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Abstract Data Type

An abstract data type (ADT) is defined by an interface of

operations or methods that can be performed and that have a
defined behavior.

The data types in this lecture all operate on objects that are
represented by a [key, value] pair.

» The key comes from a totally ordered set, and we assume
that there is an efficient comparison function.

» The value can be anything; it usually carries satellite
information important for the application that uses the ADT.
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Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.
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Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

> S.delete(x): Given pointer to object x from S, delete x
from the set.

> S.minimum(): Return pointer to object with smallest
key-value in S.

» S.maximum(): Return pointer to object with largest
key-value in S.

> S.successor(x): Return pointer to the next larger element
in S or null if x is maximum.

> S.predecessor(x): Return pointer to the next smaller
element in S or null if x is minimum.
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Dynamic Set Operations

» S.union(S’):Sets S:=S U S’. The set S’ is destroyed.
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Dynamic Set Operations

» S.union(S’):Sets S:=S U S’. The set S’ is destroyed.
> S.merge(S’): Sets S:=S U S’. Requires SNS’ = .

> S.split(k, S’):

S:={xeS|key[x] <k}, S :={xeS|key[x] > k}.
> S.concatenate(S’): S:=SuS’.

Requires key[S. maximum() ] < key[S’. minimum() ].

> S.decrease-key(x, k): Replace key[x] by k < key[x].
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Examples of ADTs
Stack:

> S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.
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Examples of ADTs
Stack:

> S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.
Queue:
> S.enqueue(x): Insert an element.

> S.dequeue(): Return the element that is longest in the
structure; delete it from S.

> S.empty(): Tell if S contains any object.
Priority-Queue:
> S.insert(x): Insert an element.

> S. delete-min(): Return the element with lowest key-value;
delete it from S.



7 Dictionary

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.
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7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary
tree. Each tree-node corresponds to an element. All elements in
the left sub-tree of a node v have a smaller key-value than key[v]
and elements in the right sub-tree have a larger-key value. We
assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:
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7.1 Binary Search Trees

We consider the following operations on binary search trees. Note
that this is a super-set of the dictionary-operations.

T.
. delete(x)
. search(k)

. successor(x)

>

vV v v v vY
NN NN NN

insert(x)

. predecessor(x)
. minimum()

. maximum{()
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Binary Search Trees: Searching

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
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Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 19/265



Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 19/265



Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 19/265



Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 19/265



Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 19/265



Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 19/265



Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)
1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4

5

X < y;y < parent[x]
. return y;
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Binary Search Trees: Insert

Algorithm 4 Treelnsert(x,z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

else
if right[x] = null then
right[x] < z; parent[z] < Xx;
else Treelnsert(right[x], z);
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Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent to
its successor.



Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent to
its successor.



Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent to
its successor.



Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2 then y — z else y — TreeSucc(z); select y to splice out
3: if left[y] # null
4: then x — left[y] else x — right[y]; x is child of » (or null)
5: if x # null then parent[x] — parent[y]; parent[x] is correct
6
7
8

. if parent[y] = null then
root[T] « x

. else
9: if y = left[parent[y]] then +fix pointer to x
10: left[parent[y]] < x
11: else
12: right[parent[y]] « x

13: if v + z then copy y-datato z
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of O(logn).
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of @(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA
trees, Treaps

similar: SPLAY trees.
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7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that
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7.2 Red Black Trees

Definition 1
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color
such that

1. The root is black.
2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.
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7.2 Red Black Trees

Definition 1
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color
such that

1. The root is black.
2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers
to special null-vertices, that do not carry any object-data

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 25/265



Red Black Trees: Example
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7.2 Red Black Trees

Lemma 2
A red-black tree with n internal nodes has height at most
O(logn).
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7.2 Red Black Trees

Lemma 2
A red-black tree with n internal nodes has height at most
O(logn).

Definition 3
The black height bh(v) of a node v in a red black tree is the
number of black nodes on a path from v to a leaf vertex (not
counting v).
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7.2 Red Black Trees

Lemma 2
A red-black tree with n internal nodes has height at most
O(logn).

Definition 3
The black height bh(v) of a node v in a red black tree is the

number of black nodes on a path from v to a leaf vertex (not
counting v).

We first show:

Lemma 4
A sub-tree of black height bh(v) in a red black tree contains at
least 2Ph(V) — 1 jnternal vertices.
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7.2 Red Black Trees

Proof of Lemma 4.
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7.2 Red Black Trees

Proof of Lemma 4.

Induction on the height of v.
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7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.

base case (height(v) = 0)

» If height(v) (maximum distance btw. v and a node in the
sub-tree rooted at v) is O then v is a leaf.
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7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.

base case (height(v) = 0)

» If height(v) (maximum distance btw. v and a node in the
sub-tree rooted at v) is O then v is a leaf.

» The black height of v is 0.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 28/265



7.2 Red Black Trees

Proof of Lemma 4.
Induction on the height of v.

base case (height(v) = 0)
» If height(v) (maximum distance btw. v and a node in the
sub-tree rooted at v) is O then v is a leaf.
» The black height of v is 0.

» The sub-tree rooted at v contains 0 = 2Ph() _ 1 jnner
vertices.
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7.2 Red Black Trees

Proof (cont.)
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7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 29/265



7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.
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7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

» These children (c1, ¢2) either have bh(c;) = bh(v) or
bh(c;) = bh(v) — 1.
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7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

» These children (c1, ¢2) either have bh(c;) = bh(v) or
bh(c;) = bh(v) — 1.

> By induction hypothesis both sub-trees contain at least
2bh()=1 _ 1 internal vertices.
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7.2 Red Black Trees

Proof (cont.)

induction step

» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

» These children (c1, ¢2) either have bh(c;) = bh(v) or
bh(c;) = bh(v) — 1.

> By induction hypothesis both sub-trees contain at least
2bh(w)=1 _ 1 internal vertices.

» Then T, contains at least 2(2Ph(v)=1 _ 1) 4 1 > pbh(v) _ 7
vertices.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 29/265



7.2 Red Black Trees

Proof of Lemma 2.
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7.2 Red Black Trees

Proof of Lemma 2.

Let i denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.
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7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.
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7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

Hence, the black height of the root is at least h/2.
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7.2 Red Black Trees
Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2//2 — 1 internal vertices. Hence,
2h/2 _ 1 < n.
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7.2 Red Black Trees

Proof of Lemma 2.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2//2 — 1 internal vertices. Hence,
2h/2 _ 1 < n.

Hence, h < 2log(n + 1) = O(logn). O
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7.2 Red Black Trees

Definition 1
A red black tree is a balanced binary search tree in which each

internal node has two children. Each internal node has a color
such that

1. The root is black.
2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers
to special null-vertices, that do not carry any object-data.
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7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red
black properties are maintained.
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Rotations

The properties will be maintained through rotations:
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Red Black Trees: Insert

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

RB-Insert(root, 18)

Insert:
> first make a normal insert into a binary search tree
> then fix red-black properties
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Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zis ared node
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Red Black Trees: Insert
Invariant of the fix-up algorithm:

> zis ared node
> the black-height property is fulfilled at every node
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Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node

» the only violation of red-black properties occurs at z and
parent[z]
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Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node
» the only violation of red-black properties occurs at z and
parent[z]
> either both of them are red
(most important case)
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Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node
» the only violation of red-black properties occurs at z and
parent[z]
> either both of them are red
(most important case)
> or the parent does not exist
(violation since root must be black)
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Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node
» the only violation of red-black properties occurs at z and
parent[z]
> either both of them are red
(most important case)
> or the parent does not exist
(violation since root must be black)
If z has a parent but no grand-parent we could simply color the
parent/root black; however this case never happens.
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Red Black Trees: Insert

Algorithm 10 InsertFix(z)
1: while parent[z] + null and col[parent[z]] = red do
2 if parent[z] = left[gp[z]] then
3 uncle — right[grandparent[z]]
4 if col[uncle] = red then
5: col[p[z]] < black; col[u] < black;
6 col[gp[z]] < red; z — grandparent[z];
7 else
8: if z = right[parent[z]] then
9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red;
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;
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Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then z in left subtree of grandparent
3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);

10: col[p[z]] < black; col[gp[z]] < red;

11: RightRotate(gp[z]);

12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 36/265



Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then Case 1: uncle red
5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);

10: col[p[z]] < black; col[gp[z]] < red;

11: RightRotate(gp[z]);

12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;
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Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else Case 2: uncle black
8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);

10: col[p[z]] < black; col[gp[z]] < red;

11: RightRotate(gp[z]);

12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;
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Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then 2a: z right child
9: z < plz]; LeftRotate(z);

10: col[p[z]] < black; col[gp[z]] < red;

11: RightRotate(gp[z]);

12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;
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Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);

10: col[p[z]] < black; col[gp[z]] < red; 2b: z left child
11: RightRotate(gp[z]);

12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;
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Case 1: Red Uncle
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Case 1: Red Uncle
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Case 1: Red Uncle
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Case 1: Red Uncle

1. recolour
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Case 1: Red Uncle

1. recolour
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Case 1: Red Uncle

1.

2. move z to grand-parent

recolour
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Case 1: Red Uncle

1.

2. move z to grand-parent

recolour

3. invariant is fulfilled for new z
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Case 1: Red Uncle

recolour
move z to grand-parent

invariant is fulfilled for new z

W hN =

you made progress
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Case 2b: Black uncle and z is left child
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Case 2b: Black uncle and z is left child

[ tikzpicture optimized away because it does not contribute to
exported PDF]
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Case 2b: Black uncle and z is left child

1. rotate around grandparent
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Case 2b: Black uncle and z is left child

1. rotate around grandparent
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Case 2b: Black uncle and z is left child

1. rotate around grandparent

Rk digighproperty holds

3. you have a red black tree
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Case 2a: Black uncle and z is right child

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 39/265



Case 2a: Black uncle and z is right child

[ tikzpicture optimized away because it does not contribute to
exported PDF]
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Case 2a: Black uncle and z is right child

1. rotate around parent

exported PDF]
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Case 2a: Black uncle and z is right child

1. rotate around parent

2. MRS iRV BPaFARzed away becauss
exported PDF]
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Case 2a: Black uncle and z is right child

1. rotate around parent

2. MRS PV BPaFARzed away becauss
3.expo fradePOFie 2b.
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Red Black Trees: Insert

Running time:

> Only Case 1 may repeat; but only h/2 many steps, where h is
the height of the tree.
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Red Black Trees: Insert

Running time:

> Only Case 1 may repeat; but only h/2 many steps, where h is
the height of the tree.

» Case 2a — Case 2b — red-black tree
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Red Black Trees: Insert

Running time:

> Only Case 1 may repeat; but only h/2 many steps, where h is
the height of the tree.

» Case 2a — Case 2b — red-black tree
» Case 2b — red-black tree
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Red Black Trees: Insert

Running time:

> Only Case 1 may repeat; but only h/2 many steps, where h is
the height of the tree.

» Case 2a — Case 2b — red-black tree
» Case 2b — red-black tree

Performing Case 1 at most O(logn) times and every other case at
most once, we get a red-black tree. Hence O (logn) re-colorings
and at most 2 rotations.
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Red Black Trees: Delete
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Red Black Trees: Delete

First do a standard delete.
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Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.
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Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
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Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
> Parent and child of x were red; two adjacent red vertices.
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Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
> Parent and child of x were red; two adjacent red vertices.

> If you delete the root, the root may now be red.
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Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
> Parent and child of x were red; two adjacent red vertices.
> If you delete the root, the root may now be red.

» Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property
might be violated.
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Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete

» when replacing content by content of successor, don’t
change color of node
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Case 3:
Element has two children
» do normal delete

» when replacing content by content of successor, don’t
change color of node



Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete

» when replacing content by content of successor, don’t
change color of node



Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete

» when replacing content by content of successor, don’t
change color of node



Red Black Trees: Delete

Delete:
> deleting black node messes up black-height property



Red Black Trees: Delete

Delete:
> deleting black node messes up black-height property

> if z is red, we can simply color it black and everything is fine



Red Black Trees: Delete

Delete:
> deleting black node messes up black-height property

> if z is red, we can simply color it black and everything is fine

> the problem is if z is black (e.g. a dummy-leaf); we call a
fix-up procedure to fix the problem.



Red Black Trees: Delete

Invariant of the fix-up algorithm

» the node z is black
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Red Black Trees: Delete

Invariant of the fix-up algorithm
> the node z is black

> if we “assign” a fake black unit to the edge from z to its
parent then the black-height property is fulfilled
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Red Black Trees: Delete

Invariant of the fix-up algorithm
> the node z is black

> if we “assign” a fake black unit to the edge from z to its
parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can
remove the fake black unit from the edge.
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Case 1: Sibling of z is red




Case 1: Sibling of z is red




Case 1: Sibling of z is red




Case 1: Sibling of z is red

1. left-rotate around parent of z &j

2. recolor nodes b and ¢




Case 1: Sibling of z is red

1. left-rotate around parent of z &j

2. recolor nodes b and ¢

3. the new sibling is black
(and parent of z is red)




Case 1: Sibling of z is red

1. left-rotate around parent of z &j

2. recolor nodes b and ¢

3. the new sibling is black
(and parent of z is red)

4. Case 2 (special),
or Case 3, or Case 4




Case 2: Sibling is black with two black children

1
]
:we are in a special case that directly 1
1 leads to a red-black tree. 1

_________________________




Case 2: Sibling is black with two black children

1
]
:we are in a special case that directly 1
1 leads to a red-black tree. 1




Case 2: Sibling is black with two black children

1
1
:we are in a special case that directly |
1 leads to a red-black tree. 1




Case 2: Sibling is black with two black children

1
1
:we are in a special case that directly |
1 leads to a red-black tree. 1

1. re-color node ¢ &




Case 2: Sibling is black with two black children

1
1
:we are in a special case that directly |
1 leads to a red-black tree. 1

1. re-color node ¢

2. move fake black
unit upwards
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:we are in a special case that directly |
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1. re-color node ¢

2. move fake black
unit upwards
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Case 2: Sibling is black with two black children

1
1
:we are in a special case that directly |
1 leads to a red-black tree. 1

1. re-color node ¢

2. move fake black
unit upwards

3. move z upwards
4. we made progress

5. if b is red we color
it black and are done




Case 3: Sibling black with one black child to the right

_________________________

'Agam the blue color of b indicates that |
1 it can either be black or red. 1




Case 3: Sibling black with one black child to the right

[ tikzpicture optimized away because it does not contribute to
exported PDF]

_________________________

q iblin ! Again the blue color of b indicates that |
§c sib Nt can either be black or red. 1
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Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d
[ tikzpicture optimized away becz

exported PDF]

_________________________

q . ! Again the blue color of b indicates that |
. < siblin glt can either be black or red. |




Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

2. recolor c and d

3. [ntlkzglﬁu:'is) t,acikz | gway be 2
d

(Case 4)

XRPTISHY"

_________________________

iblin ! Again the blue color of b indicates that |
SIDIINGit can either be black or red. ,




Case 4: Sibling is black with red right child

1

: black but have possibly different
1 colors.

