
07 – Suffix Trees (2)

2WS 2018/19

Suffix tree

t = x a b x a $

1 2 3 4 5 6

1

4

25

6

3

© S. Albers

3

Ukkonen’s algorithm: implicit suffix trees

Definition: An implicit suffix tree is a tree obtained from the

suffix tree for t$ by

(1) deleting every copy of $ from the edge labels,

(2) deleting edges that have no label,

(3) deleting unary nodes.

© S. AlbersWS 2018/19

4

Ukkonen’s algorithm: implicit suffix trees

t = x a b x a $

1 2 3 4 5 6

1

4

25

6

3

WS 2018/19 © S. Albers

5

Ukkonen’s algorithm: implicit suffix trees

(1) deleting $ from the edge labels

1

4

25

6

3

WS 2018/19 © S. Albers

6

Ukkonen’s algorithm: implicit suffix trees

(2) deleting edges that have no label

t = x a b x a $

1 2 3 4 5 6

1

2

3

WS 2018/19 © S. Albers

7

Ukkonen’s algorithm: implicit suffix trees

(3) deleting unary nodes

t = x a b x a $

1 2 3 4 5 6

1

2

3

WS 2018/19 © S. Albers

8WS 2018/19

Ukkonen’s algorithm

Let t = t1t2t3 ... tn .

Ukk is an online algorithm: The suffix tree ST(t) is constructed step by

step by constructing a sequence of implicit suffix trees for the

prefixes of t:

ST(), ST(t1), ST(t1t2), ..., ST(t1t2 ... tn)

ST() is the empty implicit suffix tree, consisting of the root only.

© S. Albers

9

Ukkonen’s algorithm

This is an online approach in the sense that in each step, the implicit

suffix tree for a prefix of t is created without knowledge of the rest of

the input string t.

Since the algorithm reads the input string character by character from

left to right, it works incrementally.

WS 2018/19 © S. Albers

10WS 2018/19

Ukkonen’s algorithm

Incremental construction of an implicit suffix tree:

Induction basis: ST() consists of the root only.

Induction step: ST(t1 ti) is extended to ST(t1 ... titi+1) for all i < n.

Let Ti denote the implicit suffix tree for t[1...i].

• First, we construct T1: This tree has a single edge labeled with
character t1.

• In phase i+1, we construct tree Ti+1 from Ti.

• We iterate for i = 1,…,n–1.

© S. Albers

11WS 2018/19

Ukkonen’s algorithm

Pseudo code for Ukk:

Construct tree T1.

for i = 1 to n–1 do

begin {phase i+1}

for j = 1 to i +1 do

begin {extension j}

In the current tree find the end of the path from the root

labeled t[j ... i]. If necessary, extend that path by adding

character t[i+1], thus ensuring that string t[j...i+1] is in the

tree.

end;

end;

© S. Albers

12WS 2018/19

Ukkonen’s algorithm

t = a c c a $

1 1 2 1 2 1 3 2

step 1 step 2 step 3 step 4

T1 T2 T3 T4

© S. Albers

13WS 2018/19

Ukkonen’s algorithm

• In phase i+1, string t[1...i+1] is first inserted into the tree,

followed by strings t[2...i+1], t[3...i+1],... (in extensions 1,2,3,...)

• In extension j of phase i+1, the end of the path from the root

labeled with substring t[j...i] is determined. Then this substring is

extended by adding the character t[i+1] to its end (unless t[i+1]

already appears there).

• Extension i+1 of phase i+1 inserts the single character string t[i+1]

into the tree (unless it is already there).

© S. Albers

14WS 2018/19

Ukk: Suffix extension rules

Extension j (in phase i+1) results from applying one of the following rules:

Rule 1: If the path t[j...i] ends at a leaf, character t[i+1] is added to

the end of the label on that leaf edge.

Rule 2: If no path from the end of string t[j...i] starts with character t [i+1],

then a new leaf edge labeled with character t[i+1] is created. A new

internal node will also be created there if t[j...i] ends inside an edge.

(This is the only extension that increases the number of leaves!

The new leaf represents the suffix starting at position j.)

Rule 3: If some path from the end of string t[j ...i] starts with character t[i+1],

then string t[j…i +1] is already in the current tree, so we do nothing.

© S. Albers

15WS 2018/19

2

extend suffix 2

rule 1

Ukkonen’s algorithm

t = a c c a $

t [1...3] = acc

t [1...4] = acca

1 2 1
2

extend suffix 1

rule 1

t[1..4] = acca

1

t[2..4] = cca

1 3 2

t[3..4] = ca [4..4] = a

a is already in

the tree

rule 3

T3

1 3 2

T4

extend suffix 3

rule 2

© S. Albers

16WS 2018/19

Ukkonen’s algorithm

During phase i+1 (when Ti+1 is constructed from Ti) the following holds:

(1) If rule 3 applies in extension j, then the path labeled t [j...i] in Ti must

continue with character t [i+1]. So, any path labeled t [j´... i] for j´ j

also continues with character t [i+1].

