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P={x|Ax <b}; P°:={x | Ax < b}
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as the slack of the i-th constraint



10 Karmarkars Algorithm

inequalities Ax < b; m x n matrix A with rows aiT
P={x|Ax <b}; P°:={x | Ax < b}

interior point algorithm: x € P° throughout the algorithm

vV v.v.Y

for x € P° define
si(x):=b; — aiTx

as the slack of the i-th constraint
logarithmic barrier function:

$(x) == > In(si(x))

i=1

Penalty for point x; points close to the boundary have a very
large penalty.
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Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ %eTvzcl)(x)e



Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ leTVZcb(x)e

2
Gradient:
mo .
Ve (x) = 1;1 oo i=Aldx

where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)



Gradient and Hessian

Taylor approximation:

Pp(x+€) ~Ppx)+Vp(x)Te+ %eTvzcl)(x)e

Gradient:
m 1
\V, = ca; = AT
P (x) El ) a;=A"dy
where dL = (1/s1(x),...,1/sm(x)). (dx vector of inverse slacks)
Hessian:
m 1
x = Vop(x) i:§1 51002 i A'DiA

with Dy = diag(dy).



Proof for Gradient

0p(x) _ 2

(— Zln(sy(x))>

0x; 0xi
- ; aii <ln(sr(x))> == ; Sy(lx) aii (ST(X)>
T ; Sy (1x) ail (br a aTx) B ; Sy (1X) 0xi (a,?x)
:;&aﬁm

The i-th entry of the gradient vector is >, 1/s,(x) - Ay;. This
gives that the gradient is

Vo(x) = Zl/Sr(X)ar = Ade



Proof for Hessian

o (Fter ) -3 ﬁ) (309

v

Z Api——

Sy (x)2

Note that >, A, ;A = (ATA)iJ'. Adding the additional factors
1/s,(x)? can be done with a diagonal matrix.

Hence the Hessian is
Hy = ATD?A



Properties of the Hessian

Hy is positive semi-definite for x € P°

uTHyu = uTATD2Au = [|DxAull3 = 0
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This gives that ¢(x) is convex.
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Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°

u"Hyu = |DyAul|3 > 0 foru # 0
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Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u"Hyu = |DyAul|3 > 0 foru # 0

This gives that ¢ (x) is strictly convex.

‘m 10 Karmarkars Algorithm
Harald Racke 224/258



Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u"Hyu = |DyAul|3 > 0 foru # 0

This gives that ¢ (x) is strictly convex.

lullg, := VvulHyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.
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Dikin Ellipsoid
Ex={y|(y-x)THy(y-x)<1}={y |y -xlu, <1}

Points in E, are feasible!!

(v —x)THy(y —x) = (v —x)TATD2A(y - x)

Zo(af (y - x))?

; 5i(x)?



Dikin Ellipsoid
Ex={y|(y-x)THy(y-x)<1}={y |y -xlu, <1}

Points in E, are feasible!!

(v - x)THX(y ~-x) = (v -x)TATD2A(y - x)
(aT(y x))?

g (change of distance to i-th constraint going from x to y)?

= (distance of x to i-th constraint)?

.
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Dikin Ellipsoid
Ex={y|(y-x)THy(y-x)<1}={y |y -xlu, <1}

Points in E, are feasible!!

(y — x)THX(y -x)=(y-x)TATD2A(y - x)
(al (y — x))?
- Z 51 X)2

(change of distance to i-th constraint going from x to y)?
(distance of x to i-th constraint)?

[l
M§:

IA
—_

In order to become infeasible when going from x to v one of the
terms in the sum would need to be larger than 1.



Dikin Ellipsoids
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Analytic Center

Xac i= argmin,.cp. $(x)

> Xxac is solution to

LS|
Vep(x)=> ——a;=0
o silx)

» depends on the description of the polytope

> Xy exists and is unique iff P° is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tc"x + ¢p(x)}
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = co: optimum solution

x*(t) exists and is unique for all t > 0.
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Different Central Paths
y
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Central Path

Intuitive Idea:
Find point on central path for large value of t. Should be close to

optimum solution.

Questions:
» |s this really true? How large a t do we need?

» How do we find corresponding point x*(t) on central path?
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The Dual

primal-dual pair:

S— max —blz
min ¢'x T
s.t. Alz+c=0
s.t. Ax<b
z=>0

Assumptions

» primal and dual problems are strictly feasible;
> rank(A) = n.



Force Field Interpretation

Point x* (t) on central path is solutionto tc + V¢ (x) =0

> We can view each constraint as generating a repelling force.
The combination of these forces is represented by V¢ (x).

