Part I

Organizational Matters

Part I

Organizational Matters

- Modul: IN2003

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim2)

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim2)

- Webpage: http://www14.in.tum.de/1ehre/2019WS/ea/
- Required knowledge:
- Required knowledge:
- IN0001, INOOO3
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- Required knowledge:
- IN0001, INOOO3
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures" "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- Required knowledge:
- INOOO1, INOOO3 "Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures" "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- Required knowledge:
- INOOO1, INOOO3
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures" "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- IN0015
"Discrete Structures"
"Diskrete Strukturen" (DS)
- Required knowledge:
- IN0001, INOOO3
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures"
"Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- INOO15
"Discrete Structures"
"Diskrete Strukturen" (DS)
- IN0018
"Discrete Probability Theory"
"Diskrete Wahrscheinlichkeitstheorie" (DWT)

The Lecturer

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (by appointment)

Tutorials

A01 Monday, 12:00-14:00, 00.08.038 (Stotz)
A02 Monday, 12:00-14:00, 00.09.038 (Guan)
A03 Monday, 14:00-16:00, 02.09.023 (Stotz)
B04 Tuesday, 10:00-12:00, 00.08.053 (Czerner)
B05 Tuesday, 14:00-16:00, 00.08.038 (Czerner)
C06 Wednesday, 10:00-12:00, 03.11.018 (Guan)
E07 Friday, 12:00-14:00, 00.13.009 (Stotz)

Assignment sheets

In order to pass the module you need to pass an exam.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.

Assessment

Assignment Sheets:

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.
- You should submit solutions in groups of up to 2 people.

Assessment

Assignment Sheets:

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.

Assessment

Assignment Sheets:

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.
- Don't forget name and student id number for each group member.

Assessment

Assignment can be used to improve you grade

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$
- $3.7 \rightarrow 3.3$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$
- $3.7 \rightarrow 3.3$
- $1.0 \rightarrow 1.0$

Assessment

Assignment can be used to improve you grade

- If you obtain a bonus your grade will improve according to the following function

$$
f(x)= \begin{cases}\frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3 x)-1}{3}\right)\right) & 1<x \leq 4 \\ x & \text { otw }\end{cases}
$$

- It will improve by 0.3 or 0.4 , respectively. Examples:
- $3.3 \rightarrow 3.0$
- $2.0 \rightarrow 1.7$
- $3.7 \rightarrow 3.3$
- $1.0 \rightarrow 1.0$
- > 4.0 no improvement

Assessment

Assignment can be used to improve you grade

Requirements for Bonus

- 50% of the points are achieved on submissions 2-8,
- 50\% of the points are achieved on submissions 9-14,
- each group member has written at least 4 solutions.

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
- Search trees
- Hashing
- Priority queues
- Union/Find data structures

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
- Search trees
- Hashing
- Priority queues
- Union/Find data structures
- Cuts/Flows

1 Contents

- Foundations
- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
- Search trees
- Hashing
- Priority queues
- Union/Find data structures
- Cuts/Flows
- Matchings

2 Literatur

速
Alfred V．Aho，John E．Hopcroft，Jeffrey D．Ullman：
The design and analysis of computer algorithms，
Addison－Wesley Publishing Company：Reading（MA）， 1974
囯 Thomas H．Cormen，Charles E．Leiserson，Ron L．Rivest， Clifford Stein：
Introduction to algorithms， McGraw－Hill， 1990
囬
Michael T．Goodrich，Roberto Tamassia：
Algorithm design：Foundations，analysis，and internet
examples，
John Wiley \＆Sons， 2002

2 Literatur

围 Ronald L．Graham，Donald E．Knuth，Oren Patashnik：
Concrete Mathematics，
2．Auflage，Addison－Wesley， 1994
亘 Volker Heun：
Grundlegende Algorithmen：Einführung in den Entwurf und die Analyse effizienter Algorithmen，
2．Auflage，Vieweg， 2003
嗇 Jon Kleinberg，Eva Tardos：
Algorithm Design，
Addison－Wesley， 2005
嗇 Donald E．Knuth：
The art of computer programming．Vol．1：Fundamental
Algorithms，
3．Auflage，Addison－Wesley， 1997

2 Literatur

雷 Donald E．Knuth：
The art of computer programming．Vol．3：Sorting and
Searching，
3．Auflage，Addison－Wesley， 1997
Christos H．Papadimitriou，Kenneth Steiglitz：
Combinatorial Optimization：Algorithms and Complexity， Prentice Hall， 1982
圊 Uwe Schöning：
Algorithmik，
Spektrum Akademischer Verlag， 2001
嗇 Steven S．Skiena：
The Algorithm Design Manual， Springer， 1998

