#### Knapsack:

Given a set of items  $\{1, ..., n\}$ , where the *i*-th item has weight  $w_i \in \mathbb{N}$  and profit  $p_i \in \mathbb{N}$ , and given a threshold W. Find a subset  $I \subseteq \{1, ..., n\}$  of items of total weight at most W such that the profit is maximized (we can assume each  $w_i \leq W$ ).





22. Jun. 2018 347/393

#### Knapsack:

Given a set of items  $\{1, ..., n\}$ , where the *i*-th item has weight  $w_i \in \mathbb{N}$  and profit  $p_i \in \mathbb{N}$ , and given a threshold W. Find a subset  $I \subseteq \{1, ..., n\}$  of items of total weight at most W such that the profit is maximized (we can assume each  $w_i \leq W$ ).

| max  |                                  | $\sum_{i=1}^{n} p_i x_i$ |        |           |
|------|----------------------------------|--------------------------|--------|-----------|
| s.t. |                                  | $\sum_{i=1}^{n} w_i x_i$ | $\leq$ | W         |
|      | $\forall i \in \{1, \ldots, n\}$ | $x_i$                    | $\in$  | $\{0,1\}$ |



16.1 Knapsack

22. Jun. 2018 347/393

Algorithm 1 Knapsack1:  $A(1) \leftarrow [(0,0), (p_1, w_1)]$ 2: for  $j \leftarrow 2$  to n do3:  $A(j) \leftarrow A(j-1)$ 4: for each  $(p, w) \in A(j-1)$  do5: if  $w + w_j \le W$  then6: add  $(p + p_j, w + w_j)$  to A(j)7: remove dominated pairs from A(j)8: return  $\max_{(p,w)\in A(n)} p$ 

The running time is  $\mathcal{O}(n \cdot \min\{W, P\})$ , where  $P = \sum_i p_i$  is the total profit of all items. This is only pseudo-polynomial.



#### **Definition 2**

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.



Let *M* be the maximum profit of an element.



16.1 Knapsack

- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .



- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .
- Set  $p'_i := \lfloor p_i / \mu \rfloor$  for all *i*.



- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .
- Set  $p'_i := \lfloor p_i / \mu \rfloor$  for all *i*.
- Run the dynamic programming algorithm on this revised instance.



- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .
- Set  $p'_i := \lfloor p_i / \mu \rfloor$  for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

 $\mathcal{O}(nP')$ 



- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .
- Set  $p'_i := \lfloor p_i / \mu \rfloor$  for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

 $\mathcal{O}(nP') = \mathcal{O}\left(n\sum_i p'_i\right)$ 



16.1 Knapsack

- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .
- Set  $p'_i := \lfloor p_i / \mu \rfloor$  for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right)$$



16.1 Knapsack

- Let *M* be the maximum profit of an element.
- Set  $\mu := \epsilon M/n$ .
- Set  $p'_i := \lfloor p_i / \mu \rfloor$  for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \ .$$



16.1 Knapsack

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S}p_i$$



Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i\in S} p_i \ge \mu \sum_{i\in S} p'_i$$



Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$



Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$



Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$



Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$
$$= \sum_{i \in O} p_i - \epsilon M$$



16.1 Knapsack

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$
$$\ge \mu \sum_{i \in O} p'_i$$
$$\ge \sum_{i \in O} p_i - |O|\mu$$
$$\ge \sum_{i \in O} p_i - n\mu$$
$$= \sum_{i \in O} p_i - \epsilon M$$
$$\ge (1 - \epsilon) \text{OPT} .$$



16.1 Knapsack

The previous analysis of the scheduling algorithm gave a makespan of

$$rac{1}{m}\sum_{j
eq \ell}p_j+p_\ell$$

where  $\ell$  is the last job to complete.



The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job to complete.

Together with the obervation that if each  $p_i \ge \frac{1}{3}C_{\max}^*$  then LPT is optimal this gave a 4/3-approximation.



