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Brewery Problem

Brewery brews ale and beer.

ñ Production limited by supply of corn, hops and barley malt

ñ Recipes for ale and beer require different amounts of

resources

Corn

(kg)

Hops

(kg)

Malt

(kg)
Profit

(€)

ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23

supply 480 160 1190
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ale (barrel) 5 4 35 13
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supply 480 160 1190

How can brewer maximize profits?

ñ only brew ale: 34 barrels of ale =⇒ 442 €

ñ only brew beer: 32 barrels of beer =⇒ 736 €

ñ 7.5 barrels ale, 29.5 barrels beer =⇒ 776 €

ñ 12 barrels ale, 28 barrels beer =⇒ 800 €
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Brewery Problem

Linear Program

ñ Introduce variables a and b that define how much ale and

beer to produce.

ñ Choose the variables in such a way that the objective

function (profit) is maximized.

ñ Make sure that no constraints (due to limited supply) are

violated.

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0
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Standard Form LPs

LP in standard form:

ñ input: numbers aij, cj, bi
ñ output: numbers xj
ñ n = #decision variables, m = #constraints

ñ maximize linear objective function subject to linear

(in)equalities

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi 1 ≤ i ≤m

xj ≥ 0 1 ≤ j ≤ n

max cTx
s.t. Ax = b

x ≥ 0
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Standard Form LPs

Original LP
max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Standard Form

Add a slack variable to every constraint.

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0
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Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 17/258



Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 17/258



Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 17/258



Standard Form LPs

There are different standard forms:

standard form

max cTx
s.t. Ax = b

x ≥ 0

min cTx
s.t. Ax = b

x ≥ 0

standard
maximization form

max cTx
s.t. Ax ≤ b

x ≥ 0

standard
minimization form

min cTx
s.t. Ax ≥ b

x ≥ 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 17/258



Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

ñ less or equal to equality:

a− 3b + 5c ≤ 12 =⇒ a− 3b + 5c + s = 12

s ≥ 0

ñ greater or equal to equality:

a− 3b + 5c ≥ 12 =⇒ a− 3b + 5c − s = 12

s ≥ 0

ñ min to max:

mina− 3b + 5c =⇒ max−a+ 3b − 5c
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Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:

ñ equality to less or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≤ 12

−a+ 3b − 5c ≤ −12

ñ equality to greater or equal:

a− 3b + 5c = 12 =⇒ a− 3b + 5c ≥ 12

−a+ 3b − 5c ≥ −12

ñ unrestricted to nonnegative:

x unrestricted =⇒ x = x+ − x−, x+ ≥ 0, x− ≥ 0
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Standard Form LPs

Observations:

ñ a linear program does not contain x2, cos(x), etc.

ñ transformations between standard forms can be done

efficiently and only change the size of the LP by a small

constant factor

ñ for the standard minimization or maximization LPs we could

include the nonnegativity constraints into the set of

ordinary constraints; this is of course not possible for the

standard form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist

x ∈ Qn s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP?

ñ Is LP in P?

Input size:

ñ n number of variables, m constraints, L number of bits to

encode the input
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Regardless of the objective function an

optimum solution occurs at a vertex

(Ecke).



Definitions

Let for a Linear Program in standard form

P = {x | Ax = b,x ≥ 0}.
ñ P is called the feasible region (Lösungsraum) of the LP.

ñ A point x ∈ P is called a feasible point (gültige Lösung).

ñ If P ≠ � then the LP is called feasible (erfüllbar). Otherwise,

it is called infeasible (unerfüllbar).

ñ An LP is bounded (beschränkt) if it is feasible and
ñ cTx <∞ for all x ∈ P (for maximization problems)
ñ cTx > −∞ for all x ∈ P (for minimization problems)
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Definition 2

Given vectors/points x1, . . . , xk ∈ Rn,
∑
λixi is called

ñ linear combination if λi ∈ R.

ñ affine combination if λi ∈ R and
∑
i λi = 1.

ñ convex combination if λi ∈ R and
∑
i λi = 1 and λi ≥ 0.

ñ conic combination if λi ∈ R and λi ≥ 0.

Note that a combination involves only finitely many vectors.
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Definition 3

A set X ⊆ Rn is called

ñ a linear subspace if it is closed under linear combinations.

ñ an affine subspace if it is closed under affine combinations.

ñ convex if it is closed under convex combinations.

ñ a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space
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Definition 4

Given a set X ⊆ Rn.

ñ span(X) is the set of all linear combinations of X
(linear hull, span)

ñ aff(X) is the set of all affine combinations of X
(affine hull)

ñ conv(X) is the set of all convex combinations of X
(convex hull)

ñ cone(X) is the set of all conic combinations of X
(conic hull)
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Definition 5

A function f : Rn → R is convex if for x,y ∈ Rn and λ ∈ [0,1]
we have

f(λx + (1− λ)y) ≤ λf(x)+ (1− λ)f(y)

Lemma 6

If P ⊆ Rn, and f : Rn → R convex then also

Q = {x ∈ P | f(x) ≤ t}
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Dimensions

Definition 7

The dimension dim(A) of an affine subspace A ⊆ Rn is the

dimension of the vector space {x − a | x ∈ A}, where a ∈ A.

Definition 8

The dimension dim(X) of a convex set X ⊆ Rn is the dimension

of its affine hull aff(X).
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Definition 9

A set H ⊆ Rn is a hyperplane if H = {x | aTx = b}, for a ≠ 0.

Definition 10

A set H′ ⊆ Rn is a (closed) halfspace if H = {x | aTx ≤ b}, for

a ≠ 0.
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Definitions

Definition 11

A polytop is a set P ⊆ Rn that is the convex hull of a finite set of

points, i.e., P = conv(X) where |X| = c.
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Definitions

Definition 12

A polyhedron is a set P ⊆ Rn that can be represented as the

intersection of finitely many half-spaces

{H(a1, b1), . . . ,H(am, bm)}, where

H(ai, bi) =
{
x ∈ Rn | aix ≤ bi

}
.

Definition 13

A polyhedron P is bounded if there exists B s.t. ‖x‖2 ≤ B for all

x ∈ P .
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Definitions

Theorem 14

P is a bounded polyhedron iff P is a polytop.
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Definition 15

Let P ⊆ Rn, a ∈ Rn and b ∈ R. The hyperplane

H(a,b) = {x ∈ Rn | aTx = b}

is a supporting hyperplane of P if max{aTx | x ∈ P} = b.

Definition 16

Let P ⊆ Rn. F is a face of P if F = P or F = P ∩H for some

supporting hyperplane H.

Definition 17

Let P ⊆ Rn.

ñ a face v is a vertex of P if {v} is a face of P .

ñ a face e is an edge of P if e is a face and dim(e) = 1.

ñ a face F is a facet of P if F is a face and

dim(F) = dim(P)− 1.
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Equivalent definition for vertex:

Definition 18

Given polyhedron P . A point x ∈ P is a vertex if ∃c ∈ Rn such

that cTy < cTx, for all y ∈ P , y ≠ x.

Definition 19

Given polyhedron P . A point x ∈ P is an extreme point if

 a,b ≠ x, a,b ∈ P , with λa+ (1− λ)b = x for λ ∈ [0,1].

Lemma 20

A vertex is also an extreme point.
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Observation

The feasible region of an LP is a Polyhedron.
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Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form)

then there exists an optimum solution that is an extreme point.

Proof

ñ suppose x is optimal solution that is not extreme point

ñ there exists direction d ≠ 0 such that x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ Wlog. assume cTd ≥ 0 (by taking either d or −d)

ñ Consider x + λd, λ > 0
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Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Convex Sets

Case 1. [∃j s.t. dj < 0]

ñ increase λ to λ′ until first component of x + λd hits 0

ñ x + λ′d is feasible. Since A(x + λ′d) = b and x + λ′d ≥ 0

ñ x + λ′d has one more zero-component (dk = 0 for xk = 0 as

x ± d ∈ P )

ñ cTx′ = cT (x + λ′d) = cTx + λ′cTd ≥ cTx

Case 2. [dj ≥ 0 for all j and cTd > 0]

ñ x + λd is feasible for all λ ≥ 0 since A(x + λd) = b and

x + λd ≥ x ≥ 0

ñ as λ→∞, cT (x + λd)→∞ as cTd > 0

3 Introduction to Linear Programming 30. May. 2018

Harald Räcke 38/258



Algebraic View

ale a

beer b

An extreme point in Rd is uniquely de-

fined by d linearly independent equa-

tions.



Notation

Suppose B ⊆ {1 . . . n} is a set of column-indices. Define AB as

the subset of columns of A indexed by B.

Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.
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Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇐)

ñ assume x is not extreme point

ñ there exists direction d s.t. x ± d ∈ P
ñ Ad = 0 because A(x ± d) = b
ñ define B′ = {j | dj ≠ 0}
ñ AB′ has linearly dependent columns as Ad = 0

ñ dj = 0 for all j with xj = 0 as x ± d ≥ 0

ñ Hence, B′ ⊆ B, AB′ is sub-matrix of AB
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Theorem 22

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
Then x is extreme point iff AB has linearly independent columns.

Proof (⇒)

ñ assume AB has linearly dependent columns

ñ there exists d ≠ 0 such that ABd = 0

ñ extend d to Rn by adding 0-components

ñ now, Ad = 0 and dj = 0 whenever xj = 0

ñ for sufficiently small λ we have x ± λd ∈ P
ñ hence, x is not extreme point
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Theorem 23

Let P = {x | Ax = b,x ≥ 0}. For x ∈ P , define B = {j | xj > 0}.
If AB has linearly independent columns then x is a vertex of P .

ñ define cj =
{

0 j ∈ B
−1 j ∉ B

ñ then cTx = 0 and cTy ≤ 0 for y ∈ P
ñ assume cTy = 0; then yj = 0 for all j ∉ B
ñ b = Ay = AByB = Ax = ABxB gives that AB(xB −yB) = 0;

ñ this means that xB = yB since AB has linearly independent

columns

ñ we get y = x
ñ hence, x is a vertex of P
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Observation

For an LP we can assume wlog. that the matrix A has full

row-rank. This means rank(A) =m.