1

e We recolor c by giving it the

1 color of b.




Case 4: Sibling is black with red right child

: e Here b and d are either red or

: black but have possibly different

1
sibling : colors. :
because!it Weesqigicdumtvitaiteheo |

i color of b. !




Case 4: Sibling is black with red right child

: e Here b and d are either red or

: black but have possibly different

sibling ! colors. :
because! it Hoexqigtcdomtvitaitehto |

i\ color of b.

1. left-rotate around b




Case 4: Sibling is black with red right child

: e Here b and d are either red or
black but have possibly different

Z_ “ sibling : colors. :

because! it Heesaigtcdomtyitsitehto

i\ color of b.

1. left-rotate around b %
2. remove the fake black unit




Case 4: Sibling is black with red right child

: e Here b and d are either red or

: black but have possibly different

sibling ! colors. :
because! it Hoesdiotcdontyitsitehto |

i\ color of b.

1. left-rotate around b %
2. remove the fake black unit

3. recolor nodes b, c, and e




Case 4: Sibling is black with red right child

: e Here b and d are either red or

: black but have possibly different

sibling ! colors. :
because! it Hoesdiotcdontyititehto |

i\ color of b.

—

. left-rotate around b %
remove the fake black unit

recolor nodes b, c, and e

> W N

you have a valid
red black tree




Running time:

» only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree
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» Case 1 — Case 2 (special) — red black tree
Case 1 — Case 3 — Case 4 — red black tree
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» Case 3 — Case 4 — red black tree
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Running time:
» only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree

» Case 1 — Case 2 (special) — red black tree
Case 1 — Case 3 — Case 4 — red black tree
Case 1 — Case 4 — red black tree

» Case 3 — Case 4 — red black tree

> Case 4 — red black tree
Performing Case 2 at most @ (logn) times and every other step at

most once, we get a red black tree. Hence, @ (logn) re-colorings
and at most 3 rotations.
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Splay Trees

Disadvantage of balanced search trees:
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+ after access, an element is moved to the root; splay(x)
repeated accesses are faster
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Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

— read-operations change the tree

m 7.3 Splay Trees
Ernst Mayr, Harald Racke

50/265



Splay Trees

find(x)
> search for x according to a search tree
> |et X be last element on search-path
> splay(x)
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Splay Trees

insert(x)

> search for x; x is last visited element during search
(successer or predecessor of x)

> splay(Xx) moves X to the root

> insert x as new root

AA=

£
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Splay Trees

delete(x)
> search for x; splay(x); remove x
> search largest element X in A
> splay(x) (on subtree A)
>

connect root of B as right child of x

AD = A = £A
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Move to Root

How to bring element to root?

> one (bad) option: moveToRoot(x)
> iteratively do rotation around parent of x until x is root

> if x is left child do right rotation otw. left rotation
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Splay: Zig Case

better option splay(x):

> zig case: if x is child of root do left rotation or right rotation
around parent
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Splay: Zigzag Case

better option splay(x):

> zigzag case: if x is right child and parent of x is left child (or
x left child parent of x right child)

» do double right rotation around grand-parent (resp. double
left rotation)
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Double Rotations




Splay: Zigzig Case

better option splay(x):

> zigzig case: if x is left child and parent of x is left child (or x
right child, parent of x right child)

» do right roation around grand-parent followed by right
rotation around parent (resp. left rotations)
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Splay vs. Move to Root
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Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears h, times in this sequence.

The cost of a static search tree T is:

cost(T) =m + Z hy depthr(x)
X

The total cost for processing the sequence on a splay-tree is
O(cost(Tmin)), where Thin is an optimal static search tree.
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Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:
> the cost for accessing element x is 1 + depth(x);

> after accessing x the tree may be re-arranged through
rotations;

Conjecture:

A splay tree that only contains elements from S has cost
O(cost(A, S)), for processing S.
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Lemma 5
Splay Trees have an amortized running time of O (logn) for all
operations.
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Amortized Analysis

Definition 6

A data structure with operations op; (), ...,0p; () has amortized
running times t1,...,ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with an
empty data-structure) that operate on at most n elements, and let
k; denote the number of occurences of op; () within this sequence.
Then the actual running time must be at most > ; k; - t;(n).
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Potential Method

Introduce a potential for the data structure.
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» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

k
> e
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Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then
k k

D.ci< > ci+®(Dy) - @(Do)
i=1 i=1
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Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

2. €i

k
i=1

k k
< > ci+®(Dy) - Z
i=1 i=1

This means the amortized costs can be used to derive a bound on
the total cost.
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Example: Stack

Stack
> S.push()
> S.pop()

> S. multipop(k): removes k items from the stack. If the stack
currently contains less than k items it empties the stack.

» The user has to ensure that pop and multipop do not
generate an underflow.
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Example: Stack

Stack
> S.push()
> S.pop()

> S. multipop(k): removes k items from the stack. If the stack
currently contains less than k items it empties the stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
» S.push(): cost 1.
> S.pop(): cost 1.

> S. multipop(k): cost min{size, k} = k.
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Example: Stack

Use potential function ®(S) = number of elements on the stack.
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Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

> S.pop(): cost

> S. multipop(k): cost

Cmp = Cmp + AP = min{size, k} — min{size,k} <0 .
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

> Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).
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Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the number
of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

» Changing bit from 1 to O:

Ciloo=Cilo0+Ad=1-1<0".

> |ncrement: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCi_o + Co—1 < 2.



Splay Trees

potential function for splay trees:
> size s(x) = |Ty]
> rank r(x) = log,(s(x))
> &(T) =yperr(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1
plus the number of rotations.
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Splay: Zig Case

AP =
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Splay: Zig Case

A® =71 (x) +7 (p) —7r(x) —r(p)

=7 (p) —r(x)
<¥'(x) —7r(x)

Costzig < 1+ 3(r'(x) —7r(x))

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 71/265






Splay: Zigzig Case

AP =7 (x)+7 (p)+7v'(g) —r(x)—7r(p)—7(9)



Splay: Zigzig Case

AP =7 (x)+7(p) +7'(g) —r(x) —r(p) —7r(9)

=7r'(p)+7r'(g) —7r(x)—7r(p)



Splay: Zigzig Case

AP =7 (x)+7 (p)+7v'(g) —r(x)—7r(p)—7(9)

=r'(p)+7v'(g) —r(x)—7r(p)
<r'(x)+7(g) —7r(x)—7r(x)



Splay: Zigzig Case
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Splay: Zigzig Case

AD =7 (x) + 7 (p) +7(g) —7(x) =7 (p) ~T(9)

=r'(p) +7r'(g) —r(x) -7r(p)

<r'(x)+7r'(g) —r(x)—7r(x)

=7 (x) +7'(g) +r(x) = 3r'(x) + 3r'(x) - r(x) - 2r(x)
= =21 (x) +7(g) + 7 (x) + 3(r (x) =7 (x))
<-2+30"(x)-7r(x))



Splay: Zigzig Case

AD =7 (x) +7'(p) +7'(g) =7 (x) =7 (p) = 7(9)

=7 (p) +7'(g) —7r(x) —7r(p)

<r'(x)+7'(g) —r(x)—r(x)

=r'(x)+7'(g) +r(x) = 3r (x) + 3r'(x) —r(x) — 2r(x)
==2r"(x) +7'(g) +r(x) + 3(r'(x) —r(x))

<-2+3(r"(x) —7r(x)) = COStzigzig < 3(r'(x) —r(x))
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Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))
_ 1
2

<log(s(x)) +log(s’'(g)) — 210g(5'(X)))
(s(x) ) N 1 log<5'(g)>

08 s'(x) 2 s'(x)

_1
2 2



Splay: Zigzig Case

%(T(x) +7'(g) - 2r’(x))

= %<log(5(x)) +log(s'(g)) — 210g(5’(x)))
s(x) 1 s'(g)
(o) + 2008 (Go)
1s(x) 1s'(g)
<1 g<2s’(x) + 25’(x)>

1y
)




Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))

= l(log(s(x)) +log(s'(g)) — 2log(s' (x)))

2
(x) 1 "(9)
g(;,();)) 710g<j'(i)>

T2
1s(x) 15s'(g) 1
=1 g<5s5'(fc) +§jf(i)> Sl°g<5>

2




Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))

= l(log(s(x)) +log(s'(g)) — 2log(s' (x)))

2
(x) 1 "(9)
g(;,();)) 710g<j'(i)>

T
1s(x) 15'(g) 1
< log(ij,();) + 5?6%) slog<§> =-1

2
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Splay: Zigzag Case
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Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
=7r'(p) +7v'(g) —r(x) - r(p)
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Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
=7 (p) +7'(9) —7(x) =7 (p)
v (p)+7r'(g) —r(x) -7r(x)
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Splay: Zigzag Case

AP =7"(x) +7"(p) +7'(g) —7(x) —7(p) —7(g)
=1 (p) +7'(9) —r(x) —7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=7 (p)+7r'(g) = 2r" (x) +2¥"(x) — 2r(x)
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Splay: Zigzag Case

AP =7 (x)+7 (p)+7'(g) —r(x) —r(p) —7r(g)
=7 (p) +7'(g) —7r(x) -7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=r'(p) +7r'(g) —2r"(x) + 2r"(x) — 2r(x)
<-2+2(r'(x) —r(x))
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Splay: Zigzag Case

AP =7 (x)+7 (p)+7'(g) —r(x) —r(p) —7r(g)
=7 (p) +7'(g) —7r(x) -7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=r'(p) +7r'(g) —2r"(x) + 2r"(x) — 2r(x)

<-2+2(r'(x) =7(x)) = COStzigzag < 3(r'(x) —¥(x))
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2 (x))
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

1s'(p)  15'(9)
slog(ZS,(X) + 23’(x)>
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

1s'(p) 1s'(g) 1
= log<§j’(>€) i 5?6’2)) = 1°g<§>
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))
= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

15'(p) | 15'(g) 1
<log (35700 * 2y n) <loe(3) =1
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Amortized cost of the whole splay operation:

<1+1+ > 3(r(x)—7r-1(x))

steps t
=2 + 3(r(root) — ro(x))
< O(logn)
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7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

Insert(x): insert element x.

>

> Search(k): search for element with key k.

> Delete(x): delete element referenced by pointer x.
>

find-by-rank(£): return the £-th element; return “error” if the
data-structure contains less than £ elements.
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7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

Insert(x): insert element x.

>

> Search(k): search for element with key k.

> Delete(x): delete element referenced by pointer x.
>

find-by-rank(£): return the £-th element; return “error” if the
data-structure contains less than £ elements.

Augment an existing data-structure instead of developing a
new one.
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7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure

| » Of course, the above steps heavily depend

1 on each other. For example it makes no

: sense to choose additional information to

: be stored (Step 2), and later realize that

1 either the information cannot be maintained
: efficiently (Step 3) or is not sufficient to

: support the new operations (Step 4).

1

1

1

« However, the above outline is a good way to
describe/document a new data-structure.
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7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

3. verify/show how the additional information can be
maintained for the basic modifying operations on the
underlying structure.

| » Of course, the above steps heavily depend
1 on each other. For example it makes no

: sense to choose additional information to
: be stored (Step 2), and later realize that

1 either the information cannot be maintained
: efficiently (Step 3) or is not sufficient to

1

1

1

1

1

support the new operations (Step 4).
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How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

3. verify/show how the additional information can be
maintained for the basic modifying operations on the
underlying structure.

. | » Of course, the above steps heavily depend
4. develop the new operations | o each other. For example it makes no

: sense to choose additional information to
: be stored (Step 2), and later realize that

1 either the information cannot be maintained
: efficiently (Step 3) or is not sufficient to

1

1

1

1

1

support the new operations (Step 4).

« However, the above outline is a good way to
describe/document a new data-structure.
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node
without asymptotically affecting the running time of insert,
delete, and search. We come back to this step later...
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,

search, and find-by-rank in time @ (log n).

4. How does find-by-rank work?

Find-by-rank(k) := Select(root,k) with

Algorithm 1 Select(x, 1)

1: if x = null then return error

2: if left[x] # null then » — left[x].size +1 else r — 1
3: if i = ¥ then return x

4.
5
6
7

if i <7 then
return Select(left[x], 1)

. else

return Select(right[x],i — r)

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke

78/265



Select(x, 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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Select(x, 1)

Select(@), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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Select(x, 1)

Select(@), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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Select(x, 1)

Select(@e), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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Select(x, 1)

Select(@), 3)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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Select(x, 1)

Select(@9), 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.
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7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.
Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during
rotations.
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7.4 Augmenting Data Structures
Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size
field for each visited node. Maintain the size field during
rotations.

Delete(x): Directly after splicing out a node traverse the path
from the spliced out node upwards, and decrease the size counter
on every node on this path. Maintain the size field during
rotations.
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Rotations

The only operation during the fix-up procedure that alters the tree
and requires an update of the size-field:

() AI+[BI+[Cl+2 IAl+IBl+ICI+2(Z)
LeftRotate(x)
RightRotate(z)

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields
of the children.
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7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?
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7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)
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How can we improve the search-operation?

Add an express lane:

Let |L;| denote the number of elements in the “express lane”, and
|Lo| = n the number of all elements (ignoring dummy elements).

Worst case search time: [L1| + % (ignoring additive constants)

Choose |L1| = /n. Then search time ©(\/n).



7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_1.
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7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li’—*il-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Lg)
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7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li’—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

> Find the largest item in list Ly that is smaller than x. At most
|Ly| + 2 steps.
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7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li’—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

> Find the largest item in list Ly that is smaller than x. At most

|Ly| + 2 steps.
> Find the largest item in list Ly_; that is smaller than x. At
[Lr—1l
most [ 74| + 2 steps.
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7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

> Find the largest item in list Ly that is smaller than x. At most

|Ly| + 2 steps.

> Find the largest item in list Ly_; that is smaller than x. At
most [\lLL,ffiH + 2 steps.

> Find the largest item in list Ly_» that is smaller than x. At
most [‘L‘ff]*fl]] + 2 steps.
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Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

> Find the largest item in list Ly that is smaller than x. At most

|Ly| + 2 steps.

> Find the largest item in list Ly_; that is smaller than x. At
most [\lLL,ffiH + 2 steps.

> Find the largest item in list Ly_» that is smaller than x. At
most [‘L‘ff]*fl]] + 2 steps.
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7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)
> Find the largest item in list Ly that is smaller than x. At most
|Ly| + 2 steps.
> Find the largest item in list Ly_; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

> Find the largest item in list Ly_» that is smaller than x. At

Ly
most [‘L‘kf] fl]] + 2 steps.

> At most |Li| + Z'le Lfil + 3(k + 1) steps.
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7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.
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Choose ratios between list-lengths evenly, i.e., 'L‘E‘” =7, and,

k

hence, Ly ~ v *n.

Worst case running time is: O(r kn + kr).
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Choose ratios between list-lengths evenly, i.e., 'L‘E‘” =7, and,

k

hence, Ly ~ v *n.

Worst case running time is: Orkn + kr).
Choose v = n%1., Then

k

r—*n+ kr
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7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

Worst case running time is: O(r kn + kr).
1

Choose v = n%1., Then

k -k .