> In addition there is a force tc pulling us towards the
optimum solution.
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How large should t be?

Point x*(t) on central path is solution to tc + V¢ (x) = 0.
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This means
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How large should t be?

Point x*(t) on central path is solution to tc + V¢ (x) = 0.

This means
m 1
tc + i; mai =0
or
m 1
¥y : ) = ———
Cc+ Z zi (t)a; =0 with z7(t) tsi(x*(t))

i=1
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How large should t be?

Point x*(t) on central path is solution to tc + V¢ (x) = 0.

This means
m 1
e+ 2 S @O
or
c+ 2z (Hai =0 with zi(1) = ;s

i=1

> Z*(t) is strictly dual feasible: (ATz* + ¢ = 0; z* > 0)
> duality gap between x := x*(t) and z := z*(t) is

cIx+bTz=(b-Ax)Tz= %



How large should t be?

Point x* (t) on central path is solution to tc + V¢ (x) = 0.

This means
m 1
e+ 2 S @ =0
or
m 1
(a; = ith z/(t) = ——
c+ > zf(bai =0 with z7(t) tsi(x*(t))

i=1

> Z*(t) is strictly dual feasible: (ATz* + ¢ = 0; z* > 0)

> duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(b-Ax)Tz= %

> if gap is less than 1/2%(%) we can snap to optimum point



How to find x* (1)

First idea:
> start somewhere in the polytope

> use iterative method (Newtons method) to minimize
fr(x) :=tcTx + p(x)
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Newton Method

Quadratic approximation of f;

fex + @) = filo) + Vfix) e+ 2eTHy (o e
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Newton Method

Quadratic approximation of f;

fex + @) = filo) + Vfix) e+ 2eTHy (o e

Suppose this were exact:

frlx +) = folx) + Vi) e + 1€ Hy (x) €
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Newton Method

Quadratic approximation of f;

fitx+ ) = fitn) + Vi Te + Leh e

Suppose this were exact:

felx +€) = fio0) + Vfilx) e + 2eTHy (o€

Then gradient is given by:

Vft(x+€) =Vfi(x)+Hp(x)-€
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Newton Method

We want to move to a point where this gradient is 0:

Newton Step at x € P°
Axne = —Hp' (xX)V fe (x)

—Hp' (x)(tc + Ve (x))
—(ATD2A) Y(tc + ATdy)

Newton lteration:
X=X+ AXnt



Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= [[AxnellHy
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Square of Newton decrement is linear estimate of reduction if we
do a Newton step:
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Measuring Progress of Newton Step

Newton decrement:

At (x) = [[DxAAX |l

= llAxnellHy

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

=A¢(x)? = V()T Axpe

> Ar(x) =0iff x = x* (1)

> A¢(x) is measure of proximity of x to x*(t)



Convergence of Newtons Method

Theorem 2
If A (x) <1 then

> X, =X+ Axpt € P° (new point feasible)
> Ar(xs) < Ar(x)?

This means we have quadratic convergence. Very fast.



Convergence of Newtons Method

feasibility:
> At (x) = [[Axnellg, < 1; hence x. lies in the Dikin ellipsoid
around x.



Convergence of Newtons Method

bound on A;(x7):
we use D := D, = diag(dy) and D := Dy+ = diag(d+)
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Convergence of Newtons Method

bound on A;(x7):
we use D := D, = diag(dy) and D := Dy+ = diag(d+)
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Convergence of Newtons Method

bound on A;(x7):
we use D := D, = diag(dy) and D := Dy+ = diag(d+)

At(x)? = IDyAAX 1
< IDLAAXLII? + IDy AAX + (I — DI'D)DAAX |2
= | = DI'D)DAAXnI?

To see the last equality we use Pythagoras
lall® + lla + b||* = b

if al (a + b) = 0.



Convergence of Newtons Method

DAAXnt



Convergence of Newtons Method

DAAxn = DA(x' — x)
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Convergence of Newtons Method

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D(D~'T-D;')
= (I -D:'D)1

al(a+Db)
= AxaATD, (D4 AAx + (I - DY'D)DAAXy )
= Axd (ATD2 AAXG, — ATD2AAx¢ + ATD DAAXn)



Convergence of Newtons Method
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Convergence of Newtons Method
DAAxny = DA(x™ — x)
=D(b - Ax — (b — Ax™))
=D(D~'T-D;')
= (I -D:'D)1

al(a+Db)
= AxaATD, (D4 AAx + (I - DY'D)DAAXy )
= Axd (ATD2 AAXG, — ATD2AAx¢ + ATD DAAXn)
= Axd (HyAxgy — HAxpe + ATD, T - ATDT)
= AT (= V) + V) + Vb (xT) - V(x))