ñ assume that rank(A) < m
ñ assume wlog. that the first row A1 lies in the span of the

other rows A2, . . . , Am; this means

A1 =
∑m

i=2
λi ·Ai, for suitable λi

C1 if now b1 =
∑m
i=2 λi · bi then for all x with Aix = bi we also

have A1x = b1; hence the first constraint is superfluous

C2 if b1 ≠
∑m
i=2 λi · bi then the LP is infeasible, since for all x

that fulfill constraints A2, . . . , Am we have

A1x =
∑m

i=2
λi ·Aix =

∑m

i=2
λi · bi ≠ b1
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From now on we will always assume that the

constraint matrix of a standard form LP has full

row rank.
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Theorem 24

Given P = {x | Ax = b,x ≥ 0}. x is extreme point iff there exists

B ⊆ {1, . . . , n} with |B| =m and

ñ AB is non-singular

ñ xB = A−1
B b ≥ 0

ñ xN = 0

where N = {1, . . . , n} \ B.

Proof

Take B = {j | xj > 0} and augment with linearly independent

columns until |B| =m; always possible since rank(A) =m.
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Basic Feasible Solutions

x ∈ Rn is called basic solution (Basislösung) if Ax = b and

rank(AJ) = |J| where J = {j | xj ≠ 0};

x is a basic feasible solution (gültige Basislösung) if in addition

x ≥ 0.

A basis (Basis) is an index set B ⊆ {1, . . . , n} with rank(AB) =m
and |B| =m.

x ∈ Rn with ABxB = b and xj = 0 for all j ∉ B is the basic

solution associated to basis B (die zu B assoziierte Basislösung)
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Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n−m of the xi’s are zero. The

corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.
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Basic Feasible Solutions

Definition 25

For a general LP (max{cTx | Ax ≤ b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.
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Algebraic View

hops

m
alt

corn

ale

b
ee

r

{a, sc , sh}
(34|0|30|24|0)

{b, sh, sm}
(0|32|0|32|550)

{a, b, sm}
(12|28|0|0|210)

{sc , sh, sm}
(0|0|480|160|1190)

{a, b, sh}
(19.41|25.53|0|-19.76|0)

{a, b, sc}
(26|14|140|0|0)

{b, sc , sm}
(0|40|-120|0|390)

{a, sc , sm}
(40|0|280|0|-210)

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0



Fundamental Questions

Linear Programming Problem (LP)

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist

x ∈ Qn s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP? yes!

ñ Is LP in co-NP?

ñ Is LP in P?

Proof:

ñ Given a basis B we can compute the associated basis

solution by calculating A−1
B b in polynomial time; then we

can also compute the profit.
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Observation

We can compute an optimal solution to a linear program in time

O
((
n
m

)
· poly(n,m)

)
.

ñ there are only
(
n
m

)
different bases.

ñ compute the profit of each of them and take the maximum

What happens if LP is unbounded?
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4 Simplex Algorithm

Enumerating all basic feasible solutions (BFS), in order to find

the optimum is slow.

Simplex Algorithm [George Dantzig 1947]

Move from BFS to adjacent BFS, without decreasing objective

function.

Two BFSs are called adjacent if the bases just differ in one

variable.
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4 Simplex Algorithm

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190
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Pivoting Step

max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

ñ choose variable to bring into the basis

ñ chosen variable should have positive coefficient in objective

function

ñ apply min-ratio test to find out by how much the variable

can be increased

ñ pivot on row found by min-ratio test

ñ the existing basis variable in this row leaves the basis
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sm= 1190

b

b
b
b
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scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

sc

b

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

sc

b

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

scb

ñ Choose variable with coefficient > 0 as entering variable.

ñ If we keep a = 0 and increase b from 0 to θ > 0 s.t. all

constraints (Ax = b,x ≥ 0) are still fulfilled the objective

value Z will strictly increase.

ñ For maintaining Ax = b we need e.g. to set sc = 480− 15θ.

ñ Choosing θ =min{480/15, 160/4, 1190/20} ensures that in the

new solution one current basic variable becomes 0, and no

variable goes negative.

ñ The basic variable in the row that gives

min{480/15, 160/4, 1190/20} becomes the leaving variable.



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550



max Z
13a + 23b − Z = 0

5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0

basis = {sc , sh, sm}
a = b = 0
Z = 0

sc = 480
sh = 160
sm= 1190

b

b
b
b
b

Substitute b = 1
15(480− 5a− sc).

max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550



max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210



max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210



max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210



max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).

max Z
− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210



max Z
16
3 a − 23

15sc − Z = −736
1
3a + b + 1

15sc = 32
8
3a − 4

15sc + sh = 32
85
3 a − 4

3sc + sm = 550

a , b , sc , sh , sm ≥ 0

basis = {b, sh, sm}
a = sc = 0
Z = 736

b = 32
sh = 32
sm= 550

a

a

a

a

a

a

Choose variable a to bring into basis.

Computing min{3 · 32, 3·32/8, 3·550/85} means pivot on line 2.

Substitute a = 3
8(32+ 4

15sc − sh).
max Z

− sc − 2sh − Z = −800

b + 1
10sc − 1

8sh = 28

a − 1
10sc + 3

8sh = 12
3
2sc − 85

8 sh + sm = 210

a , b , sc , sh , sm ≥ 0

basis = {a,b, sm}
sc = sh = 0
Z = 800

b = 28
a = 12
sm= 210



4 Simplex Algorithm

Pivoting stops when all coefficients in the objective function are

non-positive.

Solution is optimal:

ñ any feasible solution satisfies all equations in the tableaux

ñ in particular: Z = 800− sc − 2sh, sc ≥ 0, sh ≥ 0

ñ hence optimum solution value is at most 800

ñ the current solution has value 800
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Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.
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Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

ñ Given basis B with BFS x∗.

ñ Choose index j ∉ B in order to increase x∗j from 0 to θ > 0.
ñ Other non-basis variables should stay at 0.
ñ Basis variables change to maintain feasibility.

ñ Go from x∗ to x∗ + θ · d.

Requirements for d:

ñ dj = 1 (normalization)

ñ d` = 0, ` ∉ B, ` ≠ j
ñ A(x∗ + θd) = b must hold. Hence Ad = 0.

ñ Altogether: ABdB +A∗j = Ad = 0, which gives

dB = −A−1
B A∗j.

4 Simplex Algorithm 30. May. 2018

Harald Räcke 62/258



Algebraic Definition of Pivoting

Definition 26 (j-th basis direction)

Let B be a basis, and let j ∉ B. The vector d with dj = 1 and

d` = 0, ` ∉ B, ` ≠ j and dB = −A−1
B A∗j is called the j-th basis

direction for B.

Going from x∗ to x∗ + θ · d the objective function changes by

θ · cTd = θ(cj − cTBA−1
B A∗j)
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Algebraic Definition of Pivoting

Definition 27 (Reduced Cost)

For a basis B the value

c̃j = cj − cTBA−1
B A∗j

is called the reduced cost for variable xj.

Note that this is defined for every j. If j ∈ B then the above term

is 0.
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Algebraic Definition of Pivoting
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.
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4 Simplex Algorithm

Questions:

ñ What happens if the min ratio test fails to give us a value θ
by which we can safely increase the entering variable?

ñ How do we find the initial basic feasible solution?

ñ Is there always a basis B such that

(cTN − cTBA−1
B AN) ≤ 0 ?

Then we can terminate because we know that the solution is

optimal.

ñ If yes how do we make sure that we reach such a basis?
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Min Ratio Test

The min ratio test computes a value θ ≥ 0 such that after setting

the entering variable to θ the leaving variable becomes 0 and all

other variables stay non-negative.

For this, one computes bi/Aie for all constraints i and calculates

the minimum positive value.

What does it mean that the ratio bi/Aie (and hence Aie) is

negative for a constraint?

This means that the corresponding basic variable will increase if

we increase b. Hence, there is no danger of this basic variable

becoming negative

What happens if all bi/Aie are negative? Then we do not have a

leaving variable. Then the LP is unbounded!
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Termination

The objective function does not decrease during one iteration of

the simplex-algorithm.

Does it always increase?
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Termination

The objective function may not increase!

Because a variable x` with ` ∈ B is already 0.

The set of inequalities is degenerate (also the basis is

degenerate).

Definition 28 (Degeneracy)

A BFS x∗ is called degenerate if the set J = {j | x∗j > 0} fulfills

|J| <m.

It is possible that the algorithm cycles, i.e., it cycles through a

sequence of different bases without ever terminating. Happens,

very rarely in practise.
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Non Degenerate Example
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s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0
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Summary: How to choose pivot-elements

ñ We can choose a column e as an entering variable if c̃e > 0

(c̃e is reduced cost for xe).
ñ The standard choice is the column that maximizes c̃e.
ñ If Aie ≤ 0 for all i ∈ {1, . . . ,m} then the maximum is not

bounded.

ñ Otw. choose a leaving variable ` such that b`/A`e is

minimal among all variables i with Aie > 0.

ñ If several variables have minimum b`/A`e you reach a

degenerate basis.

ñ Depending on the choice of ` it may happen that the

algorithm runs into a cycle where it does not escape from a
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Termination

What do we have so far?

Suppose we are given an initial feasible solution to an LP. If the

LP is non-degenerate then Simplex will terminate.

Note that we either terminate because the min-ratio test fails

and we can conclude that the LP is unbounded, or we terminate

because the vector of reduced cost is non-positive. In the latter

case we have an optimum solution.
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How do we come up with an initial solution?

ñ Ax ≤ b,x ≥ 0, and b ≥ 0.

ñ The standard slack form for this problem is

Ax + Is = b,x ≥ 0, s ≥ 0, where s denotes the vector of

slack variables.

ñ Then s = b, x = 0 is a basic feasible solution (how?).

ñ We directly can start the simplex algorithm.

How do we find an initial basic feasible solution for an arbitrary

problem?
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Two phase algorithm

Suppose we want to maximize cTx s.t. Ax = b,x ≥ 0.

1. Multiply all rows with bi < 0 by −1.

2. maximize −∑i vi s.t. Ax + Iv = b, x ≥ 0, v ≥ 0 using

Simplex. x = 0, v = b is initial feasible.

3. If
∑
i vi > 0 then the original problem is infeasible.

4. Otw. you have x ≥ 0 with Ax = b.

5. From this you can get basic feasible solution.

6. Now you can start the Simplex for the original problem.
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Optimality

Lemma 29

Let B be a basis and x∗ a BFS corresponding to basis B. c̃ ≤ 0

implies that x∗ is an optimum solution to the LP.
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b

s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160

35a + 20b ≤ 1190

a,b ≥ 0

Note that a lower bound is easy to derive. Every choice of

a,b ≥ 0 gives us a lower bound (e.g. a = 12, b = 28 gives us a

lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row

with yi ≥ 0) such that
∑
iyiaij ≥ cj then

∑
iyibi will be an

upper bound.
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Duality

Definition 30

Let z =max{cTx | Ax ≤ b,x ≥ 0} be a linear program P (called

the primal linear program).