Partition the input into long jobs and short jobs.



Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$



Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.



Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

#### Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.



We still have a cost of

$$rac{1}{m}\sum_{j
eq \ell}p_j+p_\ell$$

where  $\ell$  is the last job (this only requires that all machines are busy before time  $S_{\ell}$ ).



We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job (this only requires that all machines are busy before time  $S_{\ell}$ ).

If  $\ell$  is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.



We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job (this only requires that all machines are busy before time  $S_{\ell}$ ).

If  $\ell$  is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If  $\ell$  is a short job its length is at most

 $p_\ell \leq \sum_j p_j / (mk)$ 

which is at most  $C^*_{\max}/k$ .



#### Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$ 

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most  $m^{km}$ , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

#### Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose  $k = \lceil \frac{1}{\epsilon} \rceil$ .



Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$ 

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most  $m^{km}$ , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

#### Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose  $k = \lceil \frac{1}{\epsilon} \rceil$ .



Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$ 

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most  $m^{km}$ , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

### Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose  $k = \lceil \frac{1}{\epsilon} \rceil$ .



We first design an algorithm that works as follows: On input of T it either finds a schedule of length  $(1 + \frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \ge \frac{1}{m} \sum_j p_j$ ).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.



#### We first design an algorithm that works as follows:

On input of *T* it either finds a schedule of length  $(1 + \frac{1}{k})T$  or certifies that no schedule of length at most *T* exists (assume  $T \ge \frac{1}{m}\sum_{j} p_{j}$ ).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.



We first design an algorithm that works as follows: On input of T it either finds a schedule of length  $(1 + \frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \ge \frac{1}{m} \sum_j p_j$ ).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.



We first design an algorithm that works as follows: On input of T it either finds a schedule of length  $(1 + \frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \ge \frac{1}{m} \sum_{j} p_{j}$ ).

- A job is long if its size is larger than T/k.
- Otw. it is a short job.



### • We round all long jobs down to multiples of $T/k^2$ .

- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.



- We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.



- We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.



- We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.



# After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of  $T/k^2$  going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$  .



After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of  $T/k^2$  going from rounded sizes to original sizes gives that the Makespan is at most



After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of  $T/k^2$  going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.



# During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most



During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T \;\;.$$



Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i \in \{k, ..., k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$ (described by a vector of length  $k^2$  where, the *i*-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the *i*-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k + 1)^{k^2}$  different vectors.



Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i \in \{k, ..., k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$ (described by a vector of length  $k^2$  where, the *i*-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the *i*-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k + 1)^{k^2}$  different vectors.



Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i \in \{k, ..., k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$ (described by a vector of length  $k^2$  where, the *i*-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the *i*-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k + 1)^{k^2}$  different vectors.



Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i \in \{k, ..., k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$ (described by a vector of length  $k^2$  where, the *i*-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the *i*-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k + 1)^{k^2}$  different vectors.



If  $OPT(n_1, \ldots, n_{k^2}) \leq m$  we can schedule the input.

We have

 $OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0 \\ \infty & \text{otw.} \end{cases}$ 

where C is the set of all configurations.

Hence, the running time is roughly  $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ .



### If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

 $\begin{aligned} & \text{OPT}(n_1, \dots, n_{k^2}) \\ &= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geqq 0 \\ & \infty & \text{otw.} \end{cases} \end{aligned}$ 

where C is the set of all configurations.

Hence, the running time is roughly  $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ .



22. Jun. 2018 361/393

### If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1,...,n_{k^2}) = \begin{cases} 0 & (n_1,...,n_{k^2}) = 0\\ 1 + \min_{(s_1,...,s_{k^2}) \in C} OPT(n_1 - s_1,...,n_{k^2} - s_{k^2}) & (n_1,...,n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly  $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ .



### If $OPT(n_1, \ldots, n_{k^2}) \leq m$ we can schedule the input.

We have

$$OPT(n_1, \dots, n_{k^2}) = \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0\\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} OPT(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly  $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ .



