WS 2018/19

Efficient Algorithms
and Data Structures

Harald Racke

Fakultat fur Informatik
TU Miinchen

http://wwwl4.1in.tum.de/lehre/2018WS/ea/

Winter Term 2018/19

m Ernst Mayr, Harald Racke 1/565

Part |

Organizational Matters

m Ernst Mayr, Harald Racke 2/565

Part |
Organizational Matters

> Modul: IN2003

Part |
Organizational Matters

> Modul: IN2003

» Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

Part |
Organizational Matters

> Modul: IN2003

» Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

» ECTS: 8 Credit points

v

v

\ A

Part |
Organizational Matters

Modul: IN2003

Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

ECTS: 8 Credit points
Lectures:
> 4 SWS

Mon 10:00-12:00 (Room Interim?2)
Fri 10:00-12:00 (Room Interim2)

v

v

\ A

v

Part |
Organizational Matters

Modul: IN2003

Name: “Efficient Algorithms and Data Structures”
“Effiziente Algorithmen und Datenstrukturen”

ECTS: 8 Credit points

Lectures:

> 4 SWS
Mon 10:00-12:00 (Room Interim?2)
Fri 10:00-12:00 (Room Interim2)

Webpage: http://wwwl4.in.tum.de/lehre/2018WS/ea/

» Required knowledge:

m Ernst Mayr, Harald Racke 4/565

» Required knowledge:

> INOOOT, INO0O3
“Introduction to Informatics 1/2”
“Einfiihrung in die Informatik 1/2”

m Ernst Mayr, Harald Racke 4/565

» Required knowledge:
> INOOOT1, INO0O3
“Introduction to Informatics 1/2”
“Einfiihrung in die Informatik 1/2”
> IN0O007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)

m Ernst Mayr, Harald Racke 4/565

» Required knowledge:
> INOOOT1, INO0O3
“Introduction to Informatics 1/2”
“Einfiihrung in die Informatik 1/2”
> IN0O007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
> INOO11
“Basic Theoretic Informatics”
“Einfiihrung in die Theoretische Informatik” (THEO)

m Ernst Mayr, Harald Racke 4/565

» Required knowledge:

> INOOOT1, INO0O3
“Introduction to Informatics 1/2”
“Einfiihrung in die Informatik 1/2”
> IN0O007
“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
> INOO11
“Basic Theoretic Informatics”
“Einfiihrung in die Theoretische Informatik” (THEO)
> INOO15
“Discrete Structures”
“Diskrete Strukturen” (DS)

m Ernst Mayr, Harald Racke 4/565

» Required knowledge:

>

INOOOT1, INO0O3

“Introduction to Informatics 1/2”

“Einfiihrung in die Informatik 1/2”

INO0O7

“Fundamentals of Algorithms and Data Structures”
“Grundlagen: Algorithmen und Datenstrukturen” (GAD)
INOOT1

“Basic Theoretic Informatics”

“Einfiihrung in die Theoretische Informatik” (THEO)
INOO15

“Discrete Structures”

“Diskrete Strukturen” (DS)

INOO18

“Discrete Probability Theory”

“Diskrete Wahrscheinlichkeitstheorie” (DWT)

m Ernst Mayr,

Harald Racke

4/565

The Lecturer

Harald Racke

Email: raecke@in.tum.de
Room: 03.09.044

Office hours: (by appointment)

vV v.v Yy

m Ernst Mayr, Harald Racke 5/565

Tutorials

AOT1 Monday, 12:00-14:00, 00.08.038 (Lederer)
A02 Monday, 12:00-14:00, 00.09.038 (Stotz)
A03 Monday, 14:00-16:00, 02.09.023 (Lederer)

B04 Tuesday, 10:00-12:00, 00.08.053 (Czerner)
D05 Thursday, 10:00-12:00, 03.11.018 (Stotz)

EO6 Friday, 12:00-14:00, 00.13.009 (Czerner)

m Ernst Mayr, Harald Racke 6/565

Assignment sheets

In order to pass the module you need to pass an exam.

m Ernst Mayr, Harald Racke 7/565

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

m Ernst Mayr, Harald Racke 8/565

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

m Ernst Mayr, Harald Racke

8/565

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

> You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

m Ernst Mayr, Harald Racke 8/565

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

> You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

» Solutions have to be given in English.

m Ernst Mayr, Harald Racke 8/565

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

> You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

» Solutions have to be given in English.

> Solutions will be discussed in the tutorial of the week when
the sheet has been handed in, i.e, sheet may not be
corrected by this time.

m Ernst Mayr, Harald Racke 8/565

Assessment

Assignment Sheets:

» An assignment sheet is usually made available on Monday
on the module webpage.

> Solutions have to be handed in in the following week before
the lecture on Monday.

> You can hand in your solutions by putting them in the
mailbox "Efficient Algorithms" on the basement floor in the
MI-building.

» Solutions have to be given in English.

» Solutions will be discussed in the tutorial of the week when
the sheet has been handed in, i.e, sheet may not be
corrected by this time.

» You should submit solutions in groups of up to 2 people.

m Ernst Mayr, Harald Racke 8/565

Assessment

Assignment Sheets:

» Submissions must be handwritten by a member of the
group. Please indicate who wrote the submission.

m Ernst Mayr, Harald Racke 9/565

Assessment

Assignment Sheets:

» Submissions must be handwritten by a member of the
group. Please indicate who wrote the submission.

» Don’t forget name and student id number for each group
member.

m Ernst Mayr, Harald Racke

9/565

Assessment

Assignment can be used to improve you grade

Requirements for Bonus
> 50% of the points are achieved on submissions 2-8,
» 50% of the points are achieved on submissions 9-14,
> each group member has written at least 4 solutions.

m Ernst Mayr, Harald Racke 10/565

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion

‘m 1 Contents
Ernst Mayr, Harald Racke 11/565

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion

» Higher Data Structures

> Search trees

> Hashing

> Priority queues

» Union/Find data structures

‘m 1 Contents
Ernst Mayr, Harald Racke 11/565

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion
» Higher Data Structures
> Search trees
> Hashing
> Priority queues
» Union/Find data structures

» Cuts/Flows

‘m 1 Contents
Ernst Mayr, Harald Racke 11/565

1 Contents

» Foundations
> Machine models
> Efficiency measures
> Asymptotic notation
> Recursion
» Higher Data Structures
> Search trees
> Hashing
> Priority queues
» Union/Find data structures

» Cuts/Flows

» Matchings

‘m 1 Contents
Ernst Mayr, Harald Racke 11/565

2 Literatur

[3 Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The design and analysis of computer algorithmes,
Addison-Wesley Publishing Company: Reading (MA), 1974

[4 Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest,
Clifford Stein:
Introduction to algorithms,
McGraw-Hill, 1990

[Michael T. Goodrich, Roberto Tamassia:
Algorithm design: Foundations, analysis, and internet
examples,
John Wiley & Sons, 2002

‘m 2 Literatur
Ernst Mayr, Harald Racke 12/565

2 Literatur

ﬁ Ronald L. Graham, Donald E. Knuth, Oren Patashnik:
Concrete Mathematics,
2. Auflage, Addison-Wesley, 1994

@ Volker Heun:
Grundlegende Algorithmen: Einftihrung in den Entwurf und
die Analyse effizienter Algorithmen,
2. Auflage, Vieweg, 2003

ﬁ Jon Kleinberg, Eva Tardos:
Algorithm Design,
Addison-Wesley, 2005
[4 Donald E. Knuth:
The art of computer programming. Vol. 1: Fundamental

Algorithms,
3. Auflage, Addison-Wesley, 1997

‘m 2 Literatur
Ernst Mayr, Harald Racke 13/565

2 Literatur

[Donald E. Knuth:
The art of computer programming. Vol. 3: Sorting and
Searching,
3. Auflage, Addison-Wesley, 1997

[d Christos H. Papadimitriou, Kenneth Steiglitz:
Combinatorial Optimization: Algorithms and Complexity,
Prentice Hall, 1982

[4 Uwe Schéning:

Algorithmik,
Spektrum Akademischer Verlag, 2001

@ Steven S. Skiena:

The Algorithm Design Manual,
Springer, 1998

‘m 2 Literatur
Ernst Mayr, Harald Racke 14/565

Part I

Foundations

m Ernst Mayr, Harald Racke 15/565

3 Goals

» Gain knowledge about efficient algorithms for important
problems, i.e., learn how to solve certain types of problems
efficiently.

T
Ernst Mayr, Harald Racke 16/565

3 Goals

» Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

> Learn how to analyze and judge the efficiency of algorithms.

T
Ernst Mayr, Harald Racke

16/565

3 Goals

» Gain knowledge about efficient algorithms for important

problems, i.e., learn how to solve certain types of problems
efficiently.

> Learn how to analyze and judge the efficiency of algorithms.

> Learn how to design efficient algorithms.

T
Ernst Mayr, Harald Racke

16/565

4 Modelling Issues

What do you measure?

» Memory requirement

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/565

4 Modelling Issues

What do you measure?
» Memory requirement

» Running time

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/565

4 Modelling Issues

What do you measure?
> Memory requirement
» Running time

» Number of comparisons

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/565

4 Modelling Issues

What do you measure?
> Memory requirement
» Running time
» Number of comparisons
>

Number of multiplications

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 17/565

4 Modelling Issues

What do you measure?

|

vV v.v.Y

Memory requirement
Running time

Number of comparisons
Number of multiplications

Number of hard-disc accesses

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/565

4 Modelling Issues

What do you measure?

|

vV v.v. v Y

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses

Program size

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/565

4 Modelling Issues

What do you measure?

|

vV v v v v Y

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses
Program size

Power consumption

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/565

4 Modelling Issues

What do you measure?

|

vV vV vV vV v Vv Y

Memory requirement
Running time

Number of comparisons
Number of multiplications
Number of hard-disc accesses
Program size

Power consumption

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

17/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs

» How do you choose your inputs?
> May be very time-consuming.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs

» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.

> Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.

> Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
> Typically focuses on the worst case.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific
set of inputs.

» Theoretical analysis in a specific model of computation.
> Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
> Typically focuses on the worst case.
> Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the
worst case”.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 18/565

4 Modelling Issues

Input length
The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage

space, comparisons, multiplications, program size etc.).

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/565

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/565

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/565

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

> the number of arguments

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/565

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage
space, comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

> the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 19/565

Model of Computation

How to measure performance

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/565

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/565

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/565

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 20/565

Turing Machine

> Very simple model of computation.

~)[1]{ofo)1]o]o|1]olo[1]o]o]1]1]0]1-

control
unit

F

state holds program and can
act as constant size memory

m Ernst Mayr, Harald Racke

4 Modelling Issues

21/565

Turing Machine

> Very simple model of computation.
> Only the “current” memory location can be altered.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

P state holds program and can
act as constant size memory

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 21/565

Turing Machine

> Very simple model of computation.
> Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial
vs. exponential time.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

F state holds program and can
act as constant size memory

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 21/565

Turing Machine

> Very simple model of computation.

> Only the “current” memory location can be altered.

» Very good model for discussing computabiliy, or polynomial
vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower
bound.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

F state holds program and can
act as constant size memory

m 4 Modelling Issues
Ernst Mayr, Harald Racke 21/565

Turing Machine

> Very simple model of computation.
> Only the “current” memory location can be altered.
» Very good model for discussing computabiliy, or polynomial

vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower

bound.

= Not a good model for developing efficient algorithms.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

F

state holds program and can
act as constant size memory

m Ernst Mayr, Harald Racke

4 Modelling Issues

21/565

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;

unbounded length).

input tape — memory
) 1 0] 0 0]] R[0]
R[1]
R[2]
control |, \

unit [V 7l R[3]
R[4]
R[5]

=of1]1 [[[

output tape —>

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/565

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;
unbounded length).

> Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

input tape — memory
) 1 0] 0 0]] R[0]
R[1]
R[2]
control |, \
unit [V 7l R[3]
R[4]
~- R[5]
TN T 11~
output tape —>

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/565

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;
unbounded length).

> Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

input tape — memory
> Registers hold integers.)| 1|0 1(0[0[1 |1 [go
R[1]
R[2]

control |, \
unit [V 7l R[3]
R[4]
~- R[5]

ST TIT

output tape —

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/565

Random Access Machine (RAM)

> Input tape and output tape (sequences of zeros and ones;
unbounded length).

> Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

input tape — memory
> Registers hold integers.)| 1|0 110|101 |1 [o
» Indirect addressing. R[1]
R[2]

control |, \
unit [V 7l R[3]
R[4]
~- R[5]

TN T 11~

output tape —>

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 22/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE i

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE i
> register-register transfers

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations

> input operations (input tape — R[1i])
> READ i

> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]
> R[j] := 4

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations

> input operations (input tape — R[1i])
> READ i

> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]
> R[j] =4

> indirect addressing

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE 1
> register-register transfers
> R[j] := R[i]
> R[j] := 4
> indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
> input operations (input tape — R[1i])
> READ i
> output operations (R[i] — output tape)
> WRITE 1
> register-register transfers
> R[j] := R[i]
> R[j] =4
> indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th
register
> R[R[i]]:=RI[j]
loads the content of the j-th into the R[i]-th register

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 23/565

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/565

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/565

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x

jumps to position x in the program;
sets instruction counter to x;

reads the next operation to perform from register R[x]
> jumpz x R[i]

jump to x if R[i] =0

if not the instruction counter is increased by 1;

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

24/565

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/565

Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 24/565

Random Access Machine (RAM)

Operations

» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;
> jumpi i
jump to R[1i] (indirect jump);
» arithmetic instructions: +, —, X, /
> R[i] := RI[j] + R[k];
R[i] := -R[k];

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

24/565

Model of Computation

» uniform cost model
Every operation takes time 1.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/565

Model of Computation
» uniform cost model
Every operation takes time 1.

> logarithmic cost model
The cost depends on the content of memory cells:

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/565

Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:
> The time for a step is equal to the largest operand involved;

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/565

Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:

> The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/565

Model of Computation

» uniform cost model
Every operation takes time 1.
> logarithmic cost model
The cost depends on the content of memory cells:

> The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in
bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest
value stored in a register may not exceed 2%, where usually
w = log, n.

m 4 Modelling Issues
Ernst Mayr, Harald Racke 25/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

> running time:

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

> running time:
» uniform model: n steps

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

> running time:
» uniform model: n steps
> logarithmic model: 1 +2 +4 + ... 42" =21 _ 1 =@(2")

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 26/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

> running time:
» uniform model: n steps
> logarithmic model: 1 +2 +4 + ... 42" =21 _ 1 =@(2")

> space requirement:

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 26/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

> running time:
» uniform model: n steps
> logarithmic model: 1 +2 +4 + ... 42" =21 _ 1 =@(2")

> space requirement:
» uniform model: O(1)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 26/565

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2: fori=1-mndo

3: ¥ —1r?

4: return v

> running time:

» uniform model: n steps

> logarithmic model: 1 +2 +4 + ... 42" =21 _ 1 =@(2")
> space requirement:

» uniform model: O(1)

> logarithmic model: ©(2™)

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke

26/565

There are different types of complexity bounds:
> best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/565

There are different types of complexity bounds:
> best-case complexity:

Coc(n) :=min{C(x) | [x| =n}

Usually easy to analyze, but not very meaningful.
> worst-case complexity:

Cwe(n) == max{C(x) | x| = n}

Usually moderately easy to analyze; sometimes too
pessimistic.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/565

There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cagm) = 1 3 C(x)

| 'I’l| |X‘:7’L

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/565

There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) :=max{C(x) | |x| = n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cagm) = 1 3 C(x)

| 'I’l| |X‘:7’L

more general: probability measure u
Cavg(n) == > p(x) - C(x)

xely

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/565

There are different types of complexity bounds:

» amortized complexity:
The average cost of data structure operations over a worst
case sequence of operations.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/565

There are different types of complexity bounds:

» amortized complexity:
The average cost of data structure operations over a worst
case sequence of operations.

» randomized complexity:
The algorithm may use random bits. Expected running time
(over all possible choices of random bits) for a fixed input
x. Then take the worst-case over all x with |x| = n.

‘m 4 Modelling Issues
Ernst Mayr, Harald Racke 27/565

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 28/565

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 28/565

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

> An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

TI[U]TTH 5 Asymptotic Notation
Ernst Mayr, Harald Racke

28/565

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

> An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

> A linear speed-up (i.e., by a constant factor) is always

possible by e.g. implementing the algorithm on a faster
machine.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 28/565

5 Asymptotic Notation

We are usually not interested in exact running times, but only in
an asymptotic classification of the running time, that ignores
constant factors and constant additive offsets.

> We are usually interested in the running times for large
values of n. Then constant additive terms do not play an
important role.

> An exact analysis (e.g. exactly counting the number of
operations in a RAM) may be hard, but wouldn’t lead to
more precise results as the computational model is already
quite a distance from reality.

> A linear speed-up (i.e., by a constant factor) is always
possible by e.g. implementing the algorithm on a faster
machine.

» Running time should be expressed by simple functions.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 28/565

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

> O(f) ={gl3c>03ngeNgVn=ngp: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 29/565

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.
> Of) ={gl3c>03angeNgVn=ng: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

> Q(f) ={gl3c>03ngeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 29/565

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.
> O(f) ={gl3dc>0aAnpeNgVn=np: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)
> Q(f) ={gl3c>03ngeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> O(f) =Q(f) nOf)
(functions that asymptotically have the same growth as f)

TT[U]TTH 5 Asymptotic Notation
Ernst Mayr, Harald Racke

29/565

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

> O(f) ={gl3c>03ngeNgVn=ngp: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

> Q(f) ={gl3c>03ngeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> Of) =Q(f)nof)
(functions that asymptotically have the same growth as f)

> o(f) ={gIVec>03dngeNoVn=np: [gn) <c-f(n)l}
(set of functions that asymptotically grow slower than f)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 29/565

Asymptotic Notation

Formal Definition

Let f denote functions from N to R™.

> O(f) ={gl3c>03angeNgVn=ng: [gn) <c- f(n)l}
(set of functions that asymptotically grow not faster than f)

> Q(f) ={gl3c>03angeNgVn=ng: [gn) =c- f(n)l}
(set of functions that asymptotically grow not slower than f)

> Of) =Q(f)nof)
(functions that asymptotically have the same growth as f)

> o(f) ={glVe>03ngeNgVn=ng: [gln) <c-f(n)]}
(set of functions that asymptotically grow slower than f)

> w(f)={g|Vc>03IngeNyVn=np: [gn) =c- f(n)l}
(set of functions that asymptotically grow faster than f)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 29/565

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny
to R;.

gn)
f(n)

> geO(f): Os}tilrolo < o

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 30/565

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny

to R;.
> geof): 05%@0?% < o0
> geQf): O<%@}0?EZ; < oo

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 30/565

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from Ny
to R;.

_.oofn
> geQ(f): 0< lim (")_
> geo(f): O<1Pllolof(n

> geO(f): Os%im g(n; < o
)

<

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke

30/565

Asymptotic Notation

There is an equivalent definition using limes notation (assuming

that the respective limes exists). f and g are functions from Ny
to R;.

~o f(n

> geO(f): Os%im g(n; < o
gn)

> geQ(f): O<71Hx}f()s
> geo(f): O<111§010f()<oo
g

» geol(f): lef(n) 0

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke

30/565

Asymptotic Notation

There is an equivalent definition using limes notation (assuming
that the respective limes exists). f and g are functions from Ny

to R;.
> g€ Oo(f):
> g€ Q(f):
> g €0(f):
> geol(f):

> g€ w(f):

g(n) < 00
n)
gn)

lim <
0< Jim F5 =
0<1119010 f(n)

lim (n)
n—x f(n)
lim 9" _
n-w f(n)

0 < lim
n

= f

<

=0

m Ernst Mayr, Harald Racke

5 Asymptotic Notation

30/565

Asymptotic Notation
Abuse of notation
1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

Asymptotic Notation
Abuse of notation
1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).
2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N - R, n~ f(n),andg:N - R*, n~ gn).

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N - R, n~ f(n),andg:N - R*, n~ gn).

3. People write e.g. h(n) = f(n) + o(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € o(g)
such that h(n) = f(n) + z(n).

Asymptotic Notation
Abuse of notation

1. People write f = O(g), when they mean f € O(g). This is
not an equality (how could a function be equal to a set of
functions).

2. People write f(n) = O(g(n)), when they mean f € O(g),
with f:N - R, n~ f(n),andg:N - R*, n~ gn).

3. People write e.g. h(n) = f(n) + o(g(n)) when they mean
that there exists a function z: N - R*,n — z(n),z € o(g)
such that h(n) = f(n) + z(n).

4. People write O(f(n)) = O(g(n)), when they mean
O(f(n)) € O(g(n)). Again this is not an equality.

Asymptotic Notation in Equations

How do we interpret an expression like:

2n2 +3n+1=2n%+0(n)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 32/565

Asymptotic Notation in Equations

How do we interpret an expression like:

2n? +3n+1=2n°+0(n)

Here, ©(n) stands for an anonymous function in the set ®(n)
that makes the expression true.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 32/565

Asymptotic Notation in Equations

How do we interpret an expression like:

2n° +3n+1=2n°+0(n)
Here, ®(n) stands for an anonymous function in the set ©(n)
that makes the expression true.

Note that ®(n) is on the right hand side, otw. this interpretation
is wrong.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 32/565

Asymptotic Notation in Equations

How do we interpret an expression like:

21 + 0(n) = O(n?)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 33/565

Asymptotic Notation in Equations

How do we interpret an expression like:
2n® +0(n) = 0(n?)

Regardless of how we choose the anonymous function
f(n) € O(n) there is an anonymous function g(n) € ©(n?)
that makes the expression true.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 33/565

Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 34/565

Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

Careful!

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 34/565

Asymptotic Notation in Equations

How do we interpret an expression like:

> 03) =0(n?)
i=1

Careful!

“It is understood” that every occurence of an @-symbol (or
0,Q, 0, w) on the left represents one anonymous function.

Hence, the left side is not equal to

O(l)+0R2)+---+0(n-1)+0B(n)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 34/565

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as
generating a set:
n’-0(n) + O(logn)

represents

{fiN=R" | f(n) =n?-g(n) +h(n)
with g(n) € 0(n) and h(n) € O(logn)}

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 35/565

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as
containement btw. two sets:

n’-0m) +0logn) = O(n?)

represents

n?-0m) +0logn) < O(n?)

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 36/565

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 37/565

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c
> O(f(n)) +0(g(n)) =0(f(n) +g(n))

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 37/565

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c
> O(f(n)) +0(g(n)) =0(f(n) +g(n))
> O(f(n)-0(gn)) =0(f(n) -gn))

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 37/565

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(g(n)) =0(f(n) +g(n))

> O(f(n)-0(gn)) =0(f(n) -gn))

> O(f(n)) + 0(g(n)) = Omax{f(n),gn)})

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 37/565

Asymptotic Notation

Lemma 3
Let f,g be functions with the property
dng > 0Vn = ng: f(n) > 0 (the same for g). Then

> c- f(n) € O(f(n)) for any constant c

> O(f(n)) +0(g(n)) =0(f(n) +g(n))
O(f(n)) -0(gn)) =0(f(n)-gn))

> O(f(n)) + O(g(n)) = Omax{f(n),gn)})

The expressions also hold for Q). Note that this means that
f(n) + gn) € O(max{f(n),gn)}).

v

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 37/565

Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 38/565

Asymptotic Notation

Comments
» Do not use asymptotic notation within induction proofs.
» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 38/565

Asymptotic Notation

Comments

» Do not use asymptotic notation within induction proofs.

» For any constants a, b we have log, n = ©(log, n).
Therefore, we will usually ignore the base of a logarithm
within asymptotic notation.

> In general logn = log, n, i.e., we use 2 as the default base
for the logarithm.

‘m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 38/565

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.

m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 39/565

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:

m 5 Asymptotic Notation
Ernst Mayr, Harald Racke 39/565

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).

TI[U]TTH 5 Asymptotic Notation
Ernst Mayr, Harald Racke

39/565

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log® n.

TI[U]TTH 5 Asymptotic Notation
Ernst Mayr, Harald Racke

39/565

Asymptotic Notation

In general asymptotic classification of running times is a good
measure for comparing algorithms:
> If the running time analysis is tight and actually occurs in
practise (i.e., the asymptotic bound is not a purely
theoretical worst-case bound), then the algorithm that has
better asymptotic running time will always outperform a
weaker algorithm for large enough values of n.
» However, suppose that | have two algorithms:
» Algorithm A. Running time f(n) = 1000logn = O(logn).
> Algorithm B. Running time g(n) = log® n.
Clearly f = 0(g). However, as long as logn < 1000
Algorithm B will be more efficient.

TI[U]TTH 5 Asymptotic Notation
Ernst Mayr, Harald Racke

39/565

6 Recurrences

Algorlthm 2 mergesort(list L)

ORI I

n — size(L)

if n<1returnL

Ly —L[1---1%]]

Ly~ L[31+1n]
mergesort(Ly)
mergesort(Ly)

L — merge(L1,L>)
return L

m Ernst Mayr, Harald Racke

6 Recurrences

40/565

6 Recurrences

Algorlthm 2 mergesort(list L)

ORI I

n — size(L)

if n<1returnL

Ly —L[1---1%]]

Ly~ L[31+1n]
mergesort(Ly)
mergesort(Ly)

L — merge(L1,L>)
return L

This algorithm requires

T(n) =T(|

n

f]) + T([gJ) +0(n) < 2T([g]) +0(n)

comparisons when n > 1 and 0 comparisons when n < 1.

m Ernst Mayr, Harald Racke

6 Recurrences

40/565

Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

‘m 6 Recurrences
Ernst Mayr, Harald Racke 41/565

Recurrences

How do we bring the expression for the number of comparisons
(= running time) into a closed form?

For this we need to solve the recurrence.

‘m 6 Recurrences
Ernst Mayr, Harald Racke 41/565

Methods for Solving Recurrences

1. Guessing+Induction
Guess the right solution and prove that it is correct via
induction. It needs experience to make the right guess.

2. Master Theorem
For a lot of recurrences that appear in the analysis of
algorithms this theorem can be used to obtain tight
asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial
Linear homogenous recurrences can be solved via this
method.

m 6 Recurrences
Ernst Mayr, Harald Racke 42/565

Methods for Solving Recurrences

4. Generating Functions
A more general technique that allows to solve certain types
of linear inhomogenous relations and also sometimes
non-linear recurrence relations.

5. Transformation of the Recurrence
Sometimes one can transform the given recurrence relations
so that it e.g. becomes linear and can therefore be solved
with one of the other techniques.

m 6 Recurrences
Ernst Mayr, Harald Racke 43/565

6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Informal way:

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 44/565

6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

n
T(n)s{ZT([Z])Jrcn nzZI
0 otherwise

Informal way:
Assume that instead we have

2T(5) +cn n =2
0 otherwise

T(n) < {

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 44/565

6.1 Guessing+Induction

First we need to get rid of the @-notation in our recurrence:

2T([5]) +en n=2
0 otherwise

T(n) < {

Informal way:
Assume that instead we have

2T(5) +cn n =2
0 otherwise

T(n) < {

One way of solving such a recurrence is to guess a solution, and
check that it is correct by plugging it in.

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 44/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d.

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T<g> +cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

T(n) < 2T<g> +cn

< 2<dglogg) +cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then
n
T(n) < 2T<§> +cn
n n
< 2<d§10g 5) +cn

=dn(logn—-1)+cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then
n
T(n) < 2T<§> +cn
n n
< 2<d§10g 5) +cn

=dn(logn—-1)+cn
=dnlogn+ (c—dn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T(§> +cn
n n
< 2<d§10g§) +cn
=dn(logn—-1)+cn

=dnlogn+ (c—dn

<dnlogn

if we choose d > c.

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

Suppose we guess T(n) < dnlogn for a constant d. Then

n
T(n) < 2T<§> +cn
n n
< 2<d§10g§) +cn
=dn(logn—-1)+cn

=dnlogn+ (c—dn

<dnlogn
if we choose d > c.

Formally, this is not correct if n is not a power of 2. Also even in
this case one would need to do an induction proof.

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 45/565

6.1 Guessing+Induction

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 <n < 16):

T(n) < {

2T(5) +cn n =16
b otw.

6.1 Guessing+Induction T(n) S{ iT(?) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.

6.1 Guessing+Induction T(n) S{ iT(’S) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.
> inductionstep2...n -1 — n:

6.1 Guessing+Induction T(n)

<
b otw.

{2T(’§)+cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.
> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

6.1 Guessing+Induction T(n)

<
b otw.

{2T(’§)+cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.
> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < ZT(%) +cn

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n)

|

2T(5) +cn n =16
b otw.

> base case (2 < n < 16): true if we choose d > b.

> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.

We prove it for n:

T(n) < ZT(%) +cn

< Z(dglogg> +cn

6.1 Guessing+Induction

Guess: T(n) < dnlogn.
Proof. (by induction)

T(n)

|

2T(5) +cn n =16
b otw.

> base case (2 < n < 16): true if we choose d > b.

> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.

We prove it for n:

T(n) < ZT(%) +cn

< Z(dglogg> +cn

=dn(logn—-1) +cn

6.1 Guessing+Induction T(n)

<
b otw.

{2T(’§)+cn n=16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.
> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

T(n) < ZT(%) +cn
< Z(dglogg> +cn

=dn(logn—-1) +cn

=dnlogn + (c —d)n

6.1 Guessing+Induction T(n) S{ zT(’S) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.

> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(§) +cn
n n
< 2(d§10g5> +cn
=dn(logn—-1) +cn

=dnlogn + (c —d)n
<dnlogn

6.1 Guessing+Induction T(n) S{ zT(’S) +cn Zti 16

Guess: T(n) < dnlogn.
Proof. (by induction)

> base case (2 < n < 16): true if we choose d > b.

> inductionstep2...n -1 — n:

Suppose statem. is true for n’ € {2,...,n— 1}, and n > 16.
We prove it for n:

n
T(n) < 2T(§) +cn
n n
< 2(d§10g5> +cn
=dn(logn—-1) +cn

=dnlogn + (c —d)n
<dnlogn

Hence, statement is true if we choose d > c.

6.1 Guessing+Induction

How do we get a result for all values of n?

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 47/565

6.1 Guessing+Induction

How do we get a result for all values of n?

We consider the following recurrence instead of the original one:

2T([5]) +cn n =16
b otherwise

T(n) < {

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 47/565

6.1 Guessing+Induction

How do we get a result for all values of n?

We consider the following recurrence instead of the original one:

2T([5]) +cn n =16
b otherwise

T(n) < {

Note that we can do this as for constant-sized inputs the running
time is always some constant (b in the above case).

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 47/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n)

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [E

2]>+cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [E

2]>+cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn
n

< Z(d[%] log [5
<2(dn/2+1)log(n/2+1))+cn

]) +Ccn

_—
ol
—
IA
IR
+
=

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get

T(n) < ZT([gD +cn

< Z(d[%] log [g]) +cn

[3]<3+1| <2(d(n/2+1)log(n/2+1)) +cn
Lils<qgn

!
6.1 Guessing+Induction
48/565

m Ernst Mayr, Harald Racke

6.1 Guessing+Induction
We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn
n n
< Z(d[i] log[ib +cn
[3]<%+1| <2(d(n/2+1)log(n/2 +1)) +cn

n <39 9
7 +l< sdnlog(En)JerlognJrcn

!
6.1 Guessing+Induction
48/565

m Ernst Mayr, Harald Racke

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn
n

< Z(d[%] log [5
<2(dn/2+1)log(n/2+1))+cn

]) +Ccn

—

n n
[3]<5+

n
2

+1=<n| <dnlog (%n) +2dlogn +cn

log %n =logn + (log9 — 4) ‘

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke

48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn
n

< Z(d[%] log [5
<2(dn/2+1)log(n/2+1))+cn

]) +Ccn

—

n n
[3]<5+

n
2

+1=<n| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn
n

< Z(d[%] log [5
<2(dn/2+1)log(n/2+1))+cn

]) +Ccn

—

n n
[3]<5+

n
2

+1=<n| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn
n

< Z(d[%] log [5
<2(dn/2+1)log(n/2+1))+cn

]) +Ccn

—

n n
[3]<5+

n
2

+1=<n| <dnlog (%n) +2dlogn +cn

log f5n = logn + (log9 — 4) ‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [E

2]>+cn

[3]<3+1| <2(d(n/2+1)log(n/2+1)) +cn

n <39 9

7+1l<qn sdnlog(En)JerlognJrcn
log%n=logn+<log9—4)‘ =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn
<dnlogn —0.33dn +cn

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.1 Guessing+Induction

We also make a guess of T(n) < dnlogn and get
n
T(n) < 2T([§]> +cn

< Z(d[%] log [E

2]>+cn

[3]<3+1| <2(d(n/2+1)log(n/2+1)) +cn

n <39 9

7+1l<qn sdnlog(En)JerlognJrcn
log%n=logn+<log9—4)| =dnlogn + (log9 —4)dn + 2dlogn + cn

<dnlogn + (log9 —3.5)dn + cn
<dnlogn —0.33dn +cn
<dnlogn

for a suitable choice of d.

