
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Theoretische Informatik
Prof. Dr. Susanne Albers
Jens Quedenfeld

Winter Semester 2017/18
Problem Set 2

October 30, 2017

Online and Approximation Algorithms

Due November 6, 2017 at 10:00

Exercise 1 (Marking Algorithm – 10 points)
Consider a sequence of requests σ for pages from a memory system with a fast memory of
size k. A k-phase partition of σ is obtained as follows: we partition the request sequence
into phases such that each phase is the maximal sequence containing k pairwise distinct
pages that follows the previous one, except possibly the last phase which contains requests
to at most k different pages.
Given a k-phase partition of σ, we define a marking of the pages requested as follows. At
the beginning of a phase, all pages are unmarked. During the phase, a page is marked
upon the first request to it. Recall that an online paging algorithm is a marking algorithm,
if it never evicts a marked page.

(a) Prove that every marking algorithm is k-competitive.

(b) Prove that FIFO is not a marking algorithm.

Exercise 2 (Demand Paging – 10 points)
Paging algorithms that do not evict pages unless there is a page fault are called demand
paging. Prove that any paging algorithm can be modified to be demand paging without
increasing the overall number of memory replacements on any request sequence.

Exercise 3 (Amortized Analysis – 10 points)
Suppose that we serve a sequence of n requests, where the cost for serving i-th request is

ci =

{
i, if i is an exact power of 2
1, otherwise

What is the worst-case cost for serving the requests? Use amortized analysis with an
appropriate potential function in order to show that the total cost is upper bounded by
3n.

Exercise 4 (Implementing a Queue using two Stacks – 10 points)
Implement a FIFO queue by using two stacks with the operations PUSH, POP and
IS EMPTY.

(a) How can you implement the queue operations ENQUEUE and DEQUEUE? Write
pseudo code.

(b) Show that you algorithm is correct.

(c) Analyze the amortized runtime.