#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a <mark>strongly NP-complete</mark> problem.

#### Theorem 4

There is no FPTAS for problems that are strongly NP-hard.



#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

**Theorem 4** There is no FPTAS for problems that are strongly NP-hard



#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

#### **Theorem 4** There is no FPTAS for problems that are strongly NP-hard.



#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

#### **Theorem 4**

There is no FPTAS for problems that are strongly NP-hard.



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

 $ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$ 

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right)OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



- Suppose we have an instance with polynomially bounded processing times p<sub>i</sub> ≤ q(n)
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\operatorname{poly}(n,k)) = \mathcal{O}(\operatorname{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP



# **More General**

Let  $OPT(n_1, ..., n_A)$  be the number of machines that are required to schedule input vector  $(n_1, ..., n_A)$  with Makespan at most T (*A*: number of different sizes).

If  $OPT(n_1, \ldots, n_A) \le m$  we can schedule the input.

$$OPT(n_1, ..., n_A) = 0$$

$$= \begin{cases} 0 & (n_1, ..., n_A) = 0 \\ 1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$ , where B is the number of jobs that possibly can fit on the same machine.

The running time is then  $O((B+1)^A n^A)$  because the dynamic programming table has just  $n^A$  entries.

# **More General**

Let  $OPT(n_1, ..., n_A)$  be the number of machines that are required to schedule input vector  $(n_1, ..., n_A)$  with Makespan at most T (*A*: number of different sizes).

If  $OPT(n_1, ..., n_A) \le m$  we can schedule the input.

$$OPT(n_1, ..., n_A) = 0$$

$$= \begin{cases} 0 & (n_1, ..., n_A) = 0 \\ 1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$ , where B is the number of jobs that possibly can fit on the same machine.

The running time is then  $O((B+1)^A n^A)$  because the dynamic programming table has just  $n^A$  entries.

## **More General**

Let  $OPT(n_1, ..., n_A)$  be the number of machines that are required to schedule input vector  $(n_1, ..., n_A)$  with Makespan at most T (*A*: number of different sizes).

If  $OPT(n_1, ..., n_A) \le m$  we can schedule the input.

$$OPT(n_1,...,n_A) = \begin{cases} 0 & (n_1,...,n_A) = 0\\ 1 + \min_{(s_1,...,s_A) \in C} OPT(n_1 - s_1,...,n_A - s_A) & (n_1,...,n_A) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$ , where *B* is the number of jobs that possibly can fit on the same machine.

The running time is then  $O((B+1)^A n^A)$  because the dynamic programming table has just  $n^A$  entries.

Given *n* items with sizes  $s_1, \ldots, s_n$  where

 $1 > s_1 \ge \cdots \ge s_n > 0$ .

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

**Theorem 5** There is no  $\rho$ -approximation for Bin Packing with  $\rho < 3/2$  unless P = NP.



16.3 Bin Packing

22. Jun. 2018 365/393

Given *n* items with sizes  $s_1, \ldots, s_n$  where

```
1 > s_1 \ge \cdots \ge s_n > 0.
```

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

#### **Theorem 5**

There is no  $\rho$ -approximation for Bin Packing with  $\rho < 3/2$  unless P = NP.



#### Proof

▶ In the partition problem we are given positive integers  $b_1, \ldots, b_n$  with  $B = \sum_i b_i$  even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting s<sub>i</sub> := 2b<sub>i</sub>/B and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.



#### Proof

▶ In the partition problem we are given positive integers  $b_1, \ldots, b_n$  with  $B = \sum_i b_i$  even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting s<sub>i</sub> := 2b<sub>i</sub>/B and asking whether we can pack the resulting items into 2 bins or not.
- A  $\rho$ -approximation algorithm with  $\rho < 3/2$  cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.