‘m 6.1 Guessing+Induction
Ernst Mayr, Harald Racke 48/565

6.2 Master Theorem

Lemma 4
Leta >1,b > 1 and € > 0 denote constants. Consider the
recurrence n

T(n) = aT(E) + fn) .

Case 1.
If f(n) = O(n'°%@-€) then T(n) = O(nlosra),

Case 2.
If f(n) = ©(n'°8(@ logk n) then T(n) = O(n'osr 21ogk ™1 n),
k>0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n
af(y) <cf(n) for some constant c <1 then T(n) = O(f(n)).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 49/565

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b!, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 50/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

®

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

=
g

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/565

6.2 Master Theorem

This gives
log, n—1

T(n) =nlo8a 4+ > a?(%) :

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 52/565

Case 1. Now suppose that f(n) < cnloga-¢€,

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

T(n) - nlogb a

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1

T -l =3 aif (%)

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,
log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
log, n—1

logy, a—€
i[n
e 3 a(y)

i=0

IA

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,
log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
log, n—1

logy, a—€
i[n
e 3 a(y)

i=0

IA

p-ilogpa—e) — bei(blogb u)—i = peig—i

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l
i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l
i=0

k+1,1
zl Oq q-1

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
_ pplogpa _ i R
T(n)—n = z af(bi)
i=0
log, n—1 log), a—¢
<c S ai(2)
<C a bi
i=0
log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l
i=0
gktl-1 | _ logba—E(beloghn . 1)/(196 -1)
zl Oq q-1 =Ccn
‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0

logyn-1 1\ logya—e

se 3 a(y)

i=0

log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l

i=0
zl 0‘1 ’:1;1 _ Cnlogba—E(beloghn . 1)/(196 _ 1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
_ pplogpa _ i R
T(n)—n = z af(bi)
i=0
log, n—1 _
B ger: i(n log, a—€
<C a pi
i=0
log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l
i=0
Z gktl-1 | _ logba—E(beloghn -1 (be -1)
= Oq q-1 =Ccn /
= cnlo®a=€(n€ —1)/(b° - 1)
c logy, a(.,€ €
= ——n%%n -1)/(n°
be -1
‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0

logyn-1 1\ logya—e

se 3 a(y)

i=0

log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bS)l

i=0
zl 0‘1 ’:1;1 _ Cnlogba—E(beloghn . 1)/(196 _ 1)
= cnlo8ra=€(n€ — 1)/ (b€ - 1)
C

_ logp, a ., _ €
pe_ 1 r(mt=1)/(n7)

Hence,

T(‘I’L) < <bec ; +1>n10gh(a)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 1. Now suppose that f(n) < cnloga-¢€,

log, n—1 n
T(n) —n'osra = z alf(ﬁ)
i=0
logyn-1 1\ logya—e
se 3 a(y)
i=0
log, n—1]
p-illogya-e) _ peiplogpay—i _ peig—i | = CnIOgb a-c Z (bs)l
i=0

Zl 0‘1 i O Cnlogba—E(beloghn . 1)/(196 _ 1)

q-1
=cnlo8 ¢ (€ —1)/(b° - 1)

= e (e = 1)/ (n)

Hence,

Cc

T(n) < <

pe g > T(n) = 08 9).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/565

Case 2. Now suppose that f(n) < cnlogn 4,

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) < cnlogn 4,

T(n) - nlogb a

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1

T(n) — nlogra = Z aif(%)

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 log, a
i(n
3 a(y)

i=0

IA

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

54/565

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 lo
i n gpa
<c > a i
i=0
log, n—-1
=cnlogra X

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 lo
i n gpa
<c > a i
i=0
log, n—-1
=cnlogra X

i=0
cnl°8 4log, n

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 lo
i n gpa
<c > a i
i=0
log, n—-1
=cnlogra X

i=0
cnl°8 4log, n

Hence,
T(n) = O(n'°% *log, n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) < cnlogn 4,

log, n—1 n
_ . logpa _ i had
T(n)-n = Z af(bl.)
i=0
log, n—1 log, a
c > a LA
pi
i=0
log, n—-1
=cnlogra X
i=0
cnl°8 4log, n

IA

Hence,

T(n) = 08 log,n) |= T(n) = 08 logn).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/565

Case 2. Now suppose that f(n) = cnlogn 4,

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

T(n) — nlogb a

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

log, n—1

T(n) — nlogra = Z a‘f(%)

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1

log, a

i(n

e 3 al(y)
i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1 log, a
>c > ai(ﬂ.)
7
i=0

log, n—-1

=cnlo®a X
i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

log, n—1 ' n
T(n) -nlosrad = a‘f(E)
i=0
pn-1 logy, a
fn
3 a(y)

i=0

\%

logy n—1
=cnlo®a X
i=0
= cnlo%2og, n

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

log, n—1 ' n
T(n) -nlosrad = a‘f(E)
i=0
pn-1 logy, a
fn
3 a(y)

i=0

\%

logy n—1
=cnlo®a X
i=0
= cnlo%2og, n

Hence,
T(n) = Q(n'°% %log, n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) = cnlogn 4,

log, n—1 ' n
T —nloswe =Y atp(r)
i=0
logp n—1
>c > al<£

)logb a
i=0

logy n—1
=cnlo®a X
i=0
= cnlo%2og, n

Hence,

T(n) = Qn'%%log,n) |= T(n) = Q% 4logn).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) — nlogra

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T -nowe =5 atf (1)

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1 n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1 log, a k
n
se 3 at(g) T (tow (5)
i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.
logp n—1 n
T(n) — nlogha _ Z alf(ﬁ)
i=0
log, n—1

/m\1ogra n k
¥ oaly) (o (5))
1=

IA

n:hgjﬁzlogbn‘

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T -nowe =5 atf (1)

i=0
log, a n k
) (om ()

log, n—1
- piN\ K
n:hgjﬁzlogbn‘ = cnlosr @ Z (logb<))

<c > ai<

i=0

=

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) — nlogha _ Z alf(%)
i=0
log, n—1

(n log, a | n k
S)™ (o (2)
i=0
bl k
(1080 (50))

£-1
_ Cnlogba Z (‘g _ l)k
i=0

(-1
n:hgjﬁzlogbn‘ = cnlosra
i

=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) — nlogra = Z aif(n)

i=0 bt
Cloghn—lal(n')logha . <10g (n)>k
i=0 bt ! bt
0-1

b{’ k
ensee 3. (1ogy (1))

IA

n:hgjﬁzlogbn‘

-1
= cnlogra Z 0 - i)k
i=0
9
= cnlogpa Z ik
i=1

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) —nlogra =

n:hgjﬁzlogbn‘

IA

logp n—1

i n
> @ (5)
i=0 bt
log, n—1

e & el (om (1)

)

i=0

cnlosra (logpJ (ﬁ

£-1
Cnlogba Z (‘g _ l)k
i=0

?
Cnlogh az ik ~ %ngrl
i=1

m Ernst Mayr, Harald Racke

6.2 Master Theorem

56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) — nlogra = Z aif(n)

i=0 bt
Cloghn—lal(n')logha . <10g (n)>k
i=0 bt ! bt
0-1

b{’ k
ensee 3. (1ogy (1))

IA

n:hgjﬁzlogbn‘

£-1
= cnlogra Z 0 - i)k
i=0
!
= cnlogpa Z ik
i=1
%nlogh a€k+1

Q

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

logp n—1

T(n) — nlogha _ Z alf(%)
i=0
log, n—1

(n log, a | n k
S)™ (o (2)
i=0
bl k
(1080 (50))

-1

= cnlogra Z 0 - i)k
i=0
9

= cnlogpa Z ik

(-1
n:hgjﬁzlogbn‘ = cnlosra
i

=0

i=1
C

~ Enlogh apk+l = T(n) = O(n'°% 4 1ogk 1 n).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

Ton) -l =3 aif ()

i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
_ plogya _ ig(N
T(n)—nosrd = Z af(bi>
i=0
logp n—1

< > cifm) +0omosne)
i=0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
_ logpa _ i A
T(n)—nosrd = Z af(bi>
i=0
logp n—1
< > cifm) +0omosne)
i=0
7’ _gn+l
q<1:zl”=0qlzllq_q sﬁ

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
T(n)-nlosva = 3 alf(ﬁ)
i=0
logp n—1
< > cfm)+omons)
i=0
a<1:3oa' =l sy | < S+ O(nlogra)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

(N
Ton) -l =3 aif ()
i=0
logp n—1
< > cifm) +0omosne)
i=0
n i _an+1 1 l
a<1:3",q" = llq_q < ﬁ Sl _Cf(n) + O(n'°8r)
Hence,

T(n) <0(f(n))

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

57/565

Case 3. Now suppose that f(n) = dn'°8»2+€ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1
o - =S aty
> atf(3)
logp n—1
< > cif(n) +omloera)
i=0
a<U:SLoa =Y < g =7 i _f(n) + O
Hence,
Tn) =0(f(n) > T(n) =0(f(n)).|

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 57/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01T1T010(1| A
10001001|1] B

L

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01T1T010(1| A
10001001|1 B

ol

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

o

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B
0/0

cl

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

0/0 0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001(0/011 B

" jooo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B
1000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T01{(1/101 01 A
1000100]01111 B

" J1000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1101110101 A
10001100]01111 B

0/1000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110(1l10101 A
100(01,001 1 B
' jo1000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110(1l10101 A
100/0/1,001 1 B
0/01000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11f0j110101 A
100010011 B
' Joo1000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

11f0j110101 A
100010011 B
11001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1llo110101 A
1100010011 B
/1001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1llo110101 A
1/0/00 10011 B
111001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1M0O110101 A
1/00010011 B

0]

/11001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1M0O110101 A
11,/0,00 10011 B

0]

011001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001001 1 B
' Jo11001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
/1,0001001 1 B
1011001000

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,00010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

1T0001TX1011

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001Xx101()

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001Xx101()
10001

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101
10001
100010

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010

00

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X101 1
10001
100010
00000O0O

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
00000O0O

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
00000O0O
00O

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X011
10001
100010
00000O0O
1T0001000O0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
1T0001000O0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:
» Computing intermediate results: O(nm).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)m) = O(nm).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B E3 A

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b, bolxlaﬂ a0

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b -+ byby, - bolxlaﬂ o agag, -+ a

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By | X ‘ Aj Ao

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By | X ‘ Aj Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

By By | X ‘ Aj Ao

Then it holds that

A=A -22 + Agand B=B; - 27 + By

Hence,

A-B=A1B;-2"+ (A1Bo + AoBy) - 27 + AoBo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

o(1)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A,
4: split B into By and B;
5: Zo — mult(Ay,B;)
6
7
8

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B;
5: Zo — mult(Ay,B;)
6
7
8

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(Ay,B;)
6
7
8

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)
2 return ag - bg O(1)
3: split A into Ag and A, On)
4: split B into By and B; On)
5: Zo — mult(Ay,B;) T(%)
6: Z1 — mult(Ay, Bg) + mult(Ag, By)

7: Zo — mult(Ag, By)

8: return Z» - 2" + 7Z; - 27 VA

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

O(1)
O(1)
O(n)
On)
T(%)

2T(%) + O(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B;

5:
6
7
8

Z> — mult(Aq, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, Bg)
: return Z - 2" + Z; - 27 + 7y

O(1)
O(1)
O(n)
On)
T(%)

2T(%) + O(n)

T(%)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(Ay, By) + mult(Ag, By) 2T (%) + O(n)
7: Zo — mult(Ag, By) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 61/565

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if |A| = |B| =1 then O(1)

2 return ag - bg O(1)

3: split A into Ag and A, On)

4: split B into By and B; On)

5: Zo — mult(Ay,B;) T(%)

6: Z1 — mult(Ay, By) + mult(Ag, By) 2T (%) + O(n)
7: Zo — mult(Ag, By) T(%)

8 return Z - 2" + 71 - 22 + 7 O(n)

We get the following recurrence:
n
T(n) = 4T<§> +0(n) .

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 61/565

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlogr a)
> Case 2: f(n) = O(nl®2loghkn) T(n) = @M% alogh*! n)
> Case 3: f(n) = Q(nlogra+e) T(n) = 0(f(n))

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

62/565

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlogr a)
> Case 2: f(n) = O(nl°gralogkn) T(n) = OB 210g" ! n)
> Case 3: f(n) = Q(nlosra+¢) T(n) = O(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra—c),

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

62/565

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(nlogra—c) T(n) = O(nl°8r4)
> Case 2: f(n) = O(nl°gralogkn) T(n) = OB 210g" ! n)
> Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©@(n?) for our algorithm.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

62/565

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(nlogra—c) T(n) = O(nl°8r4)
> Case 2: f(n) = O(nl°gralogkn) T(n) = OB 210g" ! n)
> Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))

Inour case a =4, b =2, and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n?=¢) = O(n'o8ra=cy,

We get a running time of ©@(n?) for our algorithm.

=> Not better then the “school method”.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 62/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy
= (Ap + A1) - (Bo +B1) —A1B1 — AgBo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12
—tr— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12
—tr— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if |A| = |B] = 1 then
2 return ag - by

3: split A into Ag and A,
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by

3: split A into Ag and A,
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A,
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zp — mult(A, By) T(%)
6: Zo — mult(Ag, By)

7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z

8: return Zp - 2" + Z; - 2% & Zo

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12

—t— ——
= (Ap + A1) - (Bo +B1) — A1B1 — AgBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12

—t— ——
= (Ap + A1) - (Bo +B1) — A1B1 — AgBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag + Ay,Bo + B1) — Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

o(1)
O(1)
o)
O(n)
T(%)
T(%)

T(%) + O(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

63/565

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if JA| = |B| =1 then O(1)

2 return ag - by O(1)

3: split A into Ag and A, On)

4: split B into By and B; O(n)

5: Zp — mult(A, By) T(%)

6: Zo — mult(Ag, By) T(%)

7: Z1 — mult(Ag +A1,Bo;iL—Bl)—Zz—Zo T(%)—FO(‘I’L)
8 return Zp - 2"+ 71 - 22 + 7 O(n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/565

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 64/565

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
> Case 1: f(n) = O(nlosra-¢) T(n) = O(nlosr 9)
> Case 2: f(n) = O(nl°%alogkn) T(n) = O(nlo8ralogh*! n)
> Case 3: f(n) = Q(nlogb ate) T(n) = 0(f(n))

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

64/565

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(}) + f(n).
> Case 1: f(n) = O(nlosra-¢) T(n) = O(nlosr 9)
> Case 2: f(n) = 0% alogkn) T(n) = @8 a1ogk*! n)
> Case 3: f(n) = Q(nlogb are) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

64/565

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(n'ogra-c) T(n) = ©(n'osr @)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =06(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.

n)

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke

64/565

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 65/565

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cq, cx # 0).

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 65/565

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cop, cx = 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 65/565

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coT(n) +aTm—-1)+c2Tm—-2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cop, cx = 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 65/565

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coTm)+caiTm—-1)+c2Tm—-2)+---+cxT(m—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cop, cx = 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) =0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 65/565

6.3 The Characteristic Polynomial
Consider the recurrence relation:

coTm)+caiTm—-1)+c2Tm—-2)+---+cxT(m—k)=f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cop, cx = 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

» If f(n) =0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 65/565

6.3 The Characteristic Polynomial

Observations:

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T(1],...,T[k].

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for

T[1],...,T[k].
» In fact, any k consecutive values completely determine the
solution.
!
‘m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke

66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

Approach:

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).

Approach:

> First determine all solutions that satisfy recurrence relation.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
> First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1],...,T[k].

» In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
> First determine all solutions that satisfy recurrence relation.

» Then pick the right one by analyzing boundary conditions.

> First consider the homogenous case.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 66/565

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 67/565

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 67/565

The Homogenous Case

The solution space
S = {’T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 67/565

The Homogenous Case

The solution space
S = {’T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 67/565

The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 71,7> € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A + 0, and see what
happens. In order for this guess to fulfill the recurrence we need

COA"+C1)\TL71 +Cp - AVL*Z + e+)\?’L*k =0

for all n > k.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 67/565

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + Ak AR 2 g =0

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 68/565

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

characteristic polynomial P[A]

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 68/565

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = 2\?
is a solution to the recurrence relation.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 68/565

The Homogenous Case

Dividing by A"~ gives that all these constraints are identical to

coAf + 1AM e AR2 4 h =0

—

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] =)\?
is a solution to the recurrence relation.

Let Aq,..., A be the k (complex) roots of P[A]. Then, because of
the vector space property

0(17\711 + 0(27\? + -+ O(kA;;l
is a solution for arbitrary values «;.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 68/565

The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of

the form
1A+ AT + -+ gAY

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 69/565

The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

1A+ AT + -+ gAY

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],...,T[k].

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 69/565

The Homogenous Case

Lemma 5
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of
the form

1A+ AT + -+ gAY

Proof.
There is one solution for every possible choice of boundary

conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution
for every choice of boundary conditions.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 69/565

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 70/565

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

®1-A1 + o2-A2 4+ -+ oAy = TI[1]

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 70/565

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

0(1-7\1 + 0(2-)\2 + - + O(k-Ak = T[l]
oA+ AR+ e+ oA = T([2]

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 70/565

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

0(1-7\1 + 0(2-)\2 + - + O(k-Ak = T[l]
oA+ AR+ e+ oA = T([2]

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 70/565

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the «s such that these conditions are met:

x1-A1 + o2-A2 + --- 4+ oA = T[1]
o - A% + o -)\% + e+ g Ai = T[2]
o AN 4+ - AS o+ o+ AR = TR

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 70/565

The Homogenous Case

Proof (cont.).

Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the (x;s such that these conditions are met:

Ao
Af A3
Af A3

Ak o
/\]2< (. §)
/\i (0,47

T[1]
T[2]

T[.k]

m Ernst Mayr, Harald Racke

6.3 The Characteristic Polynomial

71/565

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the (xgs such that these conditions are met:

Al A2 - A o1 T[1]
AT A3 - A2 o | | TI2]
Ak oAb Ak o T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke

71/565

Computing the Determinant

Mot e
AT A7 N A
AF A N A

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 72/565

Computing the Determinant

A1 Az Ak-1
ATAS e AR
AY A% Ak

Ak 1 1
A7k AL A
=TT :
A",g T e)\’2"*1

Ak-1

k-1
2\kfl

Ak

A

k-1
k

m Ernst Mayr, Harald Racke

6.3 The Characteristic Polynomial

72/565

Computing the Determinant

A1 Az Ak-1
ATAS e AR
AY A% Ak

Ak 1 1
A7k AL A
=TT . .
:k = k: k

1 A

k 1 A

=[])

i=1 :

1 Ax

k-1

AyZ

m Ernst Mayr, Harald Racke

6.3 The Characteristic Polynomial

72/565

Computing the Determinant

1A Ak=2 ket
1A Ak=2 Akt
1 Ak Ak=2 Akt

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 73/565

Computing the Determinant

1A Ak=2 ket

1 A Ak=2 Akt

1 Ak Ak=2 A
IoAp=Ap-1 - A2 q b Akt Ak
1o Ap=Ap-1 -0 AK2Zo A Al AK oA Ak
ToAg=Ap-1 - A2 Af oAy ake?

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 73/565

Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2
T Ap—Ap-1 - A572A0 A58 Aft oA ak2
Lo Ag=Ap-1 -0 A2 AR AKTL iy k2

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 74/565

Computing the Determinant

I A =Ap-1 - AR2o g ak3 Akl L ake2

I Ap—Ar-1 --- AKZ X Ak Ak AL Ak2

Lo Ag=Ap-1 -0 A2 AR AKTL iy k2
1 0 0 0
1 (A=A)-1 -+ (A2=A)-A53 (A —2Ay)-A52
1 A=AD-1 -+ A=A - A% (A —2Ap) - Af?

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 74/565

Computing the Determinant

1 0 0 0
I A=A 1 -+ (A=A -A53 Ax—ap) a8
I A=A 1 -+ QAg=Ap A3 QA=A AL

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 75/565

Computing the Determinant

1 0 0 0

I A=A 1 - (A2=Ap-A53 (Ap—Aap)-25 7

I A=A 1 -+ QAg=Ap A3 QA=A AL
. 1 Ay -e- AK3 Ak
[Tai-an-|: : :
= R L

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 75/565

Computing the Determinant

Repeating the above steps gives:

A Az e Apor Ag

AZOA3 - A2 AR k

. SRR S o VIO I (Y7 VR
.k .k k. .k i=1 i>l

AT A e A A

Hence, if all A;’s are different, then the determinant is hon-zero.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 76/565

The Homogeneous Case

What happens if the roots are not all distinct?

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 77/565

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A}" a solution to the recurrence but also nA’.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 77/565

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is AI" a solution to the recurrence but also nA’.

To see this consider the polynomial

PIAT - A" K = coA™ + A" L4 oA 2 4 oo Ak

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 77/565

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is AI" a solution to the recurrence but also nA’.

To see this consider the polynomial

PIAT - A" K = coA™ + A" L4 oA 2 4 oo Ak

Since A; is a root we can write this as Q[A] - (A — A;)2.
Calculating the derivative gives a polynomial that still has root
Aj.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 77/565

This means

conA i (n - DA + - (n - kAR = 0

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 78/565

This means

conA i (n - DA + - (n - kAR = 0

Hence,

conA" +ci(m— DA 4+ - p o (n— kA F =0

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 78/565

This means

conA i (n - DA + - (n - kAR = 0

Hence,

conA" +ci(m— DA 4+ - p o (n— kA F =0
— —_— [—
T[n] T[n-1] TIn—k]

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 78/565

The Homogeneous Case

Suppose A; has multiplicity j.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 79/565

The Homogeneous Case

Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0

(after taking the derivative; multiplying with A; plugging in A;)

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 79/565

The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 79/565

The Homogeneous Case

Suppose A; has multiplicity j. We know that

conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

We can continue j — 1 times.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 79/565

The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA +cim— DAL+ g (n—-k)AT R =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +ci(m—1D2AM ! 4 r g (n—k)2AT R =0

We can continue j — 1 times.

Hence, n#)\;4L is a solution for £ €0,...,j — 1.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 79/565

The Homogeneous Case

Lemma 6
Let P[A] denote the characteristic polynomial to the recurrence

coTn]l+caiTn—11+---+c,T[n-k]=0

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities £;. Then the general solution to the recurrence is

given by
4;

m -1
Tnl=> > a - m/Al) .
i=1 j=0

The full proof is omitted. We have only shown that any choice of
®;;’s is a solution to the recurrence.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 80/565

Example: Fibonacci Sequence

T[0]=0
T[1]=1
TInl=Tn-1]1+T[n-2]forn =2

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 81/565

Example: Fibonacci Sequence

T[0]=0
T[1]=1
TInl=Tn-1]1+T[n-2]forn =2

The characteristic polynomial is

AZ-A-1

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 81/565

Example: Fibonacci Sequence

T[0]=0
T[1]=1
TInl=Tn-1]1+T[n-2]forn =2

The characteristic polynomial is

|
Finding the roots, gives
1 1 1
AMp=-=x,-+1=-(1=x
1/2 > 4 2 (\/g)
| ‘m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke

81/565

Example: Fibonacci Sequence
Hence, the solution is of the form

(7)o ()

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 82/565

Example: Fibonacci Sequence

Hence, the solution is of the form

(7)o ()

2 2

T[0] =0 gives x+ = 0.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 82/565

Example: Fibonacci Sequence
Hence, the solution is of the form

(7)o ()

T[0] =0 gives x+ = 0.

T[1] =1 gives

(55)a(57)

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 82/565

Example: Fibonacci Sequence
Hence, the solution is of the form

(7)o ()

T[0] =0 gives x+ = 0.

T[1] =1 gives

o(155) s (155) 212w

il

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 82/565

Example: Fibonacci Sequence

Hence, the solution is

ESRC

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 83/565

The Inhomogeneous Case

Consider the recurrence relation:
coT(n)+aTn—1)+c2TM—-2)+---+cxT(n—k)=f(n)
with f(n) + 0.

While we have a fairly general technique for solving
homogeneous, linear recurrence relations the inhomogeneous
case is different.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 84/565

The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Ty(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 85/565

The Inhomogeneous Case

The general solution of the recurrence relation is
T(n)=Th(n)+Ty(n) ,

where T}, is any solution to the homogeneous equation, and T)
is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 85/565

The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 86/565

The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1 (n=2)

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 86/565

The Inhomogeneous Case
Example:
Tn]l=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,

Tn]-Tn-1]=Tn-1]-T[n - 2] (n=2)

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 86/565

The Inhomogeneous Case
Example:
Tn]l=Tn-1]+1 T[0]=1

Then,
Tin-11=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
ITn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 86/565

The Inhomogeneous Case

Example:
Tn]=Tn-1]+1 T[0]=1

Then,
Tn-1]=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
ITn]-Tn-1]1=Tn-1]-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1]=2.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 86/565

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 87/565

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
| S S—
(A-1)2

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 87/565

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
B —
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 87/565

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
B —
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

T[0] =1 gives xx = 1.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 87/565

The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
B —
(A-1)2

Then the solution is of the form

Tn] =1+ Bnl" = x+ Bn

T[0] =1 gives xx = 1.

T[1]=2gives 1+ =2= B =1.

m 6.3 The Characteristic Polynomial
Ernst Mayr, Harald Racke 87/565

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=T[n-2]+ (n-1)=2

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

Difference:

ITnl-Tn-1]=Tn-1]-Tn-2]+2n-1

The Inhomogeneous Case
If f(n) is a polynomial of degree » this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+ n?

Shift:

Tn-11=Tn-2]1+n-1)2=Tn-21+n?-2n+1

Difference:

Tnl-Tn-1]=Tn-1]-Tn-2]+2n-1

Tn]l=2Tn-1]1-Tn-2]+2n-1

Tnl=2Tn-1]1-Tn-2]1+2n-1

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tn]=3Tn-1]-3T[n-2]+T[n-3]+2

Tnl=2Tn-1]1-Tn-2]1+2n-1

Shift:

Tn-1]1=2Tn-2]-T[n-3]+2n-1) -1
=2Tn-2]-Tn-3]1+2n-3

Difference:

Tn]-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-2]+Tn-31-2n+3

Tn]=3Tn-1]-3T[n-2]+T[n-3]+2

and so on...

6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding

» generating function (Erzeugendenfunktion) is

F(z):= > anz'

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 90/565

6.4 Generating Functions

Definition 7 (Generating Function)
Let (an)n=0 be a sequence. The corresponding
» generating function (Erzeugendenfunktion) is

F(z):= > anz'

n=0

» exponential generating function (exponentielle
Erzeugendenfunktion) is

. an _n
F(z):= Z n!z .
n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 90/565

6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 91/565

6.4 Generating Functions

Example 8

1. The generating function of the sequence (1,0,0,...) is

F(z)=1.

2. The generating function of the sequence (1,1,1,...) is

1
F(Z) :E.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 91/565

6.4 Generating Functions

There are two different views:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f+g:=>,.0(an + by)z™.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f+g:=>,.0(an + by)z™.

> Multiplication: f - g:=>,.0cnz" with ¢,y = S5 _gapbn p.

TT[U]TTH 6.4 Generating Functions
Ernst Mayr, Harald Racke

92/565

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.

Let f =>,.0anz™and g = > o0 bnz".
» Equality: f and g are equal if a,, = by, for all n.
» Addition: f+g:=>,.0(an + by)z™.

> Multiplication: f - g:=>,.0cnz" with ¢,y = S5 _gapbn p.
There are no convergence issues here.

TT[U]TTH 6.4 Generating Functions
Ernst Mayr, Harald Racke

92/565

6.4 Generating Functions

The arithmetic view:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 93/565

6.4 Generating Functions

The arithmetic view:

We view a power series as a function f: C — C.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 93/565

6.4 Generating Functions

The arithmetic view:
We view a power series as a function f: C — C.

Then, it is important to think about convergence/convergence
radius etc.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 93/565

6.4 Generating Functions

What does >, z" = ﬁ mean in the algebraic view?

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 94/565

6.4 Generating Functions

1

What does >.,,-0z" = ;=5 mean in the algebraic view?

It means that the power series 1 — z and the power series
D=0 2™ are invers, i.e.,

(1 —z) . (n§02"> =1.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 94/565

6.4 Generating Functions

What does >,.02z" = 112 mean in the algebraic view?

It means that the power series 1 — z and the power series
D=0 2™ are invers, i.e.,

(1 —z) . (n§02"> =1.

This is well-defined.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

94/565

6.4 Generating Functions

Suppose we are given the generating function

1
n _
§Z—1_ .

n=0 z

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 95/565

6.4 Generating Functions

Suppose we are given the generating function

1
Zznzil_ .

n=0 z

We can compute the derivative:

n-1 _ 1
z nz = 1 _2)2

nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 95/565

6.4 Generating Functions

Suppose we are given the generating function

1
Zznzil_ .

n=0 z
We can compute the derivative:
1
nz"l= -
nzz'i (1 - 2)2
——— ——
Dnzo(n+1)zn

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 95/565

6.4 Generating Functions

Suppose we are given the generating function

1
Zznzil_ .

n=0 z
We can compute the derivative:
1
nz"l= -
ngl (1 - 2)2
——— ——
anO<n+1)2n

Hence, the generating function of the sequence a, =n+1
is 1/(1—2z)°.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 95/565

6.4 Generating Functions

We can repeat this

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 96/565

6.4 Generating Functions

We can repeat this

1

Z(Tl‘i‘l)z ZW.

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 96/565

6.4 Generating Functions

We can repeat this

1
n+1)z"=——.
ngo() (1 - 2)2
Derivative: >
n-1 _
Zn(nJrl)z 1-2)3

nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 96/565

6.4 Generating Functions

We can repeat this

1
m+1)zht= —"F— .
ngo (1 - 2)2
Derivative: >
>nam+zv =
nx=1 (1-2)
ano(n+1)(n+2)z"

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 96/565

6.4 Generating Functions

We can repeat this

1
m+1)zht= —"F— .
nzz“o (1 - 2)2
Derivative: >
>nam+zv =
n>1 (1-2)
ano(n+1)(n+2)z"

Hence, the generating function of the sequence

an=m+1)(n+2)is 52557

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 96/565

6.4 Generating Functions

Computing the k-th derivative of > z".

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 97/565

6.4 Generating Functions

Computing the k-th derivative of > z".

dnm-1)-...-(n-k+1)z"*k

nx=k

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 97/565

6.4 Generating Functions

Computing the k-th derivative of > z".

d>nm-1)-...-m-k+Dz" = > m+k)-...-(m+1)z"

nx=k n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 97/565

6.4 Generating Functions

Computing the k-th derivative of > z".

nm-1)-...-m-k+Dz"* =S mn+k)-...-m+1)z"
0
nx=k n>
B k!
- (1—Z)k+1 '

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 97/565

6.4 Generating Functions

Computing the k-th derivative of > z".

d>nm-1)-...-m-k+Dz" = > m+k)-...-(m+1)z"
n=k n=0

K

_(1—Z)k+1 '
Hence:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 97/565

6.4 Generating Functions

Computing the k-th derivative of > z".

d>nm-1)-...-m-k+Dz" = > m+k)-...-(m+1)z"
n=k n=0
k!
- (1 —z)k+1 °
Hence:

The generating function of the sequence a, = (

n+k

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

97/565

6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 98/565

6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0

1 3 1
1-2)2 1-z

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 98/565

6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
1 1
T (1-22 1-z
_ z
- (1-2)2

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 98/565

6.4 Generating Functions

an": Z(n+1)z"— Zz"

n=0 n=0 n=0
1 1
T (1-22 1-z
_ z
- (1-2)2

The generating function of the sequence a, = n is ﬁ

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 98/565

6.4 Generating Functions
We know

1
>oyt=

n=0 1—_’)/

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 99/565

6.4 Generating Functions

We know
1
n
> "=
n=0 -y
Hence,
1
Z a*z"
1-az
n=0
!
m 6.4 Generating Functions
Ernst Mayr, Harald Racke

99/565

6.4 Generating Functions

We know

Hence,

The generating function of the sequence f;, = a™ is L

l-az*

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

99/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 100/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z) = Z anz"

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 100/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0

ao+ Y (an-1+1)z"
nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 100/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0
ao+ Y (an-1+1)z"

nx=1

l+z > anaz™ 1+ > 2"
nx=1 nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 100/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0
ao+ Y (an-1+1)z"

nx=1

l+z > anaz™ 1+ > 2"
nx=1 nx=1

zZanz"+ zz"

n=0 n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

100/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0

ao+ Y (an-1+1)z"
nx=1

l+z > anaz™ 1+ > 2"
nx=1 nx=1

zZanz"+ zz"
n=0 n=0

=zA(z) + > "

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

100/565

Example: a, = an_1 + 1,a90 = 1

Suppose we have the recurrence a,, = an—1 + 1 forn > 1 and
ag = 1.

