Organizational Matters

Organizational Matters

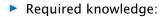
Modul: IN2003

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points


Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS

Mon 10:00-12:00 (Room Interim2) Fri 10:00-12:00 (Room Interim2)

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
 - 4 SWS Mon 10:00-12:00 (Room Interim2) Fri 10:00-12:00 (Room Interim2)
- Webpage: http://www14.in.tum.de/lehre/2019WS/ea/

Required knowledge:

IN0001, IN0003
 "Introduction to Informatics 1/2"
 "Einführung in die Informatik 1/2"

- Required knowledge:
 - IN0001, IN0003
 "Introduction to Informatics 1/2"
 "Einführung in die Informatik 1/2"
 - IN0007
 - "Fundamentals of Algorithms and Data Structures"
 - "Grundlagen: Algorithmen und Datenstrukturen" (GAD)

- Required knowledge:
 - IN0001, IN0003
 - "Introduction to Informatics 1/2"
 - "Einführung in die Informatik 1/2"
 - IN0007
 - "Fundamentals of Algorithms and Data Structures"
 - "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
 - IN0011

"Basic Theoretic Informatics"

"Einführung in die Theoretische Informatik" (THEO)

- Required knowledge:
 - IN0001, IN0003
 - "Introduction to Informatics 1/2"
 - "Einführung in die Informatik 1/2"
 - IN0007
 - "Fundamentals of Algorithms and Data Structures"
 - "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
 - IN0011
 - "Basic Theoretic Informatics"
 - "Einführung in die Theoretische Informatik" (THEO)
 - IN0015
 - "Discrete Structures"
 - "Diskrete Strukturen" (DS)

- Required knowledge:
 - IN0001, IN0003
 - "Introduction to Informatics 1/2"
 - "Einführung in die Informatik 1/2"
 - IN0007
 - "Fundamentals of Algorithms and Data Structures"
 - "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
 - IN0011
 - "Basic Theoretic Informatics"
 - "Einführung in die Theoretische Informatik" (THEO)
 - IN0015
 - "Discrete Structures"
 - "Diskrete Strukturen" (DS)
 - IN0018
 - "Discrete Probability Theory"
 - "Diskrete Wahrscheinlichkeitstheorie" (DWT)

The Lecturer

- Harald Räcke
- Email: raecke@in.tum.de
- Room: 03.09.044
- Office hours: (by appointment)

Tutorials

A01 Monday, 12:00-14:00, 00.08.038 (Stotz)

- A02 Monday, 12:00-14:00, 00.09.038 (Guan)
- A03 Monday, 14:00-16:00, 02.09.023 (Stotz)
- B04 Tuesday, 10:00-12:00, 00.08.053 (Czerner)
- B05 Tuesday, 14:00-16:00, 00.08.038 (Czerner)
- **C06** Wednesday, 10:00–12:00, 03.11.018 (Guan)

E07 Friday, 12:00-14:00, 00.13.009 (Stotz)

Assignment sheets

In order to pass the module you need to pass an exam.

Assignment Sheets:

An assignment sheet is usually made available on Monday on the module webpage.

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.

- An assignment sheet is usually made available on Monday on the module webpage.
- Solutions have to be handed in in the following week before the lecture on Monday.
- You can hand in your solutions by putting them in the mailbox "Efficient Algorithms" on the basement floor in the MI-building.
- Solutions have to be given in English.
- Solutions will be discussed in the tutorial of the week when the sheet has been handed in, i.e, sheet may not be corrected by this time.
- You should submit solutions in groups of up to 2 people.

Assignment Sheets:

Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.

- Submissions must be handwritten by a member of the group. Please indicate who wrote the submission.
- Don't forget name and student id number for each group member.

Assignment can be used to improve you grade

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

It will improve by 0.3 or 0.4, respectively. Examples:

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

It will improve by 0.3 or 0.4, respectively. Examples:

► 3.3 → 3.0

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

It will improve by 0.3 or 0.4, respectively. Examples:

2.0 → 1.7

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

It will improve by 0.3 or 0.4, respectively. Examples:

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

It will improve by 0.3 or 0.4, respectively. Examples:

Assignment can be used to improve you grade

If you obtain a bonus your grade will improve according to the following function

$$f(x) = \begin{cases} \frac{1}{10} \operatorname{round}\left(10\left(\frac{\operatorname{round}(3x)-1}{3}\right)\right) & 1 < x \le 4\\ x & \text{otw.} \end{cases}$$

- It will improve by 0.3 or 0.4, respectively. Examples:
 - 3.3 → 3.0
 - 2.0 → 1.7
 - 3.7 → 3.3
 - ▶ 1.0 → 1.0
 - > 3.0 no improvement

Assignment can be used to improve you grade

Requirements for Bonus

- ▶ 50% of the points are achieved on submissions 2-8,
- 50% of the points are achieved on submissions 9-14,
- each group member has written at least 4 solutions.

Foundations

- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion

Foundations

- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures

Foundations

- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures

Cuts/Flows

Foundations

- Machine models
- Efficiency measures
- Asymptotic notation
- Recursion
- Higher Data Structures
 - Search trees
 - Hashing
 - Priority queues
 - Union/Find data structures
- Cuts/Flows
- Matchings

2 Literatur

 Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: *The design and analysis of computer algorithms*, Addison-Wesley Publishing Company: Reading (MA), 1974

Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms,

McGraw-Hill, 1990

Michael T. Goodrich, Roberto Tamassia: Algorithm design: Foundations, analysis, and internet examples, John Wiley & Sons, 2002

2 Literatur

Ronald L. Graham, Donald E. Knuth, Oren Patashnik: *Concrete Mathematics*,

2. Auflage, Addison-Wesley, 1994

Volker Heun:

Grundlegende Algorithmen: Einführung in den Entwurf und die Analyse effizienter Algorithmen,

2. Auflage, Vieweg, 2003

- 🔋 Jon Kleinberg, Eva Tardos:
 - Algorithm Design,

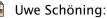
Addison-Wesley, 2005

Donald E. Knuth:

The art of computer programming. Vol. 1: Fundamental Algorithms,

3. Auflage, Addison-Wesley, 1997

2 Literatur



Donald E. Knuth:

The art of computer programming. Vol. 3: Sorting and Searching,

3. Auflage, Addison-Wesley, 1997

Christos H. Papadimitriou, Kenneth Steiglitz: Combinatorial Optimization: Algorithms and Complexity, Prentice Hall, 1982

Algorithmik,

Spektrum Akademischer Verlag, 2001

Steven S. Skiena:

The Algorithm Design Manual, Springer, 1998