5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large

values of n. Then constant additive terms do not play an
important role.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more

precise results as the computational model is already quite a
distance from reality.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
distance from reality.

> A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

» An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to more
precise results as the computational model is already quite a
distance from reality.

> A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.

Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.

> O(f) ={gl3c>03FngeNgVn=ng: [gn) <c- f(n)]}
(set of functions that asymptotically grow not faster than f)

Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.
> O(f) ={gl3c>03FngeNgVn=ng: [gn) <c- f(n)]}
(set of functions that asymptotically grow not faster than f)
> Q(f) ={gldc>0IngeNgVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.
> O(f) ={gl3c>03IngeNgVn=np: [gn) <c-f(n)l}
(set of functions that asymptotically grow not faster than f)
> Q(f) ={gldc>0TdnpeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> O(f) =Q(f)no(f)

(functions that asymptotically have the same growth as f)

Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.

> O(f) ={gl3c>03FngeNgVn=ng: [gn) <c- f(n)]}
(set of functions that asymptotically grow not faster than f)

> Q(f) ={gldc>0IngeNgVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> O(f) =Q(f) nOf)
(functions that asymptotically have the same growth as f)

> o(f) ={gIVe>03InpeNoVn=np: [gn) <c-f(n)]}
(set of functions that asymptotically grow slower than f)

Asymptotic Notation

Formal Definition

Let f, g denote functions from N to R*.

> O(f) ={gl3c>03FngeNgVn=ng: [gn) <c- f(n)]}
(set of functions that asymptotically grow not faster than f)

> Q(f) ={gldc>0IngeNgVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> O(f) =Q(f) nOf)
(functions that asymptotically have the same growth as f)

> o(f) ={glVec>03angeNgVn=np: [gn) <c- f(n)]}
(set of functions that asymptotically grow slower than f)

> w(f)={g|Vc>0anpeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow faster than f)

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N
to R;.

> geo(f): 0<lmI™ o

e fln)

1]
: dau notation defined here, we as-:
| sume that f and g are positive func-:
: tions. :
| c There also exist versions for arbitrary :
, functions, and for the case that the,
i limes is not infinity.]

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from N

to R;.
_ gm) _
> 9€O0(f) 0= lim oy <
> geQ(f): O<lmjgcgn;

1]
: dau notation defined here, we as-:
| sume that f and g are positive func-:
: tions. :
| c There also exist versions for arbitrary :
, functions, and for the case that the,
i limes is not infinity.]

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny

to R;.
_ (n)
> g€ 0(f): 0= lim) <
e o
> ge0(f) oqm?in;w e ,

1]
: dau notation defined here, we as-:
| sume that f and g are positive func-:
: tions. :
| c There also exist versions for arbitrary :
, functions, and for the case that the,
i limes is not infinity.]

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny

to R;.
n

> geof): O—}Ll%ffin; <o

> ge Q(f): O<1Loo}qcin; < o
>geco(f): 0<timI9™ oo
n_'(oc {(n) e Note that for the version of the Lan-:
. gn dau notation defined here, we as-:
> g€ o(f): 1400 fn) 0 sume that f and g are positive func-!

e There also exist versions for arbitrary 1
.]
functions, and for the case that the,
limes is not infinity. y

1
1

1

1

! .

! tions.
1

1

1

1

1

1

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny

to R;.
n)
> geof): O—}LE}O) <
> : lim)
g € Q(f): O<nqu =
: gn)
> ge0(f): O<%g{}of() . ,
(n) - Note that for the version of the Lan-i
gn . dau notation defined here, we as-|
» geo(f): lim=—==0 o j
N0 f(?’l) E :it:)r:se that f and g are positive func-i
n .
> ge w(f): lim g _ E o There also exist versions for arbitrary:
n—eo f(") i functions, and for the case that the ,
1
1

limes is not infinity. y

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

| 2. In this context f(n) does not mean the func- | : 3. This is particularly useful if you do not want |
: tion f evaluated at m, but instead it is a, to ignore constant factors. For example theI
i shorthand for the function itself (leaving out : medlan of n elements can be determined us-