1
v n+k1’:<nm> n + knka
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7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

Worst case running time is: Orkn + kr).
Choose v = n%1., Then

k

r—*n+ kr
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7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

Worst case running time is: Orkn + kr).
Choose v = n%1., Then

k 1\ —k 1
r*n+kr = (nk+1> n + knka
k 1
= nl_k+1 + knw
1
= (k+ 1)nk
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7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘f”

k

=7, and,

il

hence, Ly ~ v *n.

Worst case running time is: Orkn + kr).
Choose v = n%1., Then

k 1\ —k 1
r*n+kr = (nk+1> n + knka
k 1
= nl_k+1 + knw
1
=(k+ 1)nk1

Choosing k = ©(logn) gives a logarithmic running time.
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7.5 Skip Lists

How to do insert and delete?
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7.5 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require a
lot of re-organisation.
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7.5 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require a
lot of re-organisation.

Use randomization instead!
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7.5 Skip Lists

Insert:
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7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.
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Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.
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Insert:
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X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.
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Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:
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Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.
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Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.
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7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.
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High Probability

Definition 7 (High Probability)
We say a randomized algorithm has running time @ (logn) with

high probability if for any constant « the running time is at most

©(logn) with probability at least 1 — —.

nO(

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 89/265



High Probability

Definition 7 (High Probability)

We say a randomized algorithm has running time O (logn) with
high probability if for any constant « the running time is at most
O(logn) with probability at least 1 — %

Here the O-notation hides a constant that may depend on «.
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High Probability

Suppose there are polynomially many events Ej, Eo,...,Ep, £ = n¢
each holding with high probability (e.g. E; may be the event that
the i-th search in a skip list takes time at most O (log n)).
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Then the probability that all E; hold is at least
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Then the probability that all E; hold is at least
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Then the probability that all E; hold is at least
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High Probability

Suppose there are polynomially many events Ej, Eo,...,Ep, £ = n¢
each holding with high probability (e.g. E; may be the event that
the i-th search in a skip list takes time at most O (log n)).

Then the probability that all E; hold is at least

PI‘[E]/\---/\Eg]ZI—Pr[El\/---VEL)]
>1-nc-n¢«

=1-n-¢«

This means Pr[E; A - - - A Ep] holds with high probability.
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7.5 Skip Lists

Lemma 8
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O (logn) with high probability (w. h. p.).
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7.5 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.
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Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

» A “long” search path must also go very high.
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Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

» A “long” search path must also go very high.

» There are no elements in high lists.
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7.5 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

» A “long” search path must also go very high.
» There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
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7.5 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above L.
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7.5 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above L.

In particular, this means that during the construction in the
backward analysis we see at most k heads (i.e., coin flips that tell
you to go up) in z trials.
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7.5 Skip Lists

Pr[Ez,k]
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Pr[E; k] < Pr[at most k heads in z trials]
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Pr[E; k] < Pr[at most k heads in z trials]

Z)5—(z-k)
< <k> 2
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7.5 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k
- <i>2—(z—k) - <%> - (z-k)
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7.5 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) (292> -z
< <k>2 < K 2 < X 2
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Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
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Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn

2ez\k 2ez\k
ahitad -Bk | -y« bt T
S( K ) 20 mns <23k> n
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Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
cbe —Bk | -y« 22 o«
S( k ) 2 <23k> "
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Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy >1and z = (B + «)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
= < k ) 2ns (23k> "
2e(B + ) k x
= ( 28 ) "
now choosing 3 = 6 gives
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Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy >1and z = (B + «)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
= < k ) 2ns (23k> "
2e(B + ) k x
= ( 28 ) "
now choosing 3 = 6 gives

4200\%
S<640< "
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Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
S<k> a2 §<23k> "
2e(B + )\ K x
S( 28 ) "
now choosing 3 = 6 gives
<42a
<
64«

k
) n%<n«
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7.5 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
S<k> a2 §<23k> "
2e(B + )\ K x
S( 28 ) "
now choosing 3 = 6 gives
<42a
<
64«

k
) n%<n«
for ¢ = 1.
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7.5 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A. ] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E,  or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps] < Pr[E, x] + Pr[Ak.1]

<n % yn D

This means, the search requires at most z steps, w. h. p.



7.6 Hashing

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.
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> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully
choosing split-elements.

Then the memory location of an object x with key k is determined
by successively comparing k to split-elements.
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7.6 Hashing

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully
choosing split-elements.

Then the memory location of an object x with key k is determined
by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the
given key. The goal is to have constant search time.
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7.6 Hashing

Definitions:
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7.6 Hashing

Definitions:
» Universe U of keys, e.g., U < Ng. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.
» Hash function h: U — [0,...,n—1].

The hash-function h should fulfill:
> Fast to evaluate.
» Small storage requirement.

» Good distribution of elements over the whole table.
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Direct Addressing

Ideally the hash function maps all keys to different memory
locations.

U
universe

of keys

[elz[5[s][s[x]s]x]

This special case is known as Direct Addressing. It is usually very
unrealistic as the universe of keys typically is quite large, and in
particular larger than the available memory.
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Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no
delete). Then we may want to design a simple hash-function
that maps all these keys to different memory locations.

universe
of keys

S (actual keys)

[elz[5[s[s[x]s]x]

Such a hash function h is called a perfect hash function for set S.
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Collisions

If we do not know the keys in advance, the best we can hope for
is that the hash function distributes keys evenly across the table.
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Collisions

If we do not know the keys in advance, the best we can hope for
is that the hash function distributes keys evenly across the table.

Problem: Collisions
Usually the universe U is much larger than the table-size n.

Hence, there may be two elements ki, ko from the set S that map
to the same memory location (i.e., h(k;) = h(k>)). This is called a
collision.
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Collisions

Typically, collisions do not appear once the size of the set S of
actual keys gets close to n, but already when [S| > w(\/n).
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Collisions

Typically, collisions do not appear once the size of the set S of
actual keys gets close to n, but already when [S| > w(\/n).

Lemma 9
The probability of having a collision when hashing m elements
into a table of size n under uniform hashing is at least

m(m-1) m?2

l—-e 2n =1-e 2n |
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Collisions

Typically, collisions do not appear once the size of the set S of
actual keys gets close to n, but already when [S| > w(\/n).

Lemma 9
The probability of having a collision when hashing m elements
into a table of size n under uniform hashing is at least

m(m-1) m?2

l—-e 2n =1-e 2n |

Uniform hashing:

Choose a hash function uniformly at random from all functions
f:U-10,....,n—1].
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Collisions
Proof.

Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then
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Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

Pr[Am,n]
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Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

{+1

m n-—
PrlAmnl = ] R
=1
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Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

m m-1 .
PrlAmn] = 1_[ n_TM _ <1 _ %)
-1 j=0
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Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then
m m-—1 .
€ +1
Pl Am,u] ]‘[ =1 (1-2)

=1 j=0 n

e —jin

i ::]§
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Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

m 1

Pl Apmn] 1—[ 3—1—1 "h(_i)

=1 j=0 n

i ::]§
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Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

Pl Apmn] 1—[ 3—1—1 "h(_i)
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Collisions

Proof.
Let Ay,,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

[Amn]:ﬁﬁ Wh (1_1)

Here the first equality follows since the £-th element that is
hashed has a probability of = €+1 to not generate a collision
under the condition that the prewous elements did not induce
collisions.

O
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Collisions

\ fx) I

/
Ny
—

|

®

T

w

no

[uiiny

The inequality 1 — x < e ™ is derived by stopping the
Taylor-expansion of e~ after the second term.
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Resolving Collisions

The methods for dealing with collisions can be classified into the
two main types

» open addressing, aka. closed hashing

» hashing with chaining, aka. closed addressing, open
hashing.
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Resolving Collisions

The methods for dealing with collisions can be classified into the
two main types

» open addressing, aka. closed hashing

» hashing with chaining, aka. closed addressing, open
hashing.

There are applications e.g. computer chess where you do not
resolve collisions at all.
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Hashing with Chaining

Arrange elements that map to the same position in a linear list.
> Access: compute h(x) and search list for key[x].
> Insert: insert at the front of the list.

]3]
s [l [ 2

universe
of keys

(ks ]]
(ks [ >{ks]<]

S (actual keys)

[sly[gls]s]s]s]y]
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:

> A% denotes the average time for a successful search when
using A;
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:
> A% denotes the average time for a successful search when
using A;
> A~ denotes the average time for an unsuccessful search
when using A;
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:
> A% denotes the average time for a successful search when
using A;
> A~ denotes the average time for an unsuccessful search
when using A;
> We parameterize the complexity results in terms of « := %
the so-called fill factor of the hash-table.
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Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:
> A% denotes the average time for a successful search when
using A;
> A~ denotes the average time for an unsuccessful search
when using A;
> We parameterize the complexity results in terms of « := %
the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.
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Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length
of the list that is examined.
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Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length
m

of the list that is examined. The average length of a listis ot = 7.
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Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length
of the list that is examined. The average length of a list is &« =

z.
Hence, if A is the collision resolving strategy “Hashing with

Chaining” we have

A =1+ .
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and

ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k, denote the £-th key inserted into the table.
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

The expected successful search cost is

[ 2 (10 3 )]

i=1 j=i+1
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

The expected successful search cost is
keys before k;

[ 2 (10 3 )]

i=1 j=i+1
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Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

The expected successful search cost is

[ 2 (10 3 )]

i=1 j=i+1
J cost for key k;
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Hashing with Chaining

[ 2 (1 3 )]

i=1 J=i+1
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Hashing with Chaining

[ 2 (0 3 )] =5 S (e S e

i=1 J=i+1 i=1 Jj=i+1
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Hashing with Chaining

SRS IR T )
I
i=1 j=i+l
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Hashing with Chaining

[ LS (e S LY (e S
— 1+ X'-)]:— <1+ EX])
mlzl J=i+1 Y mizl J=i+1 N
1 & LU |
-2 (1 2 5)
i=1 Jj=i+1
m
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Hashing with Chaining
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Hashing with Chaining

[ 2 (1 3 )]

i=1 J=i+1 i=1 Jj=i+1

Il
—
_|._
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Hashing with Chaining

[ 2 (1 3 )]

i=1 =i+l i=1 j=i+1
1 & L |
5050
mlzl Jj=i+1
m

Il
—_
_|._
3]
\'M
3
|

i=1
14 1 ( 5 m(m+1))
mn 2
m-—1 l0'¢ l0'¢
-1 1+ =
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Hashing with Chaining

[ 2 (1 3 )]

i=1 j=i+l i=1 j=i+l
1= n o1
LAY
mlzl Jj=i+1
m

Il
—
_|._
3]
\'[\/]
3
|

i=1
14 1 ( 5 m(m+1)>
mn 2
m-—1 l0'¢ l0'¢
=1+ =1+ -
2n 2 2m

Hence, the expected cost for a successful search is AT <1 + %
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Hashing with Chaining

Disadvantages:
> pointers increase memory requirements

> pointers may lead to bad cache efficiency

Advantages:
> no a priori limit on the number of elements
> deletion can be implemented efficiently

» by using balanced trees instead of linked list one can also
obtain worst-case guarantees.
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Open Addressing
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Open Addressing

All objects are stored in the table itself.
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Open Addressing

All objects are stored in the table itself.
Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),...,h(k,n —1)
must form a permutation of 0, ..., n — 1.
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Open Addressing

All objects are stored in the table itself.
Define a function h(k, j) that determines the table-position to be
examined in the j-th step. The values h(k,0),...,h(k,n —1)

must form a permutation of 0, ..., n — 1.

Search(k): Try position h(k,0); if it is empty your search fails;
otw. continue with h(k,1), h(k,2), ....
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Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be
examined in the j-th step. The values h(k,0),...,h(k,n —1)
must form a permutation of 0, ..., n — 1.

Search(k): Try position h(k,0); if it is empty your search fails;
otw. continue with h(k,1), h(k,2), ....

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n — 1), and this slot is
non-empty then your table is full.
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Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).
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Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).

» Quadratic probing:
h(k,i) = h(k) + c1i + c2i®> mod n.
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Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).

» Quadratic probing:
h(k,i) = h(k) + c1i + c2i®> mod n.

» Double hashing:
h(k,i) = h1(k) + ihz(k) mod n.
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Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).
» Quadratic probing:
h(k,i) = h(k) + c1i + c2i®> mod n.
» Double hashing:
h(k,i) = hi(k) + ih2(k) mod n.

For quadratic probing and double hashing one has to ensure that
the search covers all positions in the table (i.e., for double
hashing h» (k) must be relatively prime to n (teilerfremd); for
quadratic probing c; and c2 have to be chosen carefully).
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Linear Probing

» Advantage: Cache-efficiency. The new probe position is very
likely to be in the cache.
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Linear Probing

» Advantage: Cache-efficiency. The new probe position is very
likely to be in the cache.

» Disadvantage: Primary clustering. Long sequences of
occupied table-positions get longer as they have a larger
probability to be hit. Furthermore, they can merge forming
larger sequences.
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Linear Probing

» Advantage: Cache-efficiency. The new probe position is very
likely to be in the cache.

» Disadvantage: Primary clustering. Long sequences of
occupied table-positions get longer as they have a larger
probability to be hit. Furthermore, they can merge forming
larger sequences.

Lemma 10
Let L be the method of linear probing for resolving collisions:

1 1
2 +1fo<

2w

S
!
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Quadpratic Probing

> Not as cache-efficient as Linear Probing.

> Secondary clustering: caused by the fact that all keys
mapped to the same position have the same probe sequence.
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Quadpratic Probing

> Not as cache-efficient as Linear Probing.

> Secondary clustering: caused by the fact that all keys
mapped to the same position have the same probe sequence.

Lemma 11
Let Q be the method of quadratic probing for resolving collisions:

Q+z1+ln<li )—%
_ 1 1
Q zl_a—i-ln(l_ )—
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Double Hashing

> Any probe into the hash-table usually creates a cache-miss.
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Double Hashing

> Any probe into the hash-table usually creates a cache-miss.

Lemma 12
Let D be the method of double hashing for resolving collisions:

1 1
D+§&1n<1_o()
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Open Addressing

Some values:

Quadratic Probing

Double Hashing

[¢ Linear Probing
Lt L~ Qt Q- D* D~
0.5 1.5 2.5 1.44 2.19 1.39 2
0.9 5.5 50.5 2.85 11.40 2.55 10
0.95 10.5 200.5 3.52 22.05 3.15 20
!
7.6 Hashing
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Open Addressing

#probes

].0 7 T ,
/
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Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open
Addressing scheme.

» The probe sequence h(k,0),h(k,1),h(k,2),... is equally
likely to be any permutation of (0,1,...,n —1).
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Analysis of Idealized Open Address Hashing
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Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.
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Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[Al NAx N - ﬁAi,l]

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 120/265



Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[Al NAx N - ﬁAi,l]
=Pr[A;]-Pr[A2 | A1]-Pr[As3 | Ay nAz]-
...'PI‘[AFl |A1N--e ﬂAifz]
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Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[Al NAx N - ﬁAi,l]
=Pr[A;]-Pr[A2 | A1]-Pr[As3 | Ay nAz]-
...'PI‘[AFl |A1N--e ﬂAifz]

PriX > i]
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Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a

non-empty slot.

