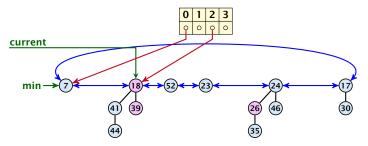


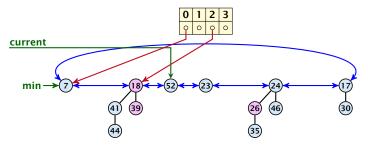


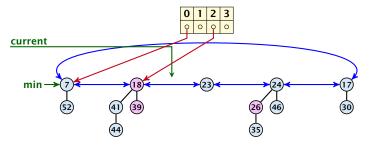


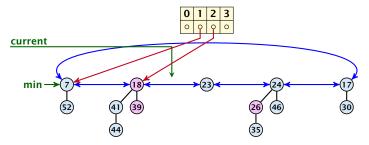


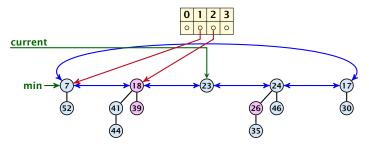


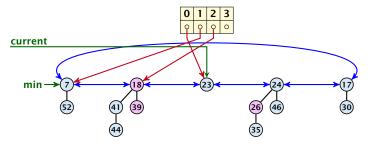


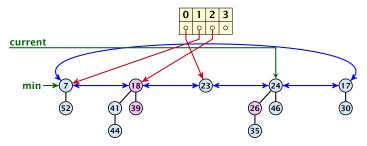


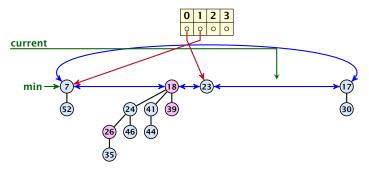


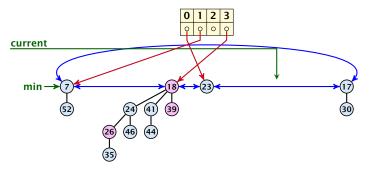


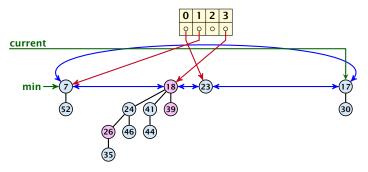


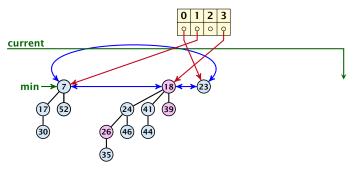


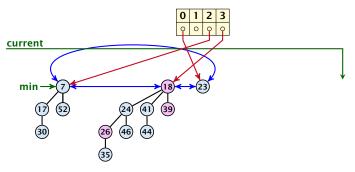


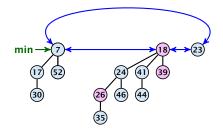












Actual cost for delete-min()

At most $D_n + t$ elements in root-list before consolidate.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- ► Actual cost for a delete-min is at most O(1) · (D_n + t). Hence, there exists c₁ s.t. actual cost is at most c₁ · (D_n + t).

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

▶ $t' \leq D_n + 1$ as degrees are different after consolidating.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ▶ $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$ $\leq (c_1 + c)D_n + (c_1 - c)t + c$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$ \$\le (c_1 + c)D_n + (c_1 - c)t + c \le 2c(D_n + 1)\$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1) \\ \leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$

Actual cost for delete-min()

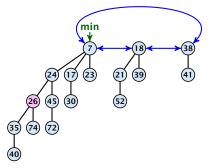
- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

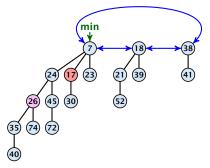
- ► $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} D_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$ $\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$ for $c \geq c_1$. If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation. If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

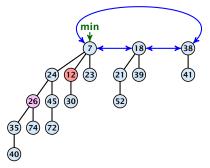
If we do not have delete or decrease-key operations then $D_n \leq \log n$.