#### Proof

▶ In the partition problem we are given positive integers  $b_1, \ldots, b_n$  with  $B = \sum_i b_i$  even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting s<sub>i</sub> := 2b<sub>i</sub>/B and asking whether we can pack the resulting items into 2 bins or not.
- A  $\rho$ -approximation algorithm with  $\rho < 3/2$  cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.



#### Proof

▶ In the partition problem we are given positive integers  $b_1, ..., b_n$  with  $B = \sum_i b_i$  even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting s<sub>i</sub> := 2b<sub>i</sub>/B and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.



#### **Definition 6**

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms  $\{A_{\epsilon}\}$  along with a constant c such that  $A_{\epsilon}$  returns a solution of value at most  $(1 + \epsilon)$ OPT + c for minimization problems.

Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.

However, we will develop an APTAS for 8in Packing.



16.3 Bin Packing

#### **Definition 6**

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms  $\{A_{\epsilon}\}$  along with a constant c such that  $A_{\epsilon}$  returns a solution of value at most  $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.



16.3 Bin Packing

#### **Definition 6**

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms  $\{A_{\epsilon}\}$  along with a constant c such that  $A_{\epsilon}$  returns a solution of value at most  $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.



Again we can differentiate between small and large items.

Lemma 7

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$  bins, where  $SIZE(I) = \sum_i s_i$  is the sum of all item sizes.

- If after Greedy we use more than 7 bins, all bins (apart from the last) must be full to at least 7 2
- Hence, ed. (a) = 0.0000 (0.000) where edits the number of nearly-full bins.
- This gives the lemma.



16.3 Bin Packing

22. Jun. 2018 368/393

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$  bins, where  $SIZE(I) = \sum_i s_i$  is the sum of all item sizes.

- ► If after Greedy we use more than  $\ell$  bins, all bins (apart from the last) must be full to at least  $1 \gamma$ .
- Hence, r(1 − y) ≤ SIZE(I) where r is the number of nearly-full bins.

This gives the lemma.



16.3 Bin Packing

Again we can differentiate between small and large items.

#### Lemma 7

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$  bins, where  $SIZE(I) = \sum_i s_i$  is the sum of all item sizes.

- ► If after Greedy we use more than  $\ell$  bins, all bins (apart from the last) must be full to at least  $1 \gamma$ .
- Hence, r(1 − y) ≤ SIZE(I) where r is the number of nearly-full bins.

```
This gives the lemma.
```



Again we can differentiate between small and large items.

#### Lemma 7

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$  bins, where  $SIZE(I) = \sum_i s_i$  is the sum of all item sizes.

- ► If after Greedy we use more than  $\ell$  bins, all bins (apart from the last) must be full to at least  $1 \gamma$ .
- Hence, r(1 − γ) ≤ SIZE(I) where r is the number of nearly-full bins.
- This gives the lemma.



Choose  $\gamma = \epsilon/2$ . Then we either use  $\ell$  bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.



16.3 Bin Packing

#### Linear Grouping:

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.



#### Linear Grouping:

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.



#### Linear Grouping:

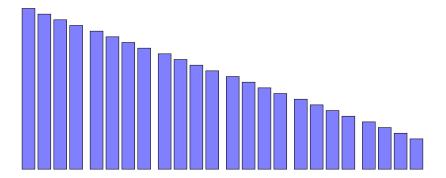
- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.



#### Linear Grouping:

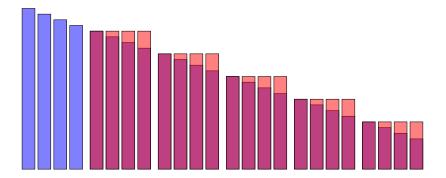
- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.