PI‘[Al NAx N - ﬁAi,l]

=Pr[A;]-Pr[A2 | A1]-Pr[As3 | Ay nAz]-
-PrlA;i 1 [A1n---NAi7]

m m-1 m-2 m-i+2
PrIX>i]=— - . e —
rl il n n-1 n-2 n—1i+2
| 7.6 Hashing
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Analysis of Idealized Open Address Hashing
Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[Al NAx N - ﬁAi,l]
=Pr[A;]-Pr[Az | A;]-Pr[A3 | Ay n A2]-
-PI‘[AFl |A1N--e ﬂAifz]

m m-1 m-2 m-i+2
PrIX>i]=— - . e —
rl il n n-1 n-2 n—1i+2

myi-1

< PR
_<n>
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Analysis of Idealized Open Address Hashing
Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[Al NAx N - ﬁAi,l]
=Pr[A;]-Pr[Az | A;]-Pr[A3 | Ay n A2]-
-PI‘[AFl |A1N--e ﬂAifz]

m_m—llm—Z_ _m—i+2
n n-1 n-2 "7 n-i+?2
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Analysis of Idealized Open Address Hashing

E[X]
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Analysis of Idealized Open Address Hashing
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Analysis of Idealized Open Address Hashing
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Analysis of Idealized Open Address Hashing
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Analysis of Idealized Open Address Hashing

=14+l +...
1 -«
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Analysis of Idealized Open Address Hashing

Pr(X = i]

2.

iPr[X =i] =

> PriX = i]
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Analysis of Idealized Open Address Hashing

Pr(X = i]

2.

iPr[X =1i] =

> PriX = i]
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Analysis of Idealized Open Address Hashing

Pr(X = i]

> iPr[X =i] =
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Analysis of Idealized Open Address Hashing

Pr(X = i]

2.

iPr[X =1i] =

> PriX = i]
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Analysis of Idealized Open Address Hashing

>, iPrlX = i) - 3 B = |

Pr[X = i]
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Analysis of Idealized Open Address Hashing

>, iPrlX = i) - 3 B = |
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Analysis of Idealized Open Address Hashing

>, iPrlX = i) - 3 B = |

Pr[X = i]

m 7.6 Hashing 19. Oct. 2021
Ernst Mayr, Harald Racke 122/265



Analysis of Idealized Open Address Hashing

>, iPrlX = i) - 3 B = |

Pr[X = i]
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Analysis of Idealized Open Address Hashing

Pr(X = i]

2.

iPr[X =i] =

> PriX = i]
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Analysis of Idealized Open Address Hashing

Pr[X

-]

> APr[X =i] =

> PriX = i]

i

The j-th rec%anglezappeg’rs in Both sums Jﬁtimes7. (j times in the
first due to multiplication with j; and j times in the second for

summands i =1,2,..

- J)
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Analysis of Idealized Open Address Hashing

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 123/265



Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.
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Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k
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number of probes made in an unsuccessful search for k at the
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Let k be the i + 1-st element. The expected time for a search for k
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Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k

. 1 _n
is at most —7;; = ;-
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Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for k

. 1 _n
is at most T=in = n-i-
lmz—:l n _ﬁmz_“l 1 _l i l
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Analysis of Idealized Open Address Hashing

f(x)
f(x) =

==

n

2.

k=m-n+1

m-n m-n+1 n
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Deletions in Hashtables

How do we delete in a hash-table?

» For hashing with chaining this is not a problem. Simply
search for the key, and delete the item in the corresponding
list.
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Deletions in Hashtables

How do we delete in a hash-table?

» For hashing with chaining this is not a problem. Simply
search for the key, and delete the item in the corresponding
list.

» For open addressing this is difficult.
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Deletions in Hashtables

> Simply removing a key might interrupt the probe sequence of
other keys which then cannot be found anymore.
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other keys which then cannot be found anymore.

> One can delete an element by replacing it with a
deleted-marker.
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> One can delete an element by replacing it with a
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» During an insertion if a deleted-marker is encountered an
element can be inserted there.
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Deletions in Hashtables

> Simply removing a key might interrupt the probe sequence of
other keys which then cannot be found anymore.
> One can delete an element by replacing it with a
deleted-marker.
» During an insertion if a deleted-marker is encountered an
element can be inserted there.
> During a search a deleted-marker must not be used to
terminate the probe sequence.
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Deletions in Hashtables

> Simply removing a key might interrupt the probe sequence of
other keys which then cannot be found anymore.
> One can delete an element by replacing it with a
deleted-marker.
» During an insertion if a deleted-marker is encountered an
element can be inserted there.
> During a search a deleted-marker must not be used to
terminate the probe sequence.
» The table could fill up with deleted-markers leading to bad
performance.

> [f a table contains many deleted-markers (linear fraction of
the keys) one can rehash the whole table and amortize the
cost for this rehash against the cost for the deletions.
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Deletions for Linear Probing

» For Linear Probing one can delete elements without using
deletion-markers.
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Deletions for Linear Probing

» For Linear Probing one can delete elements without using
deletion-markers.

» Upon a deletion elements that are further down in the
probe-sequence may be moved to guarantee that they are
still found during a search.
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Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p] < null

2: p < succ(p)

3: while T[p] # null do
4: y —Tlpl

5: T{p] < null

6: p — succ(p)

7 insert(y)

p is the index into the table-cell that contains the object to be
deleted.
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Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p] < null

2: p < succ(p)

3: while T[p] # null do

4: y —Tlpl
5: T{p] < null
6: p — succ(p)
7 insert(y)

p is the index into the table-cell that contains the object to be
deleted.

Pointers into the hash-table become invalid.
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Universal Hashing

Regardless, of the choice of hash-function there is always an input
(a set of keys) that has a very poor worst-case behaviour.
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Therefore, so far we assumed that the hash-function is random so
that regardless of the input the average case behaviour is good.
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Universal Hashing

Regardless, of the choice of hash-function there is always an input
(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so
that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen
randomly from all functions f: U — [0,...,n — 1] is clearly
unrealistic as there are n!Ul such functions. Even writing down
such a function would take |U|logn bits.
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Universal Hashing

Regardless, of the choice of hash-function there is always an input
(a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so
that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen
randomly from all functions f: U — [0,...,n — 1] is clearly
unrealistic as there are n!Ul such functions. Even writing down
such a function would take |U|logn bits.

Universal hashing tries to define a set #{ of functions that is
much smaller but still leads to good average case behaviour when
selecting a hash-function uniformly at random from 7.
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Universal Hashing

Definition 13
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called universal if for all ui,up € U with 1 = u»

Prih(ur) = h(uz)] < +
n

where the probability is w.r.t. the choice of a random
hash-function from set # .

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 130/265



Universal Hashing

Definition 13
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called universal if for all ui,up € U with 1 = u»

Prlh(ur) = h(up)] < + |,
n

where the probability is w.r.t. the choice of a random
hash-function from set 7.

Note that this means that the probability of a collision between
two arbitrary elements is at most %
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Universal Hashing

Definition 14
A class H of hash-functions from the universe U into the set
{0,...,m— 1} is called 2-independent (pairwise independent) if
the following two conditions hold
» Foranykeyu e U,andt € {0,...,n—1} Pr[h(u) =t] = %
i.e., a key is distributed uniformly within the hash-table.
» Forall uy,u» € U with u; # 1, and for any two
hash-positions ty, t>:

Prih(uy) = t1 A h(up) = t2] < % .
n
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Universal Hashing

Definition 14
A class H of hash-functions from the universe U into the set
{0,...,m— 1} is called 2-independent (pairwise independent) if
the following two conditions hold
» Foranykeyu e U,andt € {0,...,n—1} Pr[h(u) =t] = %
i.e., a key is distributed uniformly within the hash-table.
» Forall uy,u» € U with u; # 1, and for any two
hash-positions ty, t>:

Prih(uy) = t1 A h(up) = t2] < % .
n

This requirement clearly implies a universal hash-function.
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Universal Hashing

Definition 15

A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called k-independent if for any choice of £ < k
distinct keys u1,...,uy € U, and for any set of £ not necessarily
distinct hash-positions t1,...,ty:

1

Prih(uy) =t A - Ah(uy) =typ] < i

where the probability is w.r.t. the choice of a random
hash-function from set 7.
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Universal Hashing

Definition 16
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called (u, k)-independent if for any choice of
{ < k distinct keys uy,...,up € U, and for any set of £ not
necessarily distinct hash-positions t1,..., ty:

Prik(uy) = t1 A - A h(uy) = ty] < % ,
where the probability is w.r.t. the choice of a random
hash-function from set H .
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Universal Hashing

Let U := {0,...,p — 1} for a prime p. Let Z,, := {0,...,p — 1}, and
let 75 := {1,...,p — 1} denote the set of invertible elements in Z,,.
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Universal Hashing

Let U := {0,...,p — 1} for a prime p. Let Z,, := {0,...,p — 1}, and
let 75 := {1,...,p — 1} denote the set of invertible elements in Z,,.

Define
hgp(x):= (ax + b mod p) mod n
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Universal Hashing

Let U := {0,...,p — 1} for a prime p. Let Z,, := {0,...,p — 1}, and
let 75 := {1,...,p — 1} denote the set of invertible elements in Z,,.

Define
hgp(x):= (ax + b mod p) mod n

Lemma 17
The class
H ={haplaeclbel,}

is a universal class of hash-functions from U to {0,...,n — 1}.
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Universal Hashing
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Universal Hashing
Proof.

Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.
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Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b #ay + b (mod p)
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Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b #ay + b (mod p)

If x = y then (x — y) # 0 (mod p).
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Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b #ay + b (mod p)

If x = y then (x — y) # 0 (mod p).
Multiplying with a # 0 (mod p) gives

a(x—-y)#0 (modp)
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Universal Hashing

Proof.
Let x,» € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b #ay + b (mod p)

If x = y then (x — y) # 0 (mod p).
Multiplying with a # 0 (mod p) gives
a(x-y)#0 (modp)

where we use that 7, is a field (Korper) and, hence, has no
zero divisors (nullteilerfrei).
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Universal Hashing

» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.
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and ty:
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Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given t,

and ty:
ty=ax+b (mod p)
ty=ay+b (mod p)
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ty=ay+b (mod p)



Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given t,

and ty:
ty=ax+b (mod p)
ty=ay+b (mod p)
tx —ty=alx-y) (mod p)
ty=ay+b (mod p)
a=(ty—ty)(x-»)" (mod p)

b=ty -ay (mod p)
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # {y.
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # {y.

Therefore, we can view the first step (before the mod n-

operation) as choosing a pair (ty, ty), ty # t, uniformly at
random.
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # {y.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (ty, ty), ty # t, uniformly at

random.

What happens when we do the mod n operation?
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # {y.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (ty, ty), ty # t, uniformly at
random.

What happens when we do the mod n operation?

Fix a value ty. There are p — 1 possible values for choosing .
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Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # {y.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (ty, ty), ty # t, uniformly at
random.

What happens when we do the mod n operation?

Fix a value ty. There are p — 1 possible values for choosing .

From the range O,...,p — 1 the values ty,tx + n,tx +2n,... map
to ty after the modulo-operation. These are at most [p/n] values.
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Universal Hashing

As ty # by there are

[l
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Universal Hashing

As ty # by there are

[%]—1s%+n_1—1
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Universal Hashing

As ty # by there are

[%]—15%+n_1—15p_1
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Universal Hashing

As ty # by there are

[%]_135 n-1 _p—l

possibilities for choosing t,, such that the final hash-value creates
a collision.
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Universal Hashing

As ty # by there are

[%]—15% n-1 _p—l

possibilities for choosing t,, such that the final hash-value creates
a collision.

This happens with probability at most %
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Universal Hashing
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Universal Hashing

It is also possible to show that #{ is an (almost) pairwise
independent class of hash-functions.

[ tx mod n=h, :|
: A
ty mod n=h»
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Universal Hashing

It is also possible to show that #{ is an (almost) pairwise
independent class of hash-functions.

2]

T plp-1)

2

tx mod n=h;
m = Prtxattyez%, A

ty mod n=h»
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Universal Hashing

It is also possible to show that 7{ is an (almost) pairwise
independent class of hash-functions.

2]

T plp-1)

2

tx mod n=h;
p(p . 1) = Prtxqttyelf, A

ty mod n=h»

Note that the middle is the probability that h(x) = h; and

h(y) = h>. The total number of choices for (tx,t,) is p(p — 1).
The number of choices for iy (ty) such that t,y mod n = h;

(ty mod n = hy) lies between | 2| and [2].
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Universal Hashing

Definition 18
Letd e N; g = (d+1)n be aprime;and letd € {0,...,q — 1}9+L,
Define for x € {0,...,q — 1}

d
ha(x) = ( > aix' mod q) mod n .
i=0
Let Hd:={hg|ac{0,...,q— 119"}, The class H4 is
(e,d + 1)-independent.

Note that in the previous case we had d = 1 and chose a4 + 0.
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Universal Hashing
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Universal Hashing

For the coefficients @ € {0,...,q — 1}9*! let f; denote the
polynomial

e
2

I
M=

aixi) mod g

T
o
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Universal Hashing

For the coefficients @ € {0,...,q — 1}9*! let f; denote the
polynomial

e
2

I
M=

aixi> mod g

T
o

The polynomial is defined by d + 1 distinct points.
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t1,...,tp denote the corresponding hash-function values.
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Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = {hg € H | ha(x;) =tiforallie {1,...,0}}
Then
ha cAl = hg = fz mod n and

n
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by fixing d + 1 points.
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Universal Hashing
Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = (hg e H | ha(xi) =t forallie {1,...,¢}}
Then
hg € Al hg = fz mod n and

falxi) efti+a-n|oei0,...,[4]-1}}
—Bi

In order to obtain the cardinality of A? we choose our polynomial
by fixing d + 1 points.
We first fix the values for inputs x1,...,xy.

We have
[B1l - ... Byl

possibilities to do this (so that hg(x;) = t;).



Universal Hashing

Now, we choose d — £ + 1 other inputs and choose their value
arbitrarily. We have g4~ {*1 possibilities to do this.
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Universal Hashing

Now, we choose d — £ + 1 other inputs and choose their value
arbitrarily. We have g4~ {*1 possibilities to do this.

Therefore we have

Byl «... Byl - g4t < [%]f  gd—t+1

possibilities to choose a such that h; € Ap.

!
7.6 Hashing

m Ernst Mayr, Harald Racke 143/265



Universal Hashing

Therefore the probability of choosing h; from Ay is only
[ﬂ]ﬁ . qd——€+1
n
qd+1
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Universal Hashing

Therefore the probability of choosing h; from Ay is only

[%]ﬁ i qd——€+1 (WTn)ﬂ
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Universal Hashing

Therefore the probability of choosing h; from Ay is only

[%]ﬁ.qd——h—l (WTTL)€< q+1’l)€_ 1

nt
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Universal Hashing

Therefore the probability of choosing h; from Ay is only

[%]ﬁ.qd——h—l (WTTL)€< q+1’l)€_ 1

nt

1\¢ 1
s(1+?) gy
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Universal Hashing

Therefore the probability of choosing h; from Ay is only

(410 q " (MY g+m )L
1 3 1 e
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Universal Hashing

Therefore the probability of choosing h; from Ay is only

[410. g2~ (0 g4n ) 1
1\¢ 1 e
< (1 + ?) . P < 7 .

