Complementary Slackness

Lemma 2

Assume a linear program $P=\max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{T} y \mid A^{T} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

Complementary Slackness

Lemma 2

Assume a linear program $P=\max \left\{c^{T} x \mid A x \leq b ; x \geq 0\right\}$ has solution x^{*} and its dual $D=\min \left\{b^{T} y \mid A^{T} y \geq c ; y \geq 0\right\}$ has solution y^{*}.

1. If $x_{j}^{*}>0$ then the j-th constraint in D is tight.
2. If the j-th constraint in D is not tight than $x_{j}^{*}=0$.
3. If $y_{i}^{*}>0$ then the i-th constraint in P is tight.
4. If the i-th constraint in P is not tight than $y_{i}^{*}=0$.

If we say that a variable $x_{j}^{*}\left(y_{i}^{*}\right)$ has slack if $x_{j}^{*}>0\left(y_{i}^{*}>0\right)$, (i.e., the corresponding variable restriction is not tight) and a contraint has slack if it is not tight, then the above says that for a primal-dual solution pair it is not possible that a constraint and its corresponding (dual) variable has slack.

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Because of strong duality we then get

$$
c^{T} x^{*}=y^{* T} A x^{*}=b^{T} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{T} A-c^{T}\right)_{j} x_{j}^{*}=0
$$

Proof: Complementary Slackness

Analogous to the proof of weak duality we obtain

$$
c^{T} x^{*} \leq y^{* T} A x^{*} \leq b^{T} y^{*}
$$

Because of strong duality we then get

$$
c^{T} x^{*}=y^{* T} A x^{*}=b^{T} y^{*}
$$

This gives e.g.

$$
\sum_{j}\left(y^{T} A-c^{T}\right)_{j} x_{j}^{*}=0
$$

From the constraint of the dual it follows that $y^{T} A \geq c^{T}$. Hence the left hand side is a sum over the product of non-negative numbers. Hence, if e.g. $\left(y^{T} A-c^{T}\right)_{j}>0$ (the j-th constraint in the dual is not tight) then $x_{j}=0$ (2.). The result for (1./3./4.) follows similarly.

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{aligned}
& \min 480 C+160 H+1190 M \\
& \text { s.t. } 5 C+4 H+35 M \geq 13 \\
& 15 C+4 H+20 M \geq 23 \\
& C, H, M \geq 0
\end{aligned}
$$

Interpretation of Dual Variables

- Brewer: find mix of ale and beer that maximizes profits

$$
\begin{aligned}
& \max 13 a+23 b \\
& \text { s.t. } 5 a+15 b \leq 480 \\
& 4 a+4 b \leq 160 \\
& 35 a+20 b \leq 1190 \\
& a, b \geq 0
\end{aligned}
$$

- Entrepeneur: buy resources from brewer at minimum cost C, H, M : unit price for corn, hops and malt.

$$
\begin{array}{rrrrr}
\min 480 C & +160 H & +1190 M \\
\text { s.t. } & 5 C & + & 4 H & + \\
& 15 C & + & 4 H & + \\
& & & & \\
& & C, H, M & \geq 0
\end{array}
$$

Note that brewer won't sell (at least not all) if e.g. $5 C+4 H+35 M<13$ as then brewing ale would be advantageous.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{T} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$.

Interpretation of Dual Variables

Marginal Price:

- How much money is the brewer willing to pay for additional amount of Corn, Hops, or Malt?
- We are interested in the marginal price, i.e., what happens if we increase the amount of Corn, Hops, and Malt by $\varepsilon_{C}, \varepsilon_{H}$, and ε_{M}, respectively.
The profit increases to $\max \left\{c^{T} x \mid A x \leq b+\varepsilon ; x \geq 0\right\}$. Because of strong duality this is equal to

$$
\begin{array}{|rrl|}
\hline \min & \left(b^{T}+\epsilon^{T}\right) y & \\
\text { s.t. } & A^{T} y & \geq c \\
& y & \geq 0
\end{array}
$$

Interpretation of Dual Variables

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).

Interpretation of Dual Variables

If ϵ is "small" enough then the optimum dual solution y^{*} might not change. Therefore the profit increases by $\sum_{i} \varepsilon_{i} y_{i}^{*}$.

Therefore we can interpret the dual variables as marginal prices.
Note that with this interpretation, complementary slackness becomes obvious.

- If the brewer has slack of some resource (e.g. corn) then he is not willing to pay anything for it (corresponding dual variable is zero).
- If the dual variable for some resource is non-zero, then an increase of this resource increases the profit of the brewer. Hence, it makes no sense to have left-overs of this resource. Therefore its slack must be zero.

Example

Example

Example

Example

Example

Example

The change in profit when increasing hops by one unit is
$=c_{B}^{T} A_{B}^{-1} e_{h}$.

Example

The change in profit when increasing hops by one unit is

$$
=\underbrace{c_{B}^{T} A_{B}^{-1}}_{y^{*}} e_{h}
$$

Of course, the previous argument about the increase in the primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of one resource may not allow the objective value to increase.

