Complexity

LP Feasibility Problem (LP feasibility)
Given A € 7" b € 7". Does there exist x € R with Ax = b,

X

> 0?

INote that allowing A, b to contain rational numbers does not:
| \ make a difference, as we can multiply every number by a suit-,
' able large constant so that everything becomes integral but the
| fea5|ble region does not change.

T
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distinct number from each other.



The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)1+1

» Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

(M) := > [logy (Imjl) + 11
ij
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is L = O((A) + (b)).



> In the following we sometimes refer to L := (A) + (b) as the
input size (even though the real input size is something in
O((A) + (b))).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L).
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Suppose that Ax = b; x = 0 is feasible.
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Suppose that Ax = b; x > 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xg = Aglb

and all other entries in x are O.

. In the following we show that this x has small encoding length | ]

and we give an explicit bound on this length. So far we havel
I only been handwaving and have said that we can compute x via .
| | Gaussian elimination and it will be short...
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Size of a Basic Feasible Solution

Lemma 2

Let M € 7™"™ be agn invertible matrix and let b € 7™ . Further
define L = (M) + (b) + nlog, n. Then a solution to Mx = b has
rational components x j of the form %, where |D ;| < 2L and
|ID| < 2L.
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Size of a Basic Feasible Solution

Lemma 2

Let M € 7™*™ be an invertible matrix and let b € 7. Further
define L = (M) + (b) + nlog, n. Then a solution to Mx = b has
rational components x j of the form %, where |D ;| < 2L and
|ID| < 2L.

Proof:
Cramers rules says that we can compute x; as

det(M;)

Xi T det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.
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Bounding the Determinant

Let X = Ag. Then

|det(X)]
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Bounding the Determinant

Let X = Ag. Then

ldet(X)| = | > sgn(m) [] Xima)

TESH 1<i<n
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Bounding the Determinant

Let X = Ag. Then

|det(X)] > sgn(m) [] Xira

TESH 1<i<n

> IT Xirw!

mesSy 1<i<n

IA
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Bounding the Determinant

Let X = Ag. Then

ldet(X)| = | > sgn(m) [] Xima)
TTESK l<i<n
< > ] 1 Ximail

mesSy 1<i<n
< ! . (A (D)
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Bounding the Determinant

Let X = Ag. Then

ldet(X)| = | > sgn(m) [] Xima)
TTESK l<i<n
< > ] 1 Ximail

mesSy 1<i<n

<nt- 2B <ol
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Bounding the Determinant

Let X = Ag. Then

|det(X)] > sgn(m) [] Xira

TESH 1<i<n

> IT Xirw!

mesSy 1<i<n

<nt- 2B <ol

IA

Analogously for det(M;).
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Reducing LP-solving to LP decision.
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Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint c’x — &8 = M; 6§ = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22l ,
10g2 <W> =0(") ’

as the range of the search is at most —n22L" ... 122" and the
distance between two adjacent values is at least m > 2%
Here we use L" = (A) + (b) + (c) + nlog, n (it also includes the
encoding size of ¢).



How do we detect whether the LP is unbounded?
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How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.
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How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢’ x > Mpyax + 1 and check for feasibility.
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Ellipsoid Method
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Ellipsoid Method

> Let K be a convex set.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).
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K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.
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> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> |If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.

> REPEAT
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?
» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a
non-empty polytop?
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Definition 3
A mapping f : R" — R™ with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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Definition 4
A ball in R™ with center ¢ and radius 7 is given by

B(c,v)={x|(x—-c)T(x-c) <7r?}

={x|D(x-02/r* <1}

B(0,1) is called the unit ball.
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1))
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1)) ={f(x) | x € B(0,1)}
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).
f(B(0,1)) = {f(x) | x € B(0,1)}

={yeR"| L Ny -t)€B(0,1)}
—{yeR" | (y-0TL L Y y-—1) <1}
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" | (y-0TL L Y y-—1) <1}
={yeR"|(y-Hloty-t) <1}
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" | (y-0TL L Y y-—1) <1}
={yeR" | (y-t)lQ Y (y-t) <1}

where Q = LLT is an invertible matrix.
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How to Compute the New Ellipsoid
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

A}
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.
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The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.

» The vectors e, e2,... have to fulfill the ellipsoid constraint
. . A1 A=l A1
with equality. Hence (e; —¢)TQ" (e; —¢') = 1.

‘m EADS Il 9 The Ellipsoid Algorithm
Harald Racke



The Easy Case

. oAl LA, -,
» To obtain the matrix Q" = for our ellipsoid E’ note that E’ is
axis-parallel.
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The Easy Case

. oAl L n, -,
» To obtain the matrix Q" ~ for our ellipsoid E’ note that E’ is
axis-parallel.

» Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.
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The Easy Case

. oAl L n, -,
» To obtain the matrix Q" ~ for our ellipsoid E’ note that E’ is
axis-parallel.

» Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

» The matrix

a 0 ... 0
R b
L' =
: . . 0
0O ... 0 b

maps the unit ball (via function /' (x) = L'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.
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The Easy Case

» As Q' =1’ " the matrix Qﬁl is of the form

= 0 0

Q,—l _ 0 #
' 0
0 0

T
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The Easy Case

> (e1 — CA')TQPI(Q —¢') =1 gives

1-t\" (@ O 0
0 0 #

. S

0 0 0

» This gives (1 —t)2 = a?.
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The Easy Case

» For i # 1 the equation (e; — c”)TQ’*l(ei —¢’) =1 looks like

(here i = 2)
T
—t % 0 0 —t
1 N 1
0 =
0 b? =1
: o 0 :
: ) :
0 0 0 3z 0
» This gives 2—22 + % =1, and hence
1 t2
-l a
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The Easy Case

» For i # 1 the equation (e; — c”)TQ’*l(ei —¢’) =1 looks like

(here i = 2)
T
! Lo 0 —t
1 N 1
0 0 4 _1
: o 0 :
: : :
0 0 0 4 0

2
» This gives % + % =1, and hence

1 2 t2

pr -l (1-1)2
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The Easy Case

» For i # 1 the equation (e; — c”)TQ’*l(ei —¢’) =1 looks like

(here i = 2)
T

! Lo 0 —t

1 0o 1

b2 0 =1

: s 0

: X :

0 0 U 0

2
» This gives % + % =1, and hence

i—1—ﬁ—1— 2 1-2t
b2 a? (1-t)2 (1-1t)2
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Summary

So far we have

1-t
=1-t d b=——
“ o -2t
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The Easy Case

We still have many choices for ¢:

m EADS I 9 The Ellipsoid Algorithm
Harald Racke



The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!l!
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We still have many choices for ¢:
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!l!
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The Easy Case

We want to choose t such that the volume of £’ is minimal.
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The Easy Case

We want to choose t such that the volume of £’ is minimal.

Lemma 6
Let L be an affine transformation and K < R™. Then

vol(L(K)) = |det(L)| - vol(K) .

‘m EADS II 9 The Ellipsoid Algorithm
Harald Racke



n-dimensional volume
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L")| ,
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L")| ,

» Recall that

a 0
., b
i’ =
0
0 0O b
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L")| ,

» Recall that

a 0
., b
i’ =
0
0 0O b

» Note that a and b in the above equations depend on ¢, by
the previous equations.
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The Easy Case

vol(E")
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!

l_t )n—l

=vol(B(0,1)) - (1 1) - (m
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!

1—t n-1
=vol(B(0,1)) - (1 —t) - (m)
1-on

= vol(B(0,1)) - JT-2pn-1
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab™!

_ n-1
=vol(B(0,1)) - (1 —t) - (jl_—;)
_a-o"

(V1 -=2t)n-1

We use the shortcut ® := vol(B(0,1)).

=vol(B(0,1)) -
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The Easy Case

dvol(E")
dt
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The Easy Case

dvol(E') d (q) a-on )

dt  dt \ (yimap)n!
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The Easy Case

dvol(E') d (q) a-on )

dt dt " (yi—zp)n1
)
N2
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The Easy Case

dvol(E"’) ( (1=t )
dt (vi—zp)nt

G( 1)-n(1-t)"!

derivative of numerator |

2‘0 Q‘\Q.
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The Easy Case

dvol(E"’) ( (1-1) )
dt £\ (yim2p)nl
(( D-n(1-p" . V1 -2p)"1

2‘0 Q‘\Q.
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The Easy Case

dvol(E') d (q) a-on )

dt dt " (yimzp)n1
= % : ((—1) n(1 -0t (V1 -2t
—(m=-1)(1-2t"2
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The Easy Case

dvol(E') d (q) a-on )

dt t \" (yicep)n-!
= % . ((—1) n(1 -0t (V1 -2t
1
o — o2, L
(n-1)(1-2t) NI (=2)
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The Easy Case

dvol(E') d (q) a-on )

dt de \ (vizep)n-!
= % . ((—1) n(1 -0t (V1 -2t

3 _ — n—2_¥-— ' -0"
(n =D =20"2 - ey o 2)
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The Easy Case

dvol(E") di(q) (1r-v" )