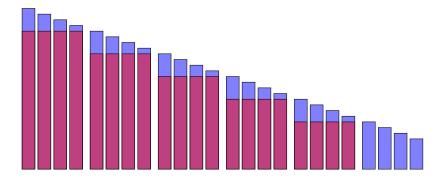


16.3 Bin Packing



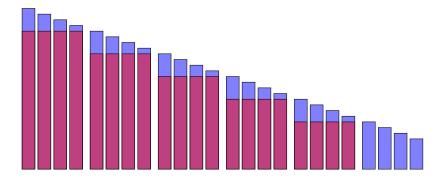


16.3 Bin Packing





16.3 Bin Packing





16.3 Bin Packing

Proof 1:

- Any bin packing for / gives a bin packing for // as follows.
- Pack the items of group 2, where in the packing for 2 the items for group 2 have been packed;
- Pack the items of groups 3, where in the packing for 3 the items for group 3 have been packed;



16.3 Bin Packing

### Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;



#### Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;



#### Proof 1:

- Any bin packing for *I* gives a bin packing for *I'* as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;



#### Proof 1:

. . .

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;



### Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;



16.3 Bin Packing

#### Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;



16.3 Bin Packing

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;



Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...



We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

### Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

#### Can we do better?

In the following we show how to obtain a solution where the number of bins is only

 $OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$ .

Note that this is usually better than a guarantee of

 $(1+\epsilon)\operatorname{OPT}(I)+1$ .



16.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

 $OPT(I) + O(log^2(SIZE(I)))$ .

Note that this is usually better than a guarantee of

 $(1+\epsilon)\operatorname{OPT}(I)+1$ .



16.4 Advanced Rounding for Bin Packing

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

```
OPT(I) + O(log^2(SIZE(I))).
```

Note that this is usually better than a guarantee of

```
(1+\epsilon) \operatorname{OPT}(I) + 1 .
```



16.4 Advanced Rounding for Bin Packing

# **Configuration LP**

### **Change of Notation:**

- Group pieces of identical size.
- Let s<sub>1</sub> denote the largest size, and let b<sub>1</sub> denote the number of pieces of size s<sub>1</sub>.
- $\blacktriangleright$   $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
  - s<sub>m</sub> smallest size and  $b_m$  number of pieces of size  $s_m$ .



# **Configuration LP**

#### **Change of Notation:**

- Group pieces of identical size.
- Let s<sub>1</sub> denote the largest size, and let b<sub>1</sub> denote the number of pieces of size s<sub>1</sub>.
- s<sub>2</sub> is second largest size and b<sub>2</sub> number of pieces of size s<sub>2</sub>;
   ...
- s<sub>m</sub> smallest size and  $b_m$  number of pieces of size  $s_m$ .



#### **Change of Notation:**

- Group pieces of identical size.
- Let s<sub>1</sub> denote the largest size, and let b<sub>1</sub> denote the number of pieces of size s<sub>1</sub>.
- ▶  $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;

 $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .



#### **Change of Notation:**

- Group pieces of identical size.
- Let s<sub>1</sub> denote the largest size, and let b<sub>1</sub> denote the number of pieces of size s<sub>1</sub>.
- ▶  $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
- ▶ ...

 $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .



#### **Change of Notation:**

- Group pieces of identical size.
- Let s<sub>1</sub> denote the largest size, and let b<sub>1</sub> denote the number of pieces of size s<sub>1</sub>.
- ▶  $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
- ▶ ...
- s  $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .



# A possible packing of a bin can be described by an *m*-tuple $(t_1, \ldots, t_m)$ , where $t_i$ describes the number of pieces of size $s_i$ . Clearly,



We call a vector that fulfills the above constraint a configuration.



16.4 Advanced Rounding for Bin Packing

A possible packing of a bin can be described by an *m*-tuple  $(t_1, \ldots, t_m)$ , where  $t_i$  describes the number of pieces of size  $s_i$ . Clearly,

 $\sum_i t_i \cdot s_i \leq 1 \; .$ 

We call a vector that fulfills the above constraint a configuration.