A(z)

Z anz"

n=0

ao+ Y (an-1+1)z"
nx=1

l+z > anaz™ 1+ > 2"
nx=1 nx=1

zZanz"+ zz"
n=0 n=0

=zA(z) + > "

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 100/565

Example: a, = an_1 + 1,a90 = 1

Solving for A(z) gives

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 101/565

Example: a, = an_1 + 1,a90 = 1

Solving for A(z) gives

1

A(z) = 7(1 sy

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 101/565

Example: a, = an_1 + 1,a90 = 1

Solving for A(z) gives

Z anz" = A(z) =

n=0

I
(1-2)2

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 101/565

Example: a, = an_1 + 1,a90 = 1

Solving for A(z) gives

Z anz" = A(z) =

n=0

= Z (n+1)z"

n=0

I
(1-2)2

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 101/565

Example: a, = an_1 + 1,a90 = 1

Solving for A(z) gives

Z anz" = A(z) =

n=0

= Z (n+1)z"

n=0

I
(1-2)2

Hence, a, = n + 1.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 101/565

Some Generating Functions

n-th sequence element

generating function

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

102/565

Some Generating Functions

n-th sequence element

generating function

1

1
1-z

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

102/565

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

102/565

Some Generating Functions

n-th sequence element

generating function

1

n+1

(")

1
1-z
1
(1-2)?
1
(1- Z)k+1

m Ernst Mayr, Harald Racke

6.4 Generating Functions

102/565

Some Generating Functions

n-th sequence element generating function
1
1
1-z
1
n+1 —_—
(1-2)?
(n+k) 1
k (1- Z)k+1
- _z
(1-2)?

m Ernst Mayr, Harald Racke

6.4 Generating Functions

102/565

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1- Z)k+1
z
(1-2)?
1
l1-az

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

102/565

Some Generating Functions

n-th sequence element

generating function

1

n+1

1
1-z
1
(1-2)?
1
(1- Z)k+1
z
(1-2)?
1
l1-az
z(1+2)
(1-2)3

m Ernst Mayr,

6.4 Generating Functions

Harald Racke

102/565

Some Generating Functions

n-th sequence element generating function
1
1
1-z
1
| —
" (1-2)2
(n+k) 1
k (1- Z)k+1
- _z
(1-2)?
1
n
a l1-az
2 zd+2)
" 1-2)?
5 e

m Ernst Mayr,

6.4 Generating Functions
Harald Racke

102/565

Some Generating Functions

n-th sequence element

generating function

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn

cF

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn

Sn+ 9n

cF

F+G

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn
Sn+ 9n

Z?:O Sign—i

cF

F+G

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn
Sn+ 9n
Z?:O Sign—i

fn-kx (m=k); Ootw.

cF

F+G

ZkF

m 6.4 Generating Functions
Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn cF
Sn+9gn F+G
Z?=0 Sign-i F-G
Fnk (n=k); 0 otw. zkF
F(z)
it fi T

6.4 Generating Functions

m Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn
Jn+ gn
Sito fign-i
Sn-k (m=k); 0 otw.
Sito fi
N fn

cF

F+G

ZkF

F(z)

1-z

dF(z)
z dz

6.4 Generating Functions

m Ernst Mayr, Harald Racke

103/565

Some Generating Functions

n-th sequence element

generating function

cfn cF
Jn+9n F+G
Sito fign-i F-G
Fnk (n=k); 0 otw. zkF
Sito fi f(_z;
sere
c"fn F(cz)

6.4 Generating Functions

m Ernst Mayr, Harald Racke

103/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

‘m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions
1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

» partial fraction decomposition (Partialbruchzerlegung)

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Solving Recursions with Generating Functions

1. Set A(z) = X =0 anz™.

2. Transform the right hand side so that boundary condition
and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the
right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:

» partial fraction decomposition (Partialbruchzerlegung)
> lookup in tables

6. The coefficients of the resulting power series are the a,,.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 104/565

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 105/565

Example: a, = 2a,-1,a¢9 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 105/565

Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 105/565

Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:
A(z) =ap+ Z anz"
nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 105/565

Example: a, = 2a,_1,a0 = 1

1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:
A(z) =ap+ Z anz"
nx=1

2. Plug in:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 105/565

Example: a, = 2a,_1,a0 = 1
1. Set up generating function:

A(z) = Z anz"

n=0

2. Transform right hand side so that recurrence can be
plugged in:
A(z) =ap+ Z anz"
nx=1

2. Plug in:
Az) =1+ > (Rap-1)z"

nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 105/565

Example: a, = 2a,_1,a0 = 1

‘m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.
Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1

nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1

nx=1

=1+222anz"

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.

Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1

nx=1

=1+222anz"

n=0

=1+2z-A(2)

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1
3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.
Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1

nx=1

=1+222anz"

n=0

=1+2z-A(2)

4. Solve for A(z).

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,_1,a0 = 1

3. Transform right hand side so that infinite sums can be
replaced by A(z) or by simple function.
Az) =1+ > (Qap-1)z"

nx=1

=1+2z Z ap_1z"1

nx=1

=1+222anz"

n=0

=1+2z-A(2)

4. Solve for A(z).
1

A2) = 1-2z

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 106/565

Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

AR =1,

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 107/565

Example: a, = 2a,_1,a0 = 1
5. Rewrite f(z) as a power series:

1
1-2z

D> anz" = A(z) =

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 107/565

Example: a, = 2a,-1,a¢9 = 1

5. Rewrite f(z) as a power series:

Z anz" = A(z) =] _122 = Z 2"z

n=0 n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 107/565

Example: a, = 3a,_1 + n,ap =1

1. Set up generating function:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 108/565

Example: a, = 3a,_1 + n,ap =1

1. Set up generating function:

A(z) = Z anz"

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 108/565

Example: a, = 3a,_1 + n,ap =1

2./3. Transform right hand side:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1
2./3. Transform right hand side:
A(z) = Z anz"

n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1
2./3. Transform right hand side:
A(z) = Z anz"

n=0

nx1

n

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1
2./3. Transform right hand side:
A(z) = Z anz"
n=0

=ap+ > anz"
nx1

=1+ Z Ban-1 +n)z"
nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1
2./3. Transform right hand side:
A(z) = Z anz"
n=0

=ap+ > anz"
nx1

=1+ Z Ban-1 +n)z"
nx=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1
2./3. Transform right hand side:
A(z) = Z anz"

n=0
=ap+ > anz"
nx=1
=1+ Z Ban-1 +n)z"
nx=1
=1+3z > ap1z" '+ > nz"
nx=1 nx=1
=1+3z Z anz" + an"
n=0 n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1
2./3. Transform right hand side:
A(z) = Z anz"

n=0
=ap+ > anz"
nx=1
=1+ Z Ban-1 +n)z"
nx=1
=1+3z > ap1z" '+ > nz"
nx=1 nx=1
=1+3z Z anz" + an"
n=0 n=0
—1+32A(2) + ————
B (1-2)2

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 109/565

Example: a, = 3a,_1 + n,ap =1

4. Solve for A(z):

‘m 6.4 Generating Functions
Ernst Mayr, Harald Racke 110/565

Example: a, = 3a,_1 + n,ap =1
4. Solve for A(z):

z

A(Z) =1+ 3ZA(Z) + m

‘m 6.4 Generating Functions
Ernst Mayr, Harald Racke 110/565

Example: a, = 3a,_1 + n,ap =1
4. Solve for A(z):

z

A(Z) =1+ 3ZA(Z) + m

gives

(1-2)2+z

A2 = 035022

‘m 6.4 Generating Functions
Ernst Mayr, Harald Racke 110/565

Example: a, = 3a,_1 + n,ap =1
4. Solve for A(z):

z

A(Z) =1+ 3ZA(Z) + m

gives

A(z) = 1-22%+z = z2-z+1
T 1 32)1-22 (1-32)1-2)2

‘m 6.4 Generating Functions
Ernst Mayr, Harald Racke 110/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 111/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2—z+1
(1=-32)(1-2)2

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 111/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 111/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

This gives
22 z41=A1-22%+B(1-32)(1-2)+C(1-32)

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 111/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

This gives
22 z41=A1-22%+B(1-32)(1-2)+C(1-32)

=A(1-2z+2%)+B(1-4z+32z%) +C(1-32)

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 111/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

We use partial fraction decomposition:
z2-z+1 A B C

(1-32)1-2)2 1-3z 1-z 1-22

This gives
22 z41=A1-22%+B(1-32)(1-2)+C(1-32)
=A(1-2z+2%)+B(1-4z+32z%) +C(1-32)

=(A+3B)z>+ (-2A-4B-3C)z+ (A+B+C)

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 111/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 112/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+B+C=1
2A+4B+3C=1
A+3B=1
which gives
7 1 1
A_Z B__Z C__E

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 112/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 113/565

Example: a, = 3a,_1 + n,ap =1
5. Write f(z) as a formal power series:

A(z) = ’ 1

. N SN S S
4 1-3z 4 1-z 2 (1-2)7?

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 113/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

A(z) =

NN NN

1

1

. _1.
1-3z 4 1-z

n=0

n=0

1

2

1

(1-2)2

I R IELEE B WU RS e

n=0

m Ernst Mayr, Harald Racke

6.4 Generating Functions

113/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 11 1 1
A<Z>:1'1_3z‘1'1_z‘5'm
:Z.Zgnzn > - Y (n+ 1)z
4
n=0 n=0 n=0
—Z(3"—%—7(n+1))
n=0

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 113/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 1 1 1 1
Alz) = = . . =
B =y 13272 1-2z 2 0-2°
=Z-Z3"z” Lyl > (n+1)z"
4 4 2
n=0 n=0 n=0
— Z n_l_l n
= (4 3"~ 4 2(n+1))z
n=0

6.4 Generating Functions

m Ernst Mayr, Harald Racke

113/565

Example: a, = 3a,_1 + n,ap =1

5. Write f(z) as a formal power series:

7 1 11 1 1
A(z) = = . — . B
)=y 173z 2 1.z 2 (1-272
=Z-Z3"z” Lyl > (n+1)z"
4 4 2
n=0 n=0 n=0
_ 7 a1 1 n
= (4 3"~ 4 2(n+1))z
n=>0

N[V

6. This means a,, = %3" — %n —

m 6.4 Generating Functions
Ernst Mayr, Harald Racke 113/565

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn=Jn-1"fno2forn=2.

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 114/565

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn="Jn-1"fno2forn=>2.
Define

gn :i=10g fn .

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 114/565

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn=Jn-1"fno2forn=2.
Define
gn =108 fn .
Then

In =9Gn-1+gn-—2 forn =2

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 114/565

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn=Jn-1"fno2forn=2.
Define
gn =108 fn .
Then

In =9gn-1+gn-2forn=2
g1 =log2 = 1(for log = log,), go =0

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 114/565

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn=Jn-1"fno2forn=2.
Define
gn =108 fn .
Then

In =9gn-1+gn-2forn=2
g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 114/565

6.5 Transformation of the Recurrence

Example 9
fo=1
fi=2
Sn=Jn-1"fno2forn=2.
Define
gn =108 fn .
Then

In =9gn-1+gn-2forn=2

g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

fn = ZF"

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 114/565

6.5 Transformation of the Recurrence

Example 10

fi=1
fn:3f%+n;forn:2k,kzl;

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 115/565

6.5 Transformation of the Recurrence

Example 10

fi=1
fn:3f%+n;forn:2k,kzl;

Define
gk = fok -

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 115/565

6.5 Transformation of the Recurrence

Example 10
fi=1
fn:?)f% +n; form=2%k>1:
Define
Ik = for .
Then:
go=1

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 115/565

6.5 Transformation of the Recurrence

Example 10
fi=1
fn:?)f% +n; form=2%k>1:
Define
Ik = for .
Then:
go=1

gk =3gk1+2K k=1

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 115/565

6 Recurrences
We get

gk =3 [gk-1] + 2K

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get

gk =3 [gk-1] +2F
=3 [3gk,2 + 2’“1] + 2k

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get

gk =3 [gk-1] +2F
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get

gk =3 [gr-1] + 2%
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get
gk =3 [gk-1] + 2K
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k
=32 [ng_3 + 2’<—2] +32k-1 4 ok

= 33gx_3 + 322k=2 4 32k-1 4k

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get

gk =3 [gr-1] + 2%
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k

= 33gx_3 + 322k=2 4 32k-1 4k
k

—okL Y (%)i

i=0

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get

gk =3 [gk-1] +2F
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k
= 33gx_3 + 322k=2 4 32k-1 4k
k .
3\1
k
=263 (3)
i=0
3Vk+1
_ok, 1
1/2

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences
We get

gk =3 [gr—1] + 2K
=3 [3gk,2 + 2’“1] + 2k
=32 [gr_o] + 32k 1 42k
=3%[3gr3 + 2K2] + 32k71 4 2k
= 33gx_3 + 322k=2 4 32k-1 4k
k .
3\1
k
=263 (3)
i=0
(%)kﬂ -1

k+1 k+1

= 2k .

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 116/565

6 Recurrences

Let n = 2k:

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/565

6 Recurrences

Let n = 2k:

gk = 3K —2k+1 hence

fn=3-3k-2.2k
=:,'c)(210g3)k_2_2k

m Ernst Mayr, Harald Racke

6.5 Transformation of the Recurrence

117/565

6 Recurrences

Let n = 2k:

gk = 381 — 2kl hence
fn=3-3k—2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _2. 2k

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/565

6 Recurrences

Let n = 2k:

gk = 381 — 2kl hence
fn=3-3k—2.2k
_ 3(210g3)k _2. 2k
_ 3(2k)log3 _2. 2k

=3nlo83 _on .

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/565

Part Il

Data Structures

m Ernst Mayr, Harald Racke 118/565

Abstract Data Type

An abstract data type (ADT) is defined by an interface of

operations or methods that can be performed and that have a
defined behavior.

The data types in this lecture all operate on objects that are
represented by a [key, value] pair.

» The key comes from a totally ordered set, and we assume
that there is an efficient comparison function.

» The value can be anything; it usually carries satellite
information important for the application that uses the ADT.

m Ernst Mayr, Harald Racke

119/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

> S.delete(x): Given pointer to object x from S, delete x
from the set.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

> S.delete(x): Given pointer to object x from S, delete x
from the set.

> S.minimum(): Return pointer to object with smallest
key-value in S.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

v

S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

v

S. delete(x): Given pointer to object x from S, delete x
from the set.

> S.minimum(): Return pointer to object with smallest
key-value in S.

» S.maximum(): Return pointer to object with largest
key-value in S.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

> S.delete(x): Given pointer to object x from S, delete x
from the set.

> S.minimum(): Return pointer to object with smallest
key-value in S.

» S.maximum(): Return pointer to object with largest
key-value in S.

> S.successor(x): Return pointer to the next larger element
in S or null if x is maximum.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

> S.delete(x): Given pointer to object x from S, delete x
from the set.

> S.minimum(): Return pointer to object with smallest
key-value in S.

» S.maximum(): Return pointer to object with largest
key-value in S.

> S.successor(x): Return pointer to the next larger element
in S or null if x is maximum.

> S.predecessor(x): Return pointer to the next smaller
element in S or null if x is minimum.

m Ernst Mayr, Harald Racke 120/565

Dynamic Set Operations

> S.union(S’): Sets S:=SuUS’. The set S’ is destroyed.

m Ernst Mayr, Harald Racke 121/565

Dynamic Set Operations

> S.union(S’): Sets S:=SuUS’. The set S’ is destroyed.
> S.merge(S’): Sets S:=SuUS’. Requires SNS = 0.

m Ernst Mayr, Harald Racke 121/565

Dynamic Set Operations

> S.union(S’): Sets S:=SuUS’. The set S’ is destroyed.
> S.merge(S’): Sets S:=SuUS’. Requires SNS = 0.

> S.split(k, S'):
S:={xeS|keylx] <k}, S :={xeS|key[x] > k}.

m Ernst Mayr, Harald Racke 121/565

Dynamic Set Operations

> S.union(S’): Sets S:=SuUS’. The set S’ is destroyed.
> S.merge(S’): Sets S:=SuUS’. Requires SNS = 0.

> S.split(k, S'):
S:={xeS|key[lx] <k}, S :={x €S |key[x] > k}.

> S.concatenate(S’): S:=SuS’.
Requires key[S. maximum()] < key[S’. minimum()].

m Ernst Mayr, Harald Racke 121/565

Dynamic Set Operations

> S.union(S’): Sets S:=SuUS’. The set S’ is destroyed.
> S.merge(S’): Sets S:=SuUS’. Requires SNS = 0.

> S.split(k, S'):

S:={xeS|keylx] <k}, S :={xeS|key[x] > k}.
> S.concatenate(S’): S:=SuJS’.

Requires key[S. maximum()] < key[S’. minimum()].

> S.decrease-key(x, k): Replace key[x] by k < key[x].

m Ernst Mayr, Harald Racke 121/565

Examples of ADTs
Stack:

> S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.

Examples of ADTs
Stack:

> S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.
Queue:
> S.enqueue(x): Insert an element.

> S.dequeue(): Return the element that is longest in the
structure; delete it from S.

> S.empty(): Tell if S contains any object.

Examples of ADTs
Stack:

> S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.
Queue:
> S.enqueue(x): Insert an element.

> S.dequeue(): Return the element that is longest in the
structure; delete it from S.

> S.empty(): Tell if S contains any object.
Priority-Queue:
> S.insert(x): Insert an element.

> S. delete-min(): Return the element with lowest key-value;
delete it from S.

7 Dictionary

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

‘m 7 Dictionary
Ernst Mayr, Harald Racke 123/565

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary
tree. Each tree-node corresponds to an element. All elements in
the left sub-tree of a node v have a smaller key-value than
key[v] and elements in the right sub-tree have a larger-key
value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 124/565

7.1 Binary Search Trees

We consider the following operations on binary search trees.
Note that this is a super-set of the dictionary-operations.

T.
. delete(x)
. search(k)

. successor(x)

>

vV v v v vY
NN NN NN

insert(x)

. predecessor(x)
. minimum()

. maximum{()

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees

125/565

Binary Search Trees: Searching

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 126/565

Binary Search Trees: Searching

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 127/565

Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128/565

Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128/565

Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128/565

Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128/565

Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128/565

Binary Search Trees: Minimum

Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 128/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] # null return TreeMin(right[x])
2: y — parent[x]

3: while y # null and x = right[y] do

4 X < y;y < parent[x]

5: return y;

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke

129/565

Binary Search Trees: Insert

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

else
if right[x] = null then
right[x] < z; parent[z] < Xx;
else Treelnsert(right[x], z);

S QPHI2WPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

else
if right[x] = null then
right[x] < z; parent[z] < Xx;
else Treelnsert(right[x], z);

S QPHI2WPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Insert
Insert element not in the tree.
Treelnsert(root, 20)

Algorithm 4 Treelnsert(x, z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] < x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] — z; parent[z] < Xx;
else Treelnsert(right[x], z);

S 2PHI2DPT YR I

—_ —

Binary Search Trees: Delete

Binary Search Trees: Delete

Case 1:
Element does not have any children
» Simply go to the parent and set the corresponding pointer
to null.

Binary Search Trees: Delete

Case 1:
Element does not have any children
» Simply go to the parent and set the corresponding pointer
to null.

Binary Search Trees: Delete

Case 1:
Element does not have any children
» Simply go to the parent and set the corresponding pointer
to null.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent
to its successor.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent
to its successor.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent
to its successor.

Binary Search Trees: Delete

Case 3:
Element has two children
> Find the successor of the element
> Splice successor out of the tree
> Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children
> Find the successor of the element
> Splice successor out of the tree
> Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children
> Find the successor of the element
> Splice successor out of the tree
> Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children
> Find the successor of the element
> Splice successor out of the tree
> Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children
> Find the successor of the element
> Splice successor out of the tree
> Replace content of element by content of successor

Binary Search Trees: Delete

Case 3:
Element has two children
> Find the successor of the element
> Splice successor out of the tree
> Replace content of element by content of successor

Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2 then y — z else y — TreeSucc(z); select y to splice out
3: if left[y] # null
4 then x — left[y] else x — right[y]; x is child of (or null)
5: if x # null then parent[x] — parent[y]; parent[x] is correct
6
7
8

. if parent[y] = null then
root[T] < x

. else
9: if y = left[parent[y]] then +fix pointer to x
10:; left[parent[y]] « x
11: else
12: right[parent[y]] < x

13: if y + z then copy y-datato z

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 132/565

Balanced Binary Search Trees

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 133/565

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 133/565

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 133/565

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of O(logn).

‘m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 133/565

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of @(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees,
AA trees, Treaps

similar: SPLAY trees.

m 7.1 Binary Search Trees
Ernst Mayr, Harald Racke 133/565

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 134/565

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 134/565

7.2 Red Black Trees

Definition 11

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.
2. All leaf nodes are black.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 134/565

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 134/565

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 134/565

7.2 Red Black Trees

Definition 11
A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers
to special null-vertices, that do not carry any object-data

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 134/565

Red Black Trees: Example

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 135/565

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most
O(logn).

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 136/565

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most
O(logn).

Definition 13

The black height bh(v) of a node v in a red black tree is the
number of black nodes on a path from v to a leaf vertex (not
counting v).

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 136/565

7.2 Red Black Trees

Lemma 12
A red-black tree with n internal nodes has height at most
O(logn).

Definition 13

The black height bh(v) of a node v in a red black tree is the
number of black nodes on a path from v to a leaf vertex (not
counting v).

We first show:

Lemma 14
A sub-tree of black height bh(v) in a red black tree contains at
least 2Ph(V) — 1 jnternal vertices.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 136/565

7.2 Red Black Trees

Proof of Lemma 14.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 137/565

7.2 Red Black Trees

Proof of Lemma 14.

Induction on the height of v.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 137/565

7.2 Red Black Trees

Proof of Lemma 14.
Induction on the height of v.

base case (height(v) = 0)

» If height(v) (maximum distance btw. v and a node in the
sub-tree rooted at v) is O then v is a leaf.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 137/565

7.2 Red Black Trees

Proof of Lemma 14.
Induction on the height of v.

base case (height(v) = 0)

» If height(v) (maximum distance btw. v and a node in the
sub-tree rooted at v) is O then v is a leaf.

» The black height of v is 0.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 137/565

7.2 Red Black Trees

Proof of Lemma 14.
Induction on the height of v.

base case (height(v) = 0)
» If height(v) (maximum distance btw. v and a node in the
sub-tree rooted at v) is 0 then v is a leaf.
» The black height of v is 0.
> The sub-tree rooted at v contains 0 = 2Ph(Y) — 1 inner
vertices.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 137/565

7.2 Red Black Trees

Proof (cont.)

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 138/565

7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 138/565

7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 138/565

7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

» These children (c1, ¢2) either have bh(c;) = bh(v) or
bh(c;) = bh(v) — 1.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 138/565

7.2 Red Black Trees

Proof (cont.)

induction step
» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

» These children (c1, ¢2) either have bh(c;) = bh(v) or
bh(c;) = bh(v) — 1.

> By induction hypothesis both sub-trees contain at least
2bh()=1 _ 1 internal vertices.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 138/565

7.2 Red Black Trees

Proof (cont.)

induction step

» Supose v is a node with height(v) > 0.

» v has two children with strictly smaller height.

» These children (c1, ¢2) either have bh(c;) = bh(v) or
bh(c;) = bh(v) — 1.

> By induction hypothesis both sub-trees contain at least
2bh(w)=1 _ 1 internal vertices.

» Then T, contains at least 2(2Ph(v)=1 _ 1) 4 1 > pbh(v) _ 7
vertices.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 138/565

7.2 Red Black Trees

Proof of Lemma 12.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 139/565

7.2 Red Black Trees

Proof of Lemma 12.

Let i denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 139/565

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 139/565

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

Hence, the black height of the root is at least h/2.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 139/565

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2//2 — 1 internal vertices. Hence,
2h/2 _ 1 < n.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 139/565

7.2 Red Black Trees

Proof of Lemma 12.

Let h denote the height of the red-black tree, and let P denote a
path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node
must be followed by a black node.

Hence, the black height of the root is at least h/2.

The tree contains at least 2//2 — 1 internal vertices. Hence,
2h/2 _ 1 < n.

Hence, h < 2log(n + 1) = O(logn). O

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 139/565

7.2 Red Black Trees

Definition 1
A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers
to special null-vertices, that do not carry any object-data.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 140/565

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the
red black properties are maintained.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 141/565

Rotations

The properties will be maintained through rotations:

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 142/565

Red Black Trees: Insert

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

RB-Insert(root, 18)

Insert:

> first make a normal insert into a binary search tree
> then fix red-black properties

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 143/565

Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zis ared node

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 144/565

Red Black Trees: Insert
Invariant of the fix-up algorithm:

> zis ared node
> the black-height property is fulfilled at every node

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 144/565

Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node

» the only violation of red-black properties occurs at z and
parent[z]

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 144/565

Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node
» the only violation of red-black properties occurs at z and
parent[z]
> either both of them are red
(most important case)

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 144/565

Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node
» the only violation of red-black properties occurs at z and
parent[z]
> either both of them are red
(most important case)
> or the parent does not exist
(violation since root must be black)

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 144/565

Red Black Trees: Insert

Invariant of the fix-up algorithm:
> Zzis ared node

> the black-height property is fulfilled at every node
» the only violation of red-black properties occurs at z and
parent[z]
> either both of them are red
(most important case)
> or the parent does not exist
(violation since root must be black)
If z has a parent but no grand-parent we could simply color the
parent/root black; however this case never happens.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 144/565

Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do
2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];
7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red;
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 145/565

Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then z in left subtree of grandparent
3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red;
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 145/565

Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then Case 1: uncle red
5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red;
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 145/565

Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else Case 2: uncle black
8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red;
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 145/565

Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then 2a: z right child
9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red;
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 145/565

Red Black Trees: Insert

Algorithm 10 InsertFix(z)

1: while parent[z] + null and col[parent[z]] = red do

2 if parent[z] = left[gp[z]] then

3 uncle — right[grandparent[z]]

4 if col[uncle] = red then

5: col[p[z]] < black; col[u] < black;

6 col[gp[z]] < red; z — grandparent[z];

7 else

8: if z = right[parent[z]] then

9: z < plz]; LeftRotate(z);
10: col[p[z]] < black; col[gp[z]] < red; 2b: z left child
11: RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: col(root[T]) < black;

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 145/565

Case 1: Red Uncle

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

1. recolour

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

1. recolour

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

1. recolour
2. move z to grand-parent

3. invariant is fulfilled for new z

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 1: Red Uncle

1. recolour

2. move z to grand-parent

3. invariant is fulfilled for new z
4. you made progress

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 146/565

Case 2b: Black uncle and z is left child

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 147/565

Case 2b: Black uncle and z is left child

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 147/565

Case 2b: Black uncle and z is left child

1. rotate around grandparent

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 147/565

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that
black height property holds

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 147/565

Case 2b: Black uncle and z is left child

1. rotate around grandparent

2. re-colour to ensure that
black height property holds

. you have a red black tree

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 147/565

Case 2a: Black uncle and z is right child

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 148/565

Case 2a: Black uncle and z is right child

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 148/565

Case 2a: Black uncle and z is right child

1. rotate around parent

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 148/565

Case 2a: Black uncle and z is right child

1. rotate around parent

2. move z downwards

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 148/565

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards

3. you have Case 2b.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 148/565

Red Black Trees: Insert

Running time:

» Only Case 1 may repeat; but only h/2 many steps, where h
is the height of the tree.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 149/565

Red Black Trees: Insert

Running time:

» Only Case 1 may repeat; but only h/2 many steps, where h
is the height of the tree.

> Case 2a — Case 2b — red-black tree

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 149/565

Red Black Trees: Insert

Running time:

» Only Case 1 may repeat; but only h/2 many steps, where h
is the height of the tree.

> Case 2a — Case 2b — red-black tree

» Case 2b — red-black tree

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 149/565

Red Black Trees: Insert

Running time:

» Only Case 1 may repeat; but only h/2 many steps, where h
is the height of the tree.

> Case 2a — Case 2b — red-black tree

> Case 2b — red-black tree
Performing Case 1 at most O (logn) times and every other case

at most once, we get a red-black tree. Hence O(logn)
re-colorings and at most 2 rotations.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 149/565

Red Black Trees: Delete

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

First do a standard delete.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

First do a standard delete.

If the spliced out node x was red everything is fine.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
> Parent and child of x were red; two adjacent red vertices.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
> Parent and child of x were red; two adjacent red vertices.

> If you delete the root, the root may now be red.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

If it was black there may be the following problems.
> Parent and child of x were red; two adjacent red vertices.
> If you delete the root, the root may now be red.

» Every path from an ancestor of x to a descendant leaf of x
changes the number of black nodes. Black height property
might be violated.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 150/565

Red Black Trees: Delete

Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete
» when replacing content by content of successor, don’t
change color of node

Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete
» when replacing content by content of successor, don’t
change color of node

Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete
» when replacing content by content of successor, don’t
change color of node

Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete
» when replacing content by content of successor, don’t
change color of node

Red Black Trees: Delete

Case 3:
Element has two children
» do normal delete
» when replacing content by content of successor, don’t
change color of node

Red Black Trees: Delete

Delete:
> deleting black node messes up black-height property

Red Black Trees: Delete

Delete:
> deleting black node messes up black-height property

> if z is red, we can simply color it black and everything is fine

Red Black Trees: Delete

Delete:
> deleting black node messes up black-height property

> if z is red, we can simply color it black and everything is fine

> the problem is if z is black (e.g. a dummy-leaf); we call a
fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

» the node z is black

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 153/565

Red Black Trees: Delete

Invariant of the fix-up algorithm
> the node z is black

> if we “assign” a fake black unit to the edge from z to its
parent then the black-height property is fulfilled

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 153/565

Red Black Trees: Delete

Invariant of the fix-up algorithm
> the node z is black

> if we “assign” a fake black unit to the edge from z to its
parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can
remove the fake black unit from the edge.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 153/565

Case 1: Sibling of z is red

Case 1: Sibling of z is red

Case 1: Sibling of z is red

Case 1: Sibling of z is red

1. left-rotate around parent of z gj

2. recolor nodes b and ¢

Case 1: Sibling of z is red

1. left-rotate around parent of z &j

2. recolor nodes b and ¢

3. the new sibling is black
(and parent of z is red)

Case 1: Sibling of z is red

1. left-rotate around parent of z &j

2. recolor nodes b and ¢

3. the new sibling is black
(and parent of z is red)

4. Case 2 (special),
or Case 3, or Case 4

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

1. re-color node ¢

2. move fake black
unit upwards

Case 2: Sibling is black with two black children

1. re-color node ¢

2. move fake black
unit upwards

3. move z upwards

Case 2: Sibling is black with two black children

1. re-color node ¢

2. move fake black
unit upwards

3. move z upwards

4. we made progress

Case 2: Sibling is black with two black children

1. re-color node ¢

2. move fake black
unit upwards

3. move z upwards
4. we made progress

5. if b is red we color
it black and are done

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolorcand d

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolorcand d

3. new sibling is black with
red right child (Case 4)

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

1. left-rotate around b %
2. remove the fake black unit

Case 4: Sibling is black with red right child

1. left-rotate around b %
2. remove the fake black unit

3. recolor nodes b, c, and e

Case 4: Sibling is black with red right child

> w N =

left-rotate around b %
remove the fake black unit
recolor nodes b, c, and e

you have a valid
red black tree

Running time:

> only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 158/565

Running time:
> only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree

» Case 1 — Case 2 (special) — red black tree
Case 1 — Case 3 — Case 4 — red black tree
Case 1 — Case 4 — red black tree

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 158/565

Running time:
> only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree

» Case 1 — Case 2 (special) — red black tree
Case 1 — Case 3 — Case 4 — red black tree
Case 1 — Case 4 — red black tree

» Case 3 — Case 4 — red black tree

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 158/565

Running time:
> only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree

» Case 1 — Case 2 (special) — red black tree
Case 1 — Case 3 — Case 4 — red black tree
Case 1 — Case 4 — red black tree

» Case 3 — Case 4 — red black tree

» Case 4 — red black tree

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 158/565

Running time:
> only Case 2 can repeat; but only 1 many steps, where h is
the height of the tree

» Case 1 — Case 2 (special) — red black tree
Case 1 — Case 3 — Case 4 — red black tree
Case 1 — Case 4 — red black tree

» Case 3 — Case 4 — red black tree

> Case 4 — red black tree
Performing Case 2 at most O(logn) times and every other step

at most once, we get a red black tree. Hence, O (logn)
re-colorings and at most 3 rotations.

m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 158/565

Splay Trees

Disadvantage of balanced search trees:

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:

— worst case; no advantage for easy inputs

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs

— additional memory required

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 159/565

Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

— read-operations change the tree

m 7.3 Splay Trees
Ernst Mayr, Harald Racke

159/565

Splay Trees

find(x)
> search for x according to a search tree
> |et X be last element on search-path
> splay(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 160/565

Splay Trees

insert(x)

> search for x; x is last visited element during search
(successer or predecessor of x)

> splay(ix) moves X to the root

> insert x as new root

AA=

£

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 161/565

Splay Trees

delete(x)
» search for x; splay(x); remove x
> search largest element X in A
> splay(x) (on subtree A)
>

connect root of B as right child of x

AD = £A = EA

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 162/565

Move to Root

How to bring element to root?

