5.3 Strong Duality

P =max{cTx | Ax <b,x =0}
na: number of variables, m4: number of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{cTx | Ax < b}

Ny =MNA, My =MA +NA

Dual D = min{bTy | ATy = ¢,y = 0}.
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P =max{cTx | Ax <b,x =0}
na: number of variables, m4: humber of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{clx | Ax < b}
Njg=MNp, My =Mp +MNA

beer

Dual D = min{bTy | ATy = ¢,y = 0}.

| ale

The profit vector c lies in the cone generated by the normals for

the hops and the corn constraint (the tight constraints). EADS II 5.3 Strong Duality
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60
Cor,
Theorem 2 (Strong Duality) \ .
Let P and D be a primal dual pair of linear programs, and let z* {a, b, sm} Qv‘:
and w* denote the optimal solution to P and D, respectively. o \\
(]
Then 2
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| The profit vector c lies in the cone generated by the normals for

m EADS Il 5.3 Strong Duality the hops and the corn constraint (the tight constraints).
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Strong Duality

Lemma 3 (Weierstrass)

_ _ Theorem 2 (Strong Duality)
Let X be a -compact set and Iet.f(x) be a continuous function on Let P and D be a primal dual pair of linear programs, and let z*
X. Thenmin{f(x) : x € X} exists. and w* denote the optimal solution to P and D, respectively.
. Then
(without proof) 2% — ¥

‘m EADS Il 5.3 Strong Duality EADS Il
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Lemma 4 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)T(x — x*) <0.

‘m EADS Il 5.3 Strong Duality
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Lemma 3 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{f(x) : x € X} exists.

(without proof)
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Proof of the Projection Lemma
> Define f(x) = |y — x| Lemma 4 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from . Moreover for
all x € X we have (y — x*)T(x —x*) <0.

20
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Proof of the Projection Lemma
> Define f(x) = |y — x| Lemma 4T(nPr01ect|on Lemma)
» We want to apply Weierstrass but X may not be bounded. Let X < R" be a non-empty convex set, and let y ¢ X. Then

there exist x* € X with minimum distance from . Moreover for
all x € X we have (y — x*)T(x —x*) <0.

20
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Proof of the Projection Lemma

> Define f(x) = Il — x| Lemma 4 (Projection Lemma)
» We want to apply Weierstrass but X may not be bounded. Let X < R" be a non-empty convex set, and let y ¢ X. Then
» X + 0. Hence, there exists x’ € X. there exist x* € X with minimum distance from y. Moreover for

all x € X we have (y — x*)T(x —x*) <0.

20
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Proof of the Projection Lemma
Lemma 4 (Projection Lemma)

\4

Define f(x) = [|v - xII.

» We want to apply Weierstrass but X may not be bounded.
» X =+ (0. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from . Moreover for
all x € X we have (y — x*)T(x —x*) <0.

v

20
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Proof of the Projection Lemma

Define f(x) = |1y — x].
We want to apply Weierstrass but X may not be bounded.
X # (. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

Lemma 4 (Projection Lemma)

\4

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from . Moreover for
all x € X we have (y — x*)T(x —x*) <0.

v

v

v

v
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Proof of the Projection Lemma (continued)
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Proof of the Projection Lemma
Define f(x) = |y — x|

X # (0. Hence, there exists x’ € X.

Define X' = {x € X | |y — x|l < |ly — x"|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

v vV v VY

v
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Proof of the Projection Lemma (continued) Proof of the Projection Lemma
Define f(x) = ||y — x|I.

v

x* is minimum. Hence ||y — x*||> < ||y — x]|* for all x € X. _
» X # (). Hence, there exists x’ € X.

» Define X' = {x e X | [y — x|l < [ly —x'|l}. This set is
closed and bounded.
Applying Weierstrass gives the existence.

v
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Proof of the Projection Lemma (continued) Proof of the Projection Lemma
Define f(x) = ||y — x|I.

v

x* is minimum. Hence ||y — x*||> < ||y — x]|* for all x € X. _
» X # (). Hence, there exists x’ € X.