16.4 Advanced Rounding for Bin Packing

A possible packing of a bin can be described by an *m*-tuple  $(t_1, \ldots, t_m)$ , where  $t_i$  describes the number of pieces of size  $s_i$ . Clearly,

 $\sum_i t_i \cdot s_i \le 1 \; .$ 

We call a vector that fulfills the above constraint a configuration.



Let N be the number of configurations (exponential).

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).



16.4 Advanced Rounding for Bin Packing

#### Let N be the number of configurations (exponential).

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).





16.4 Advanced Rounding for Bin Packing

Let N be the number of configurations (exponential).

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).





16.4 Advanced Rounding for Bin Packing

Let N be the number of configurations (exponential).

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

$$\begin{array}{c|cccc} \min & & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & & x_j & \text{integral} \end{array}$$



16.4 Advanced Rounding for Bin Packing

#### How to solve this LP?

later...



We can assume that each item has size at least 1/SIZE(I).



#### Sort items according to size (monotonically decreasing).

- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G<sub>1</sub> is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G<sub>2</sub>,..., G<sub>r-1</sub>.
- Only the size of items in the last group G<sub>r</sub> may sum up to less than 2.



- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G<sub>1</sub> is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G<sub>2</sub>,..., G<sub>r-1</sub>.
- Only the size of items in the last group G<sub>r</sub> may sum up to less than 2.



- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G<sub>1</sub> is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G<sub>2</sub>,..., G<sub>r-1</sub>.
- Only the size of items in the last group G<sub>r</sub> may sum up to less than 2.



- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- I.e., G<sub>1</sub> is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G<sub>2</sub>,..., G<sub>r-1</sub>.
- Only the size of items in the last group  $G_r$  may sum up to less than 2.



- Round all items in a group to the size of the largest group member.
- Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- Observe that  $n_i \ge n_{i-1}$ .



- Round all items in a group to the size of the largest group member.
- Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- Observe that  $n_i \ge n_{i-1}$ .



- Round all items in a group to the size of the largest group member.
- Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- Observe that  $n_i \ge n_{i-1}$ .



- Round all items in a group to the size of the largest group member.
- Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- Observe that  $n_i \ge n_{i-1}$ .



- Each group that survives (recall that (5) and (5) are deleted) has total size at least (5)
- Hence, the number of surviving groups is at most SU2009/22.
- All items in a group have the same size in  $\ell$  .



- Each group that survives (recall that G<sub>1</sub> and G<sub>r</sub> are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.



- Each group that survives (recall that G<sub>1</sub> and G<sub>r</sub> are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.



- Each group that survives (recall that G<sub>1</sub> and G<sub>r</sub> are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- All items in a group have the same size in I'.



#### **Lemma 11** The total size of deleted items is at most $O(\log(SIZE(I)))$ .

- The total size of items in Ge and Ge is at most 6 as a group has total size at most 5.
- Consider a group (i) that has strictly more items than (i) and items than (i) and items than (i) and items that (i



- since the average piece size is only  $\partial/m_{
  m ell}$
- Summing over all 1 that have on enough regives a bound of attention most

(note that is a set of since we assume that the size of each item is at least ( ///////).

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- The total size of items in G<sub>1</sub> and G<sub>r</sub> is at most 6 as a group has total size at most 3.
- Consider a group G<sub>i</sub> that has strictly more items than G<sub>i-1</sub>.
   It discards n<sub>i</sub> n<sub>i-1</sub> pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all *i* that have n<sub>i</sub> > n<sub>i-1</sub> gives a bound of at most

 n<sub>r-1</sub> 3

$$\sum_{i=1}^{N} \frac{j}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- The total size of items in G<sub>1</sub> and G<sub>r</sub> is at most 6 as a group has total size at most 3.
- Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- lt discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all *i* that have n<sub>i</sub> > n<sub>i-1</sub> gives a bound of at most

 n<sub>r-1</sub> 3

$$\sum_{i=1}^{N} \frac{\beta_i}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \quad .$$