The linear program D defined by

w =min{bTy | ATy ≥ c,y ≥ 0}

is called the dual problem.
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Duality

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

ñ w =min{bTy | ATy ≥ c,y ≥ 0}
ñ w = −max{−bTy | −ATy ≤ −c,y ≥ 0}

The dual problem is

ñ z = −min{−cTx | −Ax ≥ −b,x ≥ 0}
ñ z =max{cTx | Ax ≤ b,x ≥ 0}
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Weak Duality

Let z =max{cTx | Ax ≤ b,x ≥ 0} and

w =min{bTy | ATy ≥ c,y ≥ 0} be a primal dual pair.

x is primal feasible iff x ∈ {x | Ax ≤ b,x ≥ 0}

y is dual feasible, iff y ∈ {y | ATy ≥ c,y ≥ 0}.

Theorem 32 (Weak Duality)

Let x̂ be primal feasible and let ŷ be dual feasible. Then

cT x̂ ≤ z ≤ w ≤ bT ŷ .
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Weak Duality

AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)

This gives

cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual

feasible ŷ with bT ŷ = w we get z ≤ w.

If P is unbounded then D is infeasible.
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This gives
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cT x̂ ≤ ŷTAx̂ ≤ bT ŷ .

Since, there exists primal feasible x̂ with cT x̂ = z, and dual
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AT ŷ ≥ c ⇒ x̂TAT ŷ ≥ x̂Tc (x̂ ≥ 0)

Ax̂ ≤ b ⇒ yTAx̂ ≤ ŷTb (ŷ ≥ 0)
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5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z =max{cTx | Ax = b,x ≥ 0}
w =min{bTy | ATy ≥ c}

This means for computing the dual of a standard form LP, we do

not have non-negativity constraints for the dual variables.
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Proof

Primal:

max{cTx | Ax = b,x ≥ 0}

=max{cTx | Ax ≤ b,−Ax ≤ −b,x ≥ 0}

=max{cTx |
[
A
−A

]
x ≤

[
b
−b

]
, x ≥ 0}

Dual:

min{[bT −bT ]y | [AT −AT ]y ≥ c,y ≥ 0}

=min

{[
bT −bT ] ·

[
y+

y−

]∣∣∣∣∣
[
AT −AT ] ·

[
y+

y−

]
≥ c,y− ≥ 0, y+ ≥ 0

}

=min
{
bT · (y+ −y−)

∣∣∣AT · (y+ −y−) ≥ c,y− ≥ 0, y+ ≥ 0
}

=min
{
bTy ′

∣∣∣ATy ′ ≥ c
}
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Proof of Optimality Criterion for Simplex

Suppose that we have a basic feasible solution with reduced cost

c̃ = cT − cTBA−1
B A ≤ 0

This is equivalent to AT (A−1
B )TcB ≥ c

y∗ = (A−1
B )TcB is solution to the dual min{bTy|ATy ≥ c}.

bTy∗ = (Ax∗)Ty∗ = (ABx∗B )Ty∗
= (ABx∗B )T (A−1

B )
TcB = (x∗B )TATB (A−1

B )
TcB

= cTx∗

Hence, the solution is optimal.
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5.3 Strong Duality

P =max{cTx | Ax ≤ b,x ≥ 0}
nA: number of variables, mA: number of constraints

We can put the non-negativity constraints into A (which gives us

unrestricted variables): P̄ =max{cTx | Āx ≤ b̄}
nĀ = nA, mĀ =mA +nA

Dual D =min{b̄Ty | ĀTy = c,y ≥ 0}.
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5.3 Strong Duality

hops

m
alt

corn

ale

b
ee

r

p
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t
c

{a, b, sm}

The profit vector c lies in the cone generated by the normals for

the hops and the corn constraint (the tight constraints).

If we have a conic combination y of c then
bTy is an upper bound of the profit we can
obtain (weak duality):

cTx = (ĀTy)Tx = yT Āx ≤ yT b̄
If x and y are optimal then the duality gap
is 0 (strong duality). This means

0 = cTx −yT b̄
= (ĀTy)Tx −yT b̄
= yT (Āx − b̄)

The last term can only be 0 if yi is 0 when-
ever the i-th constraint is not tight. This
means we have a conic combination of c
by normals (columns of ĀT ) of tight con-
straints.

Conversely, if we have x such that the nor-
mals of tight constraint (at x) give rise to a
conic combination of c, we know that x is
optimal.



Strong Duality

Theorem 33 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z∗

and w∗ denote the optimal solution to P and D, respectively.

Then

z∗ = w∗
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Lemma 34 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on

X. Then min{f(x) : x ∈ X} exists.

(without proof)
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Lemma 35 (Projection Lemma)

Let X ⊆ Rm be a non-empty convex set, and let y ∉ X. Then

there exist x∗ ∈ X with minimum distance from y. Moreover for

all x ∈ X we have (y − x∗)T (x − x∗) ≤ 0.

y

x∗

x′
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Proof of the Projection Lemma
ñ Define f(x) = ‖y − x‖.
ñ We want to apply Weierstrass but X may not be bounded.
ñ X ≠ �. Hence, there exists x′ ∈ X.
ñ Define X′ = {x ∈ X | ‖y − x‖ ≤ ‖y − x′‖}. This set is

closed and bounded.
ñ Applying Weierstrass gives the existence.

y
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Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ‖y − x∗‖2 ≤ ‖y − x‖2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ε(x − x∗) ∈ X for all 0 ≤ ε ≤ 1.

‖y − x∗‖2 ≤ ‖y − x∗ − ε(x − x∗)‖2

= ‖y − x∗‖2 + ε2‖x − x∗‖2 − 2ε(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ε‖x − x∗‖2.

Letting ε → 0 gives the result.
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Theorem 36 (Separating Hyperplane)

Let X ⊆ Rm be a non-empty closed convex set, and let y ∉ X.

Then there exists a separating hyperplane {x ∈ R : aTx = α}
where a ∈ Rm, α ∈ R that separates y from X. (aTy < α;

aTx ≥ α for all x ∈ X)
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Proof of the Hyperplane Lemma

ñ Let x∗ ∈ X be closest point to y in X.

ñ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

ñ Choose a = (x∗ −y) and α = aTx∗.

ñ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

ñ Also, aTy = aT (x∗ − a) = α− ‖a‖2 < α

H = {x | aTx = α}

y

x∗

x
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Lemma 37 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > yTb = yTAx ≥ 0

Hence, at most one of the statements can hold.
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Farkas Lemma

b

y

a1

a2

a3

a4

If b is not in the cone generated by the columns of A, there

exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.
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Lemma 38 (Farkas Lemma; different version)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax ≤ b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0, y ≥ 0

Rewrite the conditions:

1. ∃x ∈ Rn with
[
A I

]
·
[
x
s

]
= b, x ≥ 0, s ≥ 0

2. ∃y ∈ Rm with

[
AT

I

]
y ≥ 0, bTy < 0
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Proof of Strong Duality

P : z =max{cTx | Ax ≤ b,x ≥ 0}

D: w =min{bTy | ATy ≥ c,y ≥ 0}

Theorem 39 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,

P and D are non-empty). Then

z = w .
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Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn

s.t. Ax ≤ b
−cTx ≤ −α

x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.
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Proof of Strong Duality

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

If the solution y,v has v = 0 we have that

∃y ∈ Rm

s.t. ATy ≥ 0

bTy < 0

y ≥ 0

is feasible.

By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.
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Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.
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Fundamental Questions

Definition 40 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist

x ∈ Qn s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

ñ Is LP in NP?

ñ Is LP in co-NP? yes!

ñ Is LP in P?

Proof:

ñ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
ñ We can prove this by providing an optimal basis for the dual.

ñ A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost < α.
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Complementary Slackness

Lemma 41

Assume a linear program P =max{cTx | Ax ≤ b;x ≥ 0} has

solution x∗ and its dual D =min{bTy | ATy ≥ c;y ≥ 0} has

solution y∗.

1. If x∗j > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x∗j = 0.

3. If y∗i > 0 then the i-th constraint in P is tight.

4. If the i-th constraint in P is not tight than y∗i = 0.

If we say that a variable x∗j (y∗i ) has slack if x∗j > 0 (y∗i > 0),

(i.e., the corresponding variable restriction is not tight) and a

contraint has slack if it is not tight, then the above says that for

a primal-dual solution pair it is not possible that a constraint

and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cTx∗ ≤ y∗TAx∗ ≤ bTy∗

Because of strong duality we then get

cTx∗ = y∗TAx∗ = bTy∗

This gives e.g. ∑

j
(yTA− cT )jx∗j = 0

From the constraint of the dual it follows that yTA ≥ cT . Hence

the left hand side is a sum over the product of non-negative

numbers. Hence, if e.g. (yTA− cT )j > 0 (the j-th constraint in

the dual is not tight) then xj = 0 (2.). The result for (1./3./4.)

follows similarly.
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Interpretation of Dual Variables

ñ Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b ≤ 480

4a + 4b ≤ 160
35a + 20b ≤ 1190

a,b ≥ 0

ñ Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23
C,H,M ≥ 0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H+35M < 13 as then brewing ale would be advantageous.
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Interpretation of Dual Variables

Marginal Price:

ñ How much money is the brewer willing to pay for additional

amount of Corn, Hops, or Malt?

ñ We are interested in the marginal price, i.e., what happens if

we increase the amount of Corn, Hops, and Malt by εC , εH ,

and εM , respectively.

The profit increases to max{cTx | Ax ≤ b+ ε;x ≥ 0}. Because of

strong duality this is equal to

min (bT + εT )y
s.t. ATy ≥ c

y ≥ 0
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Interpretation of Dual Variables

If ε is “small” enough then the optimum dual solution y∗ might

not change. Therefore the profit increases by
∑
i εiy∗i .

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness

becomes obvious.

ñ If the brewer has slack of some resource (e.g. corn) then he

is not willing to pay anything for it (corresponding dual

variable is zero).

ñ If the dual variable for some resource is non-zero, then an

increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t

sc -direc.

sh -direc.

The change in profit when increasing hops by one unit is

= cTBA−1
B eh.

cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480

4a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0
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B eh.cTBA
−1
B︸ ︷︷ ︸

y∗

max 13a + 23b

s.t. 5a + 15b + sc = 480
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Of course, the previous argument about the increase in the

primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of

one resource may not allow the objective value to increase.
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Flows

Definition 42

An (s, t)-flow in a (complete) directed graph G = (V , V × V, c) is

a function f : V × V , R+0 that satisfies

1. For each edge (x,y)

0 ≤ fxy ≤ cxy .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑
x
fvx =

∑
x
fxv .