This shows that the # is (e,d + 1)-universal.

The last step followed from g = (d + 1)n,and £ < d + 1.
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Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no
delete). Then we may want to design a simple hash-function that
maps all these keys to different memory locations.

universe

of keys

S (actual keys)

[elz[5]s[s[x]s]x]
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions
is

—_

E[#Collisions] = (Z@) =
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is
E[#Collisions] = (m) . 1 .
2 n

If we choose n = m? the expected number of collisions is strictly
less than %
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is
E[#Collisions] = (m) . 1 .
2 n

If we choose n = m? the expected number of collisions is strictly
less than %

Can we get an upper bound on the probability of having
collisions?
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Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of collisions

is
E[#Collisions] = (m) . 1 .
2 n

If we choose n = m? the expected number of collisions is strictly
less than %

Can we get an upper bound on the probability of having
collisions?

The probability of having 1 or more collisions can be at most % as
otherwise the expectation would be larger than %
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Perfect Hashing

We can find such a hash-function by a few trials.
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Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n = m? is very very high.
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Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of n = m? is very very high.

We construct a two-level scheme. We first use a hash-function that
maps elements from S to m buckets.
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Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of n = m? is very very high.

We construct a two-level scheme. We first use a hash-function that
maps elements from S to m buckets.

Let m; denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that
maps the elements of the bucket into a table of size mj The
second function can be chosen such that all elements are mapped
to different locations.
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Perfect Hashing

U
universe ‘\
of keys

[s]eta] o] [2]2[s]ia] [2] ] ]ts]ts]| o[ 2tr] o]

m3 m3 mg mg
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Perfect Hashing

The total memory that is required by all hash-tables is O(>; m?).
Note that m; is a random variable.

E[%mi]
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Perfect Hashing

The total memory that is required by all hash-tables is O(>; m?).
Note that m; is a random variable.

E[%mﬂ=E[2%<n;j)+%mj}
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Perfect Hashing

The total memory that is required by all hash-tables is O(>; m?).
Note that m; is a random variable.

[ o] = e [25 () < 3m]
:2E[Z<n;j>] +E[§mj]

J
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Perfect Hashing

The total memory that is required by all hash-tables is O(>; m?).
Note that m; is a random variable.

E[%mﬂ=E[2%<n;j>+§mj]

:21—:[%(7’2”)] +E[%mj]

The first expectation is simply the expected number of collisions,
for the first level. Since we use universal hashing we have
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Perfect Hashing

The total memory that is required by all hash-tables is O(>; m?).
Note that m; is a random variable.

E[%mﬂ=E[2%<n;j>+§mj]

:21—:[%(7’2”)] +E[%mj]

The first expectation is simply the expected number of collisions,
for the first level. Since we use universal hashing we have

—2<m)1+m—2m—1.
2 )/m
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Perfect Hashing

We need only @ (m) time to construct a hash-function h with
2 m? = O(4m), because with probability at least 1/2 a random
function from a universal family will have this property.

Then we construct a hash-table h; for every bucket. This takes
expected time O(m;) for every bucket. A random function h; is
collision-free with probability at least 1/2. We need O(m ) to test
this.

We only need that the hash-functions are chosen from a universal
family!!!
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Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time
in a dynamic scenario.
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Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search time
in a dynamic scenario.
» Two hash-tables T7[0,...,n—1] and T>[0,...,n — 1], with
hash-functions h, and h».
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Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search time
in a dynamic scenario.

» Two hash-tables T7[0,...,n—1] and T>[0,...,n — 1], with
hash-functions h, and h».

» An object x is either stored at location T7[h(x)] or
T2[ho(x)].
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Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search time
in a dynamic scenario.

» Two hash-tables T7[0,...,n—1] and T>[0,...,n — 1], with
hash-functions h, and h».

» An object x is either stored at location T7[h(x)] or
T2[ho(x)].

> A search clearly takes constant time if the above constraint is
met.
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Cuckoo Hashing

Insert:
(o] (o]
IZ1 o |
x| [ xo |
IZ1 o |
o o |
x4 | | x6 |
1 | o |
o | x|
IZ1 o |
T T
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Cuckoo Hashing

Insert:
(o] (o]
IZ1 o |
x—)x—7 [ xo|
IZ1 o |
o o |
x4 | | x6 |
1 | o |
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Cuckoo Hashing

Insert:
(o] (o]
IZ1 o |
x—)T x—g
a . |z
%) %)
x4 | | x6 |
1 | o |
o | x|
IZ1 o |
T T
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Cuckoo Hashing

Insert:
(o] (o]
o o |
x —)T x—9
g N
%] @
x4 X6 x|
1 | o |
o | [ x3 |
o | o |
T 1>
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Cuckoo Hashing

Insert:
(o] (o]
o o |
x —)T x—g
o | > o |
— .1*; —
%) %)
x4 x|
| x6 | o |
o | [ x3 |
o | o |
T T
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Cuckoo Hashing

Algorithm 13 Cuckoo-Insert(x)
1: if Ti[h1(x)] = x Vv To[h2(x)] = x then return
2: steps — 1
3: while steps < maxsteps do
4 exchange x and T1[h;(x)]
5: if x = null then return
6: exchange x and Tx[ho(x)]
7.
8
9

10:

if x = null then return
steps — steps +1
: rehash() // change hash-functions; rehash everything
Cuckoo-Insert(x)
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Cuckoo Hashing

> We call one iteration through the while-loop a step of the
algorithm.
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Cuckoo Hashing

> We call one iteration through the while-loop a step of the
algorithm.

> We call a sequence of iterations through the while-loop
without the termination condition becoming true a phase of
the algorithm.
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Cuckoo Hashing

> We call one iteration through the while-loop a step of the
algorithm.

> We call a sequence of iterations through the while-loop
without the termination condition becoming true a phase of
the algorithm.

> We say a phase is successful if it is not terminated by the
maxstep-condition, but the while loop is left because
x = null.
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Cuckoo Hashing

What is the expected time for an insert-operation?
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Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop
(that is then terminated after maxsteps steps).
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Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop
(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that
touches s different keys?
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Cuckoo Hashing: Insert
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Cuckoo Hashing: Insert

X = X] ==l X1

T 2 1>
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Cuckoo Hashing: Insert

X = X] w3l X] P X2
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Cuckoo Hashing: Insert

— X7 —

X = X] m——3pp X] X2
X3
X3

T X4
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Cuckoo Hashing: Insert

X2

X = X] m——3ppl X1 X2
X3
— X4 —
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Cuckoo Hashing: Insert

(- x (—
X = X] we—pl X1 2 X2

X3
(— x4 (—

5% X.
il X5 il
X5

T1 X6
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Cuckoo Hashing: Insert

X2

X=X1—>

X2
x. —
4 X1

X6
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Cuckoo Hashing: Insert

X
X = X1 * 2
X3
X4
X5
P
sl X6
X
X7 s
X7
T X8
7.6 Hashing
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Cuckoo Hashing: Insert

X = X| =3l X1

X2
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Cuckoo Hashing: Insert

X = X] ==l X1

X2
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Cuckoo Hashing: Insert

X = X| =3l X1

X2
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Cuckoo Hashing: Insert

X2

X = X] m——3pp X2 |
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Cuckoo Hashing: Insert
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Cuckoo Hashing: Insert

X11 T>
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Cuckoo Hashing: Insert

X11
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Cuckoo Hashing: Insert

-
__-';67

X7 =
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Cuckoo Hashing

X10 X7
| ] n L] | ]
DxeﬁszX1l—lle—lxsl—'ﬂxu—lﬁl—lxe{j
L /L 1L 1L 1L 1L 1]
P1 P2 P3 P4 Ps Pe p7 P8 P9

A cycle-structure of size s is defined by
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Cuckoo Hashing

X10 X7
| ] n L] | ]
Dxeﬁxel—lm|—1x21—|x31—'1x41—|xr»1ﬁxe{j
L L L 1L 1L L]
pP1 P2 P3 P4 Ps P6 p7 P8 P9

A cycle-structure of size s is defined by

> s — 1 different cells (alternating btw. cells from T} and T>).

‘m 7.6 Hashing
Ernst Mayr, Harald Racke

157/265



Cuckoo Hashing

X10 X7
| ] n L] | ]
Dxeﬁxel—lm|—1x21—|x31—'7x41—|xr»1ﬁxe{j
L L L 1L 1L L]
pP1 P2 P3 P4 Ps P6 p7 P8 P9

A cycle-structure of size s is defined by
> s — 1 different cells (alternating btw. cells from T} and T>).

> s distinct keys x = x1,x2,...,Xs, linking the cells.
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Cuckoo Hashing

X10 X7
| ] n L] | ]
Dxeﬁxm—lml—lxm—lxal—'ﬁxu—lxr»lﬁxem
L /L 1L 1L 1L 1L 1]
P1 P2 P3 P4 Ps Pe p7 1 433 P9

A cycle-structure of size s is defined by
> s — 1 different cells (alternating btw. cells from T} and T>).
> s distinct keys x = x1,x2,...,Xs, linking the cells.

» The leftmost cell is “linked forward” to some cell on the right.
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Cuckoo Hashing

X10 X7
| ] n L] | ]
Dxeﬁxsl—lxll—lxm—lxar'ﬁxu—lxr»lﬁxem
L /L 1L 1L 1L 1L 1]
P1 p2 P3 P4 pPs Pe | g 14 P9

A cycle-structure of size s is defined by
> s — 1 different cells (alternating btw. cells from T} and T>).
> s distinct keys x = x1,x2,...,Xs, linking the cells.
» The leftmost cell is “linked forward” to some cell on the right.
>

The rightmost cell is “linked backward” to a cell on the left.
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Cuckoo Hashing

X10 X7
| ] n L] | ]
Dxeﬁxw—lml—lxm—lxm—'ﬁxﬂ—lxr»l—lxei‘
L /L 1L 1L 1L 1L 1]
P1 p2 P3 P4 pPs Pe | g 14 P9

A cycle-structure of size s is defined by
> s — 1 different cells (alternating btw. cells from T} and T>).

s distinct keys x = x1,x2,...,Xs, linking the cells.

>

» The leftmost cell is “linked forward” to some cell on the right.
» The rightmost cell is “linked backward” to a cell on the left.
>

One link represents key x; this is where the counting starts.
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Cuckoo Hashing

A cycle-structure is active if for every key x (linking a cell p; from
Ty and a cell p; from T>) we have

hi(xp) = pi and ha(xy) = pj
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Cuckoo Hashing

A cycle-structure is active if for every key x (linking a cell p; from
Ty and a cell p; from T») we have

hi(xyp) = pi and ha(xp) = pj

Observation:

If during a phase the insert-procedure runs into a cycle there
must exist an active cycle structure of size s > 3.
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

This probability is at most % since hp is a (u, s)-independent
hash-function.
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

This probability is at most % since hp is a (u, s)-independent
hash-function.

What is the probability that all keys in the cycle-structure of size s
correctly map into their T»-cell?
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

This probability is at most S since hp is a (u, s)-independent

hash-function.

What is the probability that all keys in the cycle-structure of size s
correctly map into their T»-cell?

This probability is at most 5 since hy is a (u, s)-independent
hash-function.
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Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

This probability is at most S since hp is a (u, s)-independent
hash-function.

What is the probability that all keys in the cycle-structure of size s
correctly map into their T»-cell?

This probability is at most 5 since hy is a (u, s)-independent
hash-function.

These events are independent.
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Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at
2
most ;.
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Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at
2
most ;.

What is the probability that there exists an active cycle structure
of size s?
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Cuckoo Hashing

The number of cycle-structures of size s is at most

53 . nsfl X ms—l
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Cuckoo Hashing

The number of cycle-structures of size s is at most

53 . nsfl _ms—l )

> There are at most s2 possibilities where to attach the forward
and backward links.
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Cuckoo Hashing

The number of cycle-structures of size s is at most

53 . nsfl _ms—l )

> There are at most s2 possibilities where to attach the forward
and backward links.

> There are at most s possibilities to choose where to place key
X.
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Cuckoo Hashing

The number of cycle-structures of size s is at most

53 . nsfl _ms—l )

> There are at most s2 possibilities where to attach the forward
and backward links.

> There are at most s possibilities to choose where to place key
X.

> There are m*~! possibilities to choose the keys apart from x.
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Cuckoo Hashing

The number of cycle-structures of size s is at most

53 . nsfl _ms—l )

v

There are at most s2 possibilities where to attach the forward
and backward links.

> There are at most s possibilities to choose where to place key
X.

v

There are m*~! possibilities to choose the keys apart from x.

v

There are n°~! possibilities to choose the cells.
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Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most
o 2

53 S lomsL. 5
n S
s=3
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Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

0 w2 oy e s

253-n5‘1-m5‘1-— 7233( )
nm

s=3 s=3
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Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

S ot S s (my
3. .,5-1, ,5-1 _ 3t

35 n m 7S s (n)

s=

IA
3
N
Mg
17
w
—
e
4+ | =
m
N———
7Y

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 162/265



Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

S ot S s (my
3. .,5-1, ,5-1 _ 3t

35 n m 7S s (n)

s=

IA
3
N
Mg
17
w
—
e
4+ | =
m
N———
7Y
IA
e
—
§\H
nNo
N———
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Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

Sopsloms1. uZ _ “2 Z 3 (E)S
— ns  nm <= n
s=3 s=3
2 ® s
< — s <0
m? sga l+e m?

Here we used the fact that (1 + €)m < n.
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Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

*© 2

3 s—1 s—1 H _ H . 3<m>S
S .n .m . P — S -
— n2s nmz n
s=3 s=3
2 X K
o2 () =0 ()
< —F <
_mZZS 1+e€ =0 m?

Here we used the fact that (1 + €)m < n.

Hence,
1
Prlcycle] = O (—2>
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Cuckoo Hashing

Now, we analyze the probability that a phase is not successful
without running into a closed cycle.
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Cuckoo Hashing

X7
< (R
] | ]
Dxelﬁxm—lm|—1x21—|x31—'1x41—|xr»1ﬁxe{j
L L L L L L L]
pP1 P2 P3 P4 Ps P6 p7 P8 P9

Sequence of visited keys:
X = X1, X2, X3, X4, X5, X6, X7, X3, X2, X1 = X, X8, X9, ...
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Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting
with x in the order that they are visited during the phase.
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Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting
with x in the order that they are visited during the phase.

Lemma 19
If the sequence is of length p then there exists a sub-sequence of
at least ’%2 keys starting with x of distinct keys.
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Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the
first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
x:xqu2_>..._>xi_>x1,_>xril_>..._>x1_>xi+1_>..._>xj

As v < i—1 the length p of the sequence is

p=i+r+((-i)<i+j-1.
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Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
x:xqu2_>..._>xi_>x1,_>xril_>..._>x1_>xi+1_>..._>xj

As v < i—1 the length p of the sequence is

p=i+r+(-i)<i+j—-1.