> one (bad) option: moveToRoot(x)
> iteratively do rotation around parent of x until x is root

> if x is left child do right rotation otw. left rotation

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 163/565

Splay: Zig Case

better option splay(x):

> zig case: if x is child of root do left rotation or right
rotation around parent

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 164/565

Splay: Zigzag Case

better option splay(x):

» zigzag case: if x is right child and parent of x is left child
(or x left child parent of x right child)

» do double right rotation around grand-parent (resp. double
left rotation)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 165/565

Double Rotations

Splay: Zigzig Case

better option splay(x):

> zigzig case: if x is left child and parent of x is left child (or
x right child, parent of x right child)

> do right roation around grand-parent followed by right
rotation around parent (resp. left rotations)

m 7.3 Splay Trees
Ernst Mayr, Harald Racke 167/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 168/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 169/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 169/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 169/565

Splay vs. Move to Root

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 169/565

Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears h, times in this sequence.

The cost of a static search tree T is:

cost(T) =m + Z hy depthr(x)
X

The total cost for processing the sequence on a splay-tree is
O(cost(Tmin)), where Thin is an optimal static search tree.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 170/565

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:
> the cost for accessing element x is 1 + depth(x);

> after accessing x the tree may be re-arranged through
rotations;

Conjecture:
A splay tree that only contains elements from S has cost
O(cost(A, S)), for processing S.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 171/565

Lemma 15
Splay Trees have an amortized running time of O (logn) for all
operations.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 172/565

Amortized Analysis

Definition 16

A data structure with operations op; (), ...,0pk() has amortized
running times ty, ..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most
iki-ti(n).

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 173/565

Potential Method

Introduce a potential for the data structure.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

k
> e
i=1

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then
k k

D.ci< > ci+®(Dy) - @(Do)
i=1 i=1

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

2. €i

k
i=1

k k
< > ci+®(Dy) - Z
i=1 i=1

This means the amortized costs can be used to derive a bound
on the total cost.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 174/565

Example: Stack

Stack
> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

v

The user has to ensure that pop and multipop do not
generate an underflow.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 175/565

Example: Stack

Stack
> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
> S.push(): cost 1.
> S.pop(): cost 1.
> S. multipop(k): cost min{size, k} = k.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 175/565

Example: Stack

Use potential function ®(S) = number of elements on the stack.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 176/565

Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 176/565

Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

> S.pop(): cost

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 176/565

Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

> S.pop(): cost

> S. multipop(k): cost

Cmp = Cmp + AP = min{size, k} — min{size,k} <0 .

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 176/565

Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/565

Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/565

Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

> Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 177/565

Example: Binary Counter

Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:

Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

» Changing bit from 1 to O:

él_.():Cl_.o-f—A‘I):l—lSO.

Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

» Changing bit from 1 to O:

Ciloo=Cilo0+Ad=1-1<0".

> |ncrement: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCi_o + Co—1 < 2.

Splay Trees

potential function for splay trees:
> size s(x) = |Ty]
> rank r(x) = log,(s(x))
> &(T) =yperr(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1
plus the number of rotations.

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 179/565

Splay: Zig Case

AP =

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/565

Splay: Zig Case

A® =71 (x) +7 (p) —7r(x) —r(p)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/565

Splay: Zig Case

A® =71 (x) +7 (p) —7r(x) —r(p)

=7r'(p) —r(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/565

Splay: Zig Case

A® =71 (x) +7 (p) —7r(x) —r(p)

=7 (p) —r(x)
<¥'(x) —7r(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/565

Splay: Zig Case

A® =71 (x) +7 (p) —7r(x) —r(p)

=7 (p) —r(x)
<¥'(x) —7r(x)

Costzig < 1+ 3(r'(x) —7r(x))

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 180/565

Splay: Zigzig Case

AP =7 (x)+7 (p)+7v'(g) —r(x)—7r(p)—7(9)

Splay: Zigzig Case

AP =7 (x)+7(p) +7'(g) —r(x) —r(p) —7r(9)

=7r'(p)+7r'(g) —7r(x)—7r(p)

Splay: Zigzig Case

AP =7 (x)+7 (p)+7v'(g) —r(x)—7r(p)—7(9)

=r'(p)+7v'(g) —r(x)—7r(p)
<r'(x)+7(g) —7r(x)—7r(x)

Splay: Zigzig Case

AD =7 (x) +7'(p) +7'(g) =7 (x) =7 (p) = 7(9)

=7r'(p)+7'(g) —r(x) —r(p)
<r'(x)+7r'(g) —7r(x)—7r(x)

=r'(x)+7'(g) +7r(x)=3r"(x) + 37" (x) —r(x) - 2r(x)

Splay: Zigzig Case

AD =7 (x) + 7 (p) +7(g) —7(x) =7 (p) ~T(9)

=r'(p) +7v'(g) —v(x) —7(p)
<r'(x)+7(g) —7r(x)—7r(x)
=r'(x)+7'(g) +7r(x) = 3r"(x) + 31" (x) —r(x) - 2r(x)

==-2r"(x)+7'(g) +7r(x) +3(r'(x) —7r(x))

Splay: Zigzig Case

AP =7 (x)+7 (p)+7v'(g) —r(x)—7r(p)—7(9)

=7 (p) +7'(g) —7r(x) —7r(p)

<r'(x)+7'(g) —r(x)—r(x)

=r'(x)+7'(g) +r(x) = 3r (x) + 3r'(x) —r(x) — 2r(x)
==2r"(x) +7'(g) +r(x) + 3(r'(x) —r(x))
<-2+30"(x)-7r(x))

Splay: Zigzig Case

AD =7 (x) +7'(p) +7'(g) =7 (x) =7 (p) = 7(9)

=7 (p) +7'(g) —7r(x) —7r(p)

<r'(x)+7'(g) —r(x)—r(x)

=r'(x)+7'(g) +r(x) = 3r (x) + 3r'(x) —r(x) — 2r(x)
==2r"(x) +7'(g) +r(x) + 3(r'(x) —r(x))

<-2+3(r"(x) —7r(x)) = COStzigzig < 3(r'(x) —r(x))

Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))

Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))
_ 1
2

(log(s(x)) +log(s'(9)) — 2log(s'(x)))

Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))
_ 1
2

<log(s(x)) +log(s’'(g)) — 210g(5'(X))>
(s(x)) N 1 log<5'(g)>

08 s'(x) 2 s'(x)

_1
2 2

Splay: Zigzig Case

%(T(x) +7'(g) - 2r’(x))

= %<log(5(x)) +log(s'(g)) — 210g(5’(x))>
s(x) 1 s'(g)
(o) + 2008 (Go)
1s(x) 1s'(g)
<1 g<2s’(x) + 25’(x)>

1y
)

Splay: Zigzig Case

%(T(x) +7'(g) - 2r’(x))

= %<1Og(5(x)) +log(s’'(g)) — 210g(5’(x))>
s(x) 1 s'(g)
(o) + 2008 (Go)
1s(x) 1s'(g) 1
=1 g(gj(’;) N Ej’(i)> Slog(g)

1y
)

Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))

= l(log(s(x)) +log(s' () — 2log(s' (x)))

2
(x) 1 "(9)
g(;,();)) 710g<j'(i)>

T
1s(x) 15'(g) 1
< log(ij,();) + 5?6%) slog<§> =-1

2

Splay: Zigzag Case

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
=7r'(p) +7v'(g) —r(x) - r(p)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
=7 (p) +7'(9) —7(x) =7 (p)
v (p)+7r'(g) —r(x) -7r(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

AP =7"(x) +7"(p) +7'(g) —7(x) —7(p) —7(g)
=1 (p) +7'(9) —r(x) —7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=7 (p)+7r'(g) = 2r" (x) +2¥"(x) — 2r(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

AP =7 (x)+7 (p)+7'(g) —r(x) —r(p) —7r(g)
=7 (p) +7'(g) —7r(x) -7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=r'(p) +7r'(g) —2r"(x) + 2r"(x) — 2r(x)
<-2+2(r'(x) —r(x))

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

AP =7 (x)+7 (p)+7'(g) —r(x) —r(p) —7r(g)
=7 (p) +7'(g) —7r(x) -7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=r'(p) +7r'(g) —2r"(x) + 2r"(x) — 2r(x)

<-2+2(r'(x) =7(x)) = COStzigzag < 3(r'(x) —¥(x))

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

%(T’(v) +7'(g) - 2 (x))

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

1s'(p) 15'(9)
slog(ZS,(X) + 23’(x)>

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

1s'(p) 1s'(g) 1
= log<§j’(>€) i 5?6’2)) = 1°g<§>

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))
= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

15'(p) | 15'(g) 1
<log (35700 * 2y n) <loe(3) =1

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/565

Amortized cost of the whole splay operation:

<1+1+ > 3(r(x)—7r-1(x))

steps t
=2 + 3(r(root) — ro(x))
< O(logn)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 183/565

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

Insert(x): insert element x.

>
> Search(k): search for element with key k.

> Delete(x): delete element referenced by pointer x.
>

find-by-rank(£): return the {-th element; return “error” if
the data-structure contains less than £ elements.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 184/565

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

Insert(x): insert element x.

>
> Search(k): search for element with key k.

> Delete(x): delete element referenced by pointer x.
>

find-by-rank(£): return the £-th element; return “error” if
the data-structure contains less than £ elements.

Augment an existing data-structure instead of developing a
new one.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 184/565

7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/565

7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/565

7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

3. verify/show how the additional information can be
maintained for the basic modifying operations on the
underlying structure.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/565

7.4 Augmenting Data Structures

How to augment a data-structure
1. choose an underlying data-structure

2. determine additional information to be stored in the
underlying structure

3. verify/show how the additional information can be
maintained for the basic modifying operations on the
underlying structure.

4. develop the new operations

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 185/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 186/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

1. We choose a red-black tree as the underlying data-structure.

2. We store in each node v the size of the sub-tree rooted at v.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 186/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).
1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.

3. We need to be able to update the size-field in each node
without asymptotically affecting the running time of insert,
delete, and search. We come back to this step later...

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 186/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

4. How does find-by-rank work?
Find-by-rank(k) := Select(root,k) with

Algorithm 11 Select(x, 1)
1: if x = null then return error

2: if left[x] # null then » — left[x].size +1 else r — 1
3: if i = ¥ then return x

4: if i <7 then
5
6
7

return Select(left[x], 1)
. else
return Select(right[x],i — 7)

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 187/565

Select(x, 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

Select(x, 1)

Select(@), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

Select(x, 1)

Select(@®), 14)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

Select(x, 1)

Select(@), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

Select(x, 1)

Select(@®), 5)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

Select(x, 1)

Select(@®), 3)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

Select(x, 1)

Select(@), 1)

Find-by-rank:
> decide whether you have to proceed into the left or right
sub-tree
> adjust the rank that you are searching for if you go right

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 188/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?
Search(k): Nothing to do.
Insert(x): When going down the search path increase the size

field for each visited node. Maintain the size field during
rotations.

‘m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/565

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete,
search, and find-by-rank in time @ (log n).

3. How do we maintain information?

Search(k): Nothing to do.

Insert(x): When going down the search path increase the size
field for each visited node. Maintain the size field during
rotations.

Delete(x): Directly after splicing out a node traverse the path
from the spliced out node upwards, and decrease the size
counter on every node on this path. Maintain the size field
during rotations.

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 189/565

Rotations

The only operation during the fix-up procedure that alters the
tree and requires an update of the size-field:

(x)|Al+IBl+{Cl+2 IAl+{BI+ICl+2 (Z)
LeftRotate(x)
RightRotate(z)

The nodes x and z are the only nodes changing their size-fields.

The new size-fields can be computed locally from the size-fields
of the children.

m 7.4 Augmenting Data Structures
Ernst Mayr, Harald Racke 190/565

7.5 (a, b)-trees

Definition 17
For b > 2a — 1 an (a, b)-tree is a search tree with the following
properties

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 191/565

7.5 (a, b)-trees

Definition 17
For b > 2a — 1 an (a, b)-tree is a search tree with the following
properties

1. all leaves have the same distance to the root

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 191/565

7.5 (a, b)-trees

Definition 17
For b > 2a — 1 an (a, b)-tree is a search tree with the following
properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most
b children

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 191/565

7.5 (a, b)-trees

Definition 17
For b > 2a — 1 an (a, b)-tree is a search tree with the following
properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most
b children

3. the root has degree at least 2 if the tree is non-empty

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 191/565

7.5 (a, b)-trees

Definition 17
For b > 2a — 1 an (a, b)-tree is a search tree with the following
properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most
b children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys
(external search tree)

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 191/565

7.5 (a, b)-trees

Definition 17
For b > 2a — 1 an (a, b)-tree is a search tree with the following
properties

1. all leaves have the same distance to the root

2. every internal non-root vertex v has at least a and at most
b children

3. the root has degree at least 2 if the tree is non-empty

4. the internal vertices do not contain data, but only keys
(external search tree)

5. there is a special dummy leaf node with key-value o

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 191/565

7.5 (a, b)-trees

Each internal node v with d(v) children stores d — 1 keys
ki,...,kg_1. The i-th subtree of v fulfills

ki_1 < keyin i-th sub-tree <k; ,

where we use kg = —o and kg = .

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 192/565

7.5 (a, b)-trees

Example 18

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 193/565

7.5 (a, b)-trees

Variants

» The dummy leaf element may not exist; it only makes
implementation more convenient.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 194/565

7.5 (a, b)-trees

Variants

» The dummy leaf element may not exist; it only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 194/565

7.5 (a, b)-trees

Variants

» The dummy leaf element may not exist; it only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.

> A B-tree usually refers to the variant in which keys and data
are stored at internal nodes.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 194/565

7.5 (a, b)-trees

Variants

» The dummy leaf element may not exist; it only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.

> A B-tree usually refers to the variant in which keys and data
are stored at internal nodes.

» A BT tree stores the data only at leaf nodes as in our
definition. Sometimes the leaf nodes are also connected in a
linear list data structure to speed up the computation of
successors and predecessors.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 194/565

7.5 (a, b)-trees

Variants

» The dummy leaf element may not exist; it only makes
implementation more convenient.

» Variants in which b = 2a are commonly referred to as
B-trees.

> A B-tree usually refers to the variant in which keys and data
are stored at internal nodes.

» A BT tree stores the data only at leaf nodes as in our
definition. Sometimes the leaf nodes are also connected in a
linear list data structure to speed up the computation of
successors and predecessors.

> A B* tree requires that a node is at least 2/3-full as
opposed to 1/2-full (the requirement of a B-tree).

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 194/565

Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2ah-t <n+1 < bh

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 195/565

Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2ah-t <n+1 < bh

2. log,(n+1) <h <1 +log, (1)

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 195/565

Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2ah-t <n+1 < bh

2. log,(n+1) <h <1 +log, (1)

Proof.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 195/565

Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2av-l <n+1<bh

2. logy(n+1)<h<1 +loga(”7+1)

Proof.

> If n > 0 the root has degree at least 2 and all other nodes
have degree at least a. This gives that the number of leaf
nodes is at least 2a/~!.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 195/565

Lemma 19
Let T be an (a,b)-tree for n > 0 elements (i.e., n + 1 leaf nodes)
and height h (number of edges from root to a leaf vertex). Then

1. 2av-l <n+1<bh

2. logy(n+1)<h<1 +loga(”7+1)

Proof.

> If n > 0 the root has degree at least 2 and all other nodes
have degree at least a. This gives that the number of leaf
nodes is at least 2a/~!.

» Analogously, the degree of any node is at most b and,
hence, the number of leaf nodes at most b".

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 195/565

Search

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Search

Search(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Search

Search(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Search

Search(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Search

Search(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Search

The search is straightforward. It is only important that you need
to go all the way to the leaf.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Search

The search is straightforward. It is only important that you need
to go all the way to the leaf.

Time: O(b - h) = O(b - logn), if the individual nodes are
organized as linear lists.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 196/565

Insert

Insert element x:

> Follow the path as if searching for key[x].

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 197/565

Insert

Insert element x:
> Follow the path as if searching for key[x].
> If this search ends in leaf £, insert x before this leaf.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 197/565

Insert

Insert element x:
> Follow the path as if searching for key[x].
> If this search ends in leaf £, insert x before this leaf.

> For this add key[x] to the key-list of the last internal node
v on the path.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 197/565

Insert

Insert element x:
> Follow the path as if searching for key[x].
> If this search ends in leaf £, insert x before this leaf.

> For this add key[x] to the key-list of the last internal node
v on the path.

v

If after the insert v contains b nodes, do Rebalance(v).

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 197/565

Insert

Rebalance(v):

» Let ki, i =1,...,b denote the keys stored in v.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 198/565

Insert

Rebalance(v):
» Let ki, i =1,...,b denote the keys stored in v.

> Let j:= L%J be the middle element.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 198/565

Insert

Rebalance(v):

» Let ki, i =1,...,b denote the keys stored in v.

> Let j:= L%J be the middle element.

> Create two nodes vy, and vy. vy gets all keys kq,...,kj 1
and v, gets keys kj1,...,kp.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 198/565

Insert

Rebalance(v):

» Let ki, i =1,...,b denote the keys stored in v.

> Let j:= L%J be the middle element.

> Create two nodes vy, and vy. vy gets all keys kq,...,kj 1
and v, gets keys kj1,...,kp.
» Both nodes get at least [%J keys, and have therefore

degree at least L%J +1=>asinceb=2a-1.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 198/565

Insert

Rebalance(v):

>

>

>

Let k;, i =1,...,b denote the keys stored in v.

b+1
]

Let j:= [=~ be the middle element.

Create two nodes vy, and vy. vy gets all keys kq,...,kj 1
and vy gets keys kj+1,...,kb.

Both nodes get at least [J keys, and have therefore
degree at least L—J +1=>asinceb=2a-1.

They get at most [L1 keys, and have therefore degree at
most[]+1<lo(smceb>2)

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke

198/565

Insert
Rebalance(v):
» Let ki, i =1,...,b denote the keys stored in v.
> Letj _ Lb+1J

> Create two nodes vy, and vy. vy gets all keys kq,...,kj 1
and vy gets keys kj+1,...,kb.

be the middle element.

» Both nodes get at least [J keys, and have therefore
degree at least L—J +1=>asinceb=2a-1.

> They get at most [L1 keys, and have therefore degree at
most[]+1<b(smceb>2)

> The key k; is promoted to the parent of v. The current
pointer to v is altered to point to v, and a new pointer (to
the right of k;) in the parent is added to point to v5.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 198/565

Insert
Rebalance(v):
» Let ki, i =1,...,b denote the keys stored in v.
> Letj _ Lb+1J

> Create two nodes vy, and vy. vy gets all keys kq,...,kj 1
and vy gets keys kj+1,...,kb.

be the middle element.

» Both nodes get at least [J keys, and have therefore
degree at least L—J +1=>asinceb=2a-1.

> They get at most [L1 keys, and have therefore degree at
most[]+1<b(smceb>2)

> The key k; is promoted to the parent of v. The current
pointer to v is altered to point to v, and a new pointer (to
the right of k;) in the parent is added to point to v5.

> Then, re-balance the parent.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 198/565

Insert

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(8)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

b

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(6)

b

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(6)

b

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(6)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(6)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

5] (¢J @ (8] 09 (4 (9 [g [~]

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

5] (6] (@ (&) 09 (4 (9 [g [~]

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

5] (¢ (@ [g] (9

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

3 6 10 19

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

3 6 10 19

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Insert

Insert(7)

—
(%]

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 199/565

Delete

Delete element x (pointer to leaf vertex):

> Let v denote the parent of x. If key[x] is contained in v,
remove the key from v, and delete the leaf vertex.

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 200/565

Delete

Delete element x (pointer to leaf vertex):

> Let v denote the parent of x. If key[x] is contained in v,
remove the key from v, and delete the leaf vertex.

» Otherwise delete the key of the predecessor of x from v;
delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it
appears in exactly one internal vertex).

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 200/565

Delete

Delete element x (pointer to leaf vertex):

> Let v denote the parent of x. If key[x] is contained in v,
remove the key from v, and delete the leaf vertex.

» Otherwise delete the key of the predecessor of x from v;
delete the leaf vertex; and replace the occurrence of key[x]
in internal nodes by the predecessor key. (Note that it
appears in exactly one internal vertex).

» If now the number of keys in v is below a — 1 perform
Rebalance’ (v).

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 200/565

Delete

Rebalance’ (v):

> If there is a neighbour of v that has at least a keys take
over the largest (if right neighbor) or smallest (if left
neighbour) and the corresponding sub-tree.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 201/565

Delete

Rebalance’ (v):

> If there is a neighbour of v that has at least a keys take
over the largest (if right neighbor) or smallest (if left
neighbour) and the corresponding sub-tree.

» If not: merge v with one of its neighbours.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 201/565

Delete

Rebalance’ (v):

> If there is a neighbour of v that has at least a keys take
over the largest (if right neighbor) or smallest (if left
neighbour) and the corresponding sub-tree.

» If not: merge v with one of its neighbours.

» The merged node contains at most (a —2) + (a—1) +1
keys, and has therefore at most 2a — 1 < b successors.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 201/565

Delete

Rebalance’ (v):

> If there is a neighbour of v that has at least a keys take
over the largest (if right neighbor) or smallest (if left
neighbour) and the corresponding sub-tree.

» If not: merge v with one of its neighbours.

» The merged node contains at most (a —2) + (a—1) +1
keys, and has therefore at most 2a — 1 < b successors.

» Then rebalance the parent.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 201/565

Delete

Rebalance’ (v):

> If there is a neighbour of v that has at least a keys take
over the largest (if right neighbor) or smallest (if left
neighbour) and the corresponding sub-tree.

» If not: merge v with one of its neighbours.

» The merged node contains at most (a —2) + (a—1) +1
keys, and has therefore at most 2a — 1 < b successors.

» Then rebalance the parent.

» During this process the root may become empty. In this
case the root is deleted and the height of the tree decreases.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 201/565

Delete

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(10)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(10)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(10)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(14)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(14)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(14)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(14)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(14)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

TRTRY

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(3)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(3)

TRTRY

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(3)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(3)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(3)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(1)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(1)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(1)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

Delete

Delete(19)

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 202/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

A,
4 8 20 25 41
A,
1 3 5 1 13 18 19 22 27 43 47

‘m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

S) (8) =8) (28] (8) (8) (=8

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

A,

%) (<) (85 (89] () [3) [85)

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

(o)

(00

[_w

>0 |

(@9 (@) (eq) (e0) (@) (¢ (@Q)

m Ernst Mayr, Harald Racke

7.5 (a,b)-trees

203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

(2,4)-trees and red black trees

There is a close relation between red-black trees and (2,4)-trees:

Note that this correspondence is not unique. In particular, there
are different red-black trees that correspond to the same
(2,4)-tree.

m 7.5 (a,b)-trees
Ernst Mayr, Harald Racke 203/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
> time for insert ®(n) (dominated by searching the item)

> time for delete ®(1) if we are given a handle to the object,
otw. O(n)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 204/565

7.6 Skip Lists

How can we improve the search-operation?

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

(=5 Jolaloliojolizfo{iaf{isfe> {23} {26} {28} > {35 >{a3]>{ =]

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

Worst case search time: [L1] + % (ignoring additive constants)

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L| denote the number of elements in the “express lane”,
and |Lg| = n the number of all elements (ignoring dummy
elements).

Worst case search time: [L1] + % (ignoring additive constants)

Choose |[L1| = \/n. Then search time ©(,/n).

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_1.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 206/565

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Lg)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 206/565

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 206/565

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)
» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.
> Find the largest item in list Ly_; that is smaller than x. At

Ly
most [‘lL;‘lJ}‘l] + 2 steps.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 206/565

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

> Find the largest item in list Ly_; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

> Find the largest item in list Ly_» that is smaller than x. At

Ly
most [‘L‘kf] fl]] + 2 steps.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 206/565

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

» Find the largest item in list L that is smaller than x. At
most |Ly| + 2 steps.

> Find the largest item in list Ly_; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

> Find the largest item in list Ly_» that is smaller than x. At

Ly
most [‘L‘kf] fl]] + 2 steps.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 206/565

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every L’L"—;l-th
item from list L;_1.

Search(x) (k + 1 lists Lo, ..., Ly)

>

Find the largest item in list Ly that is smaller than x. At
most |Ly| + 2 steps.

Find the largest item in list Ly _; that is smaller than x. At

Ly
most [\lL,ﬁiH + 2 steps.

Find the largest item in list Ly_» that is smaller than x. At

Ly
most [‘L‘kf] fl]] + 2 steps.

At most |Li| + Z'le Lfil + 3(k + 1) steps.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

206/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘E‘” =7, and,

k

hence, Ly ~ v *n.

Worst case running time is: O(r *n + kr).

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘E‘” =7, and,

k

hence, Ly ~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1., Then

k

r—*n+ kr

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

Worst case running time is: O(r *n + kr).
1

Choose v = n%1., Then

k -k .

1
v n+k1’:<nm> n + knka

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1., Then

k

r—*n+ kr

Il
—
S
~
s
~

L
S
+
=
S
g

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘if‘” =7, and,

i
k

hence, Ly ~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1., Then

k 1\ —k 1
r*n+kr = (nk+1> n + knka
k 1
= nl_k+1 + knw
1
= (k+ 1)nk

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘f”

k

=7, and,

il

hence, Ly ~ v *n.

Worst case running time is: Or*kn + kr).
Choose v = n%1., Then

k 1\ —k 1
r*n+kr = (nk+1> n + knka
k 1
= nl_k+1 + knw
1
=(k+ 1)nk1

Choosing k = ©(logn) gives a logarithmic running time.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 207/565

7.6 Skip Lists

How to do insert and delete?

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 208/565

7.6 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L; 1 an insert or delete may require
a lot of re-organisation.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 208/565

7.6 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L; 1 an insert or delete may require
a lot of re-organisation.

Use randomization instead!

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 208/565

7.6 Skip Lists

Insert:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

209/565

7.6 Skip Lists

Insert:

> A search operation gives you the insert position for element
X in every list.

» Flip a coin until it shows head, and record the number
t e {l,2,...} of trials needed.

» Insert x into lists Lo,...,L¢_1.

Delete:

> You get all predecessors via backward pointers.

> Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

209/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

7.6 Skip Lists

Insert (35):

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 210/565

High Probability

Definition 20 (High Probability)
We say a randomized algorithm has running time @ (logn) with

high probability if for any constant « the running time is at most

©(logn) with probability at least 1 — —.

nO(

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 211/565

High Probability

Definition 20 (High Probability)

We say a randomized algorithm has running time O (logn) with
high probability if for any constant « the running time is at most
O(logn) with probability at least 1 — %

Here the O-notation hides a constant that may depend on «.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 211/565

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 212/565

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr[Eq1 A - -+ A Ep]

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 212/565

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A---AEpl=1-Pr[Ey Vv ---VEy]

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 212/565

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A---AEpl=1-Pr[Ey Vv ---VEy]

>1-n‘-n*

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 212/565

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A---AEpl=1-Pr[Ey Vv ---VEy]
>1-n‘-n*

=1-n¢

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 212/565

High Probability

Suppose there are polynomially many events Ej, Eo, ..., Ey,

£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

Pr(Ey A---AEpl=1-Pr[Ey Vv ---VEy]
>1-n‘-n*

=1-n¢

This means Pr[E; A - - - A Ep] holds with high probability.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 212/565

7.6 Skip Lists

Lemma 21
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O (logn) with high probability (w. h. p.).

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 213/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis:

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis: .

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

» A “long” search path must also go very high.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

» A “long” search path must also go very high.

» There are no elements in high lists.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

7.6 Skip Lists

Backward analysis: .

At each point the path goes up with probability 1/2 and left with
probability 1/2.

We show that w.h.p:

» A “long” search path must also go very high.
» There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 214/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215/565

m Ernst Mayr, Harald Racke

7.6 Skip Lists

215/565

n\ n! n-...-(n—k+1)><n)k
k k!'- (n—k)! k-...-1 —\k
n n-...-(n—k+1)<£k_nk-kk
k) k! ~ k! kk. k!
n k kk
-(%) %
| 7.6 Skip Lists
215/565

m Ernst Mayr, Harald Racke

n\ n! _n-...-(n—k+1)><n)k
k)] kl'-(m—-k) k-...-1 —\k
n _n-...-(n—k+1)<£k_nk-kk
k) k! Tkl kk-k!
()%= ()
= (= < | —
k k! =\ k
| 7.6 Skip Lists
215/565

m Ernst Mayr, Harald Racke

7.6 Skip Lists

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 216/565

7.6 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above Ly.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 216/565

7.6 Skip Lists

Let E, x denote the event that a search path is of length z
(number of edges) but does not visit a list above Ly.

In particular, this means that during the construction in the
backward analysis we see at most k heads (i.e., coin flips that
tell you to go up) in z trials.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 216/565

7.6 Skip Lists

Pr[Ez,k]

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

Z)5—(z-k)
< <k> 2

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k
- <i>2—(z—k) - <%> - (z-k)

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) (292> -z
< <k>2 < K 2 < X 2

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists
Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn

k

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists
Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn

2ez\k 2ez\k
ahitad -Bk | -y« bt T
S(K) 20 mns <23k> n

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
cbe —Bk | -y« 22 o«
S(k) 2 <23k> "
2e(B +) k x
S(28) "

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy >1and z = (B + «)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
= < k) 2ns (23k> "
2e(B +) k x
= (28) "
now choosing 3 = 6 gives

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy >1and z = (B + «)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
= < k) 2ns (23k> "
2e(B +) k x
= (28) "
now choosing 3 = 6 gives

4200\%
S<640< "

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
S<k> a2 §<23k> "
2e(B +)\ K x
S(28) "
now choosing 3 = 6 gives
<42a
<
64«

k
) n%<n«

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) <ez> ~(z-k) <2€Z> —z
< <k>2 < K 2 < X 2

choosing k = ylogn withy > 1and z = (8 + ®)ylogn
2ez\k 2ez\k
fnhiad —Bk | -y« /7)) g«
S<k> a2 §<23k> "
2e(B +)\ K x
S(28) "
now choosing 3 = 6 gives
<42a
<
64«

k
) n%<n«
for ¢ = 1.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217/565

7.6 Skip Lists

7.6 Skip Lists

So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E, or the event Ay, 1 must hold.

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E, or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps]

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E, or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps] < Pr[E, x] + Pr[Ak.1]

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E, or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps] < Pr[E, x] + Pr[Ak.1]

<n %4p D

7.6 Skip Lists
So far we fixed k = ylogn, y > 1,and z = 7aylogn, o« = 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ax.; denote the event that the list Ly, 1 is non-empty. Then

Pr(A.] < n2~ kD < ==

For the search to take at least z = 7y logn steps either the
event E, or the event Ay, 1 must hold.
Hence,

Pr[search requires z steps] < Pr[E, x] + Pr[Ak.1]

<n % yn D

This means, the search requires at most z steps, w. h. p.

7.7 Hashing

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 219/565

7.7 Hashing

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully
choosing split-elements.

m 7.7 Hashing
Ernst Mayr, Harald Racke 219/565

7.7 Hashing

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully
choosing split-elements.

Then the memory location of an object x with key k is
determined by successively comparing k to split-elements.

m 7.7 Hashing
Ernst Mayr, Harald Racke 219/565

7.7 Hashing

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

> S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully
choosing split-elements.

Then the memory location of an object x with key k is
determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the
given key. The goal is to have constant search time.

m 7.7 Hashing
Ernst Mayr, Harald Racke 219/565

7.7 Hashing

Definitions:
> Universe U of keys, e.g., U < Ny. U very large.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
> Universe U of keys, e.g., U < Ny. U very large.
> Set S c U of keys, |S| =m < |UJ.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
> Universe U of keys, e.g., U < Ny. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
> Universe U of keys, e.g., U < Ny. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.
» Hash function h: U — [0,...,n — 1].

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
> Universe U of keys, e.g., U < Ng. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.
» Hash function h: U — [0,...,n — 1].

The hash-function h should fulfill:

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
» Universe U of keys, e.g., U < Ng. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.
» Hash function h: U — [0,...,n—1].

The hash-function h should fulfill:

> Fast to evaluate.

m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
» Universe U of keys, e.g., U < Ng. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.
» Hash function h: U — [0,...,n—1].

The hash-function h should fulfill:
> Fast to evaluate.

» Small storage requirement.

m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

7.7 Hashing

Definitions:
» Universe U of keys, e.g., U < Ng. U very large.
> Set S c U of keys, |S| =m < |UJ.
» Array T[0,...,n — 1] hash-table.
» Hash function h: U — [0,...,n—1].

The hash-function h should fulfill:
> Fast to evaluate.
» Small storage requirement.

» Good distribution of elements over the whole table.

m 7.7 Hashing
Ernst Mayr, Harald Racke 220/565

Direct Addressing

Ideally the hash function maps all keys to different memory
locations.

U
universe

of keys

[clz[z]s]s[z]s]=]

This special case is known as Direct Addressing. It is usually
very unrealistic as the universe of keys typically is quite large,
and in particular larger than the available memory.

m 7.7 Hashing
Ernst Mayr, Harald Racke 221/565

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no
delete). Then we may want to design a simple hash-function
that maps all these keys to different memory locations.

universe \
of keys

S (actual keys)

[ol5[z]s[s[z]s]=]

Such a hash function h is called a perfect hash function for set S.

m 7.7 Hashing
Ernst Mayr, Harald Racke 222/565

Collisions

If we do not know the keys in advance, the best we can hope for
is that the hash function distributes keys evenly across the table.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 223/565

Collisions

If we do not know the keys in advance, the best we can hope for
is that the hash function distributes keys evenly across the table.