dt (vi—zp)-1
:ij (( -n(1-t)"1. (V1-2t)n1
—(n - — n-2, 1 _\n
(n-1)(1-2t) NI S (=2)- (1 t))

o e -
=~z (W1=2om?-a-nnt
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The Easy Case

dvol(E") di(q) (1r-v" )

dt (\/@)”_1 1 -2t
=]5’ (( 1) -n(l -1 ([T
—(n - J1 = n-2, 1 _\n
(n-1)KH1-2t) SN -(=2)- (1 t))

o e -
=~z (W1=2om?-a-nnt
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The Easy Case

dvol(E') d (q) a-on )

dt dt \" (vi—zp)"! 1— 9t
=]3’2-((—1>-n(1—t)"—1 VA L

—(n-1)a—2T. %M S(=2)-(1- t)”)

) " e
=m-(\/1—2t) .-t
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The Easy Case

n-1
dt (vI=2%) 1- 2t

= (( 1) - n(—"T . (27
1-1t

= ﬁ S(W1-20"3 (1 -pn!

dvol(E") dg(q) (1r-v" )
q>

. ((n— DA-t)-n( - Zt))

= — - ( 1—2t)"—3-(1—t)"—1-((n+1)t—1)
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» We obtain the minimum for t = #

—_

» For this value we obtain

a=1-t= n and b
n+1

.
9 The Ellipsoid Algorithm

Harald Racke



The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t
—1—-t= h=—— "
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» We obtain the minimum for t = ——

n+1-
» For this value we obtain
n 1-t n
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 n+1 T-2t JnZ-1

To see the equation for b, observe that
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» We obtain the minimum for t = ni
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» For this value we obtain

a=1-t= n and b =
n+

To see the equation for b, observe that
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

n 1-t n
=1-t= and b = =
4 nil T-2t JnZ-1
To see the equation for b, observe that
bhe = (1-1)° _ (1_n+1)2 (n+1)2 _ n?
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The Easy Case

Let yn = #(Eo:i)) = ab™"! be the ratio by which the volume
changes:
%
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The Easy Case

Let y, = #@:i)) = ab™! be the ratio by which the volume

changes:

1 2 1 n-1
:<1_n+1) <1+ (n—l)(n+1)>

where we used (1 + x)% < e** forx € Rand a > 0.
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The Easy Case

Let y, = #@:i)) = ab™! be the ratio by which the volume

changes:

1 2 1 n-1
:<1_n+1) <1+ (n—l)(n+1)>

where we used (1 + x)% < e** forx € Rand a > 0.

1
This gives y, < e 20=1),
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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normal vector of the halfspace is parallel to e;.
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new center ¢’ and
the new matrix Q'
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
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Our progress is the same:

R vol(E") _ Vol(E"A’) _ Vol(R(E"A’))
~ vol(B(0,1))  vol(E)  vol(R(E))
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Our progress is the same:

1 vol(E") B vol(E") B vol(R(E"))

e 2+ >

~ vol(B(0,1))  vol(E)  vol(R(E))
_ Vol(E') _ vol(f(E"))
~ vol(E)  vol(f(E))
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Our progress is the same:

1 vol(E") B vol(E") B vol(R(E"))

¢ = SolB(0, 1)~ vol(E) ~ vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")
~ vol(E)  vol(f(E))  vol(E)
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Our progress is the same:

. vol(E") _ vol(E") _ vol(R(E"))
“vol(B(0,1))  vol(E)  vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")

~ vol(E)  vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx + t changes the volume by factor det(L).
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The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

FYH) = {fx) lal(x —c) <0}
={f ' la’ (f(y)-c) =<0}
={yla"(f(y)-c) =<0}
={ylal'(Ly +c-c) <0}
={y|(a"L)y <0}

This means a = LTa.
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1( LTOl >: LTGl

—el - =R-e]
ILTall ILTall
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal
c=fE)=L-¢"+c
1 LT
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
=—e ——=—-=R-e
(nLTan) ! ILTall !
Hence,
’ A7 1 1 LTa
7 =R-¢" =R - - - =
¢ ¢ n+19 T Tus1LTal

o
Il

‘= f@)=L-¢ +c
1 LTa
= - L +c
n+1 |[LTal

1 Qa

n+1 /aTQa




For computing the matrix Q' of the new ellipsoid we assume in
the following that £/, E” and E’ refer to the ellispoids centered in
the origin.
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Recall that



Recall that

This gives

a? 0

| o p?
0 0
n2

:n2—1< T n+1

bZ

erel



Recall that

a? 0 0

~, | 0 b2
S
0 0 b2

This gives
2

Q' = n (I— 2 ele{)