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- The total size of items in G<sub>1</sub> and G<sub>r</sub> is at most 6 as a group has total size at most 3.
- Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- It discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all *i* that have  $n_i > n_{i-1}$  gives a bound of at most  $\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le O(\log(\text{SIZE}(I))) .$ 

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- The total size of items in G<sub>1</sub> and G<sub>r</sub> is at most 6 as a group has total size at most 3.
- Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- It discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all *i* that have  $n_i > n_{i-1}$  gives a bound of at most  $n_{r-1}^{n_{r-1}} = 2d$  (SURP.(1))

$$\sum_{j=1}^{S} \frac{3}{j} \leq \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

#### Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most  $O(\log(SIZE(I)))$  bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack  $\lfloor x_j \rfloor$  bins in configuration  $T_j$  for all j; call the packed instance  $I_1$ .
- 6: Let  $I_2$  be remaining pieces from I'
- 7: Pack  $I_2$  via BinPack $(I_2)$



#### $OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- Each piece surviving in C can be mapped to a piece in C of no lesser size. Hence, OPD (2000) - OPD (2000)
- $||x_1||$  is feasible solution for  $||_1|$  (even integral).
- $|x_1-|x_2|$  is feasible solution for  $b_{22}$



16.4 Advanced Rounding for Bin Packing

#### $OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT<sub>LP</sub>(I') ≤ OPT<sub>LP</sub>(I)

 $\triangleright$   $[x_i]$  is feasible solution for  $I_1$  (even integral).

•  $x_j - \lfloor x_j \rfloor$  is feasible solution for  $I_2$ .



#### $OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT<sub>LP</sub>(I') ≤ OPT<sub>LP</sub>(I)
- $\lfloor x_j \rfloor$  is feasible solution for  $I_1$  (even integral).

•  $x_i - \lfloor x_i \rfloor$  is feasible solution for  $I_2$ .



#### $OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT<sub>LP</sub>(I') ≤ OPT<sub>LP</sub>(I)
- $\lfloor x_j \rfloor$  is feasible solution for  $I_1$  (even integral).
- $x_j \lfloor x_j \rfloor$  is feasible solution for  $I_2$ .



Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in *I*<sup>2</sup> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $OPT_{LP}$  many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$ 

many bins where L is the number of recursion levels.



Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$ 

many bins where L is the number of recursion levels.



Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\mathrm{SIZE}(I))) \cdot L$ 

many bins where L is the number of recursion levels.



Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in *I*<sub>2</sub> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$ 

many bins where L is the number of recursion levels.



Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in *I*<sub>2</sub> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  ${\rm OPT}_{\rm LP}$  many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$ 

many bins where L is the number of recursion levels.



We can show that  $SIZE(I_2) \le SIZE(I)/2$ . Hence, the number of recursion levels is only  $O(\log(SIZE(I_{original})))$  in total.



We can show that  $SIZE(I_2) \le SIZE(I)/2$ . Hence, the number of recursion levels is only  $O(\log(SIZE(I_{original})))$  in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ▶ The total size of items in  $I_2$  can be at most  $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$  which is at most the number of non-zero entries in the solution to the configuration LP.



We can show that  $SIZE(I_2) \le SIZE(I)/2$ . Hence, the number of recursion levels is only  $O(\log(SIZE(I_{original})))$  in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (≤ SIZE(I)/2).
- ► The total size of items in I<sub>2</sub> can be at most ∑<sub>j=1</sub><sup>N</sup> x<sub>j</sub> ⌊x<sub>j</sub>⌋ which is at most the number of non-zero entries in the solution to the configuration LP.



# How to solve the LP?

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

In total we have  $b_i$  pieces of size  $s_i$ .