Problem: Collisions
Usually the universe U is much larger than the table-size n.

m 7.7 Hashing
Ernst Mayr, Harald Racke 223/565

Collisions

If we do not know the keys in advance, the best we can hope for
is that the hash function distributes keys evenly across the table.

Problem: Collisions
Usually the universe U is much larger than the table-size n.

Hence, there may be two elements ki, ko from the set S that
map to the same memory location (i.e., h(ky) = h(kp)). This is
called a collision.

m 7.7 Hashing
Ernst Mayr, Harald Racke 223/565

Collisions

Typically, collisions do not appear once the size of the set S of
actual keys gets close to n, but already when [S| > w(\/n).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 224/565

Collisions

Typically, collisions do not appear once the size of the set S of
actual keys gets close to n, but already when [S| > w(\/n).

Lemma 22
The probability of having a collision when hashing m elements
into a table of size n under uniform hashing is at least

m(m-1) m?2

l—-e 2n =1-e 2n |

m 7.7 Hashing
Ernst Mayr, Harald Racke

224/565

Collisions

Typically, collisions do not appear once the size of the set S of
actual keys gets close to n, but already when [S| > w(\/n).

Lemma 22
The probability of having a collision when hashing m elements
into a table of size n under uniform hashing is at least

m(m-1) m?2

l—-e 2n =1-e 2n |

Uniform hashing:

Choose a hash function uniformly at random from all functions
f:U-10,....,n—1].

m 7.7 Hashing
Ernst Mayr, Harald Racke

224/565

Collisions
Proof.

Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

Pr[Am,n]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

{+1

m n-—
PrlAmnl =] R
=1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

1

PrlAmn] = ﬁ LM :Wh < _i)
{=1

n j=0 n

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then
m m-—1 .
€ +1
Pl Am,u]]‘[=1 (1-2)

=1 j=0 n

e —jin

i ::]§

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

m 1

Pl Apmn] 1—[3—1—1 "h(_i)

=1 j=0 n

i ::]§

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ayy,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

Pl Apmn] 1—[3—1—1 "h(_i)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 225/565

Collisions

Proof.
Let Ay,,n denote the event that inserting m keys into a table of
size n does not generate a collision. Then

[Amn]:ﬁﬁ Wh (1_1)

Here the first equality follows since the £-th element that is
hashed has a probability of = €+1 to not generate a collision
under the condition that the prewous elements did not induce
collisions.

O

m 7.7 Hashing
Ernst Mayr, Harald Racke

225/565

Collisions

\ f(x) X

—1-x|

/
w W

no

—

The inequality 1 — x < e is derived by stopping the
Taylor-expansion of e~ after the second term.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 226/565

Resolving Collisions

The methods for dealing with collisions can be classified into the
two main types

» open addressing, aka. closed hashing

» hashing with chaining, aka. closed addressing, open
hashing.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

227/565

Resolving Collisions

The methods for dealing with collisions can be classified into the
two main types

» open addressing, aka. closed hashing

» hashing with chaining, aka. closed addressing, open
hashing.

There are applications e.g. computer chess where you do not
resolve collisions at all.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

227/565

Hashing with Chaining

Arrange elements that map to the same position in a linear list.

> Access: compute h(x) and search list for key[x].

> |nsert: insert at the front of the list.

universe

of keys

S (actual keys)

[o]
@
o
@
@
o
.
@

GERD
NAERCIENCAD)
&
(ks [9

m Ernst Mayr, Harald Racke

7.7 Hashing

228/565

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 229/565

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:

> A% denotes the average time for a successful search when
using A;

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 229/565

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:

> A% denotes the average time for a successful search when
using A;

> A~ denotes the average time for an unsuccessful search
when using A;

m 7.7 Hashing
Ernst Mayr, Harald Racke 229/565

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:

> A% denotes the average time for a successful search when
using A;

> A~ denotes the average time for an unsuccessful search
when using A;

> We parameterize the complexity results in terms of « := %

the so-called fill factor of the hash-table.

m 7.7 Hashing
Ernst Mayr, Harald Racke 229/565

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the
following notation:

> A% denotes the average time for a successful search when
using A;
> A~ denotes the average time for an unsuccessful search

when using A;

> We parameterize the complexity results in terms of « := %

the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

m 7.7 Hashing
Ernst Mayr, Harald Racke 229/565

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length
of the list that is examined.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 230/565

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length

of the list that is examined. The average length of a list is
m

O(ZW.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 230/565

Hashing with Chaining

The time required for an unsuccessful search is 1 plus the length
of the list that is examined. The average length of a list is

x = % Hence, if A is the collision resolving strategy “Hashing
with Chaining” we have

A =1+ .

m 7.7 Hashing
Ernst Mayr, Harald Racke

230/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.

Let k, denote the £-th key inserted into the table.

m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

The expected successful search cost is

[2 (10 3)]

i=1 j=i+1

m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let ky denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

The expected successful search cost is
keys before k;

[2 (10 3)]

i=1 j=i+1

m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

For a successful search observe that we do not choose a list at
random, but we consider a random key k in the hash-table and
ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k’s list.
Let k, denote the £-th key inserted into the table.

Let for two keys k; and kj, X;; denote the indicator variable for
the event that k; and k; hash to the same position. Clearly,
Pr[X;; = 1] = 1/n for uniform hashing.

The expected successful search cost is

[2 (1 3)]

cost for key k;

m 7.7 Hashing
Ernst Mayr, Harald Racke 231/565

Hashing with Chaining

[2 (1 3)]

i=1 J=i+1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

[2 (0 3)] =5 S (e S e

i=1 J=i+1 i=1 Jj=i+1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

SRS IR T)
I
i=1 j=i+l

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

[LS (e S LY (e S
— 1+ X'-)]:— <1+ EX])
mlzl J=i+1 Y mizl J=i+1 N
1 & LU |
-2 (1 2 5)
i=1 Jj=i+1
m
:1+—n§1(m—1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

IESA (R e S (R)
w02
:1+nl§(m—1
1 ()
mn

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

[2 (1 3)]

i=1 J=i+1 i=1 Jj=i+1

Il
—
|.
INGE
3
|

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

[2 (1 3)]

i=1 =i+l i=1 j=i+1
1 & L |
5050
mlzl Jj=i+1
m

Il
—_
|.
3]
\'M
3
|

i=1
14 1 (5 m(m+1))
mn 2
m-—1 l0'¢ l0'¢
-1 1+ =
T on T2 2m

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

[2 (1 3)]

i=1 j=i+l i=1 j=i+l
1= n o1
LAY
mlzl Jj=i+1
m

Il
—
|.
3]
\'[\/]
3
|

i=1
14 1 (5 m(m+1)>
mn 2
m-—1 l0'¢ l0'¢
=1+ =1+ -
2n 2 2m

Hence, the expected cost for a successful search is AT <1 + %

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 232/565

Hashing with Chaining

Disadvantages:
> pointers increase memory requirements

> pointers may lead to bad cache efficiency

Advantages:
> no a priori limit on the number of elements
> deletion can be implemented efficiently

» by using balanced trees instead of linked list one can also
obtain worst-case guarantees.

m 7.7 Hashing
Ernst Mayr, Harald Racke 233/565

Open Addressing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 234/565

Open Addressing

All objects are stored in the table itself.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 234/565

Open Addressing

All objects are stored in the table itself.
Define a function h(k, j) that determines the table-position to be

examined in the j-th step. The values h(k,0),...,h(k,n —1)
must form a permutation of 0, ..., n — 1.

m 7.7 Hashing
Ernst Mayr, Harald Racke

234/565

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be
examined in the j-th step. The values h(k,0),...,h(k,n —1)
must form a permutation of 0, ..., n — 1.

Search(k): Try position h(k,0); if it is empty your search fails;
otw. continue with h(k,1), h(k,2),

m 7.7 Hashing
Ernst Mayr, Harald Racke 234/565

Open Addressing

All objects are stored in the table itself.

Define a function h(k, j) that determines the table-position to be
examined in the j-th step. The values h(k,0),...,h(k,n —1)
must form a permutation of 0, ..., n — 1.

Search(k): Try position h(k,0); if it is empty your search fails;
otw. continue with h(k,1), h(k,2),

Insert(x): Search until you find an empty slot; insert your

element there. If your search reaches h(k,n — 1), and this slot is
non-empty then your table is full.

m 7.7 Hashing
Ernst Mayr, Harald Racke 234/565

Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 235/565

Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).
» Quadratic probing:
h(k,i) = h(k) + c1i + c2i®> mod n.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 235/565

Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).

» Quadratic probing:
h(k,i) = h(k) + c1i + c2i®> mod n.

» Double hashing:
h(k,i) = h1(k) + ihz(k) mod n.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 235/565

Open Addressing

Choices for h(k, j):
» Linear probing:
h(k,i) = h(k) +i mod n
(sometimes: h(k,i) = h(k) + ci mod n).
» Quadratic probing:
h(k,i) = h(k) + c1i + c2i®> mod n.
» Double hashing:
h(k,i) = hi(k) + ih2(k) mod n.

For quadratic probing and double hashing one has to ensure
that the search covers all positions in the table (i.e., for double
hashing h» (k) must be relatively prime to n (teilerfremd); for
quadratic probing c; and c2 have to be chosen carefully).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 235/565

Linear Probing

» Advantage: Cache-efficiency. The new probe position is very
likely to be in the cache.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 236/565

Linear Probing

» Advantage: Cache-efficiency. The new probe position is very
likely to be in the cache.

» Disadvantage: Primary clustering. Long sequences of
occupied table-positions get longer as they have a larger
probability to be hit. Furthermore, they can merge forming
larger sequences.

m 7.7 Hashing
Ernst Mayr, Harald Racke

236/565

Linear Probing

» Advantage: Cache-efficiency. The new probe position is very
likely to be in the cache.

» Disadvantage: Primary clustering. Long sequences of
occupied table-positions get longer as they have a larger
probability to be hit. Furthermore, they can merge forming
larger sequences.

Lemma 23
Let L be the method of linear probing for resolving collisions:

L =

l
N | =
—
—
+
—_
[] =
1>
~

=
u
N | =
—
[
+
=
-
2
no
S~

m 7.7 Hashing
Ernst Mayr, Harald Racke 236/565

Quadpratic Probing

> Not as cache-efficient as Linear Probing.

> Secondary clustering: caused by the fact that all keys
mapped to the same position have the same probe
sequence.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 237/565

Quadpratic Probing

> Not as cache-efficient as Linear Probing.

> Secondary clustering: caused by the fact that all keys
mapped to the same position have the same probe

sequence.
Lemma 24
Let Q be the method of quadratic probing for resolving
collisions:
1 lo¢
tTa1+1 - =
Q' =1+in(i=) -5
_ 1 1
Q = 1—0(+1n(1—)—

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 237/565

Double Hashing

> Any probe into the hash-table usually creates a cache-miss.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 238/565

Double Hashing

> Any probe into the hash-table usually creates a cache-miss.

Lemma 25
Let A be the method of double hashing for resolving collisions:

1 1
D+~&1n<1_o()

l

1
T 1-«

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

238/565

Open Addressing

Some values:

Quadratic Probing

Double Hashing

[¢ Linear Probing
L* L- Q+ Q- D+ D-

0.5 1.5 2.5 1.44 2.19 1.39 2
0.9 5.5 50.5 2.85 11.40 2.55 10

0.95 10.5 200.5 3.52 22.05 3.15 20

!
m 7.7 Hashing
Ernst Mayr, Harald Racke 239/565

Open Addressing

#probes

'
10 : 1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 240/565

Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open
Addressing scheme.

» The probe sequence h(k,0),h(k,1),h(k,2),... is equally
likely to be any permutation of (0,1,...,n —1).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 241/565

Analysis of Idealized Open Address Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 242/565

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 242/565

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PrlA1nAon---NAi_q]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 242/565

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.
PI‘[A1 NAxN - - ﬂAi_l]
=Pr[A;]-Pr[Az | A1]-Pr[As | A; N Az]-
-Pr[Ai_l AN ﬁAi_z]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 242/565

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[A1 NAxN - - ﬂAi_l]
=Pr[A1]-Pr[Az | A1]-Pr[Az | Ay n A2]-
...-Pr[Ai_l |Alﬂ---ﬁAi_2]

Pr(X = i]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 242/565

Analysis of Idealized Open Address Hashing
Let X denote a random variable describing the number of probes

in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.

PI‘[A1 NAxN - - ﬂAi_l]

=Pr[A;]-Pr[Az [A1] - Pr[A3 | A1 nA2]-
...-Pr[Ai_l |Alﬂ---ﬁAi_2]

m m-1 m-2 m-—i+2
n n-1 n-2 "7 n-i+2

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 242/565

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.
PI‘[A1 NAxN - - ﬂAi_l]
=Pr[A;]-Pr[Az | A1]-Pr[As | A; N Az]-
-Pr[Ai_l AN ﬁAi_z]

m m-1 m-2 m-—i+2
PrIX=i]=— - . e ————
rl i n n-1 n-2 n—-i+2

mi—-1

< PR
_<n>

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

242/565

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes
in an unsuccessful search.

Let A; denote the event that the i-th probe occurs and is to a
non-empty slot.
PI‘[A1 NAxN - - ﬂAi_l]
=Pr[A;]-Pr[Az | A1]-Pr[As | A; N Az]-
-Pr[Ai_l AN ﬁAi_z]

m m-1 m-2 m-—i+2
PrIX=i]=— - . e ————
rl i n n-1 n-2 n—-i+2

mi—-1

< e = i-1
_(n) (x

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

242/565

Analysis of Idealized Open Address Hashing

E[X]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 243/565

Analysis of Idealized Open Address Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 243/565

Analysis of Idealized Open Address Hashing

m Ernst Mayr, Harald Racke

7.7 Hashing

243/565

Analysis of Idealized Open Address Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 243/565

Analysis of Idealized Open Address Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 243/565

Analysis of Idealized Open Address Hashing

=14+l +...
1 -«

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 243/565

Analysis of Idealized Open Address Hashing

PriX = i] DL APHIX =il =) PrX =]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

i=1

Pr(X = i] > JiPr[X =il = > Pr[X = i]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

i=2

Pr(X = i] > JiPr[X =il = > Pr[X = i]

e

1 2

1
L
|
1
|

3

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

i=3

Pr(X =1i]

D APEX =] = > Pr(X =]

m Ernst Mayr, Harald Racke

7.7 Hashing

244/565

Analysis of Idealized Open Address Hashing

i=4

Pr(X =1i]

D APEX =] = > Pr(X =]

m Ernst Mayr, Harald Racke

7.7 Hashing

244/565

Analysis of Idealized Open Address Hashing

i=1

PriX = i] > iPr[X =i] = Z-|

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

i=2

PriX = i] > iPr[X =i] = Z-|

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

i=3

PriX = i] > iPr[X =i] = Z-|

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

i=4

PriX = i] > iPr[X =i] = Z-|

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

PriX = i] DL APHIX =il =) PrX =]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

Pr(X = i] D APrIX =il =) Pr(X =]

1 2 3 4 5 6 7

The j-th rectangle appears in both sums j times. (j times in the
first due to multiplication with j; and j times in the second for
summands i =1,2,...,)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 244/565

Analysis of Idealized Open Address Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for
k is at most n

1-i/n — n-i-

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for
k is at most n

1-i/n — n-i-

-1

imz n
m “— n-i
i=0

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for
k is at most n

1-i/n — n-i-

1™l oy n "ol
Wi Tm 2 n
i=0 i=0

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for
k is at most n

1-i/n — n-i-

I T
m=—mn-i m “— n- o, k
i=0 i=0 k=n-m

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the

number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for

. 1 _n
k is at most —in = ni

lmz—:l n _ﬁmz_“l 1 _l i l
m ,n-t m,;;;n-1i o‘k:n—m+1k
1M 1
< = —dx
& Jn-m x

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for

. 1 _n
k is at most —in = ni

-1 -1

imz n _ﬁmz 1 i 1
m ,n-t m,;;;n-1i o‘k:n—m+1k
n
_l ldx=lln n
X Jn-m x x -m

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 245/565

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the
number of probes made in an unsuccessful search for k at the
time that k is inserted.

Let k be the i + 1-st element. The expected time for a search for

. 1 _n
k is at most —in = ni

-1 -1

imz n _ﬁmz 1 i 1
m ,n-t m,;;;n-1i o‘k:n—m+1k
n
_l ldx=lln n =l 1
X Jn-m X X n-m x 1-«

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 245/565

Analysis of Idealized Open Address Hashing

f(x))
fx) =% T TR
z ESI —dx |
k=m-n+1 m-n X
SEEETR S L
m-n+l|m-n+2 Sy
m-n m-n+1l n

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 246/565

Deletions in Hashtables

How do we delete in a hash-table?

» For hashing with chaining this is not a problem. Simply
search for the key, and delete the item in the corresponding
list.

m 7.7 Hashing
Ernst Mayr, Harald Racke 247/565

Deletions in Hashtables

How do we delete in a hash-table?

» For hashing with chaining this is not a problem. Simply
search for the key, and delete the item in the corresponding
list.

» For open addressing this is difficult.

m 7.7 Hashing
Ernst Mayr, Harald Racke 247/565

Deletions in Hashtables

> Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 248/565

Deletions in Hashtables

» Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.

> One can delete an element by replacing it with a
deleted-marker.

m 7.7 Hashing
Ernst Mayr, Harald Racke 248/565

Deletions in Hashtables

» Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.

> One can delete an element by replacing it with a
deleted-marker.

» During an insertion if a deleted-marker is encountered an
element can be inserted there.

m 7.7 Hashing
Ernst Mayr, Harald Racke 248/565

Deletions in Hashtables

» Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.

> One can delete an element by replacing it with a
deleted-marker.

» During an insertion if a deleted-marker is encountered an
element can be inserted there.

> During a search a deleted-marker must not be used to
terminate the probe sequence.

m 7.7 Hashing
Ernst Mayr, Harald Racke 248/565

Deletions in Hashtables

» Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.
> One can delete an element by replacing it with a
deleted-marker.
» During an insertion if a deleted-marker is encountered an
element can be inserted there.
> During a search a deleted-marker must not be used to
terminate the probe sequence.
> The table could fill up with deleted-markers leading to bad
performance.

m 7.7 Hashing
Ernst Mayr, Harald Racke 248/565

Deletions in Hashtables

» Simply removing a key might interrupt the probe sequence
of other keys which then cannot be found anymore.
> One can delete an element by replacing it with a
deleted-marker.
» During an insertion if a deleted-marker is encountered an
element can be inserted there.
> During a search a deleted-marker must not be used to
terminate the probe sequence.
> The table could fill up with deleted-markers leading to bad
performance.

> If a table contains many deleted-markers (linear fraction of
the keys) one can rehash the whole table and amortize the
cost for this rehash against the cost for the deletions.

m 7.7 Hashing
Ernst Mayr, Harald Racke 248/565

Deletions for Linear Probing

> For Linear Probing one can delete elements without using
deletion-markers.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 249/565

Deletions for Linear Probing

> For Linear Probing one can delete elements without using
deletion-markers.

» Upon a deletion elements that are further down in the
probe-sequence may be moved to guarantee that they are
still found during a search.

m 7.7 Hashing
Ernst Mayr, Harald Racke 249/565

Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p] < null

2: p < succ(p)

3: while T[p] + null do
4: y = Tlpl

5 T[p] < null

6: p — succ(p)

7: insert(y)

p is the index into the table-cell that contains the object to be
deleted.

m 7.7 Hashing
Ernst Mayr, Harald Racke 250/565

Deletions for Linear Probing

Algorithm 12 delete(p)
1: T[p] < null
2: p < succ(p)
3: while T[p] + null do

4 y —Tlp]
5 T[p] < null
6: p — succ(p)
7 insert(y)

p is the index into the table-cell that contains the object to be
deleted.

Pointers into the hash-table become invalid.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 250/565

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 251/565

Universal Hashing

Regardless, of the choice of hash-function there is always an
input (a set of keys) that has a very poor worst-case behaviour.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 251/565

Universal Hashing

Regardless, of the choice of hash-function there is always an
input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random
so that regardless of the input the average case behaviour is
good.

m 7.7 Hashing
Ernst Mayr, Harald Racke 251/565

Universal Hashing

Regardless, of the choice of hash-function there is always an
input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random
so that regardless of the input the average case behaviour is
good.

However, the assumption of uniform hashing that h is chosen
randomly from all functions f: U — [0,...,n — 1] is clearly
unrealistic as there are n!Ul such functions. Even writing down
such a function would take |U|logn bits.

m 7.7 Hashing
Ernst Mayr, Harald Racke 251/565

Universal Hashing

Regardless, of the choice of hash-function there is always an
input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random
so that regardless of the input the average case behaviour is
good.

However, the assumption of uniform hashing that h is chosen
randomly from all functions f: U — [0,...,n — 1] is clearly
unrealistic as there are n!Ul such functions. Even writing down
such a function would take |U|logn bits.

Universal hashing tries to define a set / of functions that is
much smaller but still leads to good average case behaviour
when selecting a hash-function uniformly at random from 7.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

251/565

Universal Hashing

Definition 26
A class H of hash-functions from the universe U into the set
{0,...,m—1} is called universal if for all u;,up € U with 1 = u»

Prlh(u1) = h(uz)] <+
n

where the probability is w.r.t. the choice of a random
hash-function from set 7.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 252/565

Universal Hashing

Definition 26
A class H of hash-functions from the universe U into the set
{0,...,m—1} is called universal if for all u;,up € U with 1 = u»

Prlh(ur) = h(up)] < + |,
n

where the probability is w.r.t. the choice of a random
hash-function from set 7.

Note that this means that the probability of a collision between
two arbitrary elements is at most %

m 7.7 Hashing
Ernst Mayr, Harald Racke 252/565

Universal Hashing

Definition 27
A class H of hash-functions from the universe U into the set
{0,...,m— 1} is called 2-independent (pairwise independent) if
the following two conditions hold
» Foranykeyu e U,andt € {0,...,n—1} Pr[h(u) =t] = %
i.e., a key is distributed uniformly within the hash-table.
» Forall uy,u» € U with u; # 1, and for any two
hash-positions ty, t>:

Prih(uy) = t1 A h(up) = t2] < % .
n

m 7.7 Hashing
Ernst Mayr, Harald Racke 253/565

Universal Hashing

Definition 27
A class H of hash-functions from the universe U into the set
{0,...,m— 1} is called 2-independent (pairwise independent) if
the following two conditions hold
» Foranykeyu e U,andt € {0,...,n—1} Pr[h(u) =t] = %
i.e., a key is distributed uniformly within the hash-table.
» Forall uy,u» € U with u; # 1, and for any two
hash-positions ty, t>:

Prih(uy) = t1 A h(up) = t2] < % .
n

This requirement clearly implies a universal hash-function.

m 7.7 Hashing
Ernst Mayr, Harald Racke 253/565

Universal Hashing

Definition 28

A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called k-independent if for any choice of £ < k
distinct keys u1,...,uy € U, and for any set of £ not necessarily
distinct hash-positions t1,...,ty:

1

Prlh(uy) =t A -+ Ah(uyp) =tp] < i

where the probability is w.r.t. the choice of a random
hash-function from set 7.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 254/565

Universal Hashing

Definition 29
A class H of hash-functions from the universe U into the set
{0,...,m — 1} is called (u, k)-independent if for any choice of
{ < k distinct keys uy,...,up € U, and for any set of £ not
necessarily distinct hash-positions t1,..., ty:

Prik(uy) = t1 A - A h(uy) = ty] < % ,
where the probability is w.r.t. the choice of a random
hash-function from set 7.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 255/565

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 256/565

Universal Hashing

Let U:= {0,...,p — 1} for a prime p. Let Z, := {0,...,p — 1},
and let Z; :={1,...,p — 1} denote the set of invertible elements
inZp.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 256/565

Universal Hashing

Let U:= {0,...,p — 1} for a prime p. Let Z, := {0,...,p — 1},
and let Z; :={1,...,p — 1} denote the set of invertible elements
inZp.

Define
hap(x):= (ax + bmod p) mod n

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 256/565

Universal Hashing

Let U:= {0,...,p — 1} for a prime p. Let Z, := {0,...,p — 1},
and let Z; :={1,...,p — 1} denote the set of invertible elements
inZp.

Define
hap(x):= (ax + bmod p) mod n

Lemma 30
The class
H={haplaecl}bel,}

is a universal class of hash-functions from U to {0,...,n — 1}.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 256/565

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 257/565

Universal Hashing
Proof.

Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 257/565

Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 257/565

Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

If x = y then (x — ¥) # 0 (mod p).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 257/565

Universal Hashing

Proof.
Let x,y € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

If x = y then (x — ¥) # 0 (mod p).
Multiplying with a # 0 (mod p) gives

a(x—-y)#0 (modp)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 257/565

Universal Hashing

Proof.
Let x,» € U be two distinct keys. We have to show that the
probability of a collision is only 1/n.

» ax + b # ay + b (mod p)

If x = y then (x — ¥) # 0 (mod p).
Multiplying with a # 0 (mod p) gives
a(x—-y)#0 (modp)

where we use that 7, is a field (Kérper) and, hence, has no
zero divisors (nullteilerfrei).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 257/565

Universal Hashing

» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given t,
and ty:

Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given t,
and ty:

tx=ax+b (mod p)
ty=ay+b (mod p)

Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given t,

and ty:
tx=ax +b (mod p)
ty=ay+b (mod p)
tx —ty=alx -y) (mod p)

ty=ay+b (mod p)

Universal Hashing
» The hash-function does not generate collisions before the
(mod n)-operation. Furthermore, every choice (a, b) is
mapped to a different pair (fx,t,) with ty := ax + b and
ty:=ay +b.

This holds because we can compute a and b when given t,

and ty:
tx=ax+b (mod p)
ty=ay+b (mod p)
tx —ty=alx -y) (mod p)
ty=ay+b (mod p)
a=(tx—ty)(x—y)! (mod p)

b=t,-ay (mod p)

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 259/565

Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 259/565

Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-

operation) as choosing a pair (fx,ty), tx # t, uniformly at
random.

m 7.7 Hashing
Ernst Mayr, Harald Racke

259/565

Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (fx,ty), tx # t, uniformly at

random.

What happens when we do the mod n operation?

m 7.7 Hashing
Ernst Mayr, Harald Racke

259/565

Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (fx,ty), tx # t, uniformly at
random.

What happens when we do the mod n operation?

Fix a value ty. There are p — 1 possible values for choosing .

m 7.7 Hashing
Ernst Mayr, Harald Racke 259/565

Universal Hashing

There is a one-to-one correspondence between hash-functions
(pairs (a,b), a # 0) and pairs (tx,ty), tx # 5.

Therefore, we can view the first step (before the mod n-
operation) as choosing a pair (fx,ty), tx # t, uniformly at
random.

What happens when we do the mod n operation?

Fix a value ty. There are p — 1 possible values for choosing .

From the range O,...,p — 1 the values ty,tx + n,tx +21,... Mmap
to t, after the modulo-operation. These are at most [p/n]|
values.

m 7.7 Hashing
Ernst Mayr, Harald Racke 259/565

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 260/565

Universal Hashing

As ty + Ly there are

[l

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 260/565

Universal Hashing

As ty + Ly there are

[%]—1s%+n_1—1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 260/565

Universal Hashing

As ty + Ly there are

[%]—15%+n_1—15p_1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 260/565

Universal Hashing

As ty + Ly there are

[%]—15% n-1 _p—l

possibilities for choosing t, such that the final hash-value
creates a collision.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 260/565

Universal Hashing

As ty + Ly there are

[%]—15% n-1 _p—l

possibilities for choosing t, such that the final hash-value
creates a collision.

This happens with probability at most %

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 260/565

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 261/565

Universal Hashing

It is also possible to show that #{ is an (almost) pairwise
independent class of hash-functions.

[tx mod n=h, :|
: A
ty mod n=h»

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 261/565

Universal Hashing

It is also possible to show that #{ is an (almost) pairwise
independent class of hash-functions.

2]

T plp-1)

2

tx mod n=h;
m = Prtxattyez%, A

ty mod n=h»

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 261/565

Universal Hashing

It is also possible to show that 7{ is an (almost) pairwise
independent class of hash-functions.

2]

T plp-1)

2

tx mod n=h;
p(p . 1) = Prtxqttyelf, A

ty mod n=h»

Note that the middle is the probability that h(x) = h; and

h(y) = h>. The total number of choices for (tx,t,) is p(p —1).
The number of choices for ¢y (ty) such that t, mod n = h;

(ty mod n = hy) lies between [% | and [2].

m 7.7 Hashing
Ernst Mayr, Harald Racke 261/565

Universal Hashing

Definition 31
Letd e N; g > (d+ 1)n be a prime; and let
ae{0,...,q—1}4*!. Define for x € {0,...,q — 1}

d .

ha(x) = (> aix' mod q) mod 1 .

i=0
Let Hd:={hg|ac{0,...,q— 119"}, The class H4 is
(e,d + 1)-independent.

Note that in the previous case we had d = 1 and chose a4 + 0.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 262/565

Universal Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 263/565

Universal Hashing

For the coefficients @ € {0,...,q — 1}9*! let f; denote the
polynomial

e
2

I
M=

aixi) mod g

T
o

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 263/565

Universal Hashing

For the coefficients @ € {0,...,q — 1}9*! let f; denote the
polynomial

e
2

I
M=

aixi> mod g

T
o

The polynomial is defined by d + 1 distinct points.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 263/565

Universal Hashing

Universal Hashing

Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Universal Hashing

Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = {hg e H | ha(x;) =t; forallie {1,...,0}}

Universal Hashing

Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = {hg € H | ha(x;) =tiforallie {1,...,0}}
Then
ha cAl = hg = fz mod n and

n

falxp)elti+a-nlaef0,....,[41-1}}

ZZBi

Universal Hashing

Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = {hg e H | ha(x;) =t; forallie {1,...,0}}
Then

hg € Al hg = fz mod n and

falxi) efti+a-n|oei0,...,[4]-1}}

:ZBi

In order to obtain the cardinality of A’ we choose our
polynomial by fixing d + 1 points.

Universal Hashing

Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = {hg € H | ha(x;) =tiforallie {1,...,0}}
Then
hg € Al hg = fz mod n and

falxi) efti+a-n|oei0,...,[4]-1}}

:ZBi

In order to obtain the cardinality of A’ we choose our
polynomial by fixing d + 1 points.

We first fix the values for inputs x1,..., xy.

Universal Hashing

Fix 0 <d+1;letxy,...,xp € {0,...,q — 1} be keys, and let
t1,...,tp denote the corresponding hash-function values.

Let A = (hg e H | ha(xi) =t forallie {1,...,¢}}
Then
hg € Al hg = fz mod n and

falxi) efti+a-n|oei0,...,[4]-1}}

:ZBi

In order to obtain the cardinality of A’ we choose our
polynomial by fixing d + 1 points.

We first fix the values for inputs x1,..., xy.

We have
[B1l - ... Byl

possibilities to do this (so that hg(x;) = t;).

Universal Hashing

Now, we choose d — £ + 1 other inputs and choose their value
arbitrarily. We have g4~ {*1 possibilities to do this.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 265/565

Universal Hashing

Now, we choose d — £ + 1 other inputs and choose their value
arbitrarily. We have g4~ {*1 possibilities to do this.
Therefore we have

Byl «... Byl - g4t < [%]f gd—t+1

possibilities to choose a such that h; € Ap.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 265/565

Universal Hashing

Therefore the probability of choosing h; from Ay is only
[ﬂ]—f . qd,——€+1
n
qd+1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 266/565

Universal Hashing

Therefore the probability of choosing h; from Ay is only

[%]ﬁ i qd——€+1 (WTn)ﬂ

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 266/565

Universal Hashing

Therefore the probability of choosing h; from Ay is only

[%]ﬁ.qd——h—l (WTTL)€< q+1’l)€_ 1

nt

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 266/565

Universal Hashing

Therefore the probability of choosing h; from Ay is only

[%]ﬁ.qd——h—l (WTTL)€< q+1’l)€_ 1

nt

1\¢ 1
S(1+?) W

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 266/565

Universal Hashing

Therefore the probability of choosing h; from Ay is only

(410 q " (MY g+m)L
qd+1 - qL) - a n
1 3 1 e

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 266/565

Universal Hashing

Therefore the probability of choosing h; from Ay is only

[410. g2~ (0 g4n) 1
1\¢ 1 e
< (1 + ?) . P < 7 .

This shows that the #H is (e,d + 1)-universal.

The last step followed from g > (d + 1)n, and £ < d + 1.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 266/565

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no
delete). Then we may want to design a simple hash-function
that maps all these keys to different memory locations.

universe

of keys

S (actual keys)

[elzls[s[s[z]s]=]

m 7.7 Hashing
Ernst Mayr, Harald Racke 267/565

Perfect Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 268/565

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 268/565

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of
collisions is

E[#Collisions] = (m) . 1 .
2 n

m 7.7 Hashing
Ernst Mayr, Harald Racke 268/565

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is
1
E[#Collisions] = (m) =
2 n

If we choose n = m? the expected number of collisions is strictly
less than %

m 7.7 Hashing
Ernst Mayr, Harald Racke 268/565

Perfect Hashing

Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is
1
E[#Collisions] = (m) =
2 n

If we choose n = m? the expected number of collisions is strictly
less than %

Can we get an upper bound on the probability of having
collisions?

m 7.7 Hashing
Ernst Mayr, Harald Racke 268/565

Perfect Hashing
Let m = |S|. We could simply choose the hash-table size very
large so that we don’t get any collisions.