Either sub-sequence x; — x» — - - - — Xx; or sub-sequence

2
X1 — Xi41 — -+ - — X; has at least % elements. O
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pP1 P2 p3 P4 Ps P6 p7 P8 P9
’:’ X1 X2 X3 X4 [ X5 X6 X7 X8 {:‘
x | LI LI LI LI LI LI
pP1 P2 P3 P4 Ps P6 p7 P8 P9

A path-structure of size s is defined by
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Cuckoo Hashing

(el paer e mero s

p9
Dxlmx2ﬁx3mx4ﬁx5mx6ﬁx7mx8{j
P9

A path-structure of size s is defined by

> s + 1 different cells (alternating btw. cells from T; and T>).
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(el paer e mero s

p9
Dxlmx2ﬁx3mx4ﬁx5mx6ﬁx7mx8{j
P9

A path-structure of size s is defined by

> s + 1 different cells (alternating btw. cells from T; and T>).

» s distinct keys x = x1,x2,...,Xs, linking the cells.

‘m 7.6 Hashing
Ernst Mayr, Harald Racke

167/265



Cuckoo Hashing

A path-structure of size s is defined by
> s + 1 different cells (alternating btw. cells from T; and T>).
» s distinct keys x = x1,x2,...,Xs, linking the cells.

» The leftmost cell is either from T; or T>.

‘m 7.6 Hashing
Ernst Mayr, Harald Racke

167/265



Cuckoo Hashing

A path-structure is active if for every key xy (linking a cell p; from
Ty and a cell p; from T») we have

hi(xyp) = pi and ha(xp) = pj

Observation:

If a phase takes at least t steps without running into a cycle there
must exist an active path-structure of size (2t + 2)/3.
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The prozbability that a given path-structure of size s is active is at

u
most P

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 169/265
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The prozbability that a given path-structure of size s is active is at
most ;.
The probability that there exists an active path-structure of size s
is at most

ms—l . H

n2s

2. n5+1_
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The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size s

is at most

2

2. n5+1_m5—1 . H
n25

s—1
2 m)

<2 —

v (5
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The prozbability that a given path-structure of size s is active is at
most ;.
The probability that there exists an active path-structure of size s
is at most

2. n5+1_
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Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at
most ;.
The probability that there exists an active path-structure of size s
is at most
2

s—-1 H

n2s

m s—1 1 s—1
< 2u? (—) < 2u? < )

H n H 1+e€

Plugging in s = (2t + 2)/3 gives

s+1,

2-n m
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Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size s
is at most

2
s—-1 H

nes
m s—1 1 s—1
SZM(Z) S2I12<1+e>

Plugging in s = (2t + 2)/3 gives

, 1 (2t+2)/3-1
=2u (1 + e)

s+1,

2-n m
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Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size s
is at most

2
s—-1 H

nes
m s—1 1 s—1
SZM(Z) S2I12<1+e>

Plugging in s = (2t + 2)/3 gives

L 1 @t (1 @D
= 2H (1+e) = 2H (1+e) '

s+1,

2-n m
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Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2.
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We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
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Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]

< Pr[3 active path-structure of size at least m%“z]
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We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least Z22IePs+2 ]

< Pr[3 active path-structure of size at least £ + 1]
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We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least m%“z]
< Pr[3 active path-structure of size at least £ + 1]

< Pr[3 active path-structure of size exactly € + 1]
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Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least m%“z]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

1 ¢
= 2“2(1+€)
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Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least m%“z]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

4
S2“2(1J1r€) S#
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Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least m%“z]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

4
S2“2(1J1r€) S%

by choosing £ > log (ﬁ)/log (1) = log (2u?m?) /log (1 + €)
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Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is at
most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least m%“z]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

4
S2“2(1J1r€) S%

by choosing £ > log (ﬁ)/log (1) = log (2u?m?) /log (1 + €)

This gives maxsteps = O (logm).
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Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and

Pr[unsuccessful | no cycle] < O<W>
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Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and

Pr[unsuccessful | no cycle] < O<W>

Observe that

Pr[successful] = Pr[no cycle] — Pr[unsuccessful | no cycle]
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So far we estimated
1
Pr[cycle] < O(W>

and

Pr[unsuccessful | no cycle] < O<W>

Observe that

Pr[successful] = Pr[no cycle] — Pr[unsuccessful | no cycle]

> ¢ - Pr[no cycle]
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Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and
Pr{unsuccessful | no cycle] < (9(

)
Observe that

Pr[successful] = Pr[no cycle] — Pr[unsuccessful | no cycle]

> ¢ - Pr[no cycle]
for a suitable constant ¢ > 0.

‘m 7.6 Hashing
Ernst Mayr, Harald Racke 171/265



Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:
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= Z Pr[search takes at least t steps | phase successful]
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We have

Pr[search at least t steps | successful]
= Pr[search at least t steps A successful]/Pr[successful]
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We have
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Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

We have

Pr[search at least t steps | successful]
= Pr[search at least t steps A successful]/Pr[successful]

IA

1
- Pr[search at least t steps A successful]/Pr[no cycle]

IA

%Pr[search at least t steps A no cycle]/Pr[no cycle]

1
= Pr[search at least t steps | no cycle] .
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Hence,

E[number of steps | phase successful]
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Hence,

E[number of steps | phase successful]

1
< - Z Pr[search at least t steps | no cycle]
t>1
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Cuckoo Hashing

Hence,

E[number of steps | phase successful]

1
< - Z Pr[search at least t steps | no cycle]
t>1

(2t-1)/3
c t; 2H <1 + e>

I/\
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Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 o 1 \ee-ns 1 o0 1 \ees)-1/3
nglZu <1+e> —CEOZIJ <1+e>
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Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 o 1 \ee-ns 1 o0 1 \ees)-1/3
chlzu <1+e> —CEOZIJ <1+e>

- e % (Trems)
e+l S N1 +e)?3
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Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 2 i 2t-1/3 _ 1 > L 2(t+1)-1)/3
Sctglzu <1+€> _Cté)zu <1+€>
- 2p? 1 L
T c(1+€)l/3 t20<(1+e)2/3> =0(1) .
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Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 oL \ee=bs 1 o0 1 \ees)-1/3
SC%M(HE) _ctg()Z“(lJre)

B 2u? ( 1
e+l S N1 +e)?3

)=o) .

This means the expected cost for a successful phase is constant
(even after accounting for the cost of the incomplete step that
finishes the phase).
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Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).
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Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = @ (1/m?)

(probability @(1/m?) of running into a cycle and probability
O (1/m?) of reaching maxsteps without running into a cycle).
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Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = @ (1/m?)
(probability @(1/m?) of running into a cycle and probability

O (1/m?) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant
time per insertion. It fails with probability p := O(1/m).
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Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = @ (1/m?)
(probability @(1/m?) of running into a cycle and probability
O (1/m?) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant
time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is
Siz1p' =1 - 1= 1% = 0(p).
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Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = @ (1/m?)
(probability @(1/m?) of running into a cycle and probability
O (1/m?) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant
time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is

Ziz1lﬂi=ﬁ—1=%= (p).

Therefore the expected cost for re-hashes is O(m) - O(p) = O(1).
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Let Y; denote the event that the i-th rehash occurs and does not
lead to a valid configuration (i.e., one of the m + 1 insertions
fails):
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Formal Proof

Let Y; denote the event that the i-th rehash occurs and does not
lead to a valid configuration (i.e., one of the m + 1 insertions
fails):

Pr[Yi|Zl < (m+1)-0(1/m?) <O(1/m) =:p .
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Let Y; denote the event that the i-th rehash occurs and does not
lead to a valid configuration (i.e., one of the m + 1 insertions
fails):
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, The 0-th (re)hash is the initial |
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Let Xf, se{l,...,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[X]] = E[steps | phase successful] - Pr[phase sucessful]

+ maxsteps - Pr[not sucessful]



Formal Proof

Let Y; denote the event that the i-th rehash occurs and does not
lead to a valid configuration (i.e., one of the m + 1 insertions
fails):

Pr[Yi|Zl < (m+1)-0(1/m?) <O(1/m) =:p .

Let Z; denote the event that the i-th rehash occurs:

, The 0-th (re)hash is the initial |

! icrtlasnef:?uration when doing the : Pr[Z;] < Pr[AE';%)Yj] < Pi
1 . 1

Let Xf, se{l,...,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[X]] = E[steps | phase successful] - Pr[phase sucessful]

+ maxsteps - Pr[not sucessful] = O(1) .
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The expected cost for all rehashes is
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Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E[>, >, Zixt] = >, > ElZ:] - EIX]]
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The expected cost for all rehashes is

E[>. > 7iX;]

Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E [Zl Zs ZiXé] = Zi ZS E[Zi] - E[Xgl]
<O(m) - Zipi
<0>m) - IL
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The expected cost for all rehashes is

E[>. > 7iX;]

Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E[>, >, Zixt] = >, > ElZ:] - EIX]]

<O@m)- Y p'
=0(1) .
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Cuckoo Hashing

What kind of hash-functions do we need?
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What kind of hash-functions do we need?

Since maxsteps is @(logm) the largest size of a path-structure or
cycle-structure contains just ©(log m) different keys.
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Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is @(logm) the largest size of a path-structure or
cycle-structure contains just ©(log m) different keys.

Therefore, it is sufficient to have (u, ®(logm))-independent
hash-functions.
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Cuckoo Hashing

How do we make sure thatn > (1 + e)m?
> letx:=1/(1+€).
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Cuckoo Hashing

How do we make sure that n > (1 + €)m?
> Let x:=1/(1+¢€).
» Keep track of the number of elements in the table. When
m = oxn we double n and do a complete re-hash
(table-expand).
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Cuckoo Hashing

How do we make sure that n > (1 + €)m?

> Let xx:=1/(1+¢€).

» Keep track of the number of elements in the table. When
m = oxn we double n and do a complete re-hash
(table-expand).

» Whenever m drops below an/4 we divide n by 2 and do a
rehash (table-shrink).
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Cuckoo Hashing

How do we make sure that n > (1 + €)m?

> Let xx:=1/(1+¢€).

» Keep track of the number of elements in the table. When
m = oxn we double n and do a complete re-hash
(table-expand).

» Whenever m drops below an/4 we divide n by 2 and do a
rehash (table-shrink).

> Note that right after a change in table-size we have
m = an/2. In order for a table-expand to occur at least

an/?2 insertions are required. Similar, for a table-shrink at
least xn/4 deletions must occur.
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Cuckoo Hashing

How do we make sure that n > (1 + €)m?

> Let xx:=1/(1+¢€).

» Keep track of the number of elements in the table. When
m = oxn we double n and do a complete re-hash
(table-expand).

» Whenever m drops below an/4 we divide n by 2 and do a
rehash (table-shrink).

> Note that right after a change in table-size we have
m = an/2. In order for a table-expand to occur at least
an/?2 insertions are required. Similar, for a table-shrink at
least «n/4 deletions must occur.

> Therefore we can amortize the rehash cost after a change in
table-size against the cost for insertions and deletions.
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Cuckoo Hashing

Lemma 20
Cuckoo Hashing has an expected constant insert-time and a
worst-case constant search-time.
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Cuckoo Hashing

Lemma 20
Cuckoo Hashing has an expected constant insert-time and a
worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of
keys/total number of hash-table slots) is at most ﬁ

1 The 1/(2(1 + €)) fill-factor comes from the fact that the total hash-table I
, !'is of size 2n (because we have two tables of size n); moreover m < .
| (1 +é)n. ;
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8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:
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A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(xi, ..., xu): Creates a data-structure that contains
just the elements x,..., xy.
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8 Priority Queues
A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(xi, ..., xu): Creates a data-structure that contains
just the elements x,..., xy.

> S.insert(x): Adds element x to the data-structure.
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8 Priority Queues
A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(xi, ..., xu): Creates a data-structure that contains
just the elements x,..., xy.

> S.insert(x): Adds element x to the data-structure.

> element S. minimum(): Returns an element x € S with
minimum key-value key[x].
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A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(xi, ..., xu): Creates a data-structure that contains
just the elements x,..., xy.

> S.insert(x): Adds element x to the data-structure.

> element S. minimum(): Returns an element x € S with
minimum key-value key[x].

> element S. delete-min(): Deletes the element with minimum
key-value from S and returns it.
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8 Priority Queues
A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(xi, ..., xu): Creates a data-structure that contains
just the elements x,..., xy.

> S.insert(x): Adds element x to the data-structure.

> element S. minimum(): Returns an element x € S with
minimum key-value key[x].

> element S. delete-min(): Deletes the element with minimum
key-value from S and returns it.

> boolean S.is-empty(): Returns true if the data-structure is
empty and false otherwise.
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8 Priority Queues
A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(xi, ..., xu): Creates a data-structure that contains
just the elements x,..., xy.

> S.insert(x): Adds element x to the data-structure.

> element S. minimum(): Returns an element x € S with
minimum key-value key[x].

> element S. delete-min(): Deletes the element with minimum
key-value from S and returns it.

> boolean S.is-empty(): Returns true if the data-structure is
empty and false otherwise.

Sometimes we also have
> S.merge(S’): S:=SuS’; S =0.
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8 Priority Queues

An addressable Priority Queue also supports:
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8 Priority Queues

An addressable Priority Queue also supports:

» handle S. insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.
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8 Priority Queues

An addressable Priority Queue also supports:

» handle S. insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.

> S.delete(h): Deletes element specified through handle h.
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8 Priority Queues

An addressable Priority Queue also supports:

» handle S. insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.

> S.delete(h): Deletes element specified through handle h.

» S.decrease-key(h, k): Decreases the key of the element
specified by handle h to k. Assumes that the key is at least k
before the operation.
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Dijkstra’s Shortest Path Algorithm

Algorithm 1 Shortest-Path(G = (V,E,d),s € V)

1: Input: weighted graph G = (V,E, d); start vertex s;

2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue

4: forallv e V\ {s} do

5: v.key «— oo;

6: hy < S.insert(v);

7: s.key < 0; S.insert(s);

8: while S.is-empty() = false do

9: v < S.delete-min();

10: forall x e Vs.t. (v,x) € Edo

11: if x.key > v.key +d(v, x) then

12: S.decrease-key(hy,v.key +d (v, x));
13: x.key — v.key +d (v, x);
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Prim’s Minimum Spanning Tree Algorithm

Algorithm 2 Prim-MST(G = (V,E,d),s € V)

1: Input: weighted graph G = (V,E, d); start vertex s;
2: Output: pred-fields encode MST;

3: S.build(); // build empty priority queue

4: forallveV)\ {s} do

5 v.key « oo;

6: hy < S.insert(v);

7: s.key < 0; S.insert(s);

8: while S.is-empty() = false do

9: v — S.delete-min();
10: forall x e Vs.t. {v,x} € Edo
11: if x.key > d(v, x) then
12: S.decrease-key(hy,d (v, x));
13: x.key — d(v, x);
14: x.pred — v;
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Analysis of Dijkstra and Prim

Both algorithms require:

v

1 build() operation

|V| insert() operations

V| delete-min() operations
|V] is-empty() operations

vV v.vY

|E| decrease-key() operations
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Analysis of Dijkstra and Prim

Both algorithms require:

v

1 build() operation

|V| insert() operations

V| delete-min() operations
|V] is-empty() operations

vV v.vY

|E| decrease-key() operations

How good a running time can we obtain?