Therefore, rule 3 again applies in extensions j´= j+1,..., i+1.

Once rule 3 applies in an extension of phase i+1, this phase may be

ended.

© S. Albers

17WS 2018/19

Ukkonen’s algorithm

(2) If a leaf is created in Ti, then it will remain a leaf in all successive

trees Ti´ for i´> i (once a leaf, always a leaf!).

Reason: A leaf edge is never extended.

1 3 2

T4

© S. Albers

18WS 2018/19

Ukkonen’s algorithm

Implication:

• Leaf 1 is created in phase 1. In each phase i+1 there is an initial

sequence of successive extensions (starting with extension 1)

where rule 1 or rule 2 applies.

• Let ji denote the last extension in this sequence of phase i.

Then: ji  ji+1

Phase i, extension j Phase i+1, extension j

Rule 1 Rule 1

Rule 2 Rule 1

© S. Albers

19WS 2018/19

Ukkonen’s algorithm

Extensions according to rule 1 may be performed implicitly!

© S. Albers

20WS 2018/19

Ukkonen’s algorithm

Improving the algorithm:

In phase i+1, rule 1 applies in all extensions j for j  [1, ji].

Only constant time is required to do those extensions implicitly.

If j  [ji +1, i+1], then find the end of the path labeled t[j ... i] and

extend it by character t[i+1] according to rules 2 or 3.

If rule 3 applies, set ji+1 = j -1 and terminate phase i+1.

© S. Albers

21WS 2018/19

Ukkonen’s algorithm

Example:

phase 1: compute extensions [1 ... j1]

phase 2: compute extensions (j1 ... j2]

phase 3: compute extensions (j2 ... j3]

....

phase i-1: compute extensions (ji-2 ... ji-1]

phase i: compute extensions (ji-1 ... ji]

© S. Albers

22WS 2018/19

Ukkonen’s algorithm

• As long as explicit extensions are performed, keep track of the

index j* of the current explicit extension.

• During the execution of the algorithm, j* increases.

• As there are only n phases (where n = |t|) and j* is bounded

by n, the algorithm performs only n explicit extensions.

© S. Albers

23WS 2018/19

Ukkonen’s algorithm

Extended pseudo code for Ukk:

Construct tree T1; j1 = 1;

for i = 1 to n – 1 do

begin {phase i+1}

Do all implicit extensions.

for j = ji +1 to i +1 do

begin {extension j}

In the current tree find the end of the path from the root labeled
t[j ... i]. If necessary, extend that path by adding character t[i+1],
thus ensuring that string t[j...i+1] is in the tree.

ji+1 := j;

if rule 3 was applied then ji+1 := j – 1 and phase i+1 ends;

end;

end;

© S. Albers

24

i: 0 1 2 3 4 5 6 7 8 9

 *p pu puc pucu pucup pucupc pucupcu pucupcup pucupcupu

*u uc ucu ucup ucupc ucupcu ucupcup ucupcupu

*c cu cup cupc cupcu cupcup cupcupu

u *up upc upcu upcup upcupu

p *pc pcu pcup pcupu

c cu cup *cupu

u up *upu

p pu

u

Ukkonen’s algorithm

t = pucupcupu

• Suffixes that cause an extension

according to rule 2 are marked with *.

• Underlined suffixes indicate the last

extension where rules 1 or 2 apply.

• Suffixes that end a phase (the first time

rule 3 applies) are colored blue.

WS 2018/19 © S. Albers

25WS 2018/19

Ukkonen’s algorithm

The running time may be improved using suffix links.

Definition: Let x? be an arbitrary string where x is a single character

and ? some (possibly empty) substring.

For an internal node v with edge labels x? the following holds:

If there exists a node s(v) with edge label ?, then there

is a pointer from v to s(v) which is called a suffix link.

s(v)

v

© S. Albers

26

Ukkonen’s algorithm

s(v)

v

Idea:

By following the suffix links, we do not have to start each search for a

split point at the root node. Instead, we can use the suffix links in

order to determine these nodes more efficiently, i.e. in constant

amortized time.

WS 2018/19 © S. Albers

27WS 2018/19

Ukkonen’s algorithm

• Using suffix links, extension rules 2 and 3 can be applied more

efficiently.

• Any explicit extension takes amortized O(1) time (not shown here).

• Since there are only n explicit extensions, the total running time of

Ukkonen’s algorithm is O(n) (where n = |t|).

© S. Albers

28WS 2018/19

Ukkonen’s algorithm

The true suffix tree:

The final implicit suffix tree Tn can be converted to a true suffix tree in

O(n) time.

(1) Add a terminal symbol $ to the end of t.

(2) Let Ukkonen’s algorithm continue with this character.

The resulting tree is the true suffix tree where no suffix is prefix of

another suffix. Thus each suffix ends at a leaf.

© S. Albers