: domain and codomain and only giving the : ing 2n + 0(n) comparisons. |
1

rule of correspondence of the function). '

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N—-R*,n~ f(n),and g:N - R*,n~ g(n).

| 2. In this context f(n) does not mean the func- | : 3. This is particularly useful if you do not want |
: tion f evaluated at m, but instead it is a, : to ignore constant factors. For example theI
i shorthand for the function itself (leaving out : | median of n elements can be determined us-:
: domain and codomain and only giving the: | ing %n+ o(n) comparisons. |
1
I 1

rule of correspondence of the function). '

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N—-R*,n~ f(n),and g:N - R*,n~ g(n).

3. People write e.g. h(n) = f(n) + 0(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € o(g)
such that h(n) = f(n) + z(n).

] I

1 2. In this context f(n) does not mean the func- | 1 3. This is particularly useful if you do not want |
: tion f evaluated at m, but instead it is a , : to ignore constant factors. For example the |]
i shorthand for the function itself (leaving out : | median of n elements can be determined us-:
1 1
1 1
1 1

domain and codomain and only giving the : ing %n+ o(n) comparisons. |
rule of correspondence of the function). '

2. In this context f(n) does not mean the func- |
tion f evaluated at n, but instead it is a|

domain and codomain and only giving the
rule of correspondence of the function).

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is

not an equality (how could a function be equal to a set of
functions).

. People write f(n) = O(g(n)), when they mean f € O(g),

with f:N—-R*,n~ f(n),and g:N - R*,n~ g(n).

. People write e.g. h(n) = f(n) + o(g(n)) when they mean

that there exists a function z: N - R*,n — z(n),z € o(g)
such that h(n) = f(n) + z(n).

. People write O(f(n)) = O(g(n)), when they mean

O(f(n)) € O(g(n)). Again this is not an equality.

ing %n + o0(n) comparisons.
1

: 3. This is particularly useful if you do not want |
: to ignore constant factors. For example the |]
shorthand for the function itself (leaving out : | median of n elements can be determined us-:
1
1
1

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)

Here, ®(n) stands for an anonymous function in the set ©(n)
that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

2n +3n+1=2n%+0(mn)
Here, ®(n) stands for an anonymous function in the set ©(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.

Asymptotic Notation in Equations

How do we interpret an expression like:

21 + O(n) = O(n?)

Asymptotic Notation in Equations

How do we interpret an expression like:
2n? + O(n) = O(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € O(n?)
that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

> 0(3i) =0(n?)
i=1

Asymptotic Notation in Equations

How do we interpret an expression like:

> 0(3i) =0(n?)
i=1

Careful!

. L . The @(i)-symbol on the left rep-i
Asymptotlc Notation in Eq uations | resents one anonymous function |

Vf N = R*, and then 3, f(i) is |
I computed.

How do we interpret an expression like:

> 0(3i) =0(n?)

i=1
Careful!

“It is understood” that every occurence of an @-symbol (or
0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O +0) -+ O 6G) 1 om—1)76(n) does’

not really have a reasonable interpreta- |

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as
generating a set:
n®-0m) +O(logn)

represents

{fiN=R" | f(n) =n?g(n) + h(n)
el N N e e A m - - 1______
with g(n) € (9(7': Recall that according to the previous !
: slide e.g. the expressions ZZL:I O(i) and :
: Z?:/f O(i) + XL 241 Oi) generate dif-1
i ferent sets. 1

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement
btw. two sets:

n%.-0m) +0logn) = O(n?)

represents

n%-0m) +0dogn) < On?)

Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn =>ng: f(n) >0 (the same for g). Then

» c- f(n) € O(f(n)) for any constant c

Asymptotic Notation

Lemma 1

Let f,g be functions with the property

dng > 0Vn =>ng: f(n) >0 (the same for g). Then
» c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(@gn) =0(f(n) +gn))

Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn =>ng: f(n) >0 (the same for g). Then

» c- f(n) € O(f(n)) for any constant c
> O(f(n)) +0(g(n)) = O0(f(n) +g(n))
> O(f(n))-0(@gn)) =0(f(n)-gn))

Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn =>ng: f(n) >0 (the same for g). Then

» c- f(n) € O(f(n)) for any constant c
O(f(n)) +0(gn)) =0(f(n) +gn))
O(f(n)) -0(gn)) =0(f(n)-gn))
O(f(n)) + 0(g(n)) = O(max{f(n),gn)})

vV vV

Asymptotic Notation

Lemma 1
Let f,g be functions with the property
dng > 0Vn =>ng: f(n) >0 (the same for g). Then

» c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(gn) =0(f(n) +gn))

> O(f(n)-0(gn)) =0(f(n)-gn))

> O(f(n)) + 0(g(n)) = Omaxif(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)?}).

Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

Asymptotic Notation

Comments
» Do not use asymptotic notation within induction proofs.

» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm

within asymptotic notation.

Asymptotic Notation

Comments
» Do not use asymptotic notation within induction proofs.
» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

» In general logn =log, n, i.e., we use 2 as the default base
for the logarithm.

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.

» However, suppose that | have two algorithms:

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
> Algorithm A. Running time f(n) = 1000logn = O(logn).

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
> Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log” n.

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:

> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely theoretical
worst-case bound), then the algorithm that has better
asymptotic running time will always outperform a weaker
algorithm for large enough values of n.
» However, suppose that | have two algorithms:
> Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log” n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several
parameters (e.g., nodes and edges of a graph (n and m)).

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several
parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n — o« and m — o
we have to extend the definition to multiple variables.

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several
parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for n — o« and m — o
we have to extend the definition to multiple variables.

Formal Definition

Let f, g denote functions from N% to Rj.

> O(f) ={g|3c>03N e Ny Vi with n; > N for some i:
[g(n) <c- fO)]}

(set of functions that asymptotically grow not faster than f)

Multiple Variables in Asymptotic Notation

Example 2

» fiN-R{, f(n,m)=1und g:N-Rj,gn,m)=n-1

Multiple Variables in Asymptotic Notation

Example 2

» fiN-R{, f(n,m)=1und g:N-Rj,gn,m)=n-1
then f = O(g) does not hold

Multiple Variables in Asymptotic Notation

Example 2
» fiN-R{, f(n,m)=1und g:N-Rj,gn,m)=n-1
then f = O(g) does not hold
» fiN-R{, f(n,m)=1und g:N—-Rj,gn,m) =n

Multiple Variables in Asymptotic Notation

Example 2
» fiN-R{, f(n,m)=1und g:N-Rj,gn,m)=n-1
then f = O(g) does not hold
» fiN-R{, f(n,m)=1und g:N—-Rj,gn,m) =n
then: f = 0O(g)

Multiple Variables in Asymptotic Notation

Example 2

» fiN-R{, f(n,m)=1und g:N-Rj,gn,m)=n-1
then f = O(g) does not hold

» fiN-R{, f(n,m)=1und g:N—-Rj,gn,m) =n
then: f = 0O(g)

» f:No - Ry, f(n,m)=1undg:No—Rj,gn,m)=n

Multiple Variables in Asymptotic Notation

Example 2
» fiN-R{, f(n,m)=1und g:N-Rj,gn,m)=n-1
then f = O(g) does not hold
» fiN-R{, f(n,m)=1und g:N—-Rj,gn,m) =n
then: f = 0O(g)
» f:No - Ry, f(n,m)=1undg:No—Rj,gn,m)=n
then f = O(g) does not hold

	Asymptotic Notation