T n2-1 n+1

because for a? = n*/(n+1)2 and b? = n?/n2 -1



Recall that

a? 0 0
~, | 0 b2
0
0 0 b2
This gives , | Note that eje] is a matrix
A n

Q' =

e eT) 1 M that has Mj; = 1 and aII.
1€ other entries equal to 0. '

n2—1<1_n+1

because for a? = n*/(n+1)2 and b? = n?/n2 -1




Recall that

a? 0 0

~, | 0 b2
0
0 0 b2

. . o e e e m e mmm - .
This gives 5 ' Note that elel is a matrlxI
N n !
Q' =

I— T |M that has M;; = 1 and all .
2 _ €1€1 ) 1 oth | |
n 1 n+1 | other entries equal to 0.

because for a? = n*/(n+1)2 and b? = n?/n2 -1

2 2

2 n 3 2n
n+l n2-1 Mm-1m+1)2

b? — b?



Recall that
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~ | 0 b?
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0 0 b2
This gives , { Note that eje] is a matrix

n
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eT) 1 M that has M1; = 1 and aII.
1

, other entries equal to 0. 1
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b2 n? 2n?

n+1 n2-1 m-1m+1)2
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~, | 0 b2
0
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This gives , { Note that eje] is a matrix

n

Q :nz—l<1_n+le1
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1

, other entries equal to 0. 1
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2 2
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~, | 0 b2
0
0 0 b2
This gives , { Note that eje] is a matrix

n

Q :nz—l<1_n+le1

eT) 1 M that has M1; = 1 and aII.
1

, other entries equal to 0. 1
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2 2
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n+1 n2-1 m-1m+1)2

n?n+1) —2n? n’n-1) )
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9 The Ellipsoid Algorithm
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9 The Ellipsoid Algorithm
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-y I RNTO 'Ry < 13
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9 The Ellipsoid Algorithm

E' =R(E)
= {R(x) | xTQ 'x <1}
=y | RTQ 'Ry <1
— v [yT®RN QR 1y <1
={y 1 y"(RQ'RT) 'y < 1}
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9 The Ellipsoid Algorithm

Hence,

Ql

1
: Here we used the equation for Re; proved before, and the fact that RRT = I, which holds for

: any rotation matrix. To see this observe that the length of a rotated vector x should not change, :
1i.e., |
: xTIx = (Rx)T(Rx) = xT(RTR)x :
I 1
| which means xT(I-RTR)x = 0 for every vector x. It is easy to see that this can only be fulfilled 1
1ifI-RTR =0. J
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9 The Ellipsoid Algorithm

Hence,

2
n
'nz_l(
2
__n r__2 T
= 57 (R-R" = " (Re) (Ren))

T T
_ -R
n+1e1e1)

1
: Here we used the equation for Re; proved before, and the fact that RRT = I, which holds for 1

: any rotation matrix. To see this observe that the length of a rotated vector x should not change, :
1i.e., |
: xT1x = (Rx)T(Rx) = xT(RTR)x :
I 1
| which means xT(I-RTR)x = 0 for every vector x. It is easy to see that this can only be fulfilled 1
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9 The Ellipsoid Algorithm

Hence,
Q' = RQ'R
2
_p._n _ T\ . pT
=R n2—1( n+1e1e1) R
2

_.ont ot 2 T
= 57 (R-R" = " (Re) (Ren))
. n? (_ 2 LTaaTL)
T n2-1 n+1|LTal?

1
: Here we used the equation for Re; proved before, and the fact that RRT = I, which holds for 1

: any rotation matrix. To see this observe that the length of a rotated vector x should not change, :
1i.e., |
: xT1x = (Rx)T(Rx) = xT(RTR)x :
I 1
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9 The Ellipsoid Algorithm

Hence,
Q =L1Q'L"
2 T,T
=L- n (_ 2 LaaL)_LT
21 n+1 a’Qa
(Q— 2 QaaTQ>
n2—1 n+1 alQa

m EADS II 9 The Ellipsoid Algorithm
Harald Racke



Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:. Q =M

4: repeat

5 if c € K then return ¢

6
7

else
choose a violated hyperplane a
1 Qa
8: cC —Cc-— —_—
n+1 /aTQa
2 T
_ n 2 Qaa'Q
% Q n2—1<Q n+1 aTQa)
10: endif
11: until 77?