By convexity: x € X then x* + e(x —x*) € X forall0 <e < 1. » Define X' = {x € X | [ly — x|l < lly = x"lI}. This setis
closed and bounded.
Applying Weierstrass gives the existence.

v
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Proof of the Projection Lemma (continued) Proof of the Projection Lemma
Define f(x) = ||y — x|I.

v

x* is minimum. Hence ||y — x*||> < ||y — x]|* for all x € X. _
» X # (). Hence, there exists x’ € X.

By convexity: x € X then x* + e(x —x*) € X forall0 <e < 1. » Define X' = {x € X | [ly — x|l < lly = x"lI}. This setis
closed and bounded.
Applying Weierstrass gives the existence.

v

Iy = x*|1%
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Proof of the Projection Lemma (continued) Proof of the Projection Lemma
Define f(x) = ||y — x|I.

v

x* is minimum. Hence ||y — x*||> < ||y — x]|* for all x € X. _
» X # (). Hence, there exists x’ € X.

By convexity: x € X then x* + e(x —x*) € X forall0 <e < 1. » Define X' = {x € X | [ly — x|l < lly = x"lI}. This setis
closed and bounded.
Applying Weierstrass gives the existence.

v

Iy —x*1? < [ly — x* —e(x —x*)|?
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Proof of the Projection Lemma (continued) Proof of the Projection Lemma
Define f(x) = ||y — x|I.

v

x* is minimum. Hence ||y — x*||> < ||y — x]|* for all x € X. _
» X # (). Hence, there exists x’ € X.

By convexity: x € X then x* + e(x —x*) € X forall0 <e < 1. » Define X' = {x € X | [ly — x|l < lly = x"lI}. This setis
closed and bounded.
Applying Weierstrass gives the existence.

v

Iy —x*1? < [ly — x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)
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Proof of the Projection Lemma (continued) Proof of the Projection Lemma
Define f(x) = ||y — x|I.

v

x* is minimum. Hence ||y — x*||> < ||y — x]|* for all x € X. _
» X # (). Hence, there exists x’ € X.

By convexity: x € X then x* + e(x —x*) € X forall0 <e < 1. » Define X' = {x € X | [ly — x|l < lly = x"lI}. This setis
closed and bounded.
Applying Weierstrass gives the existence.

v

Iy —x*1? < [ly — x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx — x*||2.
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Proof of the Projection Lemma (continued)
x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e X forall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?

=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx — x*||2.

Letting € — 0 gives the result.
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Proof of the Projection Lemma
Define f(x) = |y — x|

X # (0. Hence, there exists x’ € X.

Define X' = {x e X | ||y — x|l < lly — x'[I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

vV vV v VY

v
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Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: al x = o}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*|2 < ||y — x]|? for all x € X.

By convexity: x € X then x* + e(x —x*) € X forall 0 <€ < 1.

ly —x*I12 < lly — x* —e(x — x*)|?

=y — x*)1% + €?llx — x*|I° - 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx — x*||2.

Letting € — 0 gives the result.
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let vy ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, x € R that separates y from X. @’y < «;
alx = « forall x € X)

‘m EADS Il 5.3 Strong Duality
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let vy ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, x € R that separates y from X. @’y < «;
alx = « forall x € X)

‘m EADS Il 5.3 Strong Duality
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
» Choose a = (x* — y) and & = al x*.

Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let vy ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, x € R that separates y from X. @’y < «;
alx = « forall x € X)
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Proof of the Hyperplane Lemma

v

Let x* € X be closest point to y in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

Choose a = (x* — y) and o« = al x*.

» Forx e X:al(x — x*) =0, and, hence, alx > a. Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let vy ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}

where a € R™, x € R that separates y from X. @’y < «;
alx = « forall x € X)

v
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Proof of the Hyperplane Lemma

v

Let x* € X be closest point to y in X.
» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.

v

Choose a = (x* — ) and o« = a’ x*.

» Forx e X:al(x — x*) =0, and, hence, alx > a. Theorem 5 (Separating Hyperplane)

Also, aTy = aT(x* —a) = o — |lall? < « Let X < R™ be a non-empty closed convex set, and let vy ¢ X.
Then there exists a separating hyperplane {x € R: alx = «}
where a € R™, x € R that separates y from X. @’y < «;
alx = « forall x € X)

v
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Proof of the Hyperplane Lemma

Let x* € X be closest point to y in X.

