
11 – Dynamic Programming (1)

Introduction

Weighted Interval Scheduling

2WS 2018/19

Outline

• General approach, differences to a recursive solution

• Basic example: Computation of the Fibonacci numbers

 Weighted interval scheduling

© S. Albers

3WS 2018/19

Method of dynamic programming

Recursive approach: Solve a problem by solving several smaller

analogous subproblems of the same type. Then combine these

solutions to generate a solution to the original problem.

Drawback: Repeated computation of solutions

Dynamic-programming method: Once a subproblem has been

solved, store its solution in a table so that it can be retrieved later

by simple table lookup.

© S. Albers

4

Example: Fibonacci numbers

f(0) = 0

f(1) = 1

f(n) = f(n – 1) + f(n – 2), for n  2

Remark:

1 1 5
()

25

n

f n
  
       

Straightforward implementation:

procedure fib (n : integer) : integer

if (n = 0) or (n =1)

then return n;

else return fib(n – 1) + fib(n – 2);

WS 2018/19 © S. Albers

5

Fibonacci numbers

Recursion tree:
fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

fib(1) fib(0)

Repeated computation!

WS 2018/19 © S. Albers

6WS 2018/19

Dynamic programming

Approach:

1. Recursively define problem P.

2. Determine a set T consisting of all subproblems that have to be

solved during the computation of a solution to P.

3. Find an order T0 , ..., Tk of the subproblems in T such that during the

computation of a solution to Ti only subproblems Tj with j < i arise.

4. Solve T0 ,...,Tk in this order and store the solutions.

© S. Albers

7WS 2018/19

Fibonacci numbers

1. Recursive definition of the Fibonacci numbers, based on the

standard equation.

2. T = {f(0),...,f(n)}

3. Ti = f(i), i = 0,...,n

4. Computation of fib(i), for i  2, only requires the results of the last

two subproblems fib(i – 1) and fib(i – 2).

© S. Albers

8WS 2018/19

Fibonacci numbers

Computation by dynamic programming, version 1:

procedure fib(n : integer) : integer

1 F[0] := 0; F[1] := 1;

2 for k := 2 to n do

3 F[k] := F[k-1] + F[k-2];

4 return F[n];

© S. Albers

9WS 2018/19

Fibonacci numbers

Computation by dynamic programming, version 2:

procedure fib (n : integer) : integer

1 F(secondlast) := 0; F(last) :=1;

2 for k := 2 to n do

3 F(current) := F(last) + F(secondlast);

4 F(secondlast) := F(last);

5 F(last) := F(current);

6 if n  1 then return n else return F(current);

Linear running time, constant space requirement!

© S. Albers

10WS 2018/19

Recursive computation using memoization

Compute each number exactly once, store it in an array F[0...n]:

procedure fib (n : integer) : integer

1 F[0] := 0; F[1] := 1;

2 for i :=2 to n do

3 F[i] := ;

4 return lookupfib(n);

The procedure lookupfib is defined as follows:

procedure lookupfib(k : integer) : integer

1 if F[k] < 

2 then return F[k];

3 else F[k] := lookupfib(k – 1) + lookupfib(k – 2);

4 return F[k];

© S. Albers

11WS 2018/19

Weighted interval scheduling

Problem: Set S = {1,…,n} of n requests for a resource.

Request i: [s(i), f(i)) s(i) = start time f(i) = finish time

v(i) = value/weight

Two requests are compatible if they do not overlap.

Goal: Select S ⊆ {1,…,n} of mutually compatible requests so as to maximize

ΣiϵS v(i).

Greedy* (Earliest Deadline First) is not optimal.

1

2

3

v(1)=1

v(3)=1

v(2)=3

© S. Albers

12

Predecessor function

In the following, requests are numbered such that

f(1)  f(2)  f(3)  ...  f(n).

For j =1,…,n

p(j) = largest i<j such that requests i and j do not overlap

p(j) = 0 if no request i<j is disjoint from j

1

4

3

p(1)=0

2

5

6 p(6)=3

p(5)=3

p(2)=0

p(3)=1

p(4)=0

WS 2018/19 © S. Albers

13

O = optimal subset of requests

 n ∉ O: O is an optimal subset of {1,…,n-1}

 n ∈ O: remaining requests in O are an optimal subset of {1,…,p(n)}

For j = 1,…,n

Oj = optimal subset of requests from {1,…,j}

OPT(j) = value of an optimal solution OPT(0) := 0

 j ∉ Oj: Oj is an optimal subset of {1,…,j-1}

 j ∈ Oj: remaining requests in Oj are an optimal subset of {1,…,p(j)}

Dynamic programming approach

WS 2018/19 © S. Albers

14

For j = 1,…,n

Oj = optimal subset of requests from {1,…,j}

OPT(j) = value of an optimal solution OPT(0) := 0

 j ∉ Oj: Oj is an optimal subset of {1,…,j-1}

 j ∈ Oj: remaining requests in Oj are an optimal subset of {1,…,p(j)}

OPT(j) = max{ v(j) + OPT(p(j)) , OPT(j-1) }

Request j belongs to an optimal solution for {1,…,j} if and only if

v(j) + OPT(p(j)) ≥ OPT(j-1).

Dynamic programming approach

WS 2018/19 © S. Albers

15

Straightforward implementation

Assume that values p(j), for j=1,…,n, have been computed.

procedure ComputeOpt(j : integer)

1 if j = 0

2 then return 0;

3 else return max{v(j) + OPT(p(j)) , OPT(j-1)};

WS 2018/19 © S. Albers

16

Instance taking exponential time

OPT(5)

OPT(4) OPT(3)

OPT(3) OPT(2) OPT(2) OPT(1)

OPT(2) OPT(1) OPT(1) OPT(0) OPT(1) OPT(0)

OPT(1) OPT(0)

OPT(0)

OPT(0)

OPT(0)OPT(0)OPT(0)

WS 2018/19 © S. Albers

17

Iterative solution

Array M[0..n] contains the values of the optimal solutions.

procedure ComputeOpt(n : integer)

1 M[0] := 0;

2 for j := 1 to n do

3 M[j] := max{v(j) + M[p(j)] , M[j-1]};

4 endfor;

Running time: O(n)

WS 2018/19 © S. Albers

18

Recursion using memoization

procedure ComputeOpt(j : integer)

1 if j = 0 then

2 return 0;

3 else if M[j] is not empty then

4 return M[j];

5 else

6 M[j] := max{v(j) + ComputeOPT(p(j)) , ComputeOpt(j-1)};

7 return M[j];

8 endif;

Proposition: The running time of ComputeOpt(n) is O(n) if the requests
are sorted in order of non-decreasing finish times and the values p(j),
1≤ j ≤ n, are computed.

Proof: The running time is a constant times the number of recursive calls
to ComputeOpt. Two calls are issued whenever a new array entry is
filled. Hence there are a total of at most 2n calls.

WS 2018/19 © S. Albers

19

Computing a solution

procedure FindSolution(j : integer)

1 if j = 0 then

2 Output nothing;

3 else if v(j) + M[p(j)] ≥ M[j-1] then

4 Output j together with the result of FindSolution(p(j));

5 else

6 Output the result of FindSolution(j-1);

7 endif;

FindSolution calls itself only on strictly smaller values. Therefore
FindSolution(n) issues less than n recursive calls and the running time
is O(n).

WS 2018/19 © S. Albers