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 184/265



8 Priority Queues

Binary Binomial Fibonacci
Operation Heap BST Heap Heap®
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1
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Note that most applications use build() only to create an empty heap
which then costs time 1.
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The standard version of binary heaps is not addressable, and hence
does not support a delete operation.



8 Priority Queues

Binary Binomial Fibonacci
Operation Heap BST Heap Heap®
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

Note that most applications use build() only to create an empty heap

which then costs time 1.

The standard version of binary heaps is not addressable, and hence
does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.




8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time
O((IV] + |E]) log [V]).

Using Fibonacci Heaps, Prim and Dijkstra run in time
O(IV[log V] + |E]).
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8.1 Binary Heaps

> Nearly complete binary tree; only the last level is not full, and
this one is filled from left to right.
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8.1 Binary Heaps
> Nearly complete binary tree; only the last level is not full, and
this one is filled from left to right.

> Heap property: A node’s key is not larger than the key of one
of its children.
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Binary Heaps

Operations:
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Binary Heaps

Operations:

» minimum(): return the root-element. Time O(1).
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Binary Heaps

Operations:
» minimum(): return the root-element. Time O(1).

> is-empty(): check whether root-pointer is null. Time O(1).
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8.1 Binary Heaps

Maintain a pointer to the last element x.
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8.1 Binary Heaps
Maintain a pointer to the last element x.

» We can compute the predecessor of x
(last element when x is deleted) in time O (logn).
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8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the predecessor of x

(last element when x is deleted) in time O (logn).

go up until the last edge used was a right edge.
go left; go right until you reach a leaf
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8.1 Binary Heaps
Maintain a pointer to the last element x.

» We can compute the predecessor of x
(last element when x is deleted) in time O (logn).

go up until the last edge used was a right edge.
go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element
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8.1 Binary Heaps

Maintain a pointer to the last element x.
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8.1 Binary Heaps
Maintain a pointer to the last element x.

» We can compute the successor of x
(last element when an element is inserted) in time O (logn).
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8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the successor of x
(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.
go right; go left until you reach a null-pointer.
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8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the successor of x
(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.
go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element;
insert a new element as a left child;
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Insert

1. Insert element at successor of x.
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Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.
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Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

Note that an exchange can either be done by moving the data or
by changing pointers. The latter method leads to an addressable
priority queue.
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Delete

1. Exchange the element to be deleted with the element e
pointed to by x.
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Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.
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pointed to by x.

2. Restore the heap-property for the element e.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 192/265



Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

At its new position e may either travel up or down in the tree (but
not both directions).
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Binary Heaps

Operations:
» minimum(): return the root-element. Time O(1).
> is-empty(): check whether root-pointer is null. Time O(1).

» insert(k): insert at successor of x and bubble up. Time
O(logn).

> delete(h): swap with x and bubble up or sift-down. Time
O(logn).
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Build Heap

We can build a heap in linear time:
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We can build a heap in linear time:
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Build Heap

We can build a heap in linear time:

S 2lo(h-0) =32 = 002" =0m)

levels ¥ i
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Binary Heaps

Operations:

» minimum(): Return the root-element. Time O(1).

> is-empty(): Check whether root-pointer is null. Time O(1).
» insert(k): Insert at x and bubble up. Time O(logn).
>

delete(h): Swap with x and bubble up or sift-down. Time
O(logn).

» build(xy, ..., xn): Insert elements arbitrarily; then do
sift-down operations starting with the lowest layer in the tree.
Time O(n).
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Binary Heaps
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Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n — 1] be an array

> The parent of i-th element is at position [i’TlJ.
> The left child of i-th element is at position 2i + 1.

» The right child of i-th element is at position 2i + 2.
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Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n — 1] be an array

> The parent of i-th element is at position [i’TlJ.
> The left child of i-th element is at position 2i + 1.
» The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description
on the previous slide. Simply increase or decrease x.
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Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n — 1] be an array

> The parent of i-th element is at position [i’TlJ.

> The left child of i-th element is at position 2i + 1.

» The right child of i-th element is at position 2i + 2.
Finding the successor of x is much easier than in the description
on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don’t
maintain their positions and therefore there are no stable handles.
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8.2 Binomial Heaps

Binary Binomial Fibonacci
Operation Heap BST Heap Heap®
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1
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Binomial Trees

By By B>
>3 3@

B3 By

By
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Binomial Trees

Properties of Binomial Trees
» By has 2k nodes.
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Properties of Binomial Trees
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> By has height k.
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Properties of Binomial Trees
> By has 2k nodes.
> By has height k.
» The root of By has degree k.
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Binomial Trees

Properties of Binomial Trees
> By has 2k nodes.
By has height k.
The root of By has degree k.

vV vV

By has ('E) nodes on level £.
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Binomial Trees

Properties of Binomial Trees
> By has 2k nodes.
By has height k.
The root of By has degree k.
By has ('E) nodes on level £.

vV v.v.Yy

Deleting the root of By gives trees By, B1,...,Bk_1.
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Binomial Trees

Bo
B
B>
B3

By

Deleting the root of Bs leaves sub-trees B, B3, B2, B1, and By.
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Binomial Trees

By
B3
B>
By

Bo

Deleting the leaf furthest from the root (in Bs) leaves a path that
connects the roots of sub-trees By, B3, B>, By, and Bg.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 201/265



Binomial Trees

Bx

(S

The number of nodes on level £ in tree By is therefore
k-1 k-1 k
+ =
£ -1 ! {
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Binomial Trees
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Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.
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Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.
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Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.

The £-th level contains nodes that have £ 1’s in their label.
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.

®
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» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
> A parent-pointer points to the parent node.

®
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8.2 Binomial Heaps

How do we implement trees with non-constant degree?
» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
> A parent-pointer points to the parent node.

> Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).

®
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8.2 Binomial Heaps

> Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

> We can add a child-tree T to a node x in constant time if we
are given a pointer to x and a pointer to the root of T.
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Binomial Heap
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Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.
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In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property
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Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example
the above heap contains trees By, Bi, and Bj.
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Binomial Heap: Merge
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bks, ki < k41 denote the binomial trees in the

collection and recall that every tree may be contained at most
once.
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Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bks, ki < k41 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = 3; 2% must hold. But since the k; are all distinct this

means that the k; define the non-zero bit-positions in the binary
representation of n.
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Properties of a heap with n keys:
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Properties of a heap with n keys:
> Letn =byb,; 1,...,bo denote binary representation of n.
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Binomial Heap

Properties of a heap with n keys:
> Letn =byb,; 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 208/265



Binomial Heap

Properties of a heap with n keys:
> Letn =byb,; 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
> Hence, at most [logn| + 1 trees.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 208/265



Binomial Heap

Properties of a heap with n keys:
> Letn =byb,; 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
> Hence, at most [logn| + 1 trees.
» The minimum must be contained in one of the roots.
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Binomial Heap

Properties of a heap with n keys:
> Letn =byb,; 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
> Hence, at most [logn| + 1 trees.
» The minimum must be contained in one of the roots.
» The height of the largest tree is at most [log n].
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Binomial Heap

Properties of a heap with n keys:

>

Let n = bgb,_1,...,bo denote binary representation of n.

» The heap contains tree B; iff b; = 1.

vV vyyVvyy

Hence, at most [logn ] + 1 trees.

The minimum must be contained in one of the roots.
The height of the largest tree is at most [logn|.

The trees are stored in a single-linked list; ordered by
dimension/size.
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.

We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add (2)
the tree with larger root-value as a child to
9 O @
the other tree.
©® @©
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Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees.
We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add
the tree with larger root-value as a child to
the other tree.

(2)
5y @

s © ©
For more trees the technique is analogous @2
to binary addition.
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8.2 Binomial Heaps

S1.merge(S>2):
» Analogous to binary addition.
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8.2 Binomial Heaps
S1.merge(S>):

» Analogous to binary addition.

> Time is proportional to the number of trees in both heaps.
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8.2 Binomial Heaps

S1.merge(S>):
» Analogous to binary addition.
> Time is proportional to the number of trees in both heaps.
» Time: O(logn).
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8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):

> Create a new heap S’ that contains just the element x.
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8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.

> Execute S.merge(S’).
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8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.

> Execute S.merge(S’).

> Time: O(logn).

!
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8.2 Binomial Heaps
S. minimum():

> Find the minimum key-value among all roots.
> Time: O(logn).
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8.2 Binomial Heaps

S. delete-min():
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8.2 Binomial Heaps

S. delete-min():

> Find the minimum key-value among all roots.
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8.2 Binomial Heaps
S. delete-min():

> Find the minimum key-value among all roots.

» Remove the corresponding tree Ty from the heap.
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8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.

> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).
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8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.

> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).
» Compute S.merge(S’).
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8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.

> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just @(logn)

trees).
» Compute S.merge(S’).
> Time: O(logn).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 214/265



8.2 Binomial Heaps

S. decrease-key(handle h):
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8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.
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8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.

> Bubble the element up in the tree until the heap property is
fulfilled.
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8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.
> Bubble the element up in the tree until the heap property is
fulfilled.
> Time: O(logn) since the trees have height O(logn).
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8.2 Binomial Heaps

S. delete (handle h):
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8.2 Binomial Heaps

S. delete (handle h):
> Execute S.decrease-key(h, — ).
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8.2 Binomial Heaps
S. delete (handle h):

> Execute S.decrease-key(h, — ).

> Execute S.delete-min().
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8.2 Binomial Heaps

S. delete(handle h):
> Execute S.decrease-key(h, — ).
> Execute S.delete-min().
> Time: O(logn).
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8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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8.3 Fibonacci Heaps

Additional implementation details:
> Every node x stores its degree in a field x. degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 218/265



8.3 Fibonacci Heaps

The potential function:
> £(S) denotes the number of trees in the heap.
> m(S) denotes the number of marked nodes.
» We use the potential function ®(S) = £(S) + 2m(S).

The potential is ®(S) =5+2-3=11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.
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8.3 Fibonacci Heaps

S. minimum ()
> Access through the min-pointer.
> Actual cost O(1).
» No change in potential.
> Amortized cost O(1).
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8.3 Fibonacci Heaps

S. merge(S’)
> Merge the root lists.

» Adjust the min-pointer
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8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 222/265



8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).
» No change in potential.
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8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).
» No change in potential.

» Hence, amortized cost is O(1).
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8.3 Fibonacci Heaps

S.insert(x)
» Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.

>23)< >(24) a?)
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8.3 Fibonacci Heaps

S.insert(x)
» Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.
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8.3 Fibonacci Heaps

S.insert(x)
» Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
> Actual cost O(1).
» Change in potential is +1.
> Amortized costis c + O(1) = O(1).

!
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8.3 Fibonacci Heaps

S. delete-min(x)
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).
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8.3 Fibonacci Heaps

S. delete-min(x)
» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fibonacci Heaps

Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual cost is at most ¢y - (D, + 1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual cost is at most ¢y - (D, + 1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;

» We can pay c - (t — D, — 1) from the potential decrease.
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
» We can pay c - (t — D, — 1) from the potential decrease.
>

The amortized cost is
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
» We can pay c - (t — D, — 1) from the potential decrease.

» The amortized cost is

c1-Dp+t)—c-(t-Dp-1)
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp-—-1)
<(c1+c)Dy+(c1—c)t+c
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp-—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp-—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)
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8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — D, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp-—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc>cy .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then
D, <logn.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.

> If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).
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Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.

> If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
> Execute the following:

p — parent[x];

while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p — pp;

if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:

> t' =t +{, as every cut creates one new root.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7¢
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7¢

» Amortized cost is at most
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

ol +1)+c(4-10)
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

col+1)+c(4-"0) < (cop—c)l+4c+co
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A < +2(—¥+2)=4-Y¢
» Amortized cost is at most
o+ +cd-1) < (co—c)l+4c+cr = O(1),

if c > co.
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Delete node

H. delete(x):
» decrease value of x to —co.

> delete-min.

Amortized cost: O(Dy,)
> O(1) for decrease-key.
> O(Dy) for delete-min.
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8.3 Fibonacci Heaps

Lemma 21
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(y) Z{ i-2 ifi>1
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already
linked to x.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
» Therefore, degree(y;) =1 — 2.
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8.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
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8.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k
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8.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1ands; = 2.
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8.3 Fibonacci Heaps
> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
sk=2+ > size(y;)
i=2
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8.3 Fibonacci Heaps
> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k

sk=2+ > size(y;)
i=2
k
>2+4 > Sio
i=2
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8.3 Fibonacci Heaps
> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k
sk=2+ > size(y;)
i=2
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i i ' = 2(1 + /5) denotes the golden ratio.!
8.3 Fibonacci Heaps e b |

Definition 22
Consider the following non-standard Fibonacci type sequence:

1 ifk=0
Fr=4 2 ifk=1
Fy_q1 +Fx_» if k=2

Facts:
1. Fk><i>k
2. Fork =2: F =2+ Y52 F.

The above facts can be easily proved by induction. From this it
follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.
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k=0: l1=Fy=9"=1

_1. _ 1 - b2

k=1: 2=F >o! ~1.61

k-2,k-1— ki Fy = Fx_1 + Fx_p > ®K 1 + dk—2 = pk—2(p41) = ¢k

k=2: 3=F=2+1=2+F
k-1— k: Fr=F 1 +F =2+ F+F_,=2+>CF
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9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint
sets over elements.
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9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.
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9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

> P find(x): Given a handle for an element x; find the set that
contains x. Returns a representative/identifier for this set.
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9 Union Find

Union Find Data Structure P: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

> P find(x): Given a handle for an element x; find the set that
contains x. Returns a representative/identifier for this set.

» P.union(x, y): Given two elements x, and  that are
currently in sets Sy and S, respectively, the function
replaces Sy and S, by Sx U S, and returns an identifier for
the new set.
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9 Union Find

Applications:

> Keep track of the connected components of a dynamic graph
that changes due to insertion of nodes and edges.
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9 Union Find

Applications:

> Keep track of the connected components of a dynamic graph
that changes due to insertion of nodes and edges.

» Kruskals Minimum Spanning Tree Algorithm
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9 Union Find

Algorithm 1 Kruskal-MST(G = (V,E),w)
A - O
forall v € V do
v.set — P.makeset(v.label)
sort edges in non-decreasing order of weight w
: for all (u,v) € E in non-decreasing order do
if P.find(u.set) # P.find(v.set) then
A—Au{(u,v)}
P.union(u. set, v. set)

0 N O ul A W N =

m 9 Union Find
Ernst Mayr, Harald Racke 239/265



List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

> makeset(x) can be performed in constant time.
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List Implementation

» The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

> makeset(x) can be performed in constant time.

» find(x) can be performed in constant time.
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List Implementation

union(x, y)
> Determine sets Sy and §,,.
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List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S, ), and change all backward
pointers to the head of list Sy.
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List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S, ), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
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List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S,), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
> Adjust the size-field of list Sy.
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List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S, ), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
> Adjust the size-field of list Sy.

> Time: min{[Sx|, |Sy[}.
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List Implementation
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List Implementation

REC
[5]<]
[EHA—
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List Implementation

AA
7
Sx
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List Implementation
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List Implementation

Running times:
» find(x): constant
» makeset(x): constant

> union(x,y): O(n), where n denotes the number of
elements contained in the set system.
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List Implementation

Lemma 23
The list implementation for the ADT union find fulfills the
following amortized time bounds:

> find(x): O(1).
» makeset(x): O(logn).
» union(x,y): O(1).
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The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.
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The Accounting Method for Amortized Time Bounds
» There is a bank account for every element in the data

structure.

> Initially the balance on all accounts is zero.
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The Accounting Method for Amortized Time Bounds

> There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

» Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.
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The Accounting Method for Amortized Time Bounds

> There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

» Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

» Whenever for an operation the actual cost exceeds the
amortized time bound, the difference is charged to bank
accounts of some of the elements involved.
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The Accounting Method for Amortized Time Bounds

> There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

» Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

» Whenever for an operation the actual cost exceeds the
amortized time bound, the difference is charged to bank
accounts of some of the elements involved.

» If we can find a charging scheme that guarantees that
balances always stay positive the amortized time bounds are
proven.
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List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.
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List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).
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List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

» For each element a makeset operation occurs as the first
operation involving this element.
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List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

» For each element a makeset operation occurs as the first
operation involving this element.

» We inflate the amortized cost of the makeset-operation to
O(logn), i.e., at this point we fill the bank account of the
element to ©(logn).

m 9 Union Find
Ernst Mayr, Harald Racke 246/265



List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

» For each element a makeset operation occurs as the first
operation involving this element.

» We inflate the amortized cost of the makeset-operation to
O(logn), i.e., at this point we fill the bank account of the
element to ©(logn).

> Later operations charge the account but the balance never
drops below zero.
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List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation the
amortized cost is O(logn).
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List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation the
amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not change
any accounts. Cost: O(1).
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List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation the
amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not change
any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.
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List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation the
amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not change
any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.

> Otw. the actual cost is O(min{|Sx|, Sy [}).
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List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation the
amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not change
any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.
> Otw. the actual cost is O(min{|Sx|, Sy [}).

> Assume wlog. that Sy is the smaller set; let ¢ denote the
hidden constant, i.e., the actual cost is at most ¢ - |Sy]|.
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List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation the
amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not change
any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.
> Otw. the actual cost is O(min{|Sx|, Sy [}).

> Assume wlog. that Sy is the smaller set; let ¢ denote the
hidden constant, i.e., the actual cost is at most ¢ - |Sy]|.

» Charge c to every element in set Sy.
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List Implementation

Lemma 24
An element is charged at most |1log, n| times, where n is the total
number of elements in the set system.
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List Implementation

Lemma 24
An element is charged at most |1log, n| times, where n is the total
number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in x’s
set doubles. This can happen at most |[log 1] times. O
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Implementation via Trees

» Maintain nodes of a set in a tree.
» The root of the tree is the label of the set.

> Only pointer to parent exists; we cannot list all elements of a
given set.
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Implementation via Trees

» Maintain nodes of a set in a tree.
» The root of the tree is the label of the set.

> Only pointer to parent exists; we cannot list all elements of a

given set.
> Example:
(19 (6) (19)
(12 ® (9) @ 19 @)
@ ONCRE
®

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.
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Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
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Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
» Time: O(1).
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Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
> Time: O(1).

find(x)

> Start at element x in the tree. Go upwards until you reach
the root.
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Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
> Time: O(1).

find(x)

> Start at element x in the tree. Go upwards until you reach
the root.

> Time: O(level(x)), where level(x) is the distance of element
X to the root in its tree. Not constant.
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Implementation via Trees

To support union we store the size of a tree in its root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.
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Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.

» Time: constant for link(a, b) plus two find-operations.
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Implementation via Trees

Lemma 25
The running time (non-amortized!!!) for find(x) is O(logn).
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Implementation via Trees

Lemma 25
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a tree
with root p, then size(p) = 2size(c), where size denotes the
value of the size-field right after the operation.
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Implementation via Trees

Lemma 25
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

> When we attach a tree with root ¢ to become a child of a tree
with root p, then size(p) > 2size(c), where size denotes the
value of the size-field right after the operation.

> After that the value of size(c) stays fixed, while the value of
size(p) may still increase.
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Implementation via Trees

Lemma 25
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

> When we attach a tree with root ¢ to become a child of a tree
with root p, then size(p) > 2size(c), where size denotes the
value of the size-field right after the operation.

> After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

» Hence, at any point in time a tree fulfills size(p) > 2 size(c),
for any pair of nodes (p,c), where p is a parent of c.
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Implementation via Trees

Lemma 25
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

> When we attach a tree with root ¢ to become a child of a tree
with root p, then size(p) > 2size(c), where size denotes the
value of the size-field right after the operation.

> After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

» Hence, at any point in time a tree fulfills size(p) > 2 size(c),
for any pair of nodes (p,c), where p is a parent of c.

O
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Path Compression

find (x):
» Go upward until you find the root.
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Path Compression

find (x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.
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Path Compression
find(x):

» Go upward until you find the root.
» Re-attach all visited nodes as children of the root.

> Speeds up successive find-operations.
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Path Compression
find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.
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Path Compression
find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.
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Path Compression
find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.
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Path Compression
find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.
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Path Compression
find(x):

» Go upward until you find the root.
» Re-attach all visited nodes as children of the root.

> Speeds up successive find-operations.
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Path Compression
find(x):

» Go upward until you find the root.
» Re-attach all visited nodes as children of the root.

> Speeds up successive find-operations.
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Path Compression
find(x):

» Go upward until you find the root.
» Re-attach all visited nodes as children of the root.

> Speeds up successive find-operations.

» Note that the size-fields now only give an upper bound on
the size of a sub-tree.
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Path Compression

Asymptotically the cost for a find-operation does not increase due
to the path compression heuristic.

m 9 Union Find
Ernst Mayr, Harald Racke 254/265



Path Compression

Asymptotically the cost for a find-operation does not increase due
to the path compression heuristic.

However, for a worst-case analysis there is no improvement on

the running time. It can still happen that a find-operation takes
time O(logn).
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Amortized Analysis

Definitions:
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Amortized Analysis

Definitions:

» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or the
number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
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Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or the
number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.

» rank(v) := |log(size(v))].
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Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the
number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
» rank(v) := |log(size(v))].

> — size(v) > 2rank),
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Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree

rooted at v when v became the child of another node (or the
number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
» rank(v) := |log(size(v))].

> — size(v) > 2rank),

Lemma 26
The rank of a parent must be strictly larger than the rank of a
child.
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Amortized Analysis

Lemma 27
There are at most n/2° nodes of rank s.
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Amortized Analysis
Lemma 27
There are at most n/2° nodes of rank s.

Proof.

> Let’s say a hode v sees node x if v is in x’s sub-tree at the
time that x becomes a child.
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Amortized Analysis

Lemma 27
There are at most n/2° nodes of rank s.

Proof.
> Let’s say a hode v sees node x if v is in x’s sub-tree at the
time that x becomes a child.
> A node v sees at most one node of rank s during the running
time of the algorithm.
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Amortized Analysis

Lemma 27
There are at most n/2° nodes of rank s.

Proof.
> Let’s say a hode v sees node x if v is in x’s sub-tree at the
time that x becomes a child.
> A node v sees at most one node of rank s during the running
time of the algorithm.
» This holds because the rank-sequence of the roots of the

different trees that contain v during the running time of the
algorithm is a strictly increasing sequence.
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Amortized Analysis

Lemma 27
There are at most n/2° nodes of rank s.

Proof.

> Let’s say a hode v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

> A node v sees at most one node of rank s during the running
time of the algorithm.

» This holds because the rank-sequence of the roots of the
different trees that contain v during the running time of the
algorithm is a strictly increasing sequence.

> Hence, every node sees at most one rank s node, but every
rank s node is seen by at least 2° different nodes. U
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Amortized Analysis

We define

N 1 ifi=0
tow(i) := 2tOW(i*1) otw.
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Amortized Analysis

We define

. 1 ifi=0 . 222 } .
tow(i) := { T tow(i) = 22° [itimes
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Amortized Analysis

We define

. 1 ifi=0 . 222 } .
tow(i) := { T tow(i) = 22° [itimes

and
log™(n) := min{i | tow(i) = n} .
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Amortized Analysis

We define
tow(i) := { ;tow(iil) Icft\l/v: 0 tow(i) = 222222}1' times
and
log*(n) := min{i | tow(i) = n} .
Theorem 28

Union find with path compression fulfills the following amortized
running times:

» makeset(x) : O(log™(n))
» find(x) : ©(log™(n))

> union(x,y) : O(log™*(n))
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Amortized Analysis

In the following we assume n > 2.
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Amortized Analysis

In the following we assume n > 2.

rank-group:

> A node with rank rank(v) is in rank group log™ (rank(v)).
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Amortized Analysis

In the following we assume n > 2.

rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

m 9 Union Find
Ernst Mayr, Harald Racke 258/265



Amortized Analysis

In the following we assume n > 2.
rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

» Arank group g > 1 contains ranks
tow(g — 1) +1,...,tow(g).

m 9 Union Find
Ernst Mayr, Harald Racke 258/265



Amortized Analysis

In the following we assume n > 2.
rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

» Arank group g > 1 contains ranks
tow(g — 1) +1,...,tow(g).

» The maximum non-empty rank group is
log*(|logn|) <log™(n) — 1 (which holds for n = 2).
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Amortized Analysis

In the following we assume n > 2.
rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

» Arank group g > 1 contains ranks
tow(g — 1) +1,...,tow(g).

» The maximum non-empty rank group is
log*(|logn|) <log™(n) — 1 (which holds for n = 2).

> Hence, the total number of rank-groups is at most log™ n.
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Amortized Analysis
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Amortized Analysis

Accounting Scheme:
> create an account for every find-operation
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Amortized Analysis

Accounting Scheme:
> create an account for every find-operation

> create an account for every node v
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Amortized Analysis

Accounting Scheme:
> create an account for every find-operation
> create an account for every node v

The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:
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Amortized Analysis

Accounting Scheme:
> create an account for every find-operation
> create an account for every node v

The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the
find-account.
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Amortized Analysis

Accounting Scheme:

> create an account for every find-operation

> create an account for every node v
The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the

find-account.

> If the group-number of rank(v) is the same as that of
rank(parent[v]) (before starting path compression) we
charge the cost to the node-account of v.
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Amortized Analysis

Accounting Scheme:

> create an account for every find-operation

> create an account for every node v
The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the

find-account.

> If the group-number of rank(v) is the same as that of
rank(parent[v]) (before starting path compression) we
charge the cost to the node-account of v.

» Otherwise we charge the cost to the find-account.
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Amortized Analysis

Observations:
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Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for
the root and at most log™ (1) — 1 times when increasing the
rank-group).
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Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for

the root and at most log™ (1) — 1 times when increasing the
rank-group).

> After a node v is charged its parent-edge is re-assigned. The
rank of the parent strictly increases.
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Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for

the root and at most log™ (1) — 1 times when increasing the
rank-group).

> After a node v is charged its parent-edge is re-assigned. The
rank of the parent strictly increases.

> After some charges to v the parent will be in a larger
rank-group. = v will never be charged again.
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Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for
the root and at most log™ (1) — 1 times when increasing the
rank-group).

> After a node v is charged its parent-edge is re-assigned. The
rank of the parent strictly increases.

> After some charges to v the parent will be in a larger
rank-group. = v will never be charged again.

» The total charge made to a node in rank-group g is at most
tow(g) —tow(g — 1) — 1 < tow(g).
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Amortized Analysis

What is the total charge made to nodes?
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Amortized Analysis

What is the total charge made to nodes?

» The total charge is at most

> n(g) - tow(g) ,
g

where n(g) is the number of nodes in group g.
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Amortized Analysis

For g = 1 we have

n(g)
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Amortized Analysis

For g = 1 we have

tow(g)

ng s >

s=tow(g—-1)+1
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Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1
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Amortized Analysis

For g = 1 we have

tow(g)

n - n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
n o1
= 2tow(g—1)+1 Z ?
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Amortized Analysis

For g = 1 we have

tow(g)

n > n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
n 21 n
= 2tow(g-1)+1 Z ? 2tow(g—1)+1 -2
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Amortized Analysis

For g = 1 we have

tow(g) © n
2. = 2. o5

s=tow(g—-1)+1 s=tow(g—-1)+1

IA

n(g)

=

n

T otow(g-1)+1 -2

1
? 2tow(g—1)+1

|
uMg

_ n
© 2tow(g-1)
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Amortized Analysis

For g = 1 we have

tow(g) n 0 n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n )
T otow(g-1)+1 Z ? Dtow(g—1)+1 ’
n 1’L
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Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1
n o1 n
= 2tow(g-1)+1 Z ? 2tow(g—1)+1 -2
B n n
T 2towg-D T tow(g)
Hence,
Zn(g)tow(g)
g
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Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n )
T otow(g-1)+1 Z ? Dtow(g—1)+1 ’
n 1’L

Hence,

Zn(g)tow(g) < n(0) tow(0) + Z n(g) tow(g)
g g=1
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Amortized Analysis

For g = 1 we have

tow(g)

(o]
n n
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n )
T otow(g-1)+1 Z ? Dtow(g—1)+1 ’
n 1’L

Hence,

Zn(g)tow(g) < n(0) tow(0) + Z n(g) tow(g) < nlog*(n)
g g=1
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Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.
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Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.

This means if we inflate the cost of makeset to log™ n and add
this to the node account of v then the balances of all node
accounts will sum up to a positive value (this is sufficient to
obtain an amortized bound).
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Amortized Analysis
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Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log™ n.

(Here, we consider the average running time of m operations on
at most n elements).
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Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log™ n.

(Here, we consider the average running time of m operations on
at most n elements).

There is also a lower bound of Q(x(m,n)).

m 9 Union Find
Ernst Mayr, Harald Racke

264/265



Amortized Analysis

yv+1 ifx=0
Alx,y) =41 Alx—-1,1) if y=0
Alx—-1,A(x,y —-1)) otw.

ae(m,n) =min{i>1:A(i,|m/n]) = logn}
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Amortized Analysis
y+1 ifx=0

Alx,y) =41 Alx—-1,1) if y=0
Alx—-1,A(x,y —-1)) otw.

ae(m,n) =min{i>1:A(i,|m/n]) = logn}

» A0,y) =y +1
» A(l,y) =y +2
> ARQ,y) =2y +3
> A(3,y)=2Y*3 -3
2
> A(4,y) = g’i -3
y+3 times
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