(flow conservation constraints)
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Flows

Definition 43

The value of an (s, t)-flow f is defined as

val(f ) =
∑
x
fsx −

∑
x
fxs .

Maximum Flow Problem:

Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max
∑
z fsz −

∑
z fzs

s.t. ∀(z,w) ∈ V × V fzw ≤ czw `zw
∀w ≠ s, t

∑
z fzw −

∑
z fwz = 0 pw
fzw ≥ 0

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy +1py ≥ 1

fxs (x ≠ s, t) : 1`xs−1px ≥ −1

fty (y ≠ s, t) : 1`ty +1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px ≥ 0

fst : 1`st ≥ 1

fts : 1`ts ≥ −1

`xy ≥ 0
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− 1+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ 1 ≥ 0

fty (y ≠ s, t) : 1`ty− 0+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ 0 ≥ 0

fst : 1`st− 1+ 0 ≥ 0

fts : 1`ts− 0+ 1 ≥ 0

`xy ≥ 0
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy (x,y ≠ s, t) : 1`xy−1px+1py ≥ 0

fsy (y ≠ s, t) : 1`sy− ps+1py ≥ 0

fxs (x ≠ s, t) : 1`xs−1px+ ps ≥ 0

fty (y ≠ s, t) : 1`ty− pt+1py ≥ 0

fxt (x ≠ s, t) : 1`xt−1px+ pt ≥ 0

fst : 1`st− ps+ pt ≥ 0

fts : 1`ts− pt+ ps ≥ 0

`xy ≥ 0

with pt = 0 and ps = 1.
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LP-Formulation of Maxflow

min
∑
(xy) cxy`xy

s.t. fxy : 1`xy−1px+1py ≥ 0

`xy ≥ 0

ps = 1

pt = 0

We can interpret the `xy value as assigning a length to every edge.

The value px for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px ≤ `xy + py then simply follows from triangle
inequality (d(x, t) ≤ d(x,y)+ d(y, t)⇒ d(x, t) ≤ `xy + d(y, t)).
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One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

5.5 Computing Duals 30. May. 2018

Harald Räcke 116/258



One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

5.5 Computing Duals 30. May. 2018

Harald Räcke 116/258



One can show that there is an optimum LP-solution for the dual

problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a

cut in the graph with vertices having value 1 on one side and the

other vertices on the other side. The objective function then

evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear

programming duality.

5.5 Computing Duals 30. May. 2018

Harald Räcke 116/258



Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Change LP :=max{cTx,Ax = b;x ≥ 0} into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP is feasible

II. If a set B of basis variables corresponds to an infeasible

basis (i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible

basis in LP′ (note that columns in AB are linearly

independent).

III. LP has no degenerate basic solutions
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Degenerate Example
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sh -direc.

max 13a + 23b

s.t. 5a + 15b + sc = 480

80/17 · a + 4b + sh = 160

35a + 20b + sm = 1190

a , b , sc , sh , sm ≥ 0
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Degeneracy Revisited

If a basis variable is 0 in the basic feasible solution then we may

not make progress during an iteration of simplex.

Idea:

Given feasible LP :=max{cTx,Ax = b;x ≥ 0}. Change it into

LP′ :=max{cTx,Ax = b′, x ≥ 0} such that

I. LP′ is feasible

II. If a set B of basis variables corresponds to an infeasible

basis (i.e. A−1
B b 6≥ 0) then B corresponds to an infeasible

basis in LP′ (note that columns in AB are linearly

independent).

III. LP′ has no degenerate basic solutions
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Perturbation

Let B be index set of some basis with basic solution

x∗B = A−1
B b ≥ 0, x∗N = 0 (i.e. B is feasible)

Fix

b′ := b +AB



ε
...

εm


 for ε > 0 .

This is the perturbation that we are using.
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Property I

The new LP is feasible because the set B of basis variables

provides a feasible basis:

A−1
B


b +AB



ε
...

εm





 = x∗B +



ε
...

εm


 ≥ 0 .
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Property II

Let B̃ be a non-feasible basis. This means (A−1
B̃ b)i < 0 for some

row i.

Then for small enough ε > 0


A−1

B̃


b +AB



ε
...

εm









i

= (A−1
B̃ b)i +


A−1

B̃ AB



ε
...

εm






i

< 0

Hence, B̃ is not feasible.
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Property III
Let B̃ be a basis. It has an associated solution

x∗B̃ = A−1
B̃ b +A−1

B̃ AB



ε
...

εm




in the perturbed instance.

We can view each component of the vector as a polynom with

variable ε of degree at most m.

A−1
B̃ AB has rank m. Therefore no polynom is 0.

A polynom of degree at most m has at most m roots

(Nullstellen).

Hence, ε > 0 small enough gives that no component of the

above vector is 0. Hence, no degeneracies.
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Since, there are no degeneracies Simplex will terminate when

run on LP′.

ñ If it terminates because the reduced cost vector fulfills

c̃ = (cT − cTBA−1
B A) ≤ 0

then we have found an optimal basis.

Note that this basis is

also optimal for LP, as the above constraint does not

depend on b.

ñ If it terminates because it finds a variable xj with c̃j > 0 for

which the j-th basis direction d, fulfills d ≥ 0 we know that

LP′ is unbounded. The basis direction does not depend on

b. Hence, we also know that LP is unbounded.
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Lexicographic Pivoting

Doing calculations with perturbed instances may be costly. Also

the right choice of ε is difficult.

Idea:

Simulate behaviour of LP′ without explicitly doing a perturbation.
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Lexicographic Pivoting

We choose the entering variable arbitrarily as before (c̃e > 0, of

course).

If we do not have a choice for the leaving variable then LP′ and

LP do the same (i.e., choose the same variable).

Otherwise we have to be careful.
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Lexicographic Pivoting

In the following we assume that b ≥ 0. This can be obtained by

replacing the initial system (A | b) by (A−1
B A | A−1

B b) where B is

the index set of a feasible basis (found e.g. by the first phase of

the Two-phase algorithm).

Then the perturbed instance is

b′ = b +



ε
...

εm



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Matrix View
Let our linear program be

cTBxB + cTNxN = Z
ABxB + ANxN = b
xB , xN ≥ 0

The simplex tableaux for basis B is

(cTN − cTBA−1
B AN)xN = Z − cTBA−1

B b
IxB + A−1

B ANxN = A−1
B b

xB , xN ≥ 0

The BFS is given by xN = 0, xB = A−1
B b.

If (cTN − cTBA−1
B AN) ≤ 0 we know that we have an optimum

solution.
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Lexicographic Pivoting

LP chooses an arbitrary leaving variable that has Â`e > 0 and

minimizes

θ` =
b̂`
Â`e

= (A−1
B b)`

(A−1
B A∗e)`

.

` is the index of a leaving variable within B. This means if e.g.

B = {1,3,7,14} and leaving variable is 3 then ` = 2.
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Lexicographic Pivoting

Definition 44

u ≤lex v if and only if the first component in which u and v
differ fulfills ui ≤ vi.
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Lexicographic Pivoting

LP′ chooses an index that minimizes

θ`

=


A−1

B


b +



ε
...

εm









`

(A−1
B A∗e)`

=



A−1
B (b | I)




1

ε
...

εm






`

(A−1
B A∗e)`

= `-th row of A−1
B (b | I)

(A−1
B A∗e)`




1

ε
...

εm



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Lexicographic Pivoting

This means you can choose the variable/row ` for which the

vector
`-th row of A−1

B (b | I)
(A−1
B A∗e)`

is lexicographically minimal.

Of course only including rows with (A−1
B A∗e)` > 0.

This technique guarantees that your pivoting is the same as in

the perturbed case. This guarantees that cycling does not occur.
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Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial

time.

If we use lexicographic pivoting we know that Simplex requires

at most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables,

m is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?
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Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.
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Example

max cTx
s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1
...

0 ≤ xn ≤ 1

x1
x2

x3

2n constraint on n variables define an n-dimensional hypercube

as feasible region.

The feasible region has 2n vertices.
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Example

max cTx
s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1
...

0 ≤ xn ≤ 1

x1
x2

x3

However, Simplex may still run quickly as it usually does not

visit all feasible bases.

In the following we give an example of a feasible region for

which there is a bad Pivoting Rule.
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Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving

variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable

the leaving variable is unique.
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Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2
...

εxn−1 ≤ xn ≤ 1− εxn−1

xi ≥ 0

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)



Observations

ñ We have 2n constraints, and 3n variables (after adding

slack variables to every constraint).

ñ Every basis is defined by 2n variables, and n non-basic

variables.

ñ There exist degenerate vertices.

ñ The degeneracies come from the non-negativity constraints,

which are superfluous.

ñ In the following all variables xi stay in the basis at all times.

ñ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding

to the non-tight constraint is part of the basis).

ñ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ε → 0.
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Analysis

ñ In the following we specify a sequence of bases (identified

by the corresponding hypercube node) along which the

objective function strictly increases.

ñ The basis (0, . . . ,0,1) is the unique optimal basis.

ñ Our sequence Sn starts at (0, . . . ,0) ends with (0, . . . ,0,1)
and visits every node of the hypercube.

ñ An unfortunate Pivoting Rule may choose this sequence,

and, hence, require an exponential number of iterations.
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Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

εx1 ≤ x2 ≤ 1− εx1

εx2 ≤ x3 ≤ 1− εx2

x1
x2

x3

(1, ε, ε2)
(1, 1 − ε, ε − ε2)

(0, 1, ε)

(0, 1, 1 − ε)

(1, 1 − ε, 1 − ε + ε2)

(1, ε, 1 − ε2)

(0, 0, 1)
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Analysis

The sequence Sn that visits every node of the hypercube is

defined recursively

(0, . . . ,0,0,0)

(0, . . . ,0,1,0)

(0, . . . ,0,1,1)

(0, . . . ,0,0,1)

Sn−1

Srev
n−1

Sn

The non-recursive case is S1 = 0→ 1
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Analysis

Lemma 45

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0→ 1, and 1 > 0.

n − 1 → n
ñ For the first part the value of xn = εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

ñ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ε.
ñ For the remaining path Srev

n−1 we have xn = 1− εxn−1.