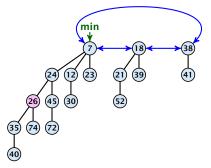
Case 1: decrease-key does not violate heap-property



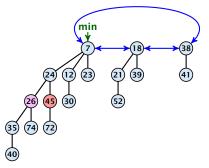
Case 1: decrease-key does not violate heap-property



Case 1: decrease-key does not violate heap-property



Case 1: decrease-key does not violate heap-property



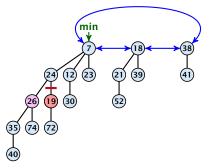
Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



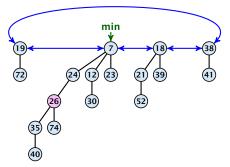
Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



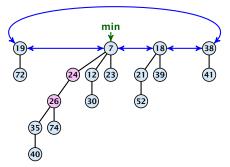
Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



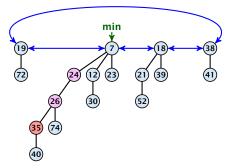
Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

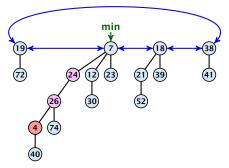


Case 2: heap-property is violated, but parent is not marked

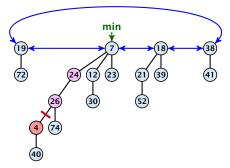
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).



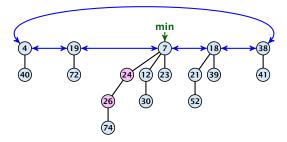
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



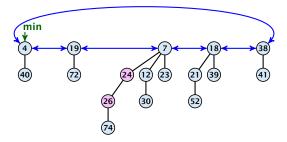
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



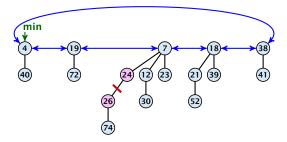
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



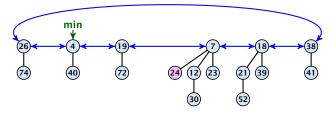
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



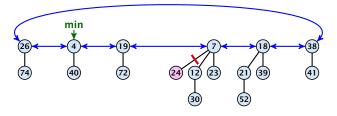
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



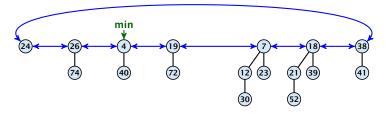
- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.



- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

```
p \leftarrow parent[x];

while (p is marked)

pp \leftarrow parent[p];

cut of p; make it into a root; unmark it;

p \leftarrow pp;

if p is unmarked and not a root mark it;
```

Actual cost:

Actual cost:

Constant cost for decreasing the value.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

• $t' = t + \ell$, as every cut creates one new root.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\blacktriangleright \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\blacktriangleright \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\blacktriangleright \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(\ell+1) + c(4-\ell)$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\blacktriangleright \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\blacktriangleright \Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

 $c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = \mathcal{O}(1),$

if $c \geq c_2$.

Delete node

H.delete(*x*):

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}(D_n)$ for delete-min.

Lemma 1

Let x be a node with degree k and let $y_1, ..., y_k$ denote the children of x in the order that they were linked to x. Then

degree
$$(\gamma_i) \ge \begin{cases} 0 & \text{if } i = 1\\ i - 2 & \text{if } i > 1 \end{cases}$$

Proof

When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.

Proof

- When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- ► Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.

Proof

- When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- ► Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.

Proof

- When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- ► Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- ▶ $s_0 = 1$ and $s_1 = 2$.

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- ▶ $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(\gamma_i)$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright *s*_k monotonically increases with *k*
- ▶ $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$
$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- ▶ $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_{k} = 2 + \sum_{i=2}^{k} \operatorname{size}(y_{i})$$
$$\geq 2 + \sum_{i=2}^{k} s_{i-2}$$
$$= 2 + \sum_{i=0}^{k-2} s_{i}$$

 $\phi = \frac{1}{2}(1 + \sqrt{5})$ denotes the *golden ratio*. Note that $\phi^2 = 1 + \phi$.

Definition 2

Consider the following non-standard Fibonacci type sequence:

$$F_{k} = \begin{cases} 1 & \text{if } k = 0\\ 2 & \text{if } k = 1\\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

1. $F_k \ge \phi^k$. 2. For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

k=2: $3 = F_2 = 2 + 1 = 2 + F_0$ **k-1** \rightarrow **k**: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$