**Primal** 





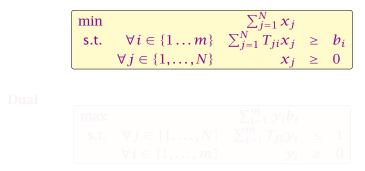
16.4 Advanced Rounding for Bin Packing

22. Jun. 2018 389/393

## How to solve the LP?

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ). In total we have  $b_i$  pieces of size  $s_i$ .

### Primal





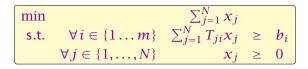
16.4 Advanced Rounding for Bin Packing

22. Jun. 2018 389/393

## How to solve the LP?

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ). In total we have  $b_i$  pieces of size  $s_i$ .

### Primal





$$\begin{array}{ll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} \quad \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} \quad y_i \geq 0 \end{array}$$



22. Jun. 2018 389/393

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, ..., T_{jm})$  that is feasible, i.e.,

and has a large profit

But this is the Knapsack problem.



16.4 Advanced Rounding for Bin Packing

22. Jun. 2018 390/393

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, ..., T_{jm})$  that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$$
 ,

and has a large profit

 $\sum_{i=1}^{m} T_{ji} \gamma_i > 1$ 

But this is the Knapsack problem.



22. Jun. 2018 390/393

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, \dots, T_{jm})$  that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$$
 ,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.



22. Jun. 2018 390/393

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, \dots, T_{jm})$  that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot s_i \leq 1$$
 ,

and has a large profit

$$\sum_{i=1}^{m} T_{ji} \mathcal{Y}_i > 1$$

But this is the Knapsack problem.



We have FPTAS for Knapsack. This means if a constraint is violated with  $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1 - \epsilon)$  of the optimal profit.

The solution we get is feasible for:

### Dual'



We have FPTAS for Knapsack. This means if a constraint is violated with  $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1 - \epsilon)$  of the optimal profit.

The solution we get is feasible for:

**Dual** 

 $\begin{array}{|c|c|c|c|c|} \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i &\leq 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i &\geq 0 \end{array}$ 

We have FPTAS for Knapsack. This means if a constraint is violated with  $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1 - \epsilon)$  of the optimal profit.

The solution we get is feasible for:

### **Dual**'

$$\begin{array}{|c|c|c|c|c|} \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with  $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1 - \epsilon)$  of the optimal profit.

The solution we get is feasible for:

### **Dual**'

$$\begin{array}{|c|c|c|c|c|} \hline \max & & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

| min  |                                 | $(1+\epsilon')\sum_{j=1}^N x_j$ |        |       |
|------|---------------------------------|---------------------------------|--------|-------|
| s.t. | $\forall i \in \{1 \dots m\}$   | $\sum_{j=1}^{N} T_{ji} x_j$     | $\geq$ | $b_i$ |
|      | $\forall j \in \{1, \dots, N\}$ | $x_j$                           |        |       |

# If the value of the computed dual solution (which may be infeasible) is $\boldsymbol{z}$ then

## $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing a certify that the solution is feasible for 19001.
- Suppose that we drop all unused constraints in 00000. We will compute the same solution feasible for 0000000
- Let DUAL<sup>®</sup> be DUAL without unused constraints.
- The dual to 01060 is 01006050 where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL is at most (1996) 0001.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

## $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

## $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

## $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

## $OPT \le z \le (1 + \epsilon')OPT$

### How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.

• The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.

We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

## $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is z then

## $OPT \le z \le (1 + \epsilon')OPT$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$  OPT.
- We can compute the corresponding solution in polytime.

## This gives that overall we need at most

# $(1 + \epsilon')$ OPT<sub>LP</sub> $(I) + O(\log^2(SIZE(I)))$

### bins.

We can choose  $\epsilon' = \frac{1}{OPT}$  as  $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.



This gives that overall we need at most

```
(1 + \epsilon')OPT<sub>LP</sub>(I) + O(\log^2(SIZE(I)))
```

bins.

We can choose  $\epsilon' = \frac{1}{OPT}$  as  $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