Using a universal hash-function the expected number of

collisions is
1
E[#Collisions] = (m) =
2 n

If we choose n = m? the expected number of collisions is strictly
less than %

Can we get an upper bound on the probability of having
collisions?

The probability of having 1 or more collisions can be at most %
as otherwise the expectation would be larger than %

m 7.7 Hashing
Ernst Mayr, Harald Racke 268/565

Perfect Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 269/565

Perfect Hashing

We can find such a hash-function by a few trials.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 269/565

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of n = m? is very very high.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 269/565

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of n = m? is very very high.

We construct a two-level scheme. We first use a hash-function
that maps elements from S to m buckets.

m 7.7 Hashing
Ernst Mayr, Harald Racke 269/565

Perfect Hashing

We can find such a hash-function by a few trials.
However, a hash-table size of n = m? is very very high.

We construct a two-level scheme. We first use a hash-function
that maps elements from S to m buckets.

Let m; denote the number of items that are hashed to the j-th
bucket. For each bucket we choose a second hash-function that
maps the elements of the bucket into a table of size mj The
second function can be chosen such that all elements are
mapped to different locations.

m 7.7 Hashing
Ernst Mayr, Harald Racke 269/565

Perfect Hashing

universe ‘\
of keys

ks|o ko] |o]o[klk] [o]o]o]k|k|a]o]t]o]

m3 mg mg

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 270/565

Perfect Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 271/565

Perfect Hashing

The total memory that is required by all hash-tables is
O(Zj m?). Note that m; is a random variable.

g

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 271/565

Perfect Hashing

The total memory that is required by all hash-tables is
O(Zj m?). Note that m; is a random variable.

i s -e[e () +5m

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 271/565

Perfect Hashing

The total memory that is required by all hash-tables is
O(Zj m?). Note that m; is a random variable.

[S| < [o3 (7)) + Sm]
:ZE[§<”;J'>] +E[§mj]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 271/565

Perfect Hashing

The total memory that is required by all hash-tables is
0% m?). Note that m; is a random variable.

e[Smi]-e[25 (1) - Sm
s[5 ()] 5[5

J

The first expectation is simply the expected number of
collisions, for the first level. Since we use universal hashing we
have

m 7.7 Hashing
Ernst Mayr, Harald Racke 271/565

Perfect Hashing

The total memory that is required by all hash-tables is
0% m?). Note that m; is a random variable.

e[Smi]-e[25 (1) - Sm
s[5 ()] 5[5

J

The first expectation is simply the expected number of
collisions, for the first level. Since we use universal hashing we
have

m 7.7 Hashing
Ernst Mayr, Harald Racke 271/565

Perfect Hashing

We need only @(m) time to construct a hash-function h with
2 m? = O(4m), because with probability at least 1/2 a random
function from a universal family will have this property.

Then we construct a hash-table h; for every bucket. This takes
expected time O (m;) for every bucket. A random function h; is
collision-free with probability at least 1/2. We need O (m) to test
this.

We only need that the hash-functions are chosen from a
universal family!!!

m 7.7 Hashing
Ernst Mayr, Harald Racke 272/565

Cuckoo Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 273/565

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search
time in a dynamic scenario.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 273/565

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search
time in a dynamic scenario.

» Two hash-tables T7[0,...,n— 1] and T>[0,...,n — 1], with
hash-functions h1, and ho.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 273/565

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search
time in a dynamic scenario.

» Two hash-tables T7[0,...,n— 1] and T>[0,...,n — 1], with
hash-functions h1, and ho.

> An object x is either stored at location T1[h1(x)] or
Ta2[h2(x)].

m 7.7 Hashing
Ernst Mayr, Harald Racke 273/565

Cuckoo Hashing

Goal:
Try to generate a hash-table with constant worst-case search
time in a dynamic scenario.
» Two hash-tables T7[0,...,n— 1] and T>[0,...,n — 1], with
hash-functions hi, and h».
> An object x is either stored at location T1[h1(x)] or
Ta2[h2(x)].

> A search clearly takes constant time if the above constraint
is met.

m 7.7 Hashing
Ernst Mayr, Harald Racke

273/565

Cuckoo Hashing

Insert:

Slofs|x[x[o]s]4]s]s]
Slelz[s[x]s[o]¥[s]0]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 274/565

Cuckoo Hashing

Insert:
] E]
E] E]
x—)x—7 x_s
E]]
]]
EA X6
x1|]
] X3
]]
T T

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 274/565

Cuckoo Hashing

Insert:
] E]
E] E]
x—)T x_s
| . |2
%) %)
EA X6
x1|]
] X3
]]
T T

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 274/565

Cuckoo Hashing

Insert:
] E]
E] E]
x —)T x_s
o] . o]
%) %)
e . 7|
x1|]
] X3
]]
T T
7.7 Hashing

m Ernst Mayr, Harald Racke

274/565

Cuckoo Hashing

Insert:
] E]
E]]
x —)T x_s
B £ B
— .1*; —
%) %)
x4 [x7 |
6|]
] X3
]]
T T

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 274/565

Cuckoo Hashing

Algorithm 13 Cuckoo-Insert(x)
1: if Ti[h1(x)] = x Vv Tx[h2(x)] = x then return
2: steps — 1
3: while steps < maxsteps do
4 exchange x and Ti[h(x)]
5: if x = null then return
6: exchange x and Tx[ho(x)]
7.
8
9
0:

if x = null then return
steps — steps +1
: rehash() // change hash-functions; rehash everything
Cuckoo-Insert(x)

m 7.7 Hashing
Ernst Mayr, Harald Racke 275/565

Cuckoo Hashing

» We call one iteration through the while-loop a step of the
algorithm.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 276/565

Cuckoo Hashing

» We call one iteration through the while-loop a step of the
algorithm.

» We call a sequence of iterations through the while-loop
without the termination condition becoming true a phase of
the algorithm.

m 7.7 Hashing
Ernst Mayr, Harald Racke 276/565

Cuckoo Hashing

» We call one iteration through the while-loop a step of the
algorithm.

» We call a sequence of iterations through the while-loop
without the termination condition becoming true a phase of
the algorithm.

> We say a phase is successful if it is not terminated by the
maxstep-condition, but the while loop is left because
x = null.

m 7.7 Hashing
Ernst Mayr, Harald Racke 276/565

Cuckoo Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 277/565

Cuckoo Hashing

What is the expected time for an insert-operation?

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 277/565

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop
(that is then terminated after maxsteps steps).

m 7.7 Hashing
Ernst Mayr, Harald Racke 277/565

Cuckoo Hashing

What is the expected time for an insert-operation?

We first analyze the probability that we end-up in an infinite loop
(that is then terminated after maxsteps steps).

Formally what is the probability to enter an infinite loop that
touches s different keys?

m 7.7 Hashing
Ernst Mayr, Harald Racke 277/565

Cuckoo Hashing: Insert

1>

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

X = X| m—3pp| X1

Ty x2

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

X2

X = X =—3pp| X1

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

X2

X = X| m—3pp| X1

X3

Ty X4

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

X2

X = X1 m—pl X1

X3
X4

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

[— X2 —

x=x1_)x1 X2

X3
— X4 —

X3 s X4
X5

T X6

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

x=x1—)

m 7.7 Hashing 28.Jan. 2019
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

x2
X4

X = X1 » X2
X3
X4
N
X5 X6
X7 > X6
x7 (=
T X8
7.7 Hashing

m Ernst Mayr, Harald Racke

278/565

Cuckoo Hashing: Insert

| x —
X = X] m——3ppl X1 2 X2
X3
| x4 —
x X
8 X5 =P
X5 ";q: X%
| - —
Le2” — P
I " X7 —
.
X7 (=

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

X = X] w——3pp| X1

X2

m Ernst Mayr, Harald Racke

7.7 Hashing

278/565

Cuckoo Hashing: Insert

| x —
X = X] w——3ppl X1 2 X3
X3
| x4 —
X X
3 X5 = v
X5 ";q: X%
| - —
Le2” — P
I " X7 —
.
X7 (=

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

X = X] m——3p X7 |

X2

m Ernst Mayr, Harald Racke

7.7 Hashing

278/565

Cuckoo Hashing: Insert

m Ernst Mayr, Harald Racke

X
— x I
X2 z X3
X3
— x4 I
X. X
3 X5 = g
-
X5 . ;q: X%
] T —x|
I " - &7 __fi
.
X7 (=
X0 T
7.7 Hashing

278/565

Cuckoo Hashing: Insert

T X10

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

m Ernst Mayr, Harald Racke

X10 X10
| Xo —
X9 x
| x —
x2 z X3

X3
| X4 —
X. X
4 X5 kg
-
X5 . ;q: X%
L% - —
— - - ——-A
X7 (=
xn Ty
7.7 Hashing

278/565

Cuckoo Hashing: Insert

X11

m Ernst Mayr, Harald Racke

7.7 Hashing

278/565

Cuckoo Hashing: Insert

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing: Insert

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 278/565

Cuckoo Hashing

X10 X7

]] | "
stﬁXSﬁX1|—|x21—|x3|—'—|x4|—|xu—|x6i|
L — L~ L L L L1
P1 P2 P3 P4 Ps Pe p7 pPs P9

A cycle-structure of size s is defined by

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 279/565

Cuckoo Hashing

]] | "
DxeﬁXSﬁX1l—lxu—lxsr'—lxM—leI—lxer_'—‘
L~ L =L L L 1L
P1 P2 P3 P4 Ps Pe p7 pPs P9

A cycle-structure of size s is defined by

» s — 1 different cells (alternating btw. cells from T; and T>).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

279/565

Cuckoo Hashing

X10
]] | "
Dxe'XS X1 X2 X x4|—|x51—|xa|r—_'—|
L L L L
P1 P2 P3 P4 Ps Pe p7 pPs P9

A cycle-structure of size s is defined by

» s — 1 different cells (alternating btw. cells from T; and T>).

> s distinct keys x

= X1,X2,-.

., Xs, linking the cells.

m Ernst Mayr, Harald Racke

7.7 Hashing

279/565

Cuckoo Hashing

X10
]] | "
st'XS X1 X2 X x4|—|x51—|xa|r—_'—|
L L L L
P1 P2 P3 P4 Ps Pe p7 pPs P9

A cycle-structure of size s is defined by

» s — 1 different cells (alternating btw. cells from T; and T>).

> s distinct keys x

= X1,X2,-.

., Xs, linking the cells.

» The leftmost cell is “linked forward” to some cell on the

right.

m Ernst Mayr, Harald Racke

7.7 Hashing

279/565

Cuckoo Hashing

|---------7--------|

A cycle-structure of size s is defined by

» s — 1 different cells (alternating btw. cells from T; and T>).
> s distinct keys x = x1,x2,..

» The leftmost cell is “linked forward” to some cell on the

right.

» The rightmost cell is “linked backward” to a cell on the left.

., Xs, linking the cells.

[X2 [.X3 X4|—|XS|—|XGD
| || L || |
Ps Pe p7 pPs P9

m Ernst Mayr, Harald Racke

7.7 Hashing

279/565

Cuckoo Hashing

X10 X7
]] | "
,jxs'XS X1 X2 X3 X4|—|XS|—|xa|r—_'—|
L > L
P1 P2 P3 P4 Ps Pe p7 pPs P9

A cycle-structure of size s is defined by

» s — 1 different cells (alternating btw. cells from T; and T>).

> s distinct keys x

= X1,X2,...,Xs, linking the cells.

» The leftmost cell is “linked forward” to some cell on the

right.

» The rightmost cell is “linked backward” to a cell on the left.

> One link represents key x; this is where the counting starts.

m Ernst Mayr, Harald Racke

7.7 Hashing

279/565

Cuckoo Hashing

A cycle-structure is active if for every key x; (linking a cell p;
from T1 and a cell p; from T>) we have

hi(xp) = pi and ha(xy) = pj

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 280/565

Cuckoo Hashing

A cycle-structure is active if for every key xy (linking a cell p;
from T1 and a cell p; from T>) we have

hi(xyp) = pi and ha(xp) = pj

Observation:
If during a phase the insert-procedure runs into a cycle there
must exist an active cycle structure of size s > 3.

m 7.7 Hashing
Ernst Mayr, Harald Racke 280/565

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 281/565

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

This probability is at most 71‘5 since hy is a (u, s)-independent
hash-function.

m 7.7 Hashing
Ernst Mayr, Harald Racke

281/565

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s
correctly map into their T;-cell?

This probability is at most % since hy is a (u, s)-independent
hash-function.

What is the probability that all keys in the cycle-structure of size
s correctly map into their T»-cell?

m 7.7 Hashing
Ernst Mayr, Harald Racke 281/565

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s

correctly map into their T;-cell?
This probability is at most £ since h; is a (u, s)-independent

nS
hash-function.

What is the probability that all keys in the cycle-structure of size
s correctly map into their T»-cell?

This probability is at most % since hy is a (u, s)-independent
hash-function.

m 7.7 Hashing
Ernst Mayr, Harald Racke 281/565

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s

correctly map into their T;-cell?
This probability is at most £ since h; is a (u, s)-independent

nS
hash-function.

What is the probability that all keys in the cycle-structure of size
s correctly map into their T»-cell?

This probability is at most % since hy is a (u, s)-independent
hash-function.

These events are independent.

j]TlJTTrH 7.7 Hashing
Ernst Mayr, Harald Racke

281/565

Cuckoo Hashing

The probazbility that a given cycle-structure of size s is active is
at most ;.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 282/565

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is
2
at most ;.

What is the probability that there exists an active cycle structure
of size s?

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 282/565

Cuckoo Hashing

The number of cycle-structures of size s is at most

3 s=1oaps—1

s -n

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 283/565

Cuckoo Hashing

The number of cycle-structures of size s is at most

3 s=1 51

s -n m

> There are at most s2 possibilities where to attach the
forward and backward links.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 283/565

Cuckoo Hashing

The number of cycle-structures of size s is at most

33 . ns—l _ms—l .

> There are at most s2 possibilities where to attach the
forward and backward links.

» There are at most s possibilities to choose where to place
key x.

m 7.7 Hashing
Ernst Mayr, Harald Racke

283/565

Cuckoo Hashing

The number of cycle-structures of size s is at most

3 s—1

s3.n s-1

m

> There are at most s2 possibilities where to attach the
forward and backward links.

» There are at most s possibilities to choose where to place
key x.

> There are m*~! possibilities to choose the keys apart from
X.

m 7.7 Hashing
Ernst Mayr, Harald Racke 283/565

Cuckoo Hashing

The number of cycle-structures of size s is at most

3 s—1

s3.n s-1

m

> There are at most s2 possibilities where to attach the
forward and backward links.

» There are at most s possibilities to choose where to place
key x.

> There are m*~! possibilities to choose the keys apart from
X.

> There are n°~! possibilities to choose the cells.

m 7.7 Hashing
Ernst Mayr, Harald Racke 283/565

Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most
o 2

53 S lomsL. 5
n S
s=3

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 284/565

Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

0 w2 oy e s

253-n5‘1-m5‘1-— 7233()
nm

s=3 s=3

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 284/565

Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

S ot S s (my
3. .,5-1, ,5-1 _ 3t

35 n m 7S s (n)

s=

IA
3
N
Mg
17
w
—
e
4+ | =
m
N———
7Y

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 284/565

Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

S ot S s (my
3. .,5-1, ,5-1 _ 3t

35 n m 7S s (n)

s=

IA
3
N
Mg
17
w
—
e
4+ | =
m
N———
7Y
IA
e
—
§\H
nNo
N———

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 284/565

Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

Sopsloms1. uZ _ “2 Z 3 (E)S
— ns nm <= n
s=3 s=3
2 ® s
< — s <0
m? sga l+e m?

Here we used the fact that (1 + €)m < n.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 284/565

Cuckoo Hashing

The probability that there exists an active cycle-structure is
therefore at most

*© 2

3 s—1 s—1 H _ H . 3<m>S
S .n .m . P — S -
— n2s nmz n
s=3 s=3
2 X K
o2 () =0 ()
< —F <
_mZZS 1+e€ =0 m?

Here we used the fact that (1 + €)m < n.

Hence,
1
Prlcycle] = O (—2>

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

284/565

Cuckoo Hashing

Now, we analyze the probability that a phase is not successful
without running into a closed cycle.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 285/565

Cuckoo Hashing

X7
< (R
] |]
Dxel—lxm—wl|—|x21—|x3r'—|x4l—|xr»l—|xei|
Sy I ez)y ey NSy ey O
pP1 P2 P3 P4 Ps P6 p7 P8 P9

Sequence of visited keys:
X = X1, X2, X3, X4, X5, X6, X7, X3, X2, X1 = X, X8, X9, ...

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 286/565

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting
with x in the order that they are visited during the phase.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 287/565

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting
with x in the order that they are visited during the phase.

Lemma 32
If the sequence is of length p then there exists a sub-sequence of
at least ’%2 keys starting with x of distinct keys.

m 7.7 Hashing
Ernst Mayr, Harald Racke 287/565

Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the
first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
x:xqu2_>..._>xi_>x7,_>x,,71_>..._>x1_>xi+1_>..._>xj

As v < i—1 the length p of the sequence is

p=i+r+(-i)<i+j-1.

m 7.7 Hashing
Ernst Mayr, Harald Racke 288/565

Cuckoo Hashing

Proof.
Let i be the number of keys (including x) that we see before the

first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
x:xqu2_>..._>xi_>x7,_>_x,,71_>..._>x1_>xi+1_>..._>xj

As v < i—1 the length p of the sequence is

p=i+r+(-i)<i+j—-1.

Either sub-sequence x; — x» — - - - — Xx; or sub-sequence

2
X1 — Xi41 — -+ - — X; has at least % elements. O

m 7.7 Hashing
Ernst Mayr, Harald Racke

288/565

Cuckoo Hashing

A path-structure of size s is defined by

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

289/565

Cuckoo Hashing

A path-structure of size s is defined by

> s + 1 different cells (alternating btw. cells from T} and T>).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

289/565

Cuckoo Hashing

A path-structure of size s is defined by

> s + 1 different cells (alternating btw. cells from T} and T>).

» s distinct keys x = x1,x2,...,Xs, linking the cells.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

289/565

Cuckoo Hashing

A path-structure of size s is defined by
> s + 1 different cells (alternating btw. cells from T} and T>).
» s distinct keys x = x1,x2,...,Xs, linking the cells.

» The leftmost cell is either from T; or T>.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

289/565

Cuckoo Hashing

A path-structure is active if for every key xy (linking a cell p;
from T1 and a cell p; from T>) we have

hi(xyp) = pi and ha(xp) = pj

Observation:
If a phase takes at least t steps without running into a cycle
there must exist an active path-structure of size (2t + 2)/3.

m 7.7 Hashing
Ernst Mayr, Harald Racke 290/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 291/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at
most ;.

The probability that there exists an active path-structure of size
s is at most

ms—l . H

n2s

2. n5+1_

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

291/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size

s is at most
2
2. n5+1_m5—1 . H
n25
5 m s—1
<2 —
()

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

291/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size

s is at most
2. S tloms—1. LZ
n25
m s—1 1 s—1
sae (7)) =20 ()
H n H 1+e€

‘m 7.7 Hashing
Ernst Mayr, Harald Racke

291/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at
most ;.
The probability that there exists an active path-structure of size
s is at most

2
s—-1 H

n2s

m s—1 1 s—1
32;12("> S2l12<1+e>

2. n5+1 m

Plugging in s = (2t + 2)/3 gives

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 291/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size

s is at most
2. n5+1_m5—1 . LZ
n25
m s—1 1 s—1
o () <o ()
H n H 1+e€

Plugging in s = (2t + 2)/3 gives

, 1 (2t+2)/3-1
=2u (1 + e)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 291/565

Cuckoo Hashing

The prozbability that a given path-structure of size s is active is at

u
most P

The probability that there exists an active path-structure of size

s is at most
2. n5+1_m5—1 . LZ
n25
m s—1 1 s—1
o () <o ()
H n H 1+e€

Plugging in s = (2t + 2)/3 gives

L 1 @t (1 @D
= 2H (1+e) = 2H (1+e) '

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 291/565

Cuckoo Hashing

We choose maxsteps > 3£/2 + 1/2.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]

< Pr[3 active path-structure of size at least W%M]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least Z22ePs+2]

< Pr[3 active path-structure of size at least £ + 1]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least W%M]
< Pr[3 active path-structure of size at least £ + 1]

< Pr[3 active path-structure of size exactly € + 1]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least W%M]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

1 ¢
= 2“2(1+€)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least W%M]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

4
S2“2(1J1r€) S#

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least W%M]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

4
S2“2(1J1r€) S%

by choosing £ > log (ﬁ)/log (1) = log (2u?m?) /log (1 + €)

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

We choose maxsteps > 3/2 + 1/2. Then the probability that a
phase terminates unsuccessfully without running into a cycle is
at most

Pr[unsuccessful | no cycle]
< Pr[3 active path-structure of size at least W%M]
< Pr[3 active path-structure of size at least £ + 1]
< Pr[3 active path-structure of size exactly € + 1]

4
S2“2(1J1r€) S%

by choosing £ > log (ﬁ)/log (1) = log (2u?m?) /log (1 + €)

This gives maxsteps = O(logm).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 292/565

Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and

Pr[unsuccessful | no cycle] < O<W>

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 293/565

Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and

Pr{unsuccessful | no cycle] < O<W>

Observe that

Pr[successful] = Pr[no cycle] — Pr[unsuccessful | no cycle]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 293/565

Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and

Pr{unsuccessful | no cycle] < O<W>

Observe that

Pr[successful] = Pr[no cycle] — Pr[unsuccessful | no cycle]

> ¢ - Pr[no cycle]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 293/565

Cuckoo Hashing

So far we estimated
1
Pr[cycle] < O(W>

and
Pr{unsuccessful | no cycle] < (9(

)
Observe that

Pr[successful] = Pr[no cycle] — Pr[unsuccessful | no cycle]

> ¢ - Pr[no cycle]
for a suitable constant ¢ > 0.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 293/565

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:
E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

We have

Pr[search at least t steps | successful]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

We have

Pr[search at least t steps | successful]
= Pr[search at least t steps A successful]/Pr[successful]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

We have

Pr[search at least t steps | successful]
= Pr[search at least t steps A successful]/Pr[successful]

1
< - Pr[search at least t steps A successful]/Pr[no cycle]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

We have

Pr[search at least t steps | successful]
= Pr[search at least t steps A successful]/Pr[successful]

IA

1
- Pr[search at least t steps A successful]/Pr[no cycle]

IA

%Pr[search at least t steps A no cycle]/Pr[no cycle]

Cuckoo Hashing

The expected number of complete steps in the successful phase of an
insert operation is:

E[number of steps | phase successful]

= Z Pr[search takes at least t steps | phase successful]
t>1

We have

Pr[search at least t steps | successful]
= Pr[search at least t steps A successful]/Pr[successful]

IA

1
- Pr[search at least t steps A successful]/Pr[no cycle]

IA

%Pr[search at least t steps A no cycle]/Pr[no cycle]

1
= Pr[search at least t steps | no cycle] .

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

1
< - Z Pr[search at least t steps | no cycle]
t>1

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

1
< - Z Pr[search at least t steps | no cycle]
t>1

(2t-1)/3
c t; 2H <1 + e>

I/\

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 o 1 \ee-ns 1 o0 1 \ee)-1/3
nglZu <1+e> _cgozu <1+e>

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 o 1 \ee-ns 1 o0 1 \ee)-1/3
chlzu <1+e> —CEOZIJ <1+e>

- e % (Trems)
e+l S N1 +e)?3

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 2 i 2t-1/3 _ 1 > L 2(t+1)-1)/3
Sctglzu <1+€> _Cté)zu <1+€>
- 2p? 1 L
T c(1+€)l/3 t20<(1+e)2/3> =0(1) .

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

Hence,

E[number of steps | phase successful]

< 1 Z Pr[search at least t steps | no cycle]

t>1
1 oL \ee=bs 1 o0 1 \ee)-1/3
SC%M(HE) _cté)Z“(lJre)

B 2u? (1
e+l S N1 +e)?3

)=o) .

This means the expected cost for a successful phase is constant
(even after accounting for the cost of the incomplete step that
finishes the phase).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 295/565

Cuckoo Hashing

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 296/565

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 296/565

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = O(1/m?)

(probability O (1/m?) of running into a cycle and probability
O(1/m?) of reaching maxsteps without running into a cycle).

m 7.7 Hashing
Ernst Mayr, Harald Racke 296/565

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = O(1/m?)
(probability O (1/m?) of running into a cycle and probability

O(1/m?) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant
time per insertion. It fails with probability p := O(1/m).

m 7.7 Hashing
Ernst Mayr, Harald Racke 296/565

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = O(1/m?)
(probability O (1/m?) of running into a cycle and probability

O(1/m?) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant
time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is
Zizll’l:ﬁ—lzﬁz(mp)-

m 7.7 Hashing
Ernst Mayr, Harald Racke 296/565

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete
rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is g = O(1/m?)
(probability O (1/m?) of running into a cycle and probability
O(1/m?) of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant
time per insertion. It fails with probability p := O(1/m).

The expected number of unsuccessful rehashes is
Zizll’l:ﬁ—lzﬁz(mp)-

Therefore the expected cost for re-hashes is
O(m) - O(p) = O(1).

m 7.7 Hashing
Ernst Mayr, Harald Racke 296/565

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

PriYil< (m+1)-01/m?) <0O(1l/m)=:p .

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

PriYil< (m+1)-01/m?) <0O(1l/m)=:p .

Let Z; denote the event that the i-th rehash occurs:

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

PriYil< (m+1)-01/m?) <0O(1l/m)=:p .

Let Z; denote the event that the i-th rehash occurs:

Pr[Z;] < Pr[AE.;ng] < p!

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

PriYil< (m+1)-01/m?) <0O(1l/m)=:p .

Let Z; denote the event that the i-th rehash occurs:
Pr[Z;] < Pr[AE.;ng] < p!
Let Xf, se{l,...,m+ 1} denote the cost for inserting the s-th

element during the i-th rehash (assuming i-th rehash occurs):

E[X;]

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

PriYil< (m+1)-01/m?) <0O(1l/m)=:p .

Let Z; denote the event that the i-th rehash occurs:

Pr[Z;] < Pr[As'.;ng] < p!

Let Xf, se{l,...,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[X]] = E[steps | phase successful] - Pr[phase sucessful]

+ maxsteps - Pr[not sucessful]

Formal Proof

Let Y; denote the event that the i-th rehash does not lead to a
valid configuration (assuming i-th rehash occurs) (i.e., one of the
m + 1 insertions fails):

PriYil< (m+1)-01/m?) <0O(1l/m)=:p .

Let Z; denote the event that the i-th rehash occurs:

Pr[Z;] < Pr[As'.;ng] < p!

Let Xf, se{l,...,m+ 1} denote the cost for inserting the s-th
element during the i-th rehash (assuming i-th rehash occurs):

E[X]] = E[steps | phase successful] - Pr[phase sucessful]

+ maxsteps - Pr[not sucessful] = O(1) .

The expected cost for all rehashes is

E[>. > 7iX;]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 298/565

The expected cost for all rehashes is

E[>. > 7iX;]

Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E[>, >, Zixt] = >, > ElZ:] - EIX]]

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 298/565

The expected cost for all rehashes is

E[>. > 7iX;]

Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E[>, >, Zixt] = >, > ElZ:] - EIX]]

<O@m)- Y p'

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 298/565

The expected cost for all rehashes is

E[>. > 7iX;]

Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E [Zl Zs ZiXé] = Zi ZS E[Zi] - E[Xgl]
<O(m) - Zipi
<0>m) - IL

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 298/565

The expected cost for all rehashes is

E[>. > 7iX;]

Note that Z; is independent of X3, j > i (however, it is not
independent of X3, j < i). Hence,

E[>, >, Zixt] = >, > ElZ:] - EIX]]

<O@m)- Y p'
=0(1) .

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 298/565

Cuckoo Hashing

What kind of hash-functions do we need?

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 299/565

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is ©(logm) the largest size of a path-structure
or cycle-structure contains just ©(logm) different keys.

m 7.7 Hashing
Ernst Mayr, Harald Racke 299/565

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is ©(logm) the largest size of a path-structure
or cycle-structure contains just ©(logm) different keys.

Therefore, it is sufficient to have (u, ®(logm))-independent
hash-functions.

m 7.7 Hashing
Ernst Mayr, Harald Racke

299/565

Cuckoo Hashing

How do we make sure thatn > (1 + ¢)m?

> Let x:=1/(1 +¢€).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 300/565

Cuckoo Hashing

How do we make sure thatn > (1 + ¢)m?

> Let x:=1/(1+¢€).

> Keep track of the number of elements in the table. When
m > xn we double n and do a complete re-hash
(table-expand).

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 300/565

Cuckoo Hashing

How do we make sure thatn > (1 + ¢)m?

> Let x:=1/(1+¢€).

> Keep track of the number of elements in the table. When
m > xn we double n and do a complete re-hash
(table-expand).

» Whenever m drops below an/4 we divide n by 2 and do a
rehash (table-shrink).

m 7.7 Hashing
Ernst Mayr, Harald Racke 300/565

Cuckoo Hashing

How do we make sure thatn > (1 + ¢)m?

> Let x:=1/(1 +¢€).

> Keep track of the number of elements in the table. When
m > xn we double n and do a complete re-hash
(table-expand).

» Whenever m drops below an/4 we divide n by 2 and do a
rehash (table-shrink).

> Note that right after a change in table-size we have
m = an/2. In order for a table-expand to occur at least
on/2 insertions are required. Similar, for a table-shrink at
least «n/4 deletions must occur.

m 7.7 Hashing
Ernst Mayr, Harald Racke 300/565

Cuckoo Hashing

How do we make sure thatn > (1 + ¢)m?

> Let x:=1/(1 +¢€).

> Keep track of the number of elements in the table. When
m > xn we double n and do a complete re-hash
(table-expand).

» Whenever m drops below an/4 we divide n by 2 and do a
rehash (table-shrink).

> Note that right after a change in table-size we have
m = an/2. In order for a table-expand to occur at least
on/2 insertions are required. Similar, for a table-shrink at
least «n/4 deletions must occur.

» Therefore we can amortize the rehash cost after a change in
table-size against the cost for insertions and deletions.

m 7.7 Hashing
Ernst Mayr, Harald Racke 300/565

Cuckoo Hashing

Lemma 33
Cuckoo Hashing has an expected constant insert-time and a
worst-case constant search-time.

‘m 7.7 Hashing
Ernst Mayr, Harald Racke 301/565

Cuckoo Hashing

Lemma 33
Cuckoo Hashing has an expected constant insert-time and a
worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number
of keys/total number of hash-table slots) is at most ﬁ

m 7.7 Hashing
Ernst Mayr, Harald Racke 301/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(x1, ..., xn): Creates a data-structure that contains
just the elements x1,...,xy.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(x1, ..., xn): Creates a data-structure that contains
just the elements x1,...,xy.

> S.insert(x): Adds element x to the data-structure.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(x1, ..., xn): Creates a data-structure that contains
just the elements x1,...,xy.
> S.insert(x): Adds element x to the data-structure.

» element S. minimum(): Returns an element x € S with
minimum key-value key[x].

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(x1, ..., xn): Creates a data-structure that contains
just the elements x1,...,xy.
> S.insert(x): Adds element x to the data-structure.

» element S. minimum(): Returns an element x € S with
minimum key-value key[x].

> element S. delete-min(): Deletes the element with
minimum key-value from S and returns it.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(x1, ..., xn): Creates a data-structure that contains
just the elements x1,...,xy.
> S.insert(x): Adds element x to the data-structure.

» element S. minimum(): Returns an element x € S with
minimum key-value key[x].

> element S. delete-min(): Deletes the element with
minimum key-value from S and returns it.

> boolean S.is-empty(): Returns true if the data-structure is
empty and false otherwise.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports
the following operations:

» S.build(x1, ..., xn): Creates a data-structure that contains
just the elements x1,...,xy.
> S.insert(x): Adds element x to the data-structure.

» element S. minimum(): Returns an element x € S with
minimum key-value key[x].

> element S. delete-min(): Deletes the element with
minimum key-value from S and returns it.

> boolean S.is-empty(): Returns true if the data-structure is
empty and false otherwise.
Sometimes we also have
> S.merge(S’'): S:=SuS’; S =0.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 302/565

8 Priority Queues

An addressable Priority Queue also supports:

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 303/565

8 Priority Queues

An addressable Priority Queue also supports:

» handle S. insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 303/565

8 Priority Queues

An addressable Priority Queue also supports:

> handle S. insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.

> S.delete(h): Deletes element specified through handle h.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 303/565

8 Priority Queues

An addressable Priority Queue also supports:
» handle S. insert(x): Adds element x to the data-structure,
and returns a handle to the object for future reference.
> S.delete(h): Deletes element specified through handle h.