Convergence of Newtons Method

DAAxp = DA(x' — x)
=D(b - Ax — (b — Ax"))
=D(D~'T-D;')
= (I -D:'D)1

al(a+Db)
= AxaATD, (D4 AAx + (I - DY'D)DAAXy )
= Axd (ATD2 AAXG, — ATD2AAx¢ + ATD DAAXn)
= Axd (HyAxgy — HAxpe + ATD, T - ATDT)
= AT (= V) + V) + Vb (xT) - V(x))
-0



Convergence of Newtons Method

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

Ar(x")? = IDy AAxq |12
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Convergence of Newtons Method

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L |I?
< |IDLAAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= (I - DI'D)DAAXI?
= (I - DY'D)?1?



Convergence of Newtons Method

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L |I?
< |IDLAAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D'D)DAAX |2
= (I - Dy'D)*1|1?
<l -D'D)T|*



Convergence of Newtons Method

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L |I?
< |IDLAAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D'D)DAAX |2
= (I - Dy'D)*1|1?
<l -D'D)T|*
= [[DAAXQ|I*



Convergence of Newtons Method

bound on A;(x*):
we use D := Dy = diag(dy) and Dy := D+ = diag(dx+)

At(x™)? = IDyAAX L |I?
< |IDLAAXKLI? + 1Dy AAX + (I — D' D)DAAX |2
= | (I - D'D)DAAX |2
= (I - Dy'D)*1|1?
<lU-D'D)I|*
= [[DAAXQ|I*
= Ar(x)?

The second inequality follows from > ; v < (Z,iyiz)2



If A;(x) is large we do not have a guarantee.

Try to avoid this case!!!
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Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function
4: recenter to return to central path




Short Step Barrier Method

simplifying assumptions:
> a first central point x*(tg) is given
> x*(t) is computed exactly in each iteration

€ is approximation we are aiming for

start at t = tg, repeat until m/t <e
> compute x*(ut) using Newton starting from x* (t)
> t:=put

where y=1+1/(2ym)



Short Step Barrier Method

gradient of fi+ at (x = x*(t))

Vfi+(x) =V fi(x)+ (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

Ap+ (x)?



Short Step Barrier Method

gradient of fi+ at (x = x*(t))

Vfi+(x) =V fi(x)+ (u—1)tc
= —(u-1ATDx1
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gradient of fi+ at (x = x*(t))
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Short Step Barrier Method

gradient of fi+ at (x = x*(t))

Vfi+(x) =V fi(x)+ (u—1)tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

A+ (x)% = Vfrr ) THIV fi+ (%)
= (u-1)°1"B(BTB)"'BTI B=DIA
<(u-1)°m



Short Step Barrier Method

gradient of f;+ at (x = x*(t))

Vfi+(x) = Vfi(x) + (u—-1tc
= —(u-1ATDx1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is
A+ (x)% = Ve 0O)TH IV fi+ (x)
= (u-1)°21TB(BTB)"'BTT B=DIA
<(u-1)°m
=1/4

This means we are in the range of quadratic convergence!!!



Number of Iterations

the number of Newton iterations per outer
iteration is very small; in practise only 1 or 2

Number of outer iterations:
We need ty = uXto = m/e. This holds when

_ log(m/(eto))
log(u)

We get a bound of
(9<\/mlog ﬂ)
€lp

We show how to get a starting point with to = 1/2L. Together
with € ~ 2L we get O(L./m) iterations.
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Damped Newton Method

For x € P° and direction v # O define

T
i

si(x)

Ox (V) 1= max
1

Observation:

x+oveP forxe{0,1/ox(v)}
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate
says that f; (x) should change by V f; (x)T aw.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate
says that f; (x) should change by V f; (x)T aw.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.

frix +av) — fi(x) =tcTav + p(x + av) — p(x)
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate
says that f; (x) should change by V f; (x)T aw.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.

frix +av) — fi(x) =tcTav + p(x + av) — p(x)

B(x + av) — P(x) = = > log(si(x + av)) + > log(si(x))
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate
says that f; (x) should change by V f; (x)T aw.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.

frix +av) — fi(x) =tcTav + p(x + av) — p(x)

P(x + av) — Pp(x)

— > log(si(x + aw)) + > log(si(x))
- Zilog(si(x + av)/si(x))
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate
says that f; (x) should change by V f; (x)T aw.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.

frix +av) — fi(x) =tcTav + p(x + av) — p(x)

P(x + av) — Pp(x)

— > log(si(x + aw)) + > log(si(x))
- Zilog(si(x + av)/si(x))
- Zilog(l —alov/si(x))
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Damped Newton Method

Define w; = aiTv/sl-(x) and o = max; w;.