12: return “K is empty”




Repeat: Size of basic solutions

Lemma 7

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n(amax)+2nlog2 n
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Repeat: Size of basic solutions

Lemma 7

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry X in a basic solution fulfills |x ;| = % with

Dj,D < 22n(amax)+2nlog2 n

In the following we use § := 227(amax)+2nlog n

Note that here we have P = {x | Ax < b}. The previous lemmas
we had about the size of feasible solutions were slightly
different as they were for different polytopes.
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Repeat: Size of basic solutions

Proof:
Let A = [A —A Im], b, be the matrix and right-hand vector after
transforming the system to standard form.

The determinant of the matrices Ag and M; (matrix obt. when
replacing the j-th column of Ap by b) can become at most

det(AB),det(Mj) < ||gmax|‘211
< ( /21/1 . 2(amax>)2n < 2211<a,max)+2nlog2n ,

where fmax is the longest column-vector that can be obtained
after deleting all but 21 rows and columns from A.

This holds because columns from I,,, selected when going from
A to Ag do not increase the determinant. Only the at most 2n
columns from matrices A and —A that A consists of contribute.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /né from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"vol(B(0,1)) < (nd)"vol(B(0,1)).
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When can we terminate?

Let P:= {x | Ax < b} with A € Z and b € 7 be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.
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When can we terminate?

Let P:= {x | Ax < b} with A € Z and b € 7 be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A or b.

Consider the following polyhedron

1

PA::{xlesbJr/l\ : },
1

where A = 52 + 1.
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Lemma 8
P, is feasible if and only if P is feasible.
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Lemma 8
P, is feasible if and only if P is feasible.

< obvious!
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Consider the polyhedrons
P={x|[A-AlIn|x =bix =0}

and

PA{X[AAIm]xb+i(§);x>O}.
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and
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Consider the polyhedrons
P={x|[A-AlIn|x =bix =0}
and

PAz{xl[AfAIm]x:bJr% tlix=of .
1

P is feasible if and only if P is feasible, and P, feasible if and
only if P, feasible.

Py is bounded since P, and P are bounded.



Let A = [A ~A Im].

P, feasible implies that there is a basic feasible solution

represented by
1

xp = Ag'b + %Agl

(The other x-values are zero)



Let A = [A ~A Im].

P, feasible implies that there is a basic feasible solution

represented by
1

xg=Ap'b + %Agl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.



Let A=[A -A L.
P, feasible implies that there is a basic feasible solution

represented by
1

xg=Ap'b + %Agl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(Aglb); <0 < (Aglb); + %(Agli)i



By Cramers rule we get

-1, i-lpy - L
W'D <0 = (A5'D)i= — g

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ag by I.
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-1, i-lpy - L
(Ag'b)i <0 = (Az'b); < P

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ag by I.

However, we showed that the determinants of Ag and MJ- can
become at most §.
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By Cramers rule we get

-1, i-lpy - L
(Ag'b)i <0 = (Az'b); < P

and
(Ag'D); < det(M;) ,

where Mj is obtained by replacing the j-th column of Ap by I.

However, we showed that the determinants of Ag and MJ- can
become at most §.

Since, we chose A = §2 + 1 this gives a contradiction.
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Lemma 9
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).
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Proof:
If P, feasible then also P. Let x be feasible for P.
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Lemma 9
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl

< bi+laill - 12l

‘m EADS Il 9 The Ellipsoid Algorithm
Harald Racke



Lemma 9
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Lemma 9
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max>

<b;+ 53
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Lemma 9
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v"'vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max> _ 1

shit 7 =biv o

1
Sbl"l‘x
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Lemma 9
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = &%VOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with IIEII < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
< by + ld@gll - €]l < b + v/ - 28ama) Ly

\/ﬁ . 2(¢1max> _ 1

shit 7 =biv o

1
Sbl"l‘x

Hence, x + Uis feasible for Py which proves the lemma.

‘m EADS Il 9 The Ellipsoid Algorithm
Harald Racke



m EADS Il 9 The Ellipsoid Algorithm
Harald Racke



How many iterations do we need until the volume becomes too
small?
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How many iterations do we need until the volume becomes too
small?

e~ Tmim -vol(B(0,R)) < vol(B(0,7))
Hence,

vol(B(0,R)) )

i>2n+ Dln(vol(B(O,r))
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How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0O,R)) < vol(B(0,71))

Hence,

vol(B(0,R)) )
vol(B(0,7))

=2(n+1)ln (n”é" . 63")

i>2(n+1)1n(
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How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2n+1)In (n”é" . 63")

=8nn+1)In(d) +2(n+ 1)nln(n)
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How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VO](B(O,R)))
vol(B(0,7))
=2n+1)In (n”é" . 63")
=8n(n+1)In(d) + 2(n+ 1)nin(n)
= O(poly(n, (amax)))

i>mn+nm(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R", radii R and r
2 with K < