7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node
without asymptotically affecting the running time of insert,
delete, and search. We come back to this step later...

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/209

7.4 Augmenting Data Structures
Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

4. How does find-by-rank work?
Find-by-rank(k) := Select(root,k) with

Algorithm 11 Select(x, 1)
1: if x = null then return error

2: if left[x] = null then r < left[x].size +1 else v — 1
3: if i = ¥ then return x

4: if i <7 then
5
6
7

return Select(left[x], 1)
. else
return Select(right[x],i —7)

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 190/209

Select(x, 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

Select(x, 1)

Select(@), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

Select(x, 1)

Select((3), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

Select(x, 1)

Select(@), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

Select(x, 1)

Select(@e), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

Select(x, 1)

Select (@9, 3)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

Select(x, 1)

Select(@9), 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
» adjust the rank that you are searching for if you go right

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 191/209

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 192/209

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 192/209

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

/

Insert(x): When going down the search pat increase the size
field for each visited node. Maintain the size field during
rotations.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke

192/209

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n). S

3. How do we maintain information?

N
&
Search(k): Nothing to do. /<\

Insert(x): When going down the search path increase the size
field for each visited node. Maintain the size field during
rotations.

Delete(x): Directly after splicing out a node traverse the path
from the spliced out node upwards, and decrease the size
counter on every node on this path. Maintain the size field
during rotations.

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 192/209

Rotations

The only operation during the fix-up procedure that alters the
tree and requires an update of the size-field:

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields
of the children.

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 193/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists N\

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 194/209

7.5 Skip Lists

How can we improve the search-operation?

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

(=5 Jeor 8 foriojor iz {1afer1efer{23)26 > {28) {35] a3} =

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane: N

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

Worst case search time: [L1] + % (ignoring additive constants)

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

Worst case search time: [L1] + % (ignoring additive constants)

Choose |L1| = \/n. Then search time ©(,/n).

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_1.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 196/209

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 196/209

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 196/209

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

» Find the largest item in list Ly_; that is smaller than x. At

most [\lLLfﬁH + 2 steps.
Ln © 'X“ ?
= \ | (2 (2) 0 =
\J A4 J

L, B

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 196/209

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

» Find the largest item in list Ly_; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

» Find the largest item in list Ly_» that is smaller than x. At

Ly
most [‘L‘kf] fl]] + 2 steps.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 196/209

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

» Find the largest item in list Ly_; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

» Find the largest item in list Ly_» that is smaller than x. At

Ly
most [‘L‘kf] fl]] + 2 steps.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 196/209

7.5 Skip Lists

Add more express lanes. Lane L; contains roughly every L’ L-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

>

Find the largest item in list Ly that is smaller than x. At
most |Ly| + 2 steps.

Find the largest item in list Ly _; that is smaller than x. At

most [‘lLLklj‘l] +2steps. £ lbmal g
Find the largest item in list LkL gbfhat is smaller than x. At
most [‘L‘ka] fl]] + 2 steps.

At most [Li| + Z'le Li-

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

196/209

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly =~ v *n.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘E‘” =7, and,

k

hence, Ly =~ v *n.

Worst case running time is: O(r *n + kr).

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘E‘” =7, and,

k

hence, Ly =~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1. Then

k

r—*n -+ kr

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly =~ v *n.

Worst case running time is: O(r *n + kr).
1

Choose v = n%1. Then

k -k .

1
- n+k1’:<nm> n + knka

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly =~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1. Then

k

r—*n -+ kr

Il
—
S
~
s
~

L
S
+
=
S
g

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘f”

k

=7, and,

il

hence, Ly =~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1. Then

r*n+kr =
\ v(
A
- % \

V\ AN fogn o
w

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

NJ

~

<}

(‘\

)

NG

NI

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘f”

k

=7, and,

il

hence, Ly =~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1. Then

k 1\ —k 1
r*n+kr = (nk+1> n + knka
k 1
= nl_k+1 + knw
1
=(k+ 1)nk1

Choosing k = ©(logn) gives a logarithmic running time.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 197/209

7.5 Skip Lists

How to do insert and delete?

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 198/209

7.5 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require
a lot of re-organisation.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 198/209

7.5 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L;_; an insert or delete may require
a lot of re-organisation.

Use randomization instead!

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

198/209

7.5 Skip Lists

Insert:

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_q.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_q.

Delete:

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_q.

Delete:

> You get all predecessors via backward pointers.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_q.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

199/209

7.5 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_q.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke

199/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

7.5 Skip Lists

Insert (35):

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 200/209

High Probability

o> logn tloglyn = @((o&h)

Definition 18 (High Probability)
We say a randomized algorithm has running time @ (logn) with

high probability if for any constant « the running time is at most

©(logn) with probability at least 1 — .

nO(

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 201/209

High Probability

Definition 18 (High Probability)

We say a randomized algorithm has running time O (logn) with
high probability if for any constant « the running time is at most
O(logn) with probability at least 1 — %

Here the O-notation hides a constant that may depend on «.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 201/209

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 202/209

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr[Eq1 A - -+ AN Ep]

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 202/209

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A--- AEpl=1-Pr[Ey Vv .-V Ey]

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 202/209

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A--- AEpl=1-Pr[Ey Vv .-V Ey]

>1-nc-n*

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 202/209

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A--- AEpl=1-Pr[Ey Vv .-V Ey]
>1-nc-n*

=1-n«

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 202/209

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A--- AEpl=1-Pr[Ey Vv .-V Ey]
>1-nc-n*

=1-n«

This means Pr[E; A - - - A Ep] holds with high probability.

m 7.5 Skip Lists
Ernst Mayr, Harald Racke 202/209

