Flows

Definition 2
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
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Flows

Definition 2
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .
P X
(flow conservation constraints)
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Flows Flows

Definition 2
An (s, t)-flow in a (complete) directed graph G = (V,V XV, c) is
Definition 3 a function f: V x V — R that satisfies
The value of an (s, 1)-flow f is defined as 1. For each edge (x, )
Val(f):Zfsx_fos . Osfxyscxy .
X b

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .
pe X
(flow conservation constraints)
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Flows

Definition 3
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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Flows

Definition 2
An (s, t)-flow in a (complete) directed graph G = (V,V XV, c) is
a function f: V x V — R that satisfies

1. For each edge (x, y)

(capacity constraints)
2. Foreachv e V' \ {s,t}

Ezkfbx::: :E:fov .

(flow conservation constraints)
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LP-Formulation of Maxflow Flows

max Sz fsz =2z fzs
s.t. Y(z,w) eV xV Tw 8 Cw Yy
Vw =s,t 2, fow—2:fwz = 0 Pw Definition 3
Jow = 0 The value of an (s, t)-flow f is defined as

val(f) = D fox = D fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max 2z Sz =22 Szs
st. V(z,w)eVxV Tow £ Cow ow
Vw #s,t X, fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Ssy (¥ £5,8): 145y +1py = 1
Joes (52 32 8, ) ¢ 10xs—1py = =1
Sfiy (¥ #=5,t): 181y +1lpy =2 O
Sxt (x #5,0): 105 —1px > 0
Sfot: 145, > 1
Sis: 10 > -1
Lscy > 0

T
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Flows

Definition 3
The value of an (s, t)-flow f is defined as

val(f) = D fox = D fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

min

st Sfxy X,y #5,1):
fsy (y #s,t):
fxs (x =5s,t):
Jiy (¥ #5,0):
fxt (x =5s,t):
Soe:
Sts:

> (xy) Exylxy

Lxy—1px+1py
145y~ 1+1p,
10xs—1px+ 1
lyty— 0+1}9y
10 —1px+ O
14— 1+ O
10— 0+ 1

Ly

vV IV IV IV IV IV IV

2

S O O © O o o O
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LP-Formulation of Maxflow

max 2z Sz = 22 fzs
st. V(z,w)eVxV Fow £ Cow Yaw
Vw #s,t X, few—2zfwz = 0 Pw
T 2 0
min 2 xy) Cxlxy
s.t. fxy X,y £5,8)1 1xy—1px+lp, = 0
Soy (¥ £5,0): 145, +1py = 1
Jes (52 =2 5,,00) ¢ 10xs—1py = =1
Sy (¥ #=5,1): 14:, +1py = O
fxt (x #5,t): 10y —1px > 0
fst: 104 > 1
Jis 14 > -1
Ly > 0
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LP-Formulation of Maxflow

min > xy) Cxylxy
s.t. fxy (X, £5,8): 1xy—1px+1p,
fsy (y #s,1): 1333}‘ ps+1lpy

Jxs (x = 5,1): Wys—1px+ ps

fty (y #s,t): 1€ty_ ptt+lpy

Sxt (x #5s,1): Wxi—1px+ pi

Sst: s~ pst+ pr

Sis Wis— pe+ ps

Ly

vV IV IV IV IV IV IV

2

S O O © O O o O

with py =0 and p; = 1.

LP-Formulation of Maxflow

min
s.t.

> xy) Exylxy

Say 6,y £5,1) 1 1xy—1px+1py
Sfsy (v #5,1): 14sy— 1+1p,
Jxs (x #5,t): 10xs—1px+ 1
Sy (¥ #5,1): 14— O0+1p,
St (x #5,1): 1Wyi—1px+ O
St 15— 1+ 0
Js 14— 0+ 1

gxy

vV IV IV IV IV IV IV

\%

S O O O O o o o
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LP-Formulation of Maxflow

LP-Formulation of Maxflow

min Z(xy) ny’gxy
s.t. fxy: 1éxy—1px+lp, = O i
min
Yy = 0 .
s.t.
ps = 1
pt = 0

Sy (X, ¥ =5,t):
fsy (y #s,0):
fxs (x =5s,t):
Jiy (v #=5,t):
fxt (x =5,t):
Sse:

Sts:

> xy) Exylxy
sy —1px+1py
1€sy— ps+1lpy

Hxs—1px+ ps
Lgty— pt-l-lpy
Wxt—1px+ pi
st~ ps+ pr
Wis— pet+ ps

Lyy

IV IV IV IV IV IV IV

\%

S O O O O o o o

with p =0 and p; = 1.
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LP-Formulation of Maxflow

LP-Formulation of Maxflow

s.t. fxy: 1éxy—1px+lp, = O i
min
Oy = 0 .
S.t.
ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.