» By previous lemma (y — x*)T (x — x*) < 0 for all x € X.
Choose a = (x* — y) and = alx*.

» Forx e X:al(x —x*) =0, and, hence, a’x > «.
Also,a’y =al(x* —a) = « - ||al® < «

\4

Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax e R" with Ax = b, x =0
2. Ay e R™ withATy >0, bTy <0

\4

\4
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Proof of the Hyperplane Lemma

» Let x* € X be closest point to v in X.

Lemma 6 (Farkas Lemma)
» By previous lemma (y — x*)T (x — x*) < 0 for all x € X.

Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds. » Choose a = (x* —y) and & = a®x*.
» Forx e X:al(x —x*) =0, and, hence, a’x > «.

1. Ax e R" with Ax = b, x =0
Also,a’y =al(x* —a) = « - ||al® < «

2. Ay e R™ withATy >0, bTy <0

v

Assume X satisfies 1. and ¥ satisfies 2. Then

0>yTh=yTAx >0
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Proof of the Hyperplane Lemma

Let x* € X be closest point to y in X.

» By previous lemma (y — x*)T (x — x*) < 0 for all x € X.
Choose a = (x* — y) and = alx*.

» Forx e X:al(x —x*) =0, and, hence, a’x > «.

v

Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax e R" with Ax = b, x =0

2. Ay e R™ withATy >0, bTy <0

v

Also,a’y =al(x* —a) = « - ||al® < «

v

Assume X satisfies 1. and ¥ satisfies 2. Then

0>yTh=yTAx >0

Hence, at most one of the statements can hold.
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Farkas Lemma

a
b )(3
aq
X X ap
/al
T~
y

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.

Lemma 6 (Farkas Lemma)

Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx =b, x>0
2. 3y e R"™ withATy >0,bTy <0

Assume X satisfies 1. and y satisfies 2. Then

0>yTh=yTAx >0

Hence, at most one of the statements can hold.
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Proof of Farkas Lemma Farkas Lemma

a
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If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.
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If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma Farkas Lemma

as
b
Now, assume that 1. does not hold. a * ——
)(4 X ap
Consider S = {Ax : x > 0} so that S closed, convex, b ¢ S. y |
/al
Ty

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma Farkas Lemma

as
b
Now, assume that 1. does not hold. a * ——
)(4 X ap
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S. y |
We want to show that there is y with ATy >0, bTy < 0. /a1
Ty

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma Farkas Lemma

Now, assume that 1. does not hold. ——

Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.

We want to show that there is y with ATy >0, bTy < 0. /a1

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S. -

/
/

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.




Proof of Farkas Lemma Farkas Lemma

as
b
Now, assume that 1. does not hold. a * ——
)(4 X ap
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S. y |
We want to show that there is y with ATy >0, bTy < 0. /a1
Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S. =
0eS=a<0=>yTb<0 /

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma Farkas Lemma

as
b
Now, assume that 1. does not hold. a * ——
)(4 X ap
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S. y |
We want to show that there is y with ATy >0, bTy < 0. /a1
Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S. =
0eS=a<0=>yTb<0 /
yTAx = « for all x = 0. /

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma Farkas Lemma

as
b
Now, assume that 1. does not hold. a * ——
)(4 X ap
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S. y
We want to show that there is y with ATy >0, bTy < 0. /a1
Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S. =
0eS=a<0=>yTb<0 /
yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x /
arbitrarily large.

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Farkas Lemma

Lemma 7 (Farkas Lemma; different version)

a
Let A be an m X n matrix, b € R™. Then exactly one of the b x
following statements holds. A y..
1. Ax e R" withAx <b,x >0
2. 3y e R™ withATy =0,bTy <0,y =0 /
ay

/
/

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.
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Farkas Lemma

Lemma 7 (Farkas Lemma; different version)
a
Let A be an m X n matrix, b € R™. Then exactly one of the b X
following statements holds. 1/}(4 y..
1. Ix e R" withAx <b,x =0 y
2. 3y e R™ withATy =0,bTy <0,y =0 /
ay
Rewrite the conditions:
l.er[R{"with[AI]-[)j=b,x20,520 y
AT
2. 3y € R™ with [ ! ]yzO,bTy<0