Damped Newton Method

Define w; = aiTv/si(x) and o = max; w;. Then
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Damped Newton Method

Define w; = aiTv/si(x) and o = max; w;. Then

fi(x +av) = fr(x) = Vi) Tav
=— zi(cxwi +1log(1 — aw;))

x2w?
< - Z (xw; +1og(1 — axw;)) + Z 5 !
w;>0 w;<0
2 2 2
wi (xo) w;
<- > ?(aa+log(l—aa))+ 5 > =

w;>0 w;<0



Damped Newton Method

N‘F‘N

w:
S_Zlo-

((xo +log(1 — (xa))
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Damped Newton Method

w?

< - Zi(r—;((xa +log(1 — (xa))

1
_?Hvllﬂx (0(0 +log(1 - cxa))
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Damped Newton Method

w?

< - zia—lz((x(r +log(1 — aa))

1
_?Hvllﬂx ((xcr +log(1 - cxa))

Damped Newton Iteration:
In a damped Newton step we choose

Xy =X+ ;AX
e ]. +O-x(AXnt) nt
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Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

At(x) —log(1 + Ar(x))
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Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

At(x) —log(1 + Ar(x))

Proof: The decrease in cost is
1
-V i) Tv + FHUH%X(O(O' +1log(1l — xo))

Choosing o = ﬁ and v = Axnt gives
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Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

At(x) —log(1 + Ar(x))

Proof: The decrease in cost is
1
-V i) Tv + FHUH%X(O(O' +1log(1l — xo))

1

Choosing o« = 1 and v = Axp gives
1 » A(x)2 [ o o
1+U)\t(X)Jr o? 1+0+10g(1 1+(r>
Ar(x)?

2 (O‘ —log(1 + 0'))



Damped Newton Method

> Ap(x) —log(1 + A¢(x))
> 0.09

for A¢(x) = 0.5
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Damped Newton Method

> Ap(x) —log(1 + A¢(x))
> 0.09

for A¢(x) = 0.5

Centering Algorithm:
Input: precision §; starting point x

1. compute Axpe and A;(x)
2. if Aj(x) < 6 return x

3. set x := x + &xAxpt with

1
o = T+0x(AXnt) At = 1/2
1 otw.
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Centering

Lemma 3
The centering algorithm starting at xo reaches a point with

Ai(x) < O after

Sft(x0) — miny, f; (y)

0.09 + O(loglog(1/6))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = (A) + (b) + (c) (encoding

length) and A = 22L. Recall that a basis is feasible in the old LP
iff it is feasible in the new LP.
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Lemma [without proof]
The inverse of a matrix M can be represented with rational
numbers that have denominators z;; = det(M).
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can be represented by a rational number that has denominator
z = det(Ap) - det(Ap).

This means that in the perturbed LP it is sufficient to decrease
the duality gap to 1/2%L (i.e., t = 2%L). This means the previous
analysis essentially also works for the perturbed LP.
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Lemma [without proof]
The inverse of a matrix M can be represented with rational
numbers that have denominators z;; = det(M).

For two basis solutions xg, xj, the cost-difference c¢'xp — ¢’ x;
can be represented by a rational number that has denominator
z = det(Ap) - det(Ap).

This means that in the perturbed LP it is sufficient to decrease
the duality gap to 1/2%L (i.e., t = 2%L). This means the previous
analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the
objective value ¢’ x is at most n2M2L where M < L is the
encoding length of the largest entry in C.
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How to get close to analytic center?

Start at xo.
Choose ¢ := -V (x).
x0 = x*(1) is point on central path for ¢ and t = 1.

You can travel the central path in both directions. Go towards 0
until t =~ 1/29W0) This requires O(./mL) outer iterations.

Let x¢ denote this point.
Let x. denote the point that minimizes
t-clx+¢p(x)

(i.e., same value for t but different ¢, hence, different central
path).
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damped Newton we can move from x; to x. quickly.
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How to get close to analytic center?

Clearly,
t-ETxe+p(xe) <t-ETxe+ Pp(xe)

The difference between f;(x¢) and fi(x.) is

teTxe + plxe) —teTxe — Pplxe)
<tcTxs+¢Txe —Txs—c
< 4tn23L

TXC)

For t = 1/2%(L) the last term becomes constant. Hence, using
damped Newton we can move from x; to x. quickly.

In total for this analysis we require @ (,/mL) outer iterations for
the whole algorithm.

One iteration can be implemented in ® (m3) time.
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