Sy (X, ¥ =5,t):
Ssy (v #5,0):
fxs (x =5s,t):
Jiy (y #s,0):
fxt (x =5,t):
Sse:

Sts:

> xy) Exylxy
sy —1px+1py
1€sy— ps+1lpy

HWxs—1px+ ps
141y— pi+lp,
Wxt—1px+ pr
s~ ps+ pt
11— pi+ Ps

Uxy

IV IV IV IV IV IV IV

\%

S O O O O o o o

with p =0 and p; = 1.
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LP-Formulation of Maxflow

We can interpret the £, value as assigning a length to every edge.

min
s.t.

fxy:

> (xy) Exylxy
Llxy—1px+1py

by
Ps
Pt

%

%

S = O O

The value py for a variable, then can be seen as the distance of x to t

(where the distance from s to t is required to be 1 since ps = 1).

T
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LP-Formulation of Maxflow

min
s.t.

Sxy (x,y #5,1):
fsy (y #s,t):
fxs (x =5s,t):
Sy (¥ #5,0):
fxt (x =5,t):
Sse:

Sts:

2xy) Cxyxy
1€xy_1px+1p3/
145y— ps+lpy
Hxs—1px+ ps
19133;— pt-l-lpy

Hxi—1px+ pr
s~ pst+ pe
Wis— pe+ ps

Lyy

IV IV IV IV IV IV IV

\%
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with p =0 and p; = 1.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pe = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) > d(x,t) < #Xy +d(y,t)).
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LP-Formulation of Maxflow

min
s.t.

Sxy (x,y #5,1):
fsy (y #s,t):
fxs (x =5s,t):
Sy (¥ #5,0):
fxt (x =5,t):
Sse:

Sts:

X xy) Cxylxy
18xy—1px+1p,
14sy— ps+lp,
HWxs—1px+ ps
141y— pi+lp,

Hxi—1px+ pr
s~ pst+ pe
Wis— pe+ ps

Lyy

IV IV IV IV IV IV IV

\%

e o o o e e 9@ 9

with p =0 and p; = 1.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

T
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

s.t. fxy: 1éxy—1px+lpy, = O
by = 0
Ps = 1
prt = 0

We can interpret the £, value as assigning a length to every edge.

The value p for a variable, then can be seen as the distance of x to ¢
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < {x, + p, then simply follows from triangle

inequality (d(x,t) <d(x,y)+d(y,t) > d(x,t) < {)Xy +d(y,t)).
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LP-Formulation of Maxflow

One can show that there is an optimum LP-solution for the dual min 2xy) Cxylxy
problem that gives an integral assignment of variables. s.t. fxy: 1éxy—1px+lpy, = O
Oy = 0
This means px = 1 or px = 0 for our case. This gives rise to a ps = 1
cut in the graph with vertices having value 1 on one side and the pr = 0

other vertices on the other side. The objective function then

evaluates the capacity of this cut.
We can interpret the £, value as assigning a length to every edge.

The value p for a variable, then can be seen as the distance of x to ¢
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < {x, + p, then simply follows from triangle

inequality (d(x,t) <d(x,y)+d(y,t) > d(x,t) < {)Xy +d(y,t)).
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LP-Formulation of Maxflow

One can show that there is an optimum LP-solution for the dual min 2xy) Cxylxy
problem that gives an integral assignment of variables. s.t. fxy: 1éxy—1px+lpy, = O
Oy = 0
This means px = 1 or px = 0 for our case. This gives rise to a ps = 1
cut in the graph with vertices having value 1 on one side and the pr = 0

other vertices on the other side. The objective function then
evaluates the capacity of this cut.

We can interpret the £, value as assigning a length to every edge.
This shows that the Maxflow/Mincut theorem follows from linear

programming duality. The value p for a variable, then can be seen as the distance of x to ¢

(where the distance from s to t is required to be 1 since ps = 1).
The constraint px < {x, + p, then simply follows from triangle

inequality (d(x,t) <d(x,y)+d(y,t) > d(x,t) < {)Xy +d(y,t)).
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