Flows

Definition 2

An (s,t)-flow in a (complete) directed graph $G=(V,V\times V,c)$ is a function $f:V\times V\mapsto \mathbb{R}^+_0$ that satisfies

1. For each edge (x, y)

$$0 \le f_{xy} \le c_{xy}$$
.

(capacity constraints)

2. For each $v \in V \setminus \{s, t\}$

$$\sum_{x} f_{vx} = \sum_{x} f_{xv} .$$

(flow conservation constraints)

17. Apr. 2018 110/116

LP-Formulation of Maxflow

$$\begin{array}{lllll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) : & 1 \ell_{xy} - 1 p_x + 1 p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) : & 1 \ell_{sy} + 1 p_y \ \geq & 1 \\ & f_{xs} \ (x \neq s,t) : & 1 \ell_{xs} - 1 p_x & \geq & -1 \\ & f_{ty} \ (y \neq s,t) : & 1 \ell_{ty} + 1 p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) : & 1 \ell_{xt} - 1 p_x & \geq & 0 \\ & f_{st} : & 1 \ell_{st} & \geq & 1 \\ & f_{ts} : & 1 \ell_{ts} & \geq & -1 \\ & \ell_{xy} & \geq & 0 \end{array}$$

Flows

Definition 3

The value of an (s, t)-flow f is defined as

$$val(f) = \sum_{x} f_{sx} - \sum_{x} f_{xs} .$$

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.

5.5 Computing Duals

17. Apr. 2018 111/116

LP-Formulation of Maxflow

$$\begin{array}{llll} & \sum_{(xy)} c_{xy} \ell_{xy} \\ & \text{s.t.} & f_{xy} \ (x,y \neq s,t) \colon & 1\ell_{xy} - 1p_x + 1p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) \colon & 1\ell_{sy} - & 1 + 1p_y \ \geq & 0 \\ & f_{xs} \ (x \neq s,t) \colon & 1\ell_{xs} - 1p_x + & 1 \ \geq & 0 \\ & f_{ty} \ (y \neq s,t) \colon & 1\ell_{ty} - & 0 + 1p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) \colon & 1\ell_{xt} - 1p_x + & 0 \ \geq & 0 \\ & f_{st} \colon & 1\ell_{st} - & 1 + & 0 \ \geq & 0 \\ & f_{ts} \colon & 1\ell_{ts} - & 0 + & 1 \ \geq & 0 \\ & \ell_{xy} \ \geq & 0 \end{array}$$

LP-Formulation of Maxflow

```
\begin{array}{llll} & & \sum_{(xy)} c_{xy} \ell_{xy} \\ \text{s.t.} & f_{xy} \ (x,y \neq s,t) : & 1 \ell_{xy} - 1 p_x + 1 p_y \ \geq & 0 \\ & f_{sy} \ (y \neq s,t) : & 1 \ell_{sy} - p_s + 1 p_y \ \geq & 0 \\ & f_{xs} \ (x \neq s,t) : & 1 \ell_{xs} - 1 p_x + p_s \ \geq & 0 \\ & f_{ty} \ (y \neq s,t) : & 1 \ell_{ty} - p_t + 1 p_y \ \geq & 0 \\ & f_{xt} \ (x \neq s,t) : & 1 \ell_{xt} - 1 p_x + p_t \ \geq & 0 \\ & f_{st} : & 1 \ell_{st} - p_s + p_t \ \geq & 0 \\ & f_{ts} : & 1 \ell_{ts} - p_t + p_s \ \geq & 0 \\ & \ell_{xy} \ \geq & 0 \end{array}
```

with $p_t = 0$ and $p_s = 1$.

Harald Räcke

5.5 Computing Duals

17. Apr. 2018 114/116

One can show that there is an optimum LP-solution for the dual problem that gives an integral assignment of variables.

This means $p_X = 1$ or $p_X = 0$ for our case. This gives rise to a cut in the graph with vertices having value 1 on one side and the other vertices on the other side. The objective function then evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear programming duality.

Harald Räcke

5.5 Computing Duals

17. Apr. 2018 116/116

LP-Formulation of Maxflow

min
$$\sum_{(xy)} c_{xy} \ell_{xy}$$
s.t. f_{xy} : $1\ell_{xy} - 1p_x + 1p_y \ge 0$

$$\ell_{xy} \ge 0$$

$$p_s = 1$$

$$p_t = 0$$

We can interpret the $\ell_{\chi\gamma}$ value as assigning a length to every edge.

The value p_x for a variable, then can be seen as the distance of x to t (where the distance from s to t is required to be 1 since $p_s = 1$).

The constraint $p_X \le \ell_{XY} + p_Y$ then simply follows from triangle inequality $(d(x,t) \le d(x,y) + d(y,t) \Rightarrow d(x,t) \le \ell_{XY} + d(y,t))$.

5.5 Computing Duals

17. Apr. 2018

115/116