> S.decrease-key(h, k): Decreases the key of the element
specified by handle h to k. Assumes that the key is at least
k before the operation.

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 303/565

Dijkstra’s Shortest Path Algorithm

Algorithm 14 Shortest-Path(G = (V,E,d),s € V)

1: Input: weighted graph G = (V,E, d); start vertex s;

2: Output: key-field of every node contains distance from s;
3: S.build(); // build empty priority queue

4: forallveV)\ {s} do

5: v.key — oo;

6: hy < S.insert(v);

7: s.key < 0; S.insert(s);

8: while S.is-empty() = false do

9: v « S.delete-min();

10: forall x e Vs.t. (v,x) € Edo

11: if x.key > v.key+d(v, x) then

12: S.decrease-key(hy,v.key +d (v, x));
13: x.key — v.key+d (v, x);

m 8 Priority Queues
Ernst Mayr, Harald Racke 304/565

Prim’s Minimum Spanning Tree Algorithm

Algorithm 15 Prim-MST(G = (V,E,d),s € V)

1: Input: weighted graph G = (V,E, d); start vertex s;
2: Output: pred-fields encode MST;

3: S.build(); // build empty priority queue

4: forallv e V\ {s} do

5 v.key « oo;

6: hy < S.insert(v);

7: s.key < 0; S.insert(s);

8: while S.is-empty() = false do

9: v < S.delete-min();
10: forall x e Vs.t. {v,x} € E do
11; if x.key > d(v, x) then
12: S.decrease-key(hy,d (v, x));
13: x.key — d(v,x);
14: x.pred — v;

m 8 Priority Queues
Ernst Mayr, Harald Racke 305/565

Analysis of Dijkstra and Prim

Both algorithms require:

v

1 build() operation

|V| insert() operations

V| delete-min() operations
|V] is-empty() operations

vV v.vY

|E| decrease-key() operations

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 306/565

Analysis of Dijkstra and Prim

Both algorithms require:

v

1 build() operation

|V| insert() operations

V| delete-min() operations
|V] is-empty() operations

vV v.vY

|E| decrease-key() operations

How good a running time can we obtain?

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 306/565

8 Priority Queues

Binary Binomial Fibonacci
Operation Heap BST Heap Heap”
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

8 Priority Queues

Binary Binomial Fibonacci
Operation Heap BST Heap Heap”
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

Note that most applications use build() only to create an empty heap
which then costs time 1.

8 Priority Queues

Binary Binomial Fibonacci
Operation Heap BST Heap Heap”
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

Note that most applications use build() only to create an empty heap
which then costs time 1.

The standard version of binary heaps is not addressable, and hence
does not support a delete operation.

8 Priority Queues

Binary Binomial Fibonacci
Operation Heap BST Heap Heap”
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

Note that most applications use build() only to create an empty heap
which then costs time 1.

The standard version of binary heaps is not addressable, and hence
does not support a delete operation.

Fibonacci heaps only give an amortized guarantee.

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time
O((IV] + |E]) log [V]).

Using Fibonacci Heaps, Prim and Dijkstra run in time
O(IV[log V] + |E]).

‘m 8 Priority Queues
Ernst Mayr, Harald Racke 308/565

8.1 Binary Heaps

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 309/565

8.1 Binary Heaps

> Nearly complete binary tree; only the last level is not full,
and this one is filled from left to right.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 309/565

8.1 Binary Heaps
> Nearly complete binary tree; only the last level is not full,
and this one is filled from left to right.

» Heap property: A node’s key is not larger than the key of
one of its children.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 309/565

Binary Heaps

Operations:

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 310/565

Binary Heaps

Operations:

» minimum(): return the root-element. Time O(1).

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 310/565

Binary Heaps

Operations:
» minimum(): return the root-element. Time O(1).

> is-empty(): check whether root-pointer is null. Time O(1).

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 310/565

8.1 Binary Heaps

Maintain a pointer to the last element x.

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 311/565

8.1 Binary Heaps
Maintain a pointer to the last element x.
> We can compute the predecessor of x
(last element when x is deleted) in time O(logn).

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 311/565

8.1 Binary Heaps
Maintain a pointer to the last element x.
> We can compute the predecessor of x
(last element when x is deleted) in time O (logn).

go up until the last edge used was a right edge.
go left; go right until you reach a leaf

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 311/565

8.1 Binary Heaps
Maintain a pointer to the last element x.
> We can compute the predecessor of x
(last element when x is deleted) in time O (logn).

go up until the last edge used was a right edge.
go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost
element

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 311/565

8.1 Binary Heaps

Maintain a pointer to the last element x.

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 312/565

8.1 Binary Heaps
Maintain a pointer to the last element x.

» We can compute the successor of x
(last element when an element is inserted) in time O(logn).

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 312/565

8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the successor of x
(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.
go right; go left until you reach a null-pointer.

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke

312/565

8.1 Binary Heaps
Maintain a pointer to the last element x.
» We can compute the successor of x
(last element when an element is inserted) in time O(logn).

go up until the last edge used was a left edge.
go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost
element; insert a new element as a left child;

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke

312/565

Insert

1. Insert element at successor of x.

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 313/565

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 313/565

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 313/565

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 313/565

Insert

1. Insert element at successor of x.

2. Exchange with parent until heap property is fulfilled.

Note that an exchange can either be done by moving the data or
by changing pointers. The latter method leads to an addressable
priority queue.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 313/565

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 314/565

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 314/565

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 314/565

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 314/565

Delete

1. Exchange the element to be deleted with the element e
pointed to by x.

2. Restore the heap-property for the element e.

At its new position e may either travel up or down in the tree
(but not both directions).

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 314/565

Binary Heaps

Operations:
» minimum(): return the root-element. Time O(1).
> is-empty(): check whether root-pointer is null. Time O(1).

» insert(k): insert at successor of x and bubble up. Time
O(logn).

» delete(h): swap with x and bubble up or sift-down. Time
O(logn).

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 315/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Build Heap

We can build a heap in linear time:

S 2t (h-0) =32t = 002" = 0mn)

levels ¥ i

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 316/565

Binary Heaps

Operations:

» minimum(): Return the root-element. Time O(1).

» is-empty(): Check whether root-pointer is null. Time O(1).
> insert(k): Insert at x and bubble up. Time O(logn).
>

delete(h): Swap with x and bubble up or sift-down. Time
O(logn).

» build(xi, ..., xn): Insert elements arbitrarily; then do
sift-down operations starting with the lowest layer in the
tree. Time O(n).

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 317/565

Binary Heaps

‘m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 318/565

Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n— 1] be an array

» The parent of i-th element is at position [i%].

> The left child of i-th element is at position 2i + 1.

» The right child of i-th element is at position 2i + 2.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 318/565

Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n— 1] be an array

» The parent of i-th element is at position [i%lj.

> The left child of i-th element is at position 2i + 1.

» The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description
on the previous slide. Simply increase or decrease x.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke

318/565

Binary Heaps

The standard implementation of binary heaps is via arrays. Let
A[O,...,n— 1] be an array
i-1

> The parent of i-th element is at position | = |.

> The left child of i-th element is at position 2i + 1.
» The right child of i-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description
on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements
don’t maintain their positions and therefore there are no stable
handles.

m 8.1 Binary Heaps
Ernst Mayr, Harald Racke 318/565

8.2 Binomial Heaps

Binary Binomial Fibonacci
Operation Heap BST Heap Heap’
build n nlogn nlogn n
minimum 1 logn logn 1
is-empty 1 1 1 1
insert logn logn logn 1
delete logn™ logn logn logn
delete-min logn logn logn logn
decrease-key logn logn logn 1
merge n nlogn logn 1

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 319/565

Binomial Trees

Bo

B3 By

By

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 320/565

Binomial Trees

Properties of Binomial Trees
» By has 2k nodes.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 321/565

Binomial Trees

Properties of Binomial Trees
» By has 2k nodes.
> By has height k.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 321/565

Binomial Trees

Properties of Binomial Trees
> By has 2k nodes.
> By has height k.
» The root of By has degree k.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 321/565

Binomial Trees

Properties of Binomial Trees
> By has 2k nodes.
By has height k.
The root of By has degree k.

vV vV

By has ('E) nodes on level £.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 321/565

Binomial Trees

Properties of Binomial Trees
> By has 2k nodes.
By has height k.
The root of By has degree k.
By has ('E) nodes on level £.

vV v.v.Yy

Deleting the root of By gives trees By, B1,...,Bk_1.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 321/565

Binomial Trees

Bo
B
B>
B3

By

Deleting the root of Bs leaves sub-trees Ba, B3, B2, B1, and By.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 322/565

Binomial Trees

By
B3
B>
B

By

Deleting the leaf furthest from the root (in Bs) leaves a path that
connects the roots of sub-trees By, B3, B>, By, and Bg.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 323/565

Binomial Trees

By

g o o

© g O 9

é;“i’

gé

o
O

o

(k;l

)

The number of nodes on level £ in tree By is therefore

k-1
£-1

)+ (4)-

(

)

m Ernst Mayr, Harald Racke

8.2 Binomial Heaps

324/565

Binomial Trees

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 325/565

Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

! !
‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 325/565

Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 325/565

Binomial Trees

The binomial tree By is a sub-graph of the hypercube Hy.

The parent of a node with label by, ..., b; is obtained by setting
the least significant 1-bit to 0.

The {-th level contains nodes that have £ 1’s in their label.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 325/565

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.

®

parent

left X right
child
< ()
- ® © d

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 326/565

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.

®

parent

left X right
child
< ()
- ® © d

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 326/565

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

» The children of a node are arranged in a circular linked list.
» A child-pointer points to an arbitrary node within the list.
> A parent-pointer points to the parent node.

®

parent

left X right
child
()
- ® © d

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 326/565

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

v

The children of a node are arranged in a circular linked list.
A child-pointer points to an arbitrary node within the list.
A parent-pointer points to the parent node.

v vy

Pointers x.left and x.right point to the left and right sibling
of x (if x does not have siblings then x.left = x.right = x).

®

parent

left X right
child
(o)
- ® © d

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 326/565

8.2 Binomial Heaps

» Given a pointer to a node x we can splice out the sub-tree
rooted at x in constant time.

» We can add a child-tree T to a node x in constant time if we
are given a pointer to x and a pointer to the root of T.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 327/565

Binomial Heap

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 328/565

Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 328/565

Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 328/565

Binomial Heap

In a binomial heap the keys are arranged in a collection of
binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For
example the above heap contains trees By, By, and Bs.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 328/565

Binomial Heap: Merge

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 329/565

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 329/565

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bks, ki < k41 denote the binomial trees in the

collection and recall that every tree may be contained at most
once.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 329/565

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we
can deduce the binomial trees that will be contained in the
collection.

Let Bk,, Bk,, Bks, ki < k41 denote the binomial trees in the
collection and recall that every tree may be contained at most
once.

Then n = >; 2% must hold. But since the k; are all distinct this

means that the k; define the non-zero bit-positions in the binary
representation of n.

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 329/565

Binomial Heap

Properties of a heap with n keys:

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap

Properties of a heap with n keys:
» Letn =bib4 1,...,bo denote binary representation of n.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap

Properties of a heap with n keys:
» Letn =bib4 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap

Properties of a heap with n keys:
» Letn =bib4 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
» Hence, at most [logn| + 1 trees.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap

Properties of a heap with n keys:
» Letn =bib4 1,...,bo denote binary representation of n.
» The heap contains tree B; iff b; = 1.
» Hence, at most [logn| + 1 trees.
» The minimum must be contained in one of the roots.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap

Properties of a heap with n keys:
» Letn =bib4 1,...,bo denote binary representation of n.
The heap contains tree B; iff b; = 1.
Hence, at most [logn] + 1 trees.
The minimum must be contained in one of the roots.

>
>
>
» The height of the largest tree is at most [log n].

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap

Properties of a heap with n keys:

» Letn =bib4 1,...,bo denote binary representation of n.
The heap contains tree B; iff b; = 1.
Hence, at most [logn] + 1 trees.
The minimum must be contained in one of the roots.
The height of the largest tree is at most [logn|.
The trees are stored in a single-linked list; ordered by
dimension/size.

vVvyVvYyVvyywy

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 330/565

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 331/565

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial
trees. We can simply merge the tree-lists.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 331/565

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial
trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke

331/565

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial
trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add
the tree with larger root-value as a child to
the other tree.

(2)
(57 @© @
s @ ©
@

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke

331/565

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial
trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not
allowed to contain two trees of the same order.

Merging two trees of the same size: Add
the tree with larger root-value as a child to
the other tree.

(2)
(57 © @

s © ©
For more trees the technique is analogous @2
to binary addition.

m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 331/565

@O
9 @ 69
@

'

@O
9 @ 69
@

'

@O
9 @ 69
@

@O
9 @ 69
@

@O
(9 @ &
@

@O
9 @ 69
@

'

OME
19 69 @
@

@O
9 @ 69
@

D@0
9 @ 69
@

@O
9 @ 69
@

'

o :
mm@
T O
6

(9
O
@)

@O
9 @ 69
@

'

0 o
mm@w
FdO O
6

?:

@)

@O
9 @ 69
@

'

o o
mm@w
FOO ©
6
?:

@)

@O
9 @ 69
@

'

i

(14704 @9 @
19 @ 7
@

@O
9 @ 69
@

'

i

(14704 @9 @
19 @ 7
@

@O
9 @ 69
@

'

i

@O
9 @ 69
@

'

i

8.2 Binomial Heaps

S1.merge(S>2):
» Analogous to binary addition.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 333/565

8.2 Binomial Heaps
S1.merge(S>):

» Analogous to binary addition.

> Time is proportional to the number of trees in both heaps.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 333/565

8.2 Binomial Heaps

S1.merge(S>):
» Analogous to binary addition.
> Time is proportional to the number of trees in both heaps.
» Time: O(logn).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 333/565

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):

> Create a new heap S’ that contains just the element x.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 334/565

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.

> Execute S.merge(S’).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 334/565

8.2 Binomial Heaps

All other operations can be reduced to merge().

S.insert(x):
> Create a new heap S’ that contains just the element x.

> Execute S.merge(S’).

> Time: O(logn).

!
8.2 Binomial Heaps
334/565

m Ernst Mayr, Harald Racke

8.2 Binomial Heaps
S. minimum():

> Find the minimum key-value among all roots.
> Time: O(logn).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 335/565

8.2 Binomial Heaps

S. delete-min():

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 336/565

8.2 Binomial Heaps

S. delete-min():

> Find the minimum key-value among all roots.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 336/565

8.2 Binomial Heaps
S. delete-min():

> Find the minimum key-value among all roots.

» Remove the corresponding tree Ty from the heap.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 336/565

8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.
> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just
O(logn) trees).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 336/565

8.2 Binomial Heaps

S. delete-min():
> Find the minimum key-value among all roots.
» Remove the corresponding tree Ty from the heap.
> Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just
O(logn) trees).
» Compute S.merge(S’).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 336/565

8.2 Binomial Heaps

S. delete-min():

>

>

>

Find the minimum key-value among all roots.

Remove the corresponding tree Tyin from the heap.

Create a new heap S’ that contains the trees obtained from
Tmin after deleting the root (note that these are just
O(logn) trees).

Compute S.merge(S’).

Time: O(logn).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke

336/565

8.2 Binomial Heaps

S. decrease-key(handle h):

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 337/565

8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 337/565

8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.

> Bubble the element up in the tree until the heap property is
fulfilled.

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 337/565

8.2 Binomial Heaps

S. decrease-key(handle h):
> Decrease the key of the element pointed to by h.
> Bubble the element up in the tree until the heap property is
fulfilled.
> Time: O(logn) since the trees have height O(logn).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 337/565

8.2 Binomial Heaps

S. delete (handle h):

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 338/565

8.2 Binomial Heaps

S. delete (handle h):
> Execute S.decrease-key(h, —).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 338/565

8.2 Binomial Heaps
S. delete (handle h):

> Execute S.decrease-key(h, —).

> Execute S.delete-min().

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 338/565

8.2 Binomial Heaps

S. delete(handle h):
> Execute S.decrease-key(h, —).
> Execute S.delete-min().
> Time: O(logn).

‘m 8.2 Binomial Heaps
Ernst Mayr, Harald Racke 338/565

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 339/565

8.3 Fibonacci Heaps

Additional implementation details:
> Every node Xx stores its degree in a field x. degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 340/565

8.3 Fibonacci Heaps

The potential function:
> £(S) denotes the number of trees in the heap.
> m(S) denotes the number of marked nodes.
» We use the potential function ®(S) = £(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 341/565

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 342/565

8.3 Fibonacci Heaps

S. minimum ()
» Access through the min-pointer.
> Actual cost O(1).
» No change in potential.
» Amortized cost O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 343/565

8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 344/565

8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 344/565

8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).
> No change in potential.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 344/565

8.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).
> No change in potential.
> Hence, amortized cost is O(1).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 344/565

8.3 Fibonacci Heaps

S.insert(x)
> Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.

!
8.3 Fibonacci Heaps
345/565

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

S.insert(x)
> Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.

!
8.3 Fibonacci Heaps
345/565

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

S.insert(x)
> Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
> Amortized costis c + O(1) = O(1).

!
8.3 Fibonacci Heaps
345/565

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

S. delete-min(x)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/565

8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/565

8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/565

8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/565

8.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 346/565

8.3 Fibonacci Heaps

Consolidate:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

current

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
(i) o|lO| O
current)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
(i) o|lO| O
current)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

219
current —_

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

U?
current) —

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
(i) o|lO| O
current i —

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

\-oc

current

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

current

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

\-oc

current

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
o ? ? o
current))

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

o
o

o [
o

current =

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

current =

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
PIPIQI®
current u)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:
o[1[2]3
(i) ? o|o
current \/' l
min —>(7)4 (18)<—>(23)< >(17)
2 247 @D (9 (39

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

current =)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

current =)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

U? ?
current N

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

? ?
current \ -/

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Consolidate:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 347/565

8.3 Fibonacci Heaps

Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual costis at most ¢y - (Dy +1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most Dy, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual costis at most ¢y - (Dy +1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;

» We can pay c - (t — Dy, — 1) from the potential decrease.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
» We can pay c - (t — Dy, — 1) from the potential decrease.
>

The amortized cost is

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
» We can pay c - (t — Dy, — 1) from the potential decrease.

» The amortized cost is

c1-Dp+t)—c-(t-Dp-1)

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — Dy, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp—-1)
<(c1+c)Dy+(c1—c)t+c

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1-t;
» We can pay c - (t — Dy, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — Dy, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (Dy, +).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® <D, +1—t;
» We can pay c - (t — Dy, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—-Dyp—-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc>cy .

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348/565

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 349/565

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy <logn.

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 349/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350/565

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
> Execute the following:

p — parent[x];

while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p — pp;

if p is unmarked and not a root mark it;

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

351/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:

> t' =t +{, as every cut creates one new root.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7¢

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.
> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7¢

» Amortized cost is at most

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

col+1)+c(4-10)

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

cl+1)+c(4-"0) < (cop—c)l+4c+co

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A < +2(—¥+2)=4-Y¢
» Amortized cost is at most
o+ +cd-1) < (cr—c)l+4c+cr = O(1),

if c > co.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352/565

Delete node

H. delete(x):
» decrease value of x to —co.

> delete-min.

Amortized cost: O (D)
> O(1) for decrease-key.
> O(Dy) for delete-min.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 353/565

8.3 Fibonacci Heaps

Lemma 34
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(y) Z{ i-2 ifi>1

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 354/565

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already
linked to x.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 355/565

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., yi—1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

355/565

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

355/565

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
» Therefore, degree(y;) =1 — 2.

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

355/565

8.3 Fibonacci Heaps

> Let sy be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 356/565

8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 356/565

8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 356/565

8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

356/565

8.3 Fibonacci Heaps

> Let s be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k

Sk=2+ Z size(y;)
i=2
k
> 2+ Z Si—2
i=2

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

356/565

8.3 Fibonacci Heaps
> Let s be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
> s, monotonically increases with k
> so=1and sy = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
Sk=2+ Z size(y;)
i=2
k

> 2+ Z Si—2
i=2

k-2
=2+ Z Si
i=0

TT[U]TTH 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

356/565

8.3 Fibonacci Heaps

Definition 35
Consider the following non-standard Fibonacci type sequence:

1 ifk=0
F,=14 2 ifk=1
Fy_q1 +Fx_» if k=2
Facts:
1. Fx = ¢pk.

2. Fork>2: Fy=2+YX2F,.
The above facts can be easily proved by induction. From this it

follows that s = Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 357/565

k=0: 1=Fy=®%=1

7. _ 1 - P2

k=1: 2=F >o! ~1.61

k-2,k-1— ki Fy = Fx_q + Fg_p = &K1 4+ k-2 = pk=2(p + 1) = pk

k=2: 3=F=2+1=2+F
k-1— k: Fy=F 1 +F =2+ F+F_,=2+3CF

m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 358/565

9 Union Find

Union Find Data Structure 2?: Maintains a partition of disjoint
sets over elements.

m 9 Union Find
Ernst Mayr, Harald Racke 359/565

9 Union Find

Union Find Data Structure 2?: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

m 9 Union Find
Ernst Mayr, Harald Racke 359/565

9 Union Find

Union Find Data Structure 2?: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

» P.find(x): Given a handle for an element x; find the set
that contains x. Returns a representative/identifier for this
set.

m 9 Union Find
Ernst Mayr, Harald Racke 359/565

9 Union Find

Union Find Data Structure 2?: Maintains a partition of disjoint
sets over elements.

» P.makeset(x): Given an element x, adds x to the
data-structure and creates a singleton set that contains only
this element. Returns a locator/handle for x in the
data-structure.

» P.find(x): Given a handle for an element x; find the set
that contains x. Returns a representative/identifier for this
set.

» P.union(x, y): Given two elements x, and y that are
currently in sets Sy and S, respectively, the function
replaces Sy and S, by Sy U S, and returns an identifier for
the new set.

‘m 9 Union Find
Ernst Mayr, Harald Racke 359/565

9 Union Find

Applications:

> Keep track of the connected components of a dynamic
graph that changes due to insertion of nodes and edges.

m 9 Union Find
Ernst Mayr, Harald Racke 360/565

9 Union Find

Applications:

> Keep track of the connected components of a dynamic
graph that changes due to insertion of nodes and edges.

» Kruskals Minimum Spanning Tree Algorithm

m 9 Union Find
Ernst Mayr, Harald Racke 360/565

9 Union Find

Algorithm 16 Kruskal-MST(G = (V,E),w)
A< 0
forall v € V do
v.set — P.makeset(v.label)
sort edges in non-decreasing order of weight w
: for all (u,v) € E in non-decreasing order do
if P.find(u.set) # P.find(v.set) then
A<—AuU{(u,v)}
P.union(u. set, v. set)

0 N O U1 W N =

m 9 Union Find
Ernst Mayr, Harald Racke 361/565

List Implementation

> The elements of a set are stored in a list; each node has a
backward pointer to the head.

m 9 Union Find
Ernst Mayr, Harald Racke 362/565

List Implementation

> The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

m 9 Union Find
Ernst Mayr, Harald Racke

362/565

List Implementation

> The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

» makeset(x) can be performed in constant time.

m 9 Union Find
Ernst Mayr, Harald Racke

362/565

List Implementation

> The elements of a set are stored in a list; each node has a
backward pointer to the head.

» The head of the list contains the identifier for the set and a
field that stores the size of the set.

» makeset(x) can be performed in constant time.

» find(x) can be performed in constant time.

m 9 Union Find
Ernst Mayr, Harald Racke

362/565

List Implementation

union(x, y)
> Determine sets Sy and §,,.

m 9 Union Find
Ernst Mayr, Harald Racke 363/565

List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S,), and change all backward
pointers to the head of list Sy.

m 9 Union Find
Ernst Mayr, Harald Racke 363/565

List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S,), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.

m 9 Union Find
Ernst Mayr, Harald Racke 363/565

List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S,), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
> Adjust the size-field of list Sy.

m 9 Union Find
Ernst Mayr, Harald Racke 363/565

List Implementation

union(x, y)
> Determine sets Sy and S,.

> Traverse the smaller list (say S,), and change all backward
pointers to the head of list Sy.

> Insert list S, at the head of Sy.
> Adjust the size-field of list Sy.

> Time: min{[Sx|, |Sy[}.

m 9 Union Find
Ernst Mayr, Harald Racke 363/565

List Implementation

m 9 Union Find
Ernst Mayr, Harald Racke 364/565

List Implementation

m 9 Union Find
Ernst Mayr, Harald Racke 364/565

List Implementation

m 9 Union Find
Ernst Mayr, Harald Racke 364/565

List Implementation

m 9 Union Find
Ernst Mayr, Harald Racke 364/565

List Implementation

Running times:
» find(x): constant
» makeset(x): constant

> union(x,y): O(n), where n denotes the number of
elements contained in the set system.

m 9 Union Find
Ernst Mayr, Harald Racke 365/565

List Implementation

Lemma 36
The list implementation for the ADT union find fulfills the
following amortized time bounds:

> find(x): O(1).
» makeset(x): O(logn).
» union(x,y): O(1).

m 9 Union Find
Ernst Mayr, Harald Racke 366/565

The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

m 9 Union Find
Ernst Mayr, Harald Racke 367/565

The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

m 9 Union Find
Ernst Mayr, Harald Racke 367/565

The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

> Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

m 9 Union Find
Ernst Mayr, Harald Racke

367/565

The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

> Initially the balance on all accounts is zero.

> Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

» Whenever for an operation the actual cost exceeds the
amortized time bound, the difference is charged to bank
accounts of some of the elements involved.

m 9 Union Find
Ernst Mayr, Harald Racke 367/565

The Accounting Method for Amortized Time Bounds

» There is a bank account for every element in the data
structure.

» Initially the balance on all accounts is zero.

> Whenever for an operation the amortized time bound
exceeds the actual cost, the difference is credited to some
bank accounts of elements involved.

» Whenever for an operation the actual cost exceeds the
amortized time bound, the difference is charged to bank
accounts of some of the elements involved.

> If we can find a charging scheme that guarantees that
balances always stay positive the amortized time bounds
are proven.

m 9 Union Find
Ernst Mayr, Harald Racke 367/565

List Implementation

» For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

m 9 Union Find
Ernst Mayr, Harald Racke 368/565

List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

m 9 Union Find
Ernst Mayr, Harald Racke 368/565

List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

> For each element a makeset operation occurs as the first
operation involving this element.

m 9 Union Find
Ernst Mayr, Harald Racke

368/565

List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

> For each element a makeset operation occurs as the first
operation involving this element.

> We inflate the amortized cost of the makeset-operation to
O(logn), i.e., at this point we fill the bank account of the
element to ©(logn).

m 9 Union Find
Ernst Mayr, Harald Racke 368/565

List Implementation

> For an operation whose actual cost exceeds the amortized
cost we charge the excess to the elements involved.

> In total we will charge at most @ (logn) to an element
(regardless of the request sequence).

> For each element a makeset operation occurs as the first
operation involving this element.

> We inflate the amortized cost of the makeset-operation to
O(logn), i.e., at this point we fill the bank account of the
element to ©(logn).

> Later operations charge the account but the balance never
drops below zero.

m 9 Union Find
Ernst Mayr, Harald Racke 368/565

List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

m 9 Union Find
Ernst Mayr, Harald Racke 369/565

List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the

actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

m 9 Union Find
Ernst Mayr, Harald Racke 369/565

List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):

> If Sy = S, the cost is constant; no bank accounts change.

m 9 Union Find
Ernst Mayr, Harald Racke 369/565

List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.
> Otw. the actual cost is O(min{|Sx|, |Sy[}).

m 9 Union Find
Ernst Mayr, Harald Racke 369/565

List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.
> Otw. the actual cost is O(min{|Sx|, |Sy[}).

> Assume wlog. that Sy is the smaller set; let ¢ denote the
hidden constant, i.e., the actual cost is at most ¢ - |Sy]|.

m 9 Union Find
Ernst Mayr, Harald Racke 369/565

List Implementation

makeset(x): The actual cost is @(1). Due to the cost inflation
the amortized cost is O(logn).

find (x): For this operation we define the amortized cost and the
actual cost to be the same. Hence, this operation does not
change any accounts. Cost: O(1).

union(x, y):
> If Sy = S, the cost is constant; no bank accounts change.
> Otw. the actual cost is O(min{|Sx|, |Sy[}).

> Assume wlog. that Sy is the smaller set; let ¢ denote the
hidden constant, i.e., the actual cost is at most ¢ - |Sy]|.

» Charge c to every element in set Sy.

m 9 Union Find
Ernst Mayr, Harald Racke 369/565

List Implementation

Lemma 37
An element is charged at most |log, n| times, where n is the
total number of elements in the set system.

m 9 Union Find
Ernst Mayr, Harald Racke 370/565

List Implementation

Lemma 37
An element is charged at most |log, n| times, where n is the
total number of elements in the set system.

Proof.
Whenever an element x is charged the number of elements in
x’s set doubles. This can happen at most |log n] times. O

m 9 Union Find
Ernst Mayr, Harald Racke 370/565

Implementation via Trees

» Maintain nodes of a set in a tree.
» The root of the tree is the label of the set.

> Only pointer to parent exists; we cannot list all elements of
a given set.

m 9 Union Find
Ernst Mayr, Harald Racke 371/565

Implementation via Trees

» Maintain nodes of a set in a tree.
» The root of the tree is the label of the set.

> Only pointer to parent exists; we cannot list all elements of

a given set.
> Example:
(19 (6) (19)
(12 O, (9) @ 19 @3
@ ORCRY,
®

Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19, 23}.

m 9 Union Find
Ernst Mayr, Harald Racke 371/565

Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.

m 9 Union Find
Ernst Mayr, Harald Racke 372/565

Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
» Time: O(1).

m 9 Union Find
Ernst Mayr, Harald Racke 372/565

Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
> Time: O(1).

find(x)

> Start at element x in the tree. Go upwards until you reach
the root.

m 9 Union Find
Ernst Mayr, Harald Racke 372/565

Implementation via Trees

makeset(x)
> Create a singleton tree. Return pointer to the root.
> Time: O(1).

find(x)

> Start at element x in the tree. Go upwards until you reach
the root.

> Time: O(level(x)), where level(x) is the distance of
element x to the root in its tree. Not constant.

m 9 Union Find
Ernst Mayr, Harald Racke 372/565

Implementation via Trees

To support union we store the size of a tree in its root.

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a < find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.

4

-@
O

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)
» Perform a — find(x); b — find(y). Then: link(a, b).
» link(a, b) attaches the smaller tree as the child of the larger.

> |n addition it updates the size-field of the new root.

» Time: constant for link(a, b) plus two find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 373/565

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for find(x) is O(logn).

m 9 Union Find
Ernst Mayr, Harald Racke 374/565

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) > 2size(c), where size
denotes the value of the size-field right after the operation.

m 9 Union Find
Ernst Mayr, Harald Racke 374/565

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) > 2size(c), where size
denotes the value of the size-field right after the operation.

> After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

m 9 Union Find
Ernst Mayr, Harald Racke

374/565

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) > 2size(c), where size
denotes the value of the size-field right after the operation.

> After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

> Hence, at any point in time a tree fulfills size(p) > 2 size(c),
for any pair of nodes (p,c), where p is a parent of c.

m 9 Union Find
Ernst Mayr, Harald Racke

374/565

Implementation via Trees

Lemma 38
The running time (non-amortized!!!) for find(x) is O(logn).

Proof.

» When we attach a tree with root ¢ to become a child of a
tree with root p, then size(p) > 2size(c), where size
denotes the value of the size-field right after the operation.

> After that the value of size(c) stays fixed, while the value of
size(p) may still increase.

> Hence, at any point in time a tree fulfills size(p) > 2 size(c),
for any pair of nodes (p,c), where p is a parent of c.

m 9 Union Find
Ernst Mayr, Harald Racke

374/565

Path Compression

find(x):

» Go upward until you find the root.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find(x):
» Go upward until you find the root.

» Re-attach all visited nodes as children of the root.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find (x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.

> Speeds up successive find-operations.

4

-®
©

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.

> Speeds up successive find-operations.

4

-®
©

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find (x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find (x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find (x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find (x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

find(x):
» Go upward until you find the root.
> Re-attach all visited nodes as children of the root.
> Speeds up successive find-operations.

> Note that the size-fields now only give an upper bound on
the size of a sub-tree.

m 9 Union Find
Ernst Mayr, Harald Racke 375/565

Path Compression

Asymptotically the cost for a find-operation does not increase
due to the path compression heuristic.

m 9 Union Find
Ernst Mayr, Harald Racke 376/565

Path Compression

Asymptotically the cost for a find-operation does not increase
due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on
the running time. It can still happen that a find-operation takes
time O(logn).

m 9 Union Find
Ernst Mayr, Harald Racke 376/565

Amortized Analysis

Definitions:

m 9 Union Find
Ernst Mayr, Harald Racke 377/565

Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.

m 9 Union Find
Ernst Mayr, Harald Racke 377/565

Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.

» rank(v) := |log(size(v))].

m 9 Union Find
Ernst Mayr, Harald Racke 377/565

Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
» rank(v) := |log(size(v))].

