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We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
distance from reality.

> A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.
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How do we interpret an expression like:

2n +3n+1=2n%+0(mn)
Here, ®(n) stands for an anonymous function in the set ©(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.
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Asymptotic Notation in Equations

How do we interpret an expression like:
2n? + O(n) = O(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € O(n?)
that makes the expression true.
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. L .  The @(i)-symbol on the left rep-i
Asymptotlc Notation in Eq uations | resents one anonymous function |

Vf N = R*, and then 3, f(i) is |
I computed.

How do we interpret an expression like:

> 0(3i) =0(n?)

i=1
Careful!

“It is understood” that every occurence of an @-symbol (or
0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O +0) -+ O 6G) 1 om—1)76(n) does’

not really have a reasonable interpreta- |
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We can view an expression containing asymptotic notation as
generating a set:
n®-0m) +O(logn)

represents

{fiN=R" | f(n) =n?g(n) + h(n)
el N N e e A m - - 1______
with g(n) € (9(7': Recall that according to the previous !
: slide e.g. the expressions ZZL:I O(i) and :
: Z?:/f O(i) + XL 241 Oi) generate dif-1
i ferent sets. 1
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Then an asymptotic equation can be interpreted as containement
btw. two sets:

n%.-0m) +0logn) = O(n?)

represents

n%-0m) +0dogn) < On?)
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Lemma 1
Let f,g be functions with the property
dng > 0Vn =>ng: f(n) >0 (the same for g). Then

» c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(gn) =0(f(n) +gn))

> O(f(n)-0(gn)) =0(f(n)-gn))

> O(f(n)) + 0(g(n)) = Omaxif(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)?}).
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Comments
» Do not use asymptotic notation within induction proofs.
» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

» In general logn =log, n, i.e., we use 2 as the default base
for the logarithm.
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Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
> Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log” n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.
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Formal Definition

Let f, g denote functions from N% to Rj.

> O(f) ={g|3c>03N e Ny Vi with n; > N for some i:
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(set of functions that asymptotically grow not faster than f)
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