
Brewery Problem

Brewery brews ale and beer.

ñ Production limited by supply of corn, hops and barley malt

ñ Recipes for ale and beer require different amounts of

resources

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
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How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €
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Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0
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Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0
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Standard Form LPs

Original LP
max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Standard Form

Add a slack variable to every constraint.

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0
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Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c
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Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0
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Standard Form LPs

Observations:

ñ a linear program does not contain x2, cos(x), etc.

ñ transformations between standard forms can be done

efficiently and only change the size of the LP by a small

constant factor

ñ for the standard minimization or maximization LPs we could

include the nonnegativity constraints into the set of

ordinary constraints; this is of course not possible for the

standard form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist

x ∈ Qn s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input
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Regardless of the objective function an

optimum solution occurs at a vertex

(Ecke).



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 24/52



Definition 2

Given vectors/points x1, . . . , xk ∈ Rn,
∑
λixi is called

ñ linear combination if λi ∈ R.

ñ affine combination if λi ∈ R and
∑
i λi = 1.

ñ convex combination if λi ∈ R and
∑
i λi = 1 and λi ≥ 0.

ñ conic combination if λi ∈ R and λi ≥ 0.

Note that a combination involves only finitely many vectors.
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Definition 3

A set X ⊆ Rn is called

ñ a linear subspace if it is closed under linear combinations.

ñ an affine subspace if it is closed under affine combinations.

ñ convex if it is closed under convex combinations.

ñ a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space
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Definition 4

Given a set X ⊆ Rn.

ñ span(X) is the set of all linear combinations of X
(linear hull, span)

ñ aff(X) is the set of all affine combinations of X
(affine hull)

ñ conv(X) is the set of all convex combinations of X
(convex hull)

ñ cone(X) is the set of all conic combinations of X
(conic hull)
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Definition 5

A function f : Rn → R is convex if for x,y ∈ Rn and λ ∈ [0,1]
we have

f(λx + (1− λ)y) ≤ λf(x)+ (1− λ)f(y)

Lemma 6

If P ⊆ Rn, and f : Rn → R convex then also

Q = {x ∈ P | f(x) ≤ t}
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Dimensions

Definition 7

The dimension dim(A) of an affine subspace A ⊆ Rn is the

dimension of the vector space {x − a | x ∈ A}, where a ∈ A.

Definition 8

The dimension dim(X) of a convex set X ⊆ Rn is the dimension

of its affine hull aff(X).
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Definition 9

A set H ⊆ Rn is a hyperplane if H = {x | aTx = b}, for a ≠ 0.

Definition 10

A set H′ ⊆ Rn is a (closed) halfspace if H = {x | aTx ≤ b}, for

a ≠ 0.

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 30/52



Definition 9

A set H ⊆ Rn is a hyperplane if H = {x | aTx = b}, for a ≠ 0.

Definition 10

A set H′ ⊆ Rn is a (closed) halfspace if H = {x | aTx ≤ b}, for

a ≠ 0.

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 30/52



Definitions

Definition 11

A polytop is a set P ⊆ Rn that is the convex hull of a finite set of

points, i.e., P = conv(X) where |X| = c.
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Definitions

Definition 12

A polyhedron is a set P ⊆ Rn that can be represented as the

intersection of finitely many half-spaces

{H(a1, b1), . . . ,H(am, bm)}, where

H(ai, bi) =
{
x ∈ Rn | aix ≤ bi

}
.

Definition 13

A polyhedron P is bounded if there exists B s.t. ‖x‖2 ≤ B for all

x ∈ P .
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Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.
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Definition 15

Let P ⊆ Rn, a ∈ Rn and b ∈ R. The hyperplane

H(a,b) = {x ∈ Rn | aTx = b}

is a supporting hyperplane of P if max{aTx | x ∈ P} = b.

Definition 16

Let P ⊆ Rn. F is a face of P if F = P or F = P ∩H for some

supporting hyperplane H.

Definition 17

Let P ⊆ Rn.

ñ a face v is a vertex of P if {v} is a face of P .

ñ a face e is an edge of P if e is a face and dim(e) = 1.

ñ a face F is a facet of P if F is a face and

dim(F) = dim(P)− 1.
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Equivalent definition for vertex:

Definition 18

Given polyhedron P . A point x ∈ P is a vertex if ∃c ∈ Rn such

that cTy < cTx, for all y ∈ P , y ≠ x.

Definition 19

Given polyhedron P . A point x ∈ P is an extreme point if

 a,b ≠ x, a,b ∈ P , with λa+ (1− λ)b = x for λ ∈ [0,1].

Lemma 20

A vertex is also an extreme point.

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 35/52



Equivalent definition for vertex:

Definition 18

Given polyhedron P . A point x ∈ P is a vertex if ∃c ∈ Rn such

that cTy < cTx, for all y ∈ P , y ≠ x.

Definition 19

Given polyhedron P . A point x ∈ P is an extreme point if

 a,b ≠ x, a,b ∈ P , with λa+ (1− λ)b = x for λ ∈ [0,1].

Lemma 20

A vertex is also an extreme point.

3 Introduction to Linear Programming 17. Apr. 2018

Harald Räcke 35/52



Observation

The feasible region of an LP is a Polyhedron.
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Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0
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Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0
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Algebraic View

ale a

beer b

An extreme point in Rd is uniquely de-

fined by d linearly independent equa-

tions.



Notation

Suppose B ⊆ {1 . . . n} is a set of column-indices. Define AB as

the subset of columns of A indexed by B.

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.
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Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB
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ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB
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Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point
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Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
If AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P
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Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1
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From now on we will always assume that the

constraint matrix of a standard form LP has full

row rank.
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Theorem 24

Given P = {x | Ax = b,x ≥ 0}. x is extreme point iff there exists

B ⊆ {1, . . . , n} with |B| =m and

ñ AB is non-singular

ñ xB = A−1
B b ≥ 0

ñ xN = 0

where N = {1, . . . , n} \ B.

Proof

Take B = {j | xj > 0} and augment with linearly independent

columns until |B| =m; always possible since rank(A) =m.
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Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)
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Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n−m of the xi’s are zero. The

corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.
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Basic Feasible Solutions

Definition 25

For a general LP (max{cTx | Ax ≤ b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.
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Algebraic View

hops
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ale

b
ee

r

{a, sc , sh}
(34|0|30|24|0)

{b, sh, sm}
(0|32|0|32|550)

{a, b, sm}
(12|28|0|0|210)

{sc , sh, sm}
(0|0|480|160|1190)

{a, b, sh}
(19.41|25.53|0|-19.76|0)

{a, b, sc}
(26|14|140|0|0)

{b, sc , sm}
(0|40|-120|0|390)

{a, sc , sm}
(40|0|280|0|-210)

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0



Fundamental Questions

Linear Programming Problem (LP)

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist

x ∈ Qn s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP? yes!

ñ Is LP in co-NP?

ñ Is LP in P?

Proof:

ñ Given a basis B we can compute the associated basis

solution by calculating A−1
B b in polynomial time; then we

can also compute the profit.
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Observation

We can compute an optimal solution to a linear program in time

O
((
n
m

)
· poly(n,m)

)
.

ñ there are only
(
n
m

)
different bases.

ñ compute the profit of each of them and take the maximum

What happens if LP is unbounded?
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