> — size(v) > 2rank),

m 9 Union Find
Ernst Mayr, Harald Racke

377/565

Amortized Analysis

Definitions:
» size(v) = the number of nodes that were in the sub-tree
rooted at v when v became the child of another node (or
the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the
case that there are no find-operations.
» rank(v) := |log(size(v))].
> — size(v) > 2rank),
Lemma 39

The rank of a parent must be strictly larger than the rank of a
child.

m 9 Union Find
Ernst Mayr, Harald Racke

377/565

Amortized Analysis

Lemma 40
There are at most n/2° nodes of rank s.

m 9 Union Find
Ernst Mayr, Harald Racke 378/565

Amortized Analysis

Lemma 40
There are at most n/2° nodes of rank s.

Proof.

> Let’s say a node v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

m 9 Union Find
Ernst Mayr, Harald Racke 378/565

Amortized Analysis

Lemma 40
There are at most n/2° nodes of rank s.

Proof.
> Let’s say a node v sees node x if v is in x’s sub-tree at the
time that x becomes a child.
» A node v sees at most one node of rank s during the
running time of the algorithm.

m 9 Union Find
Ernst Mayr, Harald Racke

378/565

Amortized Analysis

Lemma 40
There are at most n/2° nodes of rank s.

Proof.

> Let’s say a node v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

» A node v sees at most one node of rank s during the
running time of the algorithm.

» This holds because the rank-sequence of the roots of the
different trees that contain v during the running time of the
algorithm is a strictly increasing sequence.

m 9 Union Find
Ernst Mayr, Harald Racke 378/565

Amortized Analysis

Lemma 40
There are at most n/2° nodes of rank s.

Proof.
> Let’s say a node v sees node x if v is in x’s sub-tree at the
time that x becomes a child.

» A node v sees at most one node of rank s during the
running time of the algorithm.

» This holds because the rank-sequence of the roots of the
different trees that contain v during the running time of the
algorithm is a strictly increasing sequence.

> Hence, every node sees at most one rank s node, but every
rank s node is seen by at least 2% different nodes. 0

m 9 Union Find
Ernst Mayr, Harald Racke 378/565

Amortized Analysis

We define

N 1 ifi=0
tow(i) := 2tOW(i*1) otw.

m 9 Union Find
Ernst Mayr, Harald Racke 379/565

Amortized Analysis

We define

. 1 ifi=0) 222 } .
tow(i) := { T tow(i) = 22° [itimes

m 9 Union Find
Ernst Mayr, Harald Racke 379/565

Amortized Analysis

We define

. 1 ifi=0) 222 } .
tow(i) := { T tow(i) = 22° [itimes

and
log™(n) := min{i | tow(i) = n} .

m 9 Union Find
Ernst Mayr, Harald Racke 379/565

Amortized Analysis

We define
tow(i) := { ;tow(iil) Icft\l/v: 0 tow(i) = 222222}1' times
and
log*(n) := min{i | tow(i) = n} .
Theorem 41

Union find with path compression fulfills the following amortized
running times:

» makeset(x) : O(log™(n))
» find(x) : ©(log™(n))

> union(x,y) : O(log™*(n))

m 9 Union Find
Ernst Mayr, Harald Racke 379/565

Amortized Analysis

In the following we assume n > 2.

m 9 Union Find
Ernst Mayr, Harald Racke 380/565

Amortized Analysis

In the following we assume n > 2.

rank-group:

> A node with rank rank(v) is in rank group log™ (rank(v)).

m 9 Union Find
Ernst Mayr, Harald Racke 380/565

Amortized Analysis

In the following we assume n > 2.

rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

m 9 Union Find
Ernst Mayr, Harald Racke 380/565

Amortized Analysis

In the following we assume n > 2.
rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

» Arank group g > 1 contains ranks
tow(g — 1) +1,...,tow(g).

m 9 Union Find
Ernst Mayr, Harald Racke 380/565

Amortized Analysis

In the following we assume n > 2.
rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

» Arank group g > 1 contains ranks
tow(g — 1) +1,...,tow(g).

» The maximum non-empty rank group is
log*(|logn|) <log™(n) — 1 (which holds for n = 2).

m 9 Union Find
Ernst Mayr, Harald Racke 380/565

Amortized Analysis

In the following we assume n > 2.
rank-group:
> A node with rank rank(v) is in rank group log™ (rank(v)).

» The rank-group g = 0 contains only nodes with rank O or
rank 1.

» Arank group g > 1 contains ranks
tow(g — 1) +1,...,tow(g).

» The maximum non-empty rank group is
log*(|logn|) <log™(n) — 1 (which holds for n = 2).

> Hence, the total number of rank-groups is at most log™ n.

m 9 Union Find
Ernst Mayr, Harald Racke 380/565

Amortized Analysis

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Accounting Scheme:
> create an account for every find-operation

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Accounting Scheme:
> create an account for every find-operation

> create an account for every node v

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Accounting Scheme:
> create an account for every find-operation
> create an account for every node v

The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Accounting Scheme:
> create an account for every find-operation
> create an account for every node v

The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the
find-account.

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Accounting Scheme:

> create an account for every find-operation

> create an account for every node v
The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the

find-account.

> If the group-number of rank(v) is the same as that of
rank(parent[v]) (before starting path compression) we
charge the cost to the node-account of v.

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Accounting Scheme:

> create an account for every find-operation

> create an account for every node v
The cost for a find-operation is equal to the length of the path
traversed. We charge the cost for going from v to parent[v] as
follows:

> If parent[v] is the root we charge the cost to the

find-account.

> If the group-number of rank(v) is the same as that of
rank(parent[v]) (before starting path compression) we
charge the cost to the node-account of v.

» Otherwise we charge the cost to the find-account.

m 9 Union Find
Ernst Mayr, Harald Racke 381/565

Amortized Analysis

Observations:

m 9 Union Find
Ernst Mayr, Harald Racke 382/565

Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for
the root and at most log™ (1) — 1 times when increasing the
rank-group).

m 9 Union Find
Ernst Mayr, Harald Racke 382/565

Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for
the root and at most log™ (1) — 1 times when increasing the
rank-group).

> After a node v is charged its parent-edge is re-assigned.
The rank of the parent strictly increases.

m 9 Union Find
Ernst Mayr, Harald Racke 382/565

Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for
the root and at most log™ (1) — 1 times when increasing the
rank-group).

> After a node v is charged its parent-edge is re-assigned.
The rank of the parent strictly increases.

> After some charges to v the parent will be in a larger
rank-group. = v will never be charged again.

m 9 Union Find
Ernst Mayr, Harald Racke

382/565

Amortized Analysis

Observations:

> A find-account is charged at most log™ (1) times (once for
the root and at most log™ (1) — 1 times when increasing the
rank-group).

> After a node v is charged its parent-edge is re-assigned.
The rank of the parent strictly increases.

> After some charges to v the parent will be in a larger
rank-group. = v will never be charged again.

» The total charge made to a node in rank-group g is at most
tow(g) —tow(g — 1) — 1 < tow(g).

m 9 Union Find
Ernst Mayr, Harald Racke 382/565

Amortized Analysis

What is the total charge made to nodes?

m 9 Union Find
Ernst Mayr, Harald Racke 383/565

Amortized Analysis

What is the total charge made to nodes?

» The total charge is at most

> n(g) - tow(g) ,
g

where n(g) is the number of nodes in group g.

m 9 Union Find
Ernst Mayr, Harald Racke 383/565

Amortized Analysis

For g = 1 we have

n(g)

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g)

ng s >

s=tow(g—-1)+1

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1

m 9 Union Find
Ernst Mayr, Harald Racke

384/565

Amortized Analysis

For g = 1 we have

tow(g)

n - n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
n o1
= 2tow(g—1)+1 Z ?

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g)

n > n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
n 21 n
= 2tow(g-1)+1 Z ? 2tow(g—1)+1 -2

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g) © n
2. = 2. o5

s=tow(g—-1)+1 s=tow(g—-1)+1

IA

n(g)

=

n

T otow(g-1)+1 -2

1
? 2tow(g—1)+1

|
uMg

_ n
© 2tow(g-1)

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g) n 0 n
n(g) < > o5 > >
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n)
T otow(g-1)+1 Z ? Dtow(g—1)+1 ’
n 1’L

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1
n o1 n
= 2tow(g-1)+1 Z ? 2tow(g—1)+1 -2
B n n
T 2towg-D T tow(g)
Hence,
Zn(g)tow(g)
g

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g) n © n
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n)
T otow(g-1)+1 Z ? Dtow(g—1)+1 ’
n 1’L

Hence,

Zn(g)tow(g) < n(0) tow(0) + Z n(g) tow(g)
g g=1

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

For g = 1 we have

tow(g)

(o]
n n
s=tow(g—-1)+1 s=tow(g—-1)+1
B n o1 n)
T otow(g-1)+1 Z ? Dtow(g—1)+1 ’
n 1’L

Hence,

Zn(g)tow(g) < n(0) tow(0) + Z n(g) tow(g) < nlog*(n)
g g=1

m 9 Union Find
Ernst Mayr, Harald Racke 384/565

Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.

m 9 Union Find
Ernst Mayr, Harald Racke 385/565

Amortized Analysis

Without loss of generality we can assume that all
makeset-operations occur at the start.

This means if we inflate the cost of makeset to log™ n and add
this to the node account of v then the balances of all node
accounts will sum up to a positive value (this is sufficient to
obtain an amortized bound).

m 9 Union Find
Ernst Mayr, Harald Racke 385/565

Amortized Analysis

m 9 Union Find
Ernst Mayr, Harald Racke 386/565

Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log™ n.
(Here, we consider the average running time of m operations on
at most n elements).

m 9 Union Find
Ernst Mayr, Harald Racke 386/565

Amortized Analysis

The analysis is not tight. In fact it has been shown that the
amortized time for the union-find data structure with path
compression is O(x(m,n)), where x(m, n) is the inverse
Ackermann function which grows a lot lot slower than log™ n.
(Here, we consider the average running time of m operations on
at most n elements).

There is also a lower bound of Q(x(m,n)).

m 9 Union Find
Ernst Mayr, Harald Racke

386/565

Amortized Analysis
y+1 ifx=0

Alx,y) =41 Alx—-1,1) if y=0
Alx—-1,A(x,y —-1)) otw.

a(m,n) =min{i>1:A(i,|m/n]) = logn}

m 9 Union Find
Ernst Mayr, Harald Racke 387/565

Amortized Analysis

yv+1 ifx=0
Alx,y) =41 Alx—-1,1) if y=0
Alx—-1,A(x,y —-1)) otw.

a(m,n) =min{i>1:A(i,|m/n]) = logn}

A0, y) =y +1
A(l,y) =y +2
A2,y) =2y +3
A(3,y)=2Y"3 -3
_oa2t
A4, y)= 2 3

y+3 times

vV v v VY

m 9 Union Find
Ernst Mayr, Harald Racke 387/565

Part IV

Flows and Cuts

m Ernst Mayr, Harald Racke 388/565

The following slides are partially based on slides by Kevin Wayne.

m Ernst Mayr, Harald Racke 389/565

10 Introduction

Flow Network
> directed graph G = (V, E); edge capacities c(e)

v ?\ ?\
,H?\ “r v

s 15 N\
N

‘m 10 Introduction
Ernst Mayr, Harald Racke 390/565

10 Introduction

Flow Network
> directed graph G = (V, E); edge capacities c(e)
> two special nodes: source s; target t;

v ?\ ?\
j*?\ “r v

s 15 N\
N

‘m 10 Introduction
Ernst Mayr, Harald Racke 390/565

10 Introduction

Flow Network
> directed graph G = (V, E); edge capacities c(e)
> two special nodes: source s; target t;
> no edges entering s or leaving t;

v ?\ ?\
j*?\ “r v

s 15 N\
N

m 10 Introduction
Ernst Mayr, Harald Racke 390/565

10 Introduction

Flow Network

v

directed graph G = (V, E); edge capacities c(e)
> two special nodes: source s; target t;

> no edges entering s or leaving t;

> at least for now: no parallel edges;

v ?\ ?\
j*?\ “r vz

s 15 N\
\é} 30 > i

m 10 Introduction
Ernst Mayr, Harald Racke 390/565

Cuts
Definition 42

An (s,[)-cut in the graph G is given by aset AC V withs € A
and t € V \ A.

‘m 10 Introduction
Ernst Mayr, Harald Racke 391/565

Cuts

Definition 42
An (s,[)-cut in the graph G is given by aset AC V withs € A

and t € V \ A.

Definition 43
The capacity of a cut A is defined as

cap(A,V\A) = > cle),

e € out(A)

where out(A) denotes the set of edges of the form A XV \ A
(i.e. edges leaving A).

‘m 10 Introduction
Ernst Mayr, Harald Racke 391/565

Cuts

Definition 42
An (s,[)-cut in the graph G is given by aset AC V withs € A
and t € V \ A.

Definition 43
The capacity of a cut A is defined as

cap(A,V\A) = > cle),

e € out(A)
where out(A) denotes the set of edges of the form A xV \ A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum
capacity.

‘m 10 Introduction
Ernst Mayr, Harald Racke 391/565

Cuts

Example 44

The capacity of the cut is cap(A,V \ A) = 28.

‘m 10 Introduction
Ernst Mayr, Harald Racke 392/565

Flows

Definition 45
An (s, t)-flow is a function f : E — R* that satisfies

1. For each edge e
0<f(e)<cl(e) .

(capacity constraints)

‘m 10 Introduction
Ernst Mayr, Harald Racke 393/565

Flows

Definition 45
An (s, t)-flow is a function f : E — R* that satisfies

1. For each edge e
0<f(e)<cl(e) .

(capacity constraints)
2. Foreachv e V' \ {s,t}

> fleo= > flo).

ecout(v) ecinto(v)

(flow conservation constraints)

‘m 10 Introduction
Ernst Mayr, Harald Racke 393/565

Flows

Definition 46
The value of an (s, t)-flow f is defined as

val(f) = > fle) .

ecout(s)

m 10 Introduction
Ernst Mayr, Harald Racke 394/565

Flows

Definition 46
The value of an (s, t)-flow f is defined as

val(f) = > fle) .

ecout(s)

Maximum Flow Problem: Find an (s, t)-flow with maximum
value.

‘m 10 Introduction
Ernst Mayr, Harald Racke 394/565

Flows

Example 47

The value of the flow is val(f) = 24.

‘m 10 Introduction
Ernst Mayr, Harald Racke 395/565

Flows

Lemma 48 (Flow value lemma)

Let f be a flow, and let A =V be an (s,t)-cut. Then the net-flow
across the cut is equal to the amount of flow leaving s, i.e.,

val(f) = > flee— > fle) .

ecout(A) ecinto(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 396/565

Proof.

val(f)

‘m 10 Introduction
Ernst Mayr, Harald Racke 397/565

Proof.

val(f) = > f(e)

ecout(s)

‘m 10 Introduction
Ernst Mayr, Harald Racke 397/565

Proof.

val(f) = > f(e)

ecout(s)
- S ges 3 (S g 3)
ecout(s) veA\{s} ‘ecout(v) ecin(v)

‘m 10 Introduction
Ernst Mayr, Harald Racke 397/565

Proof.

val(f) = > f(e)
ecout(s) =0
= > fle+ > (> fle- > f(e))
ecout(s) veA\{s] \eeout(v) ecin(v)

‘m 10 Introduction
Ernst Mayr, Harald Racke 397/565

Proof.

val(f) = > f(e)
ecout(s)
= > fle+ > (> fley- > f(e))
ecout(s) veA\{s} ‘ecout(v) ecin(v)
= > flo- > fle
ecout(A) ecinto(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 397/565

Proof.

val(f) = > f(e)
ecout(s)
= > fleo+ X (> fley- > f(e))
ecout(s) veA\{s} \eeout(v) ecin(v)
= > floo- > fle
ecout(A) ecinto(A)

The last equality holds since every edge with both end-points in
A contributes negatively as well as positively to the sum in

Line 2. The only edges whose contribution doesn’t cancel out
are edges leaving or entering A. O]

‘m 10 Introduction
Ernst Mayr, Harald Racke 397/565

Example 49

‘m 10 Introduction
Ernst Mayr, Harald Racke 398/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).

Then f is a maximum flow.

‘m 10 Introduction
Ernst Mayr, Harald Racke 399/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.

TIIUETTH 10 Introduction
Ernst Mayr, Harald Racke

399/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

‘m 10 Introduction
Ernst Mayr, Harald Racke 399/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")

‘m 10 Introduction
Ernst Mayr, Harald Racke 399/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")
= 2 fllo- > fle

ecout(A) ecinto(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 399/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")
= 2 fllo- > fle

ecout(A) ecinto(A)

< > fl(

ecout(A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 399/565

Corollary 50
Let f be an (s,t)-flow and let A be an (s,t)-cut, such that

val(f) = cap(A,V \ A).
Then f is a maximum flow.

Proof.
Suppose that there is a flow [’ with larger value. Then

cap(A,V \ A) <val(f")
= 2 fllo- > fle

ecout(A) ecinto(A)

< > fl(

ecout(A)

<cap(A,V\A)

‘m 10 Introduction
Ernst Mayr, Harald Racke 399/565

11 Augmenting Path Algorithms
Greedy-algorithm:

v

start with f(e) = 0 everywhere
find an s-t path with f(e) < c(e) on every edge

augment flow along the path

vV v Vv

repeat as long as possible
/G)\
o V1o

0[30

0/ /0 000

2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 400/565

11 Augmenting Path Algorithms
Greedy-algorithm:
> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
> augment flow along the path
> repeat as long as possible

SN

Q.

20
2130

9, o 1%@0

NP

2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 400/565

11 Augmenting Path Algorithms
Greedy-algorithm:

v

start with f(e) = 0 everywhere
find an s-t path with f(e) < c(e) on every edge

augment flow along the path

vV v Vv

repeat as long as possible

1

,ch\'LO 0//0
20[30
[7) Q
\

2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 400/565

11 Augmenting Path Algorithms
Greedy-algorithm:

v

start with f(e) = 0 everywhere
find an s-t path with f(e) < c(e) on every edge

augment flow along the path

vV v Vv

repeat as long as possible

/G)\
,ch\'LO 0//0
20/30
9, ®

\ \ 4

2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 400/565

The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 401/565

The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

> Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between 1 and v.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 401/565

The Residual Graph

From the graph G = (V,E, c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

> Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between 1 and v.

> Gy has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)}.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 401/565

The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

> Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between 1 and v.

> Gy has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)}.

G W= 14116 1020 ——>@

Gr W= 12 24 >@®)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 401/565

Augmenting Path Algorithm

Definition 51

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 402/565

Augmenting Path Algorithm

Definition 51

An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph G that contains only edges with non-zero
capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in G do

3: augment as much flow along p as possible.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 402/565

Augmenting Path Algorithm

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

2 o4 :@\
G !
o o2 U

N N

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

G 0/%\0:‘ =?\

N o2 G5 ol6 D,

\ .
éono—»@l} 0l9 >(5) ano&)

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

G e %\OM @T)\

[2)
& o2 2 %0

T SN W

Flow value = 8

o
6 O\
~2 0 o

—=1=0

Y

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

G /%\OM ?\

& o 2 o6 Y,

éono—»@l} 0|9\=‘® 810

&

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

/%\OM =@\
G f
z 0l6

5 N ez K

; \% oo

| Flow value = 10 \

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

S ?\m

K
) 212

™,
\J\ ?

@éom%

f}\

Gr _0

@%wf»

>6) 10|1(&)

] Flow value = 10 \

=100

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

AN

N (o)
X
) 22 s 0

ZON N W

| Flow value = 10 \

B -

o ’

@105

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

AT

Q
\0\\ 22 s

G
Q/o
GéG 4{% \/L &)
2110 3 2E— 10010

| Flow value = 16 \

B -

o ’

@105

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

o SN

6
\0\\ 22 6|6 "o

T S S

] Flow value = 16 \

@<_ 4—>]

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

AN

N 6
X
) 22 s 0

20N RN S

| Flow value = 16 \

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm
2

NN

Q 0
\0\\ 212 s

G
9/0
Gés 4{% \/L >@
10 3 2E— 10010

| Flow value = 18 \

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

o SIS

&7
\0\\ 0|2 6|6 0

Gé&lo‘*(% 819 fi\ 10|10>®

] Flow value = 18 \

D= —2—@

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

\ 7,
) 02 L7723 6|6 o

Gésno—»é} 8|9 —® loll&)

| Flow value = 18 \

Gy /0 \&) \

RO B

¥
O=r =2 = G)T—— 3

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

O
™ 0l2 g 6|6 “7/0

9
Gézno—»(% 8’]9 7\5 10|10>@

| Flow value = 19 \

Gy /0 \&) \

RO B

¥
O=r =2 = G)T—— 3

jfﬂjﬂjﬂ 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

403/565

Augmenting Path Algorithm

G \0/ ?\T =?\

9,
K 0[2 6|6 0

T S S

] Flow value = 19 \

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

G /%\3|4 =?\

9,
A P
& op 78 616 2

Io—G 9|9\=‘g 10|10>@

’ Flow value = 19 \

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 403/565

Augmenting Path Algorithm

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/565

Augmenting Path Algorithm

Theorem 52
A flow f is a maximum flow iff there are no augmenting paths.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/565

Augmenting Path Algorithm

Theorem 52
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum
cut.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/565

Augmenting Path Algorithm

Theorem 52
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/565

Augmenting Path Algorithm

Theorem 52
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f'is a maximum flow.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/565

Augmenting Path Algorithm

Theorem 52
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 53

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f'is a maximum flow.

3. There is no augmenting path w.r.t. f.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 404/565

Augmenting Path Algorithm

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/565

Augmenting Path Algorithm

1. = 2.
This we already showed.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/565

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/565

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/565

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/565

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.

Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.
» Since there is no augmenting path we have s € A and t ¢ A.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 405/565

Augmenting Path Algorithm

val(f)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 406/565

Augmenting Path Algorithm

val(f) = > fle)— > fle)

ecout(A) ecinto(A)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 406/565

Augmenting Path Algorithm

val(f) = > fle)— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 406/565

Augmenting Path Algorithm

val(f) = > fle— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
=cap(A,V\ A)

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 406/565

Augmenting Path Algorithm

val(f) = > fle— > fle)
ecout(A) ecinto(A)
= Z c(e)
ecout(A)
=cap(A,V\ A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the
second exploits the fact that the flow along incoming edges
must be 0 as the residual graph does not have edges leaving A.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 406/565

Analysis

Assumption:
All capacities are integers between 1 and C.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 407/565

Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cy(e) remains
integral troughout the algorithm.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 407/565

Lemma 54

The algorithm terminates in at most val(f*) < nC jterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 408/565

Lemma 54

The algorithm terminates in at most val(f*) < nC jterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).

Theorem 55
If all capacities are integers, then there exists a maximum flow
for which every flow value f(e) is integral.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 408/565

A Bad Input

Problem: The running time may not be polynomial.

Q© 0/e
o® %0
ol
% ®

o
%0 N
2

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 409/565

A Bad Input

Problem: The running time may not be polynomial.
0/4 ‘a
©
2 N s

N\
_®

¢°°°

eoo"\ l/

@A

0

/@\

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

\ng

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

O)
Ay
\/ . 0 M

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Bad Input

Problem: The running time may not be polynomial.

K /@\
Question:

Can we tweak the algorithm so that the running time is
polynomial in the input length?

&,
&P

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 410/565

A Pathological Input
Letr = %(\/ﬁ_ 1). Then ¥"+2 =y — g+l

O—=
® 8 ®
éwg o
ST 7

@ 8 3 4
*) #/
G/' = r ;@/

411/565

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

A Pathological Input

Let ¥ = 3(/5 — 1). Then y"+2 =y — i+l

\4

R >(n

\

Cb\
r :,6 — 00
/

CH

€ ©

SER==C
\

1I\)
\
Q

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 411/565

A Pathological Input
Letr = %(\/ﬁ_ 1). Then ¥"+2 =y — g+l

@—e—"——(0)
= 2‘\

411/565

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

A Pathological Input

Let ¥ = 3(/5 — 1). Then y"+2 =y — i+l

2

®
:
8
\ 4
5

A

9

L =
00 —»(,

S

4—007
XS 8 %
@g_r+r2_>,g>/

<— 0
<— 0

)

o (o

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 411/565

A Pathological Input
Letr = %(\/ﬁ_ 1). Then ¥"+2 =y — g+l

D=
® 8 ®
éwg L
T T

% 8 3 4

\# $/
o e’

411/565

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

A Pathological Input

Let ¥ = 3(/5 — 1). Then y"+2 =y — i+l

@=—= #g)\
//

8 o
r2 ‘¢ >&®
(*'/y//

(o)

A
8|
\

N

8

CH

8
Y
L

4%/
@«mw+w
J

\4

A
8|

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 411/565

A Pathological Input
Letr = %(\/ﬁ_ 1). Then ¥"+2 =y — g+l

@l
@ 8 o
4&—»_,}): = 0 :l6}<_°°
A t g /7

% g 8
* o
G/' = r ;@/

411/565

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

A Pathological Input

Let ¥ = 3(/5 — 1). Then y"+2 =y — i+l

2
@\.A — r > (5

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 411/565

A Pathological Input
Letr = %(\/ﬁ_ 1). Then ¥"+2 =y — g+l

@—=—"——0)
® 8 ®
éw * 3
) —3)= % r >(O+—=
A t g /7

@ 8 3
* !
@——a—2 =@/

411/565

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

A Pathological Input
Letr = %(ﬁ— 1). Then ¥"+2 =y — g+l

rd ,@

A N
é< N
N

?

8

i L "
e N7

8

& 8 8 6
\4; ., 5/

Running time may be infinite!!!

411/565

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?
> We need to find paths efficiently.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:

‘m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.

» Choose path with sufficiently large bottleneck capacity.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

How to choose augmenting paths?
> We need to find paths efficiently.

» We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.
» Choose path with sufficiently large bottleneck capacity.
» Choose the shortest augmenting path.

m 11.1 The Generic Augmenting Path Algorithm
Ernst Mayr, Harald Racke 412/565

Overview: Shortest Augmenting Paths

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 413/565

Overview: Shortest Augmenting Paths

Lemma 56
The length of the shortest augmenting path never decreases.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 413/565

Overview: Shortest Augmenting Paths

Lemma 56
The length of the shortest augmenting path never decreases.

Lemma 57
After at most O (m) augmentations, the length of the shortest
augmenting path strictly increases.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 413/565

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 414/565

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58
The shortest augmenting path algorithm performs at most
O(mn) augmentations. This gives a running time of ©(m?n).

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 414/565

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58

The shortest augmenting path algorithm performs at most
O(mn) augmentations. This gives a running time of ©(m?n).

Proof.

» We can find the shortest augmenting paths in time @ (m)
via BFS.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 414/565

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 58

The shortest augmenting path algorithm performs at most
O(mn) augmentations. This gives a running time of ©(m?n).

Proof.

» We can find the shortest augmenting paths in time @ (m)
via BFS.

> @ (m) augmentations for paths of exactly k < n edges.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 414/565

Shortest Augmenting Paths

Define the level £(v) of a node as the length of the shortest s-v
path in Gy.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 415/565

Shortest Augmenting Paths

Define the level £(v) of a node as the length of the shortest s-v
path in Gy.

Let L denote the subgraph of the residual graph G ¢ that
contains only those edges (u,v) with £(v) = £(u) + 1.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 415/565

Shortest Augmenting Paths

Define the level £(v) of a node as the length of the shortest s-v
path in Gy.

Let L denote the subgraph of the residual graph G ¢ that
contains only those edges (u,v) with £(v) = £(u) + 1.

A path P is a shortest s-u path in G if it is a an s-u path in Lg.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 415/565

Shortest Augmenting Paths

Define the level £(v) of a node as the length of the shortest s-v
path in Gy.

Let L denote the subgraph of the residual graph G ¢ that
contains only those edges (u,v) with £(v) = £(u) + 1.

A path P is a shortest s-u path in G if it is a an s-u path in Lg.

2
Gr \Q/

Lg

A

3

2
_10*@%

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke

415/565

In the following we assume that the residual graph Gy does not
contain zero capacity edges.

This means, we construct it in the usual sense and then delete
edges of zero capacity.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 416/565

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

Shortest Augmenting Path
First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation Gy changes as follows:

> Bottleneck edges on the chosen path are deleted.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation Gy changes as follows:

> Bottleneck edges on the chosen path are deleted.

» Back edges are added to all edges that don’t have back
edges so far.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation Gy changes as follows:

> Bottleneck edges on the chosen path are deleted.

» Back edges are added to all edges that don’t have back
edges so far.

These changes cannot decrease the distance between s and t.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation Gy changes as follows:

> Bottleneck edges on the chosen path are deleted.

» Back edges are added to all edges that don’t have back
edges so far.

These changes cannot decrease the distance between s and t.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation Gy changes as follows:

> Bottleneck edges on the chosen path are deleted.

» Back edges are added to all edges that don’t have back
edges so far.

These changes cannot decrease the distance between s and t.

Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
After an augmentation Gy changes as follows:

> Bottleneck edges on the chosen path are deleted.

» Back edges are added to all edges that don’t have back
edges so far.

These changes cannot decrease the distance between s and t.

‘—0

\°/
—1 =

"L

@4—9 <—9—-t®

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Let E; denote the set of edges in graph L at the beginning of a
round when the distance between s and t is k.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Let E; denote the set of edges in graph L at the beginning of a
round when the distance between s and t is k.

An s-t path in G that uses edges not in E; has length larger

than k, even when considering edges added to G during the
round.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Let E; denote the set of edges in graph L at the beginning of a
round when the distance between s and t is k.

An s-t path in G that uses edges not in E; has length larger
than k, even when considering edges added to G during the
round.

In each augmentation one edge is deleted from Ej.

2 4 (2
Gy \0/ \ g \
Er] ? 2
lO-»@% lO}@

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Let E; denote the set of edges in graph L at the beginning of a
round when the distance between s and t is k.

An s-t path in G that uses edges not in E; has length larger
than k, even when considering edges added to G during the
round.

In each augmentation one edge is deleted from Ej.

2 4 (2
Gy \0/ \ g \
Er] ° 2
lO-»@% lO}@

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of
the shortest augmenting path strictly increases.

Let E; denote the set of edges in graph L at the beginning of a
round when the distance between s and t is k.

An s-t path in G that uses edges not in E; has length larger
than k, even when considering edges added to G during the
round.

In each augmentation one edge is deleted from Ej.

4 L

\°/
—1 =

"L

@4—9 <—9—-=®

Shortest Augmenting Paths

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 419/565

Shortest Augmenting Paths

Theorem 59

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in
time O(m).

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 419/565

Shortest Augmenting Paths

Theorem 59

The shortest augmenting path algorithm performs at most
O(mn) augmentations. Each augmentation can be performed in
time O(m).

Theorem 60 (without proof)

There exist networks with m = ®(n?) that require O(mn)
augmentations, when we restrict ourselves to only augment
along shortest augmenting paths.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 419/565

Shortest Augmenting Paths

Theorem 59
The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in
time O(m).

Theorem 60 (without proof)

There exist networks with m = ®(n?) that require O(mn)
augmentations, when we restrict ourselves to only augment
along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a
maximum flow (why?).

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 419/565

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve
(asymptotically) on the number of augmentations.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 420/565

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve
(asymptotically) on the number of augmentations.

However, we can improve the running time to ©(mn?) by

improving the running time for finding an augmenting path
(currently we assume @ (m) per augmentation for this).

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 420/565

Shortest Augmenting Paths

We maintain a subset E; of the edges of G with the guarantee
that a shortest s-t path using only edges from E; is a shortest
augmenting path.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 421/565

Shortest Augmenting Paths

We maintain a subset E; of the edges of G with the guarantee
that a shortest s-t path using only edges from E; is a shortest
augmenting path.

With each augmentation some edges are deleted from Ej.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 421/565

Shortest Augmenting Paths

We maintain a subset E; of the edges of G with the guarantee
that a shortest s-t path using only edges from E; is a shortest
augmenting path.

With each augmentation some edges are deleted from Ej.

When E; does not contain an s-t path anymore the distance
between s and t strictly increases.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 421/565

Shortest Augmenting Paths

We maintain a subset E; of the edges of G with the guarantee
that a shortest s-t path using only edges from E; is a shortest
augmenting path.

With each augmentation some edges are deleted from Ej.

When E; does not contain an s-t path anymore the distance
between s and t strictly increases.

Note that E; is not the set of edges of the level graph but a
subset of level-graph edges.

m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 421/565

Suppose that the initial distance between s and t in G is k.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 422/565

Suppose that the initial distance between s and t in G is k.

Er is initialized as the level graph Lg.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 422/565

Suppose that the initial distance between s and t in G is k.
Er is initialized as the level graph Lg.

Perform a DFS search to find a path from s to t using edges from
Er.

‘m 11.2 Shortest Augmenting Paths
Ernst Mayr, Harald Racke 422/565

Suppose that the initial distance between s and t in G is k.
Er is initialized as the level graph Lg.

Perform a DFS search to find a path from s to t using edges from
Er.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

m 11.2 Shortest Augmenting Paths
Ernst Mayr, Har