ñ By induction hypothesis xn−1 is increasing along Sn−1,

hence −εxn−1 is increasing along Srev
n−1.
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Remarks about Simplex

Observation

The simplex algorithm takes at most
(
n
m

)
iterations. Each

iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.
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Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for

choosing entering and leaving variables) there exist lower

bounds that require the algorithm to have exponential running

time (Ω(2Ω(n))) (e.g. Klee Minty 1972).
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Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Ω(2Ω(nα)) for α > 0) (Friedmann,

Hansen, Zwick 2011).
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Remarks about Simplex

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional

Euclidean space has diameter no more than m− d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form

O(poly(m,d)) is open.
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8 Seidels LP-algorithm

ñ Suppose we want to solve min{cTx | Ax ≥ b;x ≥ 0}, where

x ∈ Rd and we have m constraints.

ñ In the worst-case Simplex runs in time roughly

O(m(m+d)
(
m+d
m

)
) ≈ (m+d)m. (slightly better bounds on

the running time exist, but will not be discussed here).

ñ If d is much smaller than m one can do a lot better.

ñ In the following we develop an algorithm with running time

O(d! ·m), i.e., linear in m.
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8 Seidels LP-algorithm

Setting:

ñ We assume an LP of the form

min cTx
s.t. Ax ≥ b

x ≥ 0

ñ We assume that the LP is bounded.
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Ensuring Conditions

Given a standard minimization LP

min cTx
s.t. Ax ≥ b

x ≥ 0

how can we obtain an LP of the required form?

ñ Compute a lower bound on cTx for any basic feasible

solution.
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Computing a Lower Bound

Let s denote the smallest common multiple of all denominators

of entries in A,b.

Multiply entries in A,b by s to obtain integral entries. This does

not change the feasible region.

Add slack variables to A; denote the resulting matrix with Ā.

If B is an optimal basis then xB with ĀBxB = b̄, gives an optimal

assignment to the basis variables (non-basic variables are 0).
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Theorem 46 (Cramers Rule)

Let M be a matrix with det(M) ≠ 0. Then the solution to the

system Mx = b is given by

xi =
det(Mj)
det(M)

,

where Mi is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:

ñ Define

Xi =

e1 · · · ei−1 x ei+1 · · · en




Note that expanding along the i-th column gives that

det(Xi) = xi.
ñ Further, we have

MXi =

Me1 · · · Mei−1 Mx Mei+1 · · · Men


 = Mi

ñ Hence,

xi = det(Xi) = det(Mi)
det(M)
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in Ā, b̄ or c. Let

C denote the matrix obtained from ĀB by replacing the j-th
column with vector b̄ (for some j).

Observe that

|det(C)|

=
∣∣∣∣∣∣
∑

π∈Sm
sgn(π)

∏

1≤i≤m
Ciπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sm

∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm .

Here sgn(π) denotes the sign of the permu-
tation, which is 1 if the permutation can be
generated by an even number of transposi-
tions (exchanging two elements), and −1 if
the number of transpositions is odd.
The first identity is known as Leibniz formula.
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∏

1≤i≤m
|Ciπ(i)|

≤m! · Zm . Here sgn(π) denotes the sign of the permu-
tation, which is 1 if the permutation can be
generated by an even number of transposi-
tions (exchanging two elements), and −1 if
the number of transpositions is odd.
The first identity is known as Leibniz formula.

8 Seidels LP-algorithm 30. May. 2018

Harald Räcke 154/258



Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)|

≤
m∏

i=1

‖C∗i‖ ≤
m∏

i=1

(
√
mZ)

≤mm/2Zm .
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Hadamards Inequality

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)|

Hadamards inequality says that the volume of the red

parallelepiped (Spat) is smaller than the volume in the black

cube (if ‖e1‖ = ‖a1‖, ‖e2‖ = ‖a2‖, ‖e3‖ = ‖a3‖).
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Ensuring Conditions

Given a standard minimization LP

min cTx
s.t. Ax ≥ b

x ≥ 0

how can we obtain an LP of the required form?

ñ Compute a lower bound on cTx for any basic feasible

solution. Add the constraint cTx ≥ −dZ(m! ·Zm)− 1. Note

that this constraint is superfluous unless the LP is

unbounded.



Ensuring Conditions

Compute an optimum basis for the new LP.

ñ If the cost is cTx = −(dZ)(m! · Zm)− 1 we know that the

original LP is unbounded.

ñ Otw. we have an optimum basis.
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In the following we use H to denote the set of all constraints

apart from the constraint cTx ≥ −dZ(m! · Zm)− 1.

We give a routine SeidelLP(H , d) that is given a set H of

explicit, non-degenerate constraints over d variables, and

minimizes cTx over all feasible points.

In addition it obeys the implicit constraint

cTx ≥ −(dZ)(m! · Zm)− 1.
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Algorithm 1 SeidelLP(H , d)
1: if d = 1 then solve 1-dimensional problem and return;

2: if H = � then return x on implicit constraint hyperplane

3: choose random constraint h ∈H
4: Ĥ ←H \ {h}
5: x̂∗ ← SeidelLP(Ĥ , d)
6: if x̂∗ = infeasible then return infeasible

7: if x̂∗ fulfills h then return x̂∗

8: // optimal solution fulfills h with equality, i.e., aThx = bh
9: solve aThx = bh for some variable x`;

10: eliminate x` in constraints from Ĥ and in implicit constr.;

11: x̂∗ ← SeidelLP(Ĥ , d− 1)
12: if x̂∗ = infeasible then

13: return infeasible

14: else

15: add the value of x` to x̂∗ and return the solution
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11: x̂∗ ← SeidelLP(Ĥ , d− 1)
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8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there

are at most d constraints whose removal will decrease the

objective function

Note that for the case d = 1, the asymp-
totic bound O(max{m,1}) is valid also
for the case m = 0.

8 Seidels LP-algorithm 30. May. 2018

Harald Räcke 161/258



8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there

are at most d constraints whose removal will decrease the

objective function

Note that for the case d = 1, the asymp-
totic bound O(max{m,1}) is valid also
for the case m = 0.

8 Seidels LP-algorithm 30. May. 2018

Harald Räcke 161/258



8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there

are at most d constraints whose removal will decrease the

objective function

Note that for the case d = 1, the asymp-
totic bound O(max{m,1}) is valid also
for the case m = 0.

8 Seidels LP-algorithm 30. May. 2018

Harald Räcke 161/258



8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there

are at most d constraints whose removal will decrease the

objective function

Note that for the case d = 1, the asymp-
totic bound O(max{m,1}) is valid also
for the case m = 0.

8 Seidels LP-algorithm 30. May. 2018

Harald Räcke 161/258



8 Seidels LP-algorithm

ñ If d = 1 we can solve the 1-dimensional problem in time

O(max{m,1}).
ñ If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

ñ The first recursive call takes time T(m− 1, d) for the call

plus O(d) for checking whether the solution fulfills h.

ñ If we are unlucky and x̂∗ does not fulfill h we need time

O(d(m+ 1)) = O(dm) to eliminate x`. Then we make a

recursive call that takes time T(m− 1, d− 1).
ñ The probability of being unlucky is at most d/m as there

are at most d constraints whose removal will decrease the

objective function

Note that for the case d = 1, the asymp-
totic bound O(max{m,1}) is valid also
for the case m = 0.

8 Seidels LP-algorithm 30. May. 2018

Harald Räcke 161/258



8 Seidels LP-algorithm

This gives the recurrence

T(m,d) =




O(max{1,m}) if d = 1
O(d) if d > 1 and m = 0
O(d)+ T(m− 1, d)+
d
m (O(dm)+ T(m− 1, d− 1)) otw.

Note that T(m,d) denotes the expected running time.
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8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

T(m,d) =




Cmax{1,m} if d = 1
Cd if d > 1 and m = 0
Cd+ T(m− 1, d)+
d
m (Cdm+ T(m− 1, d− 1)) otw.

Note that T(m,d) denotes the expected running time.
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8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

We show T(m,d) ≤ Cf(d)max{1,m}.

d = 1:

T(m,1) ≤ Cmax{1,m}≤Cf(1)max{1,m} for f(1) ≥ 1

d > 1;m = 0 :

T(0, d)

≤ O(d) ≤ Cd≤Cf(d)max{1,m} for f(d) ≥ d

d > 1;m = 1 :

T(1, d)

= O(d)+ T(0, d)+ d
(
O(d)+ T(0, d− 1)

)

≤ Cd+ Cd+ Cd2 + dCf(d− 1)

≤ Cf(d)max{1,m} for f(d) ≥ 3d2 + df(d− 1)
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8 Seidels LP-algorithm

d > 1;m > 1 :

(by induction hypothesis statm. true for d′ < d,m′ ≥ 0;

and for d′ = d, m′ <m)

T(m,d)

= O(d)+ T(m− 1, d)+ d
m

(
O(dm)+ T(m− 1, d− 1)

)

≤ Cd+ Cf(d)(m− 1)+ Cd2 + d
m
Cf(d− 1)(m− 1)

≤ 2Cd2 + Cf(d)(m− 1)+ dCf(d− 1)

≤ Cf(d)m

if f(d) ≥ df(d− 1)+ 2d2.
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8 Seidels LP-algorithm

ñ Define f(1) = 3 · 12 and f(d) = df(d− 1)+ 3d2 for d > 1.

Then

f(d) = 3d2 + df(d− 1)

= 3d2 + d
[
3(d− 1)2 + (d− 1)f (d− 2)

]

= 3d2 + d
[
3(d− 1)2 + (d− 1)

[
3(d− 2)2 + (d− 2)f (d− 3)

]]

= 3d2 + 3d(d− 1)2 + 3d(d− 1)(d− 2)2 + . . .
+ 3d(d− 1)(d− 2) · . . . · 4 · 3 · 2 · 12

= 3d!

(
d2

d!
+ (d− 1)2

(d− 1)!
+ (d− 2)2

(d− 2)!
+ . . .

)

= O(d!)

since
∑
i≥1

i2
i! is a constant. ∑

i≥1

i2

i!
=
∑

i≥0

i+ 1
i!

= e+
∑

i≥1

i
i!
= 2e
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Complexity

LP Feasibility Problem (LP feasibility A)

Given A ∈ Zm×n, b ∈ Zm. Does there exist x ∈ Rn with Ax ≤ b,

x ≥ 0?

LP Feasiblity Problem (LP feasibility B)

Given A ∈ Zm×n, b ∈ Zm. Find x ∈ Rn with Ax ≤ b, x ≥ 0!

LP Optimization A

Given A ∈ Zm×n, b ∈ Zm, c ∈ Zn. What is the maximum value of

cTx for a feasible point x ∈ Rn?

LP Optimization B

Given A ∈ Zm×n, b ∈ Zm, c ∈ Zn. Return feasible point x ∈ Rn

with maximum value of cTx?

Note that allowing A,b to contain rational numbers does not make a difference, as we can
multiply every number by a suitable large constant so that everything becomes integral but the
feasible region does not change.



The Bit Model

Input size

ñ The number of bits to represent a number a ∈ Z is

dlog2(|a|)e + 1

ñ Let for an m×n matrix M, L(M) denote the number of bits

required to encode all the numbers in M.

〈M〉 :=
∑

i,j
dlog2(|mij|)+ 1e

ñ In the following we assume that input matrices are encoded

in a standard way, where each number is encoded in binary

and then suitable separators are added in order to separate

distinct number from each other.

ñ Then the input length is L = Θ(〈A〉 + 〈b〉).
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ñ In the following we sometimes refer to L := 〈A〉 + 〈b〉 as the

input size (even though the real input size is something in

Θ(〈A〉 + 〈b〉)).
ñ Sometimes we may also refer to L := 〈A〉 + 〈b〉 +n log2n as

the input size. Note that n log2n = Θ(〈A〉 + 〈b〉).
ñ In order to show that LP-decision is in NP we show that if

there is a solution x then there exists a small solution for

which feasibility can be verified in polynomial time

(polynomial in L).

Note that m log2m may be much larger
than 〈A〉 + 〈b〉.
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Suppose that Āx = b; x ≥ 0 is feasible.

Then there exists a basic feasible solution. This means a set B of

basic variables such that

xB = Ā−1
B b

and all other entries in x are 0.

In the following we show that this x has small encoding length
and we give an explicit bound on this length. So far we have
only been handwaving and have said that we can compute x via
Gaussian elimination and it will be short...
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Suppose that Āx = b; x ≥ 0 is feasible.

Then there exists a basic feasible solution. This means a set B of

basic variables such that

xB = Ā−1
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Size of a Basic Feasible Solution

ñ A: original input matrix

ñ Ā: transformation of A into standard form

ñ ĀB: submatrix of Ā corresponding to basis B

Lemma 47

Let ĀB ∈ Zm×m and b ∈ Zm. Define L = 〈A〉 + 〈b〉 +n log2n.

Then a solution to ĀBxB = b has rational components xj of the

form
Dj
D , where |Dj| ≤ 2L and |D| ≤ 2L.

Proof:

Cramers rules says that we can compute xj as

xj =
det(ĀjB)
det(ĀB)

where ĀjB is the matrix obtained from ĀB by replacing the j-th
column by the vector b.

Note that n in the theorem denotes
the number of columns in A which
may be much smaller than m.
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Bounding the Determinant

Let X = ĀB. Then

|det(X)|

= |det(X̄)|

=
∣∣∣∣∣∣
∑

π∈Sñ
sgn(π)

∏

1≤i≤ñ
X̄iπ(i)

∣∣∣∣∣∣

≤
∑

π∈Sñ

∏

1≤i≤ñ
|X̄iπ(i)|

≤ n! · 2〈A〉+〈b〉 ≤ 2L .

Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.

Analogously for det(AjB).

When computing the determinant of X = ĀB
we first do expansions along columns that
were introduced when transforming A into
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Here X̄ is an ñ× ñ submatrix of A
with ñ ≤ n.
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∏

1≤i≤ñ
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Such a column contains a single 1 and
the remaining entries of the column are 0.
Therefore, these expansions do not increase
the absolute value of the determinant. After
we did expansions for all these columns we
are left with a square sub-matrix of A of size
at most n×n.

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 172/258



Bounding the Determinant

Let X = ĀB. Then
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Such a column contains a single 1 and
the remaining entries of the column are 0.
Therefore, these expansions do not increase
the absolute value of the determinant. After
we did expansions for all these columns we
are left with a square sub-matrix of A of size
at most n×n.

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 172/258



Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax ≤ b;x ≥ 0} do a binary search for the

optimum solution

(Add constraint cTx ≥ M). Then checking for feasibility shows

whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

log2

(
2n22L′

1/2L′
)
= O(L′) ,

as the range of the search is at most −n22L′ , . . . , n22L′ and the

distance between two adjacent values is at least 1
det(A) ≥ 1

2L′ .

Here we use L′ = 〈A〉 + 〈b〉 + 〈c〉 +n log2n (it also includes the

encoding size of c).
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How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint cTx ≥ Mmax+1 and check for feasibility.
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Ellipsoid Method

ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains E ∩H.

ñ REPEAT

z′
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Issues/Questions:

ñ How do you choose the first Ellipsoid? What is its volume?

ñ How do you measure progress? By how much does the

volume decrease in each iteration?

ñ When can you stop? What is the minimum volume of a

non-empty polytop?
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Definition 48

A mapping f : Rn → Rn with f(x) = Lx + t, where L is an

invertible matrix is called an affine transformation.
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Definition 49

A ball in Rn with center c and radius r is given by

B(c, r) = {x | (x − c)T (x − c) ≤ r2}
= {x |

∑

i
(x − c)2i /r2 ≤ 1}

B(0,1) is called the unit ball.
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Definition 50

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}
= {y ∈ Rn | (y − t)TL−1TL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)TQ−1(y − t) ≤ 1}

where Q = LLT is an invertible matrix.
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How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

a

ĉ′

Ê′

Ē′E′
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of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄
Ē
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Ê′ Ē′
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The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.

ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1.
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The Easy Case

ñ To obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′ is

axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.
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axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 182/258



The Easy Case

ñ To obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′ is
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The Easy Case

ñ As Q̂′ = L̂′L̂′t the matrix Q̂′
−1

is of the form

Q̂′
−1 =




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



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The Easy Case

ñ (e1 − ĉ′)T Q̂′−1
(e1 − ĉ′) = 1 gives




1− t
0
...

0




T

·




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



·




1− t
0
...

0



= 1

ñ This gives (1− t)2 = a2.
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The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)T Q̂′−1
(ei − ĉ′) = 1 looks like

(here i = 2)




−t
1

0
...

0




T

·




1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



·




−t
1

0
...

0



= 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2

= 1− t2

(1− t)2 =
1− 2t
(1− t)2
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Summary

So far we have

a = 1− t and b = 1− t√
1− 2t

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 186/258



The Easy Case

We still have many choices for t:

Ê

e1

e2

Choose t such that the volume of Ê′ is minimal!!!
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The Easy Case

We want to choose t such that the volume of Ê′ is minimal.

Lemma 51

Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)| · vol(K) .
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n-dimensional volume

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)|
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The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

ñ Recall that

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




ñ Note that a and b in the above equations depend on t, by

the previous equations.
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vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

ñ Recall that

L̂′ =




a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b




ñ Note that a and b in the above equations depend on t, by

the previous equations.

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 190/258



The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.
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The Easy Case

vol(Ê′)

= vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

We use the shortcut Φ := vol(B(0,1)).
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The Easy Case

d vol(Ê′)
d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t
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d t

= d
d t

(
Φ
(1− t)n
(√1−2t)n−1

)

= Φ
N2 ·

(
(−1) ·n(1− t)n−1

· (
√

1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= Φ
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(√1−2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(√1−2t)n−1√
1−2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1−2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 192/258



The Easy Case

d vol(Ê′)
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The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a

= 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
= (1−

1
n+1)

2

1− 2
n+1

= (
n
n+1)

2

n−1
n+1

= n2

n2 − 1
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The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n

=
( n
n+ 1

)2( n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e 1

n+1

= e− 1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .
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How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to translate/distort the ellipsoid (back) into
the unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c

E

a

ĉ′

Ê′

Ē′E′
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the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

ĉ
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Ē

c̄′

Ê′
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Our progress is the same:

e−
1

2(n+1)

≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).
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vol(f (Ē))
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vol(B(0,1))

= vol(Ê′)
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The Ellipsoid Algorithm

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | aT (x − c) ≤ 0};

f−1(H)

= {f−1(x) | aT (x − c) ≤ 0}
= {f−1(f (y)) | aT (f (y)− c) ≤ 0}
= {y | aT (f (y)− c) ≤ 0}
= {y | aT (Ly + c − c) ≤ 0}
= {y | (aTL)y ≤ 0}

This means ā = LTa.
The center c̄ is of course at the origin.
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The center c̄ is of course at the origin.

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 197/258



The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
( LTa
‖LTa‖

)
= −e1 ⇒ − LTa

‖LTa‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = − 1
n+ 1

LTa
‖LTa‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
LTa
‖LTa‖ + c

= c − 1
n+ 1

Qa√
aTQa
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For computing the matrix Q′ of the new ellipsoid we assume in

the following that Ê′, Ē′ and E′ refer to the ellispoids centered in

the origin.
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Recall that

Q̂′ =




a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2




This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)

because for a2 = n2/(n+1)2 and b2 = n2/n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

Note that e1eT1 is a matrix
M that has M11 = 1 and all
other entries equal to 0.
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9 The Ellipsoid Algorithm

Ē′

= R(Ê′)
= {R(x) | xT Q̂′−1

x ≤ 1}
= {y | (R−1y)T Q̂′

−1
R−1y ≤ 1}

= {y | yT (RT )−1Q̂′
−1
R−1y ≤ 1}

= {y | yT (RQ̂′RT︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}
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9 The Ellipsoid Algorithm

Hence,

Q̄′

= RQ̂′RT

= R · n2

n2 − 1

(
I − 2

n+ 1
e1eT1

)
· RT

= n2

n2 − 1

(
R · RT − 2

n+ 1
(Re1)(Re1)T

)

= n2

n2 − 1

(
I − 2

n+ 1
LTaaTL
‖LTa‖2

)

Here we used the equation for Re1 proved before, and the fact that RRT = I, which holds for
any rotation matrix. To see this observe that the length of a rotated vector x should not change,
i.e.,

xT Ix = (Rx)T (Rx) = xT (RTR)x
which means xT (I−RTR)x = 0 for every vector x. It is easy to see that this can only be fulfilled
if I − RTR = 0.
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9 The Ellipsoid Algorithm

E′

= L(Ē′)
= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT )−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}
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= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}
= {y | yT (LT )−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 203/258



9 The Ellipsoid Algorithm

E′ = L(Ē′)
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= {L(x) | xT Q̄′−1x ≤ 1}
= {y | (L−1y)T Q̄′−1L−1y ≤ 1}

= {y | yT (LT )−1Q̄′−1L−1y ≤ 1}
= {y | yT (LQ̄′LT︸ ︷︷ ︸

Q′

)−1y ≤ 1}

9 The Ellipsoid Algorithm 30. May. 2018

Harald Räcke 203/258



9 The Ellipsoid Algorithm

E′ = L(Ē′)
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn

2: output: point x ∈ K or “K is empty”

3: Q ← ???

4: repeat

5: if c ∈ K then return c
6: else

7: choose a violated hyperplane a

8: c ← c − 1
n+ 1

Qa√
aTQa

9: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

10: endif

11: until ???

12: return “K is empty”



Repeat: Size of basic solutions

Lemma 52

Let P = {x ∈ Rn | Ax ≤ b} be a bounded polyhedron. Let

L := 2〈A〉 + 〈b〉 + 2n(1+ log2n). Then every entry xj in a basic

solution fulfills |xj| = Dj
D with Dj ,D ≤ 2L.

In the following we use δ := 2L.

Proof:

We can replace P by P ′ := {x | A′x ≤ b;x ≥ 0} where

A′ =
[
A −A

]
. The lemma follows by applying Lemma 47, and

observing that 〈A′〉 = 2〈A〉 and n′ = 2n.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most Rn vol(B(0,1)) ≤ (nδ)n vol(B(0,1)).
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When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop.

Consider the following polyhedron

Pλ :=
{
x | Ax ≤ b + 1

λ




1
...

1



}
,

where λ = δ2 + 1.

Note that the volume of Pλ cannot be 0
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Making P full-dimensional

Lemma 53

Pλ is feasible if and only if P is feasible.

⇐= : obvious!
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Making P full-dimensional

=⇒:

Consider the polyhedrons

P̄ =
{
x |

[
A −A Im

]
x = b;x ≥ 0

}

and

P̄λ =
{
x |

[
A −A Im

]
x = b + 1

λ




1
...

1


 ;x ≥ 0

}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and

only if P̄λ feasible.
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Making P full-dimensional

Let Ā =
[
A −A Im

]
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b +

1
λ
Ā−1
B




1
...

1




(The other x-values are zero)

The only reason that this basic feasible solution is not feasible

for P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b)i < 0 ≤ (Ā−1

B b)i +
1
λ
(Ā−1
B ~1)i
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B b +

1
λ
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Making P full-dimensional

By Cramers rule we get

(Ā−1
B b)i < 0 =⇒ (Ā−1

B b)i ≤ −
1

det(ĀB)
≤ −1/δ

and

(Ā−1
B ~1)i ≤ det(ĀjB) ≤ δ ,

where ĀjB is obtained by replacing the j-th column of ĀB by ~1.

But then

(Ā−1
B b)i +

1
λ
(Ā−1
B ~1)i ≤ −1/δ+ δ/λ < 0 ,

as we chose λ = δ2 + 1. Contradiction.
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Lemma 54

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi + ~aTi ~̀

≤ bi + ‖~ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi + 1
δ2 + 1

≤ bi + 1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.
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How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r ))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r ))

)

= 2(n+ 1) ln
(
nnδn · δ3n

)

= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n) · L)
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Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn, radii R and r
2: with K ⊆ B(c,R), and B(x, r) ⊆ K for some x
3: output: point x ∈ K or “K is empty”

4: Q ← diag(R2, . . . , R2) // i.e., L = diag(R, . . . , R)
5: repeat

6: if c ∈ K then return c
7: else

8: choose a violated hyperplane a

9: c ← c − 1
n+ 1

Qa√
aTQa

10: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaaTQ
aTQa

)

11: endif

12: until det(Q) ≤ r2n // i.e., det(L) ≤ rn
13: return “K is empty”



Separation Oracle

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.
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10 Karmarkars Algorithm

ñ inequalities Ax ≤ b; m×n matrix A with rows aTi
ñ P = {x | Ax ≤ b}; P◦ := {x | Ax < b}
ñ interior point algorithm: x ∈ P◦ throughout the algorithm

ñ for x ∈ P◦ define

si(x) := bi − aTi x
as the slack of the i-th constraint

logarithmic barrier function:

φ(x) = −
m∑

i=1

ln(si(x))

Penalty for point x; points close to the boundary have a very

large penalty.
Throughout this section ai denotes the
i-th row as a column vector.
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Gradient and Hessian

Taylor approximation:

φ(x + ε) ≈ φ(x)+∇φ(x)Tε+ 1
2
εT∇2φ(x)ε

Gradient:

∇φ(x) =
m∑

i=1

1
si(x)

· ai = ATdx

where dTx = (1/s1(x), . . . ,1/sm(x)). (dx vector of inverse slacks)

Hessian:

Hx := ∇2φ(x) =
m∑

i=1

1
si(x)2

aiaTi = ATD2
xA

with Dx = diag(dx).
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Proof for Gradient

∂φ(x)
∂xi

= ∂
∂xi

(
−
∑
r

ln(sr (x))
)

= −
∑
r

∂
∂xi

(
ln(sr (x))

)
= −

∑
r

1
sr (x)

∂
∂xi

(
sr (x)

)

= −
∑
r

1
sr (x)

∂
∂xi

(
br − aTr x

)
=
∑
r

1
sr (x)

∂
∂xi

(
aTr x

)

=
∑
r

1
sr (x)

Ari

The i-th entry of the gradient vector is
∑
r 1/sr (x) ·Ari. This

gives that the gradient is

∇φ(x) =
∑
r

1/sr (x)ar = ATdx



Proof for Hessian

∂
∂xj

(∑
r

1
sr (x)

Ari
)
=
∑
r
Ari

(
− 1
sr (x)2

)
· ∂
∂xj

(
sr (x)

)

=
∑
r
Ari

1
sr (x)2

Arj

Note that
∑
r AriArj = (ATA)ij. Adding the additional factors

1/sr (x)2 can be done with a diagonal matrix.

Hence the Hessian is

Hx = ATD2A



Properties of the Hessian

Hx is positive semi-definite for x ∈ P◦

uTHxu = uTATD2
xAu = ‖DxAu‖2

2 ≥ 0

This gives that φ(x) is convex.

If rank(A) = n, Hx is positive definite for x ∈ P◦

uTHxu = ‖DxAu‖2
2 > 0 for u ≠ 0

This gives that φ(x) is strictly convex.

‖u‖Hx := √uTHxu is a (semi-)norm; the unit ball w.r.t. this norm

is an ellipsoid.
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Dikin Ellipsoid

Ex = {y | (y − x)THx(y − x) ≤ 1} = {y | ‖y − x‖Hx ≤ 1}

Points in Ex are feasible!!!

(y − x)THx(y − x) = (y − x)TATD2
xA(y − x)

=
m∑

i=1

(aTi (y − x))2
si(x)2

=
m∑

i=1

(change of distance to i-th constraint going from x to y)2

(distance of x to i-th constraint)2

≤ 1

In order to become infeasible when going from x to y one of the

terms in the sum would need to be larger than 1.
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Dikin Ellipsoids
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Analytic Center

xac := arg minx∈P◦ φ(x)

ñ xac is solution to

∇φ(x) =
m∑

i=1

1
si(x)

ai = 0

ñ depends on the description of the polytope

ñ xac exists and is unique iff P◦ is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly

feasible and that rank(A) = n.

Central Path:

Set of points {x∗(t) | t > 0} with

x∗(t) = argminx{tcTx +φ(x)}

ñ t = 0: analytic center

ñ t = ∞: optimum solution

x∗(t) exists and is unique for all t ≥ 0.
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Different Central Paths

x

y

10 Karmarkars Algorithm 30. May. 2018

Harald Räcke 229/258



Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to

optimum solution.

Questions:

ñ Is this really true? How large a t do we need?

ñ How do we find corresponding point x∗(t) on central path?
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The Dual

primal-dual pair:

min cTx

s.t. Ax ≤ b

max −bTz
s.t. ATz + c = 0

z ≥ 0

Assumptions

ñ primal and dual problems are strictly feasible;

ñ rank(A) = n.

Note that the right LP in standard form
is equal to max{−bTy | −ATy = c,x ≥
0}. The dual of this is min{cTx | −Ax ≥
−b} (variables x are unrestricted).



Force Field Interpretation

Point x∗(t) on central path is solution to tc +∇φ(x) = 0

ñ We can view each constraint as generating a repelling force.

The combination of these forces is represented by ∇φ(x).
ñ In addition there is a force tc pulling us towards the

optimum solution.
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How large should t be?

Point x∗(t) on central path is solution to tc +∇φ(x) = 0.

This means

tc +
m∑

i=1

1
si(x∗(t))

ai = 0

or

c +
m∑

i=1

z∗i (t)ai = 0 with z∗i (t) =
1

tsi(x∗(t))

ñ z∗(t) is strictly dual feasible: (ATz∗ + c = 0; z∗ > 0)

ñ duality gap between x := x∗(t) and z := z∗(t) is

cTx + bTz = (b −Ax)Tz = m
t

ñ if gap is less than 1/2Ω(L) we can snap to optimum point
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How to find x∗(t)

First idea:

ñ start somewhere in the polytope

ñ use iterative method (Newtons method) to minimize

ft(x) := tcTx +φ(x)
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Newton Method

Quadratic approximation of ft

ft(x + ε) ≈ ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Suppose this were exact:

ft(x + ε) = ft(x)+∇ft(x)Tε+ 1
2
εTHft(x) ε

Then gradient is given by:

∇ft(x + ε) = ∇ft(x)+Hft(x) · ε
Note that for the one-dimensional case
g(ε) = f(x)+f ′(x)ε+ 1

2f
′′(x)ε2, then

g′(ε) = f ′(x)+ f ′′(x)ε.
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g′(ε) = f ′(x)+ f ′′(x)ε.
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Newton Method

We want to move to a point where this gradient is 0:

Newton Step at x ∈ P◦

∆xnt = −H−1
ft (x)∇ft(x)

= −H−1
ft (x)(tc +∇φ(x))

= −(ATD2
xA)−1(tc +ATdx)

Newton Iteration:

x := x +∆xnt

Observe that Hft (x) = H(x), where H(x) is the Hessian
for the function φ(x) (adding a linear term like tcTx
does not affect the Hessian).

Also ∇ft(x) = tc +∇φ(x).



Measuring Progress of Newton Step

Newton decrement:

λt(x) = ‖DxA∆xnt‖
= ‖∆xnt‖Hx

Square of Newton decrement is linear estimate of reduction if we

do a Newton step:

−λt(x)2 = ∇ft(x)T∆xnt

ñ λt(x) = 0 iff x = x∗(t)
ñ λt(x) is measure of proximity of x to x∗(t)

Recall that ∆xnt fulfills −H(x)∆xnt = ∇ft().
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Convergence of Newtons Method

Theorem 55

If λt(x) < 1 then

ñ x+ := x +∆xnt ∈ P◦ (new point feasible)

ñ λt(x+) ≤ λt(x)2

This means we have quadratic convergence. Very fast.



Convergence of Newtons Method

feasibility:

ñ λt(x) = ‖∆xnt‖Hx < 1; hence x+ lies in the Dikin ellipsoid

around x.



Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)

λt(x+)2 = ‖D+A∆x+nt‖2

≤ ‖D+A∆x+nt‖2 + ‖D+A∆x+nt + (I −D−1+ D)DA∆xnt‖2

= ‖(I −D−1+ D)DA∆xnt‖2

To see the last equality we use Pythagoras

‖a‖2 + ‖a+ b‖2 = ‖b‖2

if aT (a+ b) = 0.
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Convergence of Newtons Method

DA∆xnt = DA(x+ − x)
= D(b −Ax − (b −Ax+))
= D(D−1~1−D−1+ ~1)

= (I −D−1+ D)~1

aT (a+ b)
= ∆x+Tnt ATD+

(
D+A∆x+nt + (I −D−1+ D)DA∆xnt

)

= ∆x+Tnt

(
ATD2+A∆x+nt −ATD2A∆xnt +ATD+DA∆xnt

)

= ∆x+Tnt

(
H+∆x+nt −H∆xnt +ATD+~1−ATD~1

)

= ∆x+Tnt

(
−∇ft(x+)+∇ft(x)+∇φ(x+)−∇φ(x)

)

= 0
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Convergence of Newtons Method

bound on λt(x+):
we use D := Dx = diag(dx) and D+ := Dx+ = diag(dx+)
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= ‖DA∆xnt‖4

= λt(x)4

The second inequality follows from
∑
iy4
i ≤

(∑
iy2
i
)2
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If λt(x) is large we do not have a guarantee.

Try to avoid this case!!!
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Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing
1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function

4: recenter to return to central path



Short Step Barrier Method

simplifying assumptions:

ñ a first central point x∗(t0) is given

ñ x∗(t) is computed exactly in each iteration

ε is approximation we are aiming for

start at t = t0, repeat until m/t ≤ ε
ñ compute x∗(µt) using Newton starting from x∗(t)
ñ t := µt

where µ = 1+ 1/(2
√
m)



Short Step Barrier Method

gradient of ft+ at (x = x∗(t))

∇ft+(x) = ∇ft(x)+ (µ − 1)tc

= −(µ − 1)ATDx~1

This holds because 0 = ∇ft(x) = tc +ATDx~1.

The Newton decrement is

λt+(x)2 = ∇ft+(x)TH−1∇ft+(x)
= (µ − 1)2~1TB(BTB)−1BT~1 B = DTxA
≤ (µ − 1)2m

= 1/4

This means we are in the range of quadratic convergence!!!
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Number of Iterations

the number of Newton iterations per outer

iteration is very small; in practise only 1 or 2

Number of outer iterations:

We need tk = µkt0 ≥m/ε. This holds when

k ≥ log(m/(εt0))
log(µ)

We get a bound of

O
(√
m log

m
εt0

)

We show how to get a starting point with t0 = 1/2L. Together

with ε ≈ 2−L we get O(L√m) iterations.

Explanation for previous slide
P = B(BTB)−1BT is a symmet-
ric real-valued matrix; it has n
linearly independent Eigenvec-
tors. Since it is a projection ma-
trix (P2 = P ) it can only have
Eigenvalues 0 and 1 (because
the Eigenvalues of P2 are λ2

i ,
where λi is Eigenvalue of P ).
The expression

max
v
vTPv
vTv

gives the largest Eigenvalue for
P . Hence, ~1TP~1 ≤ ~1T~1 =m
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Damped Newton Method

For x ∈ P◦ and direction v ≠ 0 define

σx(v) :=max
i

aTi v
si(x)

Observation:

x +αv ∈ P for α ∈ {0,1/σx(v)}

We assume that the polytope (not just
the LP) is bounded. Then Av ≤ 0 is not
possible.

aTi v is the change on the left
hand side of the i-th constraint
when moving in direction of v.

If σx(v) > 1 then for one coor-
dinate this change is larger than
the slack in the constraint at po-
sition x.

By downscaling v we can en-
sure to stay in the polytope.
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Damped Newton Method

Suppose that we move from x to x +αv. The linear estimate

says that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small

α the reduction of ft(x) is close to linear estimate.

ft(x +αv)− ft(x) = tcTαv +φ(x +αv)−φ(x)

φ(x +αv)−φ(x) = −
∑
i log(si(x +αv))+

∑
i log(si(x))

= −
∑
i log(si(x +αv)/si(x))

= −
∑
i log(1− aTi αv/si(x))

si(x +αv) = bi −aTi x −aTi αv = si(x)−aTi αv
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Damped Newton Method

Suppose that we move from x to x +αv. The linear estimate

says that ft(x) should change by ∇ft(x)Tαv.

The following argument shows that ft is well behaved. For small
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Damped Newton Method

Define wi = aTi v/si(x) and σ =maxiwi. Then

ft(x +αv)− ft(x)−∇ft(x)Tαv
= −

∑
i(αwi + log(1−αwi))

≤ −
∑

wi>0

(αwi + log(1−αwi))+
∑

wi≤0

α2w2
i

2

≤ −
∑

wi>0

w2
i
σ2

(
ασ + log(1−ασ)

)
+ (ασ)

2

2

∑

wi≤0

w2
i
σ2

∇ft(x)Tαv
=
(
tcT +∑i aTi /si(x)

)
αv

= tcTαv +∑i αwi

For |x| < 1, x ≤ 0 :

x + log(1− x) = −x2

2 − x3

3 − x4

4 − · · · ≥ −x
2

2 = −
y2

2
x2

y2

Note that ‖w‖ = ‖v‖Hx .

For |x| < 1, 0 < x ≤ y :

x + log(1− x) = −x2

2 − x3

3 − x4

4 − · · · = x2

y2

(
− y2

2 −
y2x

3 − y2x2

4 − . . .
)

≥ x2

y2

(
− y2

2 −
y3

3 −
y4

4 − . . .
)
= x2

y2 (y + log(1−y))
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Damped Newton Method
For x ≥ 0
x2

2 ≤ x2

2 + x3

3 + x4

4 + · · · = −
(
x + log(1− x)

)

≤ −
∑
i

w2
i
σ2

(
ασ + log(1−ασ)

)

= − 1
σ2 ‖v‖2

Hx

(
ασ + log(1−ασ)

)

Damped Newton Iteration:

In a damped Newton step we choose

x+ = x + 1
1+ σx(∆xnt)

∆xnt

This means that in the above expressions we choose α = 1
1+σ and v = ∆xnt. Note that

it wouldn’t make sense to choose α larger than 1 as this would mean that our real target
(x +∆xnt) is inside the polytope but we overshoot and go further than this target.
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Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

λt(x)− log(1+ λt(x))

Proof: The decrease in cost is

−α∇ft(x)Tv + 1
σ2 ‖v‖2

Hx(ασ + log(1−ασ))

Choosing α = 1
1+σ and v = ∆xnt gives

1
1+ σ λt(x)

2+λt(x)
2

σ2

(
σ

1+ σ + log
(
1− σ

1+ σ
))

=λt(x)
2

σ2

(
σ − log(1+ σ)

)

With v = ∆xnt we have ‖w‖2 = ‖v‖Hx = λt(x); further
recall that σ = ‖w‖∞; hence σ ≤ λt(x).
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Damped Newton Method

≥ λt(x)− log(1+ λt(x))
≥ 0.09

for λt(x) ≥ 0.5

Centering Algorithm:

Input: precision δ; starting point x
1. compute ∆xnt and λt(x)
2. if λt(x) ≤ δ return x
3. set x := x +α∆xnt with

α =
{ 1

1+σx(∆xnt)
λt ≥ 1/2

1 otw.

The first inequality follows since the
function 1

x2 (x− log(1+x)) is monoton-
ically decreasing.
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Centering

Lemma 56

The centering algorithm starting at x0 reaches a point with

λt(x) ≤ δ after

ft(x0)−miny ft(y)
0.09

+O(log log(1/δ))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax ≤ b} be our (feasible) polyhedron, and x0 a feasible

point.

We change b → b + 1
λ · ~1, where L = 〈A〉 + 〈b〉 + 〈c〉 (encoding

length) and λ = 22L. Recall that a basis is feasible in the old LP

iff it is feasible in the new LP.
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Lemma [without proof]

The inverse of a matrix M can be represented with rational

numbers that have denominators zij = det(M).

For two basis solutions xB, xB̄, the cost-difference cTxB − cTxB̄
can be represented by a rational number that has denominator

z = det(AB) · det(AB̄).

This means that in the perturbed LP it is sufficient to decrease

the duality gap to 1/24L (i.e., t ≈ 24L). This means the previous

analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the

objective value c̄Tx is at most n2M2L, where M ≤ L is the

encoding length of the largest entry in c̄.
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How to get close to analytic center?
Note that an entry in ĉ fulfills |ĉi| ≤ 22L.
This holds since the slack in every constraint
at x0 is at least λ = 1/22L, and the gradient
is the vector of inverse slacks.

Start at x0.

Choose ĉ := −∇φ(x).

x0 = x∗(1) is point on central path for ĉ and t = 1.

You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.

Let xĉ denote this point.

Let xc denote the point that minimizes

t · cTx +φ(x)

(i.e., same value for t but different c, hence, different central

path).
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You can travel the central path in both directions. Go towards 0

until t ≈ 1/2Ω(L). This requires O(
√
mL) outer iterations.
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How to get close to analytic center?

Clearly,

t · ĉTxĉ +φ(xĉ) ≤ t · ĉTxc +φ(xc)

The difference between ft(xĉ) and ft(xc) is

tcTxĉ +φ(xĉ)− tcTxc −φ(xc)
≤ t(cTxĉ + ĉTxc − ĉTxĉ − cTxc)
≤ 4tn23L

For t = 1/2Ω(L) the last term becomes constant. Hence, using

damped Newton we can move from xĉ to xc quickly.

In total for this analysis we require O(√mL) outer iterations for

the whole algorithm.

One iteration can be implemented in Õ(m3) time.
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The difference between ft(xĉ) and ft(xc) is
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