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.
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Proof of Strong Duality

P: z =max{cIx | Ax < b,x = 0}

D:w=min{bTy | ATy >¢c,y =0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .
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Lemma 7 (Farkas Lemma; different version)

Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. 3x e R" withAx <b,x >0
2. 3y e R"™ withATy >0,bTy <0,y =0

Rewrite the conditions:

1. Ix € R™ with [AI]-[§}=b,sz,szO

AT
2. EIye[R%mwith[I}yzO,bTy<O
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Proof of Strong Duality Proof of Strong Duality

P: z =max{cTx | Ax < b,x >0}

D: w=min{bTy | ATy > ¢,y =0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=wW .
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Proof of Strong Duality Proof of Strong Duality

z < w: follows from weak duality P:z=max{cTx | Ax < b,x = 0}

D: w=min{bTy | ATy > ¢,y =0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=wW .

‘m EADS Il 5.3 Strong Duality EADS Il 5.3 Strong Duality
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Proof of Strong Duality Proof of Strong Duality

N
IA

w: follows from weak duality P:z=max{cTx | Ax < b,x = 0}

z>w: D: w=min{bTy | ATy > ¢,y =0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=wW .
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Proof of Strong Duality Proof of Strong Duality

N
IA

w: follows from weak duality P:z=max{cTx | Ax < b,x = 0}

zZ = W:

D: w=min{bTy | ATy > ¢,y =0}
We show z < o implies w < «.

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=wW .
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Proof of Strong Duality Proof of Strong Duality

N
IA

w: follows from weak duality P:z=max{cTx | Ax < b,x = 0}

zZ = W:

D: w=min{bTy | ATy > ¢,y =0}
We show z < o implies w < «.
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We show z < o implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b st. ATy—cv = 0
-cTx < -« bTy—axv < 0
x = 0 y, v = 0

From the definition of &« we know that the first system is
infeasible; hence the second must be feasible.
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Iy e R™;v € R P: z =max{cTx | Ax < b,x = 0}
st. ATy —cv = 0
Ty —av < 0 D: w=min{bTy | ATy >¢c,y =0}
y,v = 0
If the solution v, v has v = 0 we have that Theorem 8 (Strong Duality)
Let P and D be a primal dual pair of linear programs, and let z
dy e R™ and w denote the optimal solution to P and D, respectively (i.e.,
s.t. ATy > 0 P and D are non-empty). Then
bTy < 0
y = 0 Z=W .

is feasible.
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st. ATy —cv = 0
Ty —av < 0 D: w=min{bTy | ATy >¢c,y =0}
y,v = 0
If the solution v, v has v = 0 we have that Theorem 8 (Strong Duality)
Let P and D be a primal dual pair of linear programs, and let z
dy e R™ and w denote the optimal solution to P and D, respectively (i.e.,
s.t. ATy > 0 P and D are non-empty). Then
bTy < 0
y = 0 Z=W .

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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dy e R"™;v e R

st. ATy —cv = 0
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y,v = 0

If the solution y,v has v = 0 we have that
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is feasible. By Farkas lemma this gives that LP P is infeasible.
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dy e R"™;v e R

st. ATy —cv = 0

Th, _
Hence, there exists a solution y, v with v > 0. y—ew < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
st. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.
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dy e R"™;v e R

st. ATy —cv = 0
T, _
Hence, there exists a solution y, v with v > 0. = < 0
y,v = 0
We can rescale this solution (scaling both y and v) s.t. v = 1. If the solution y, v has v = 0 we have that
Then v is feasible for the dual but bTy < «. This means that dy e R™
w < K. st. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"st. Ax =b,x>0,cTx>x?

Questions:
> Is LP in NP?
> |Is LP in co-NP? yes!
> IS LPin P?

Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then v is feasible for the dual but b7y < «. This means that
w < K.
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Definition 9 (Linear Programming Problem (LP))

Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"st. Ax =b,x>0,cTx>x?

Questions:
> Is LP in NP?
> |Is LP in co-NP? yes!
> IS LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
» We can prove this by providing an optimal basis for the dual.
» A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then v is feasible for the dual but b7y < «. This means that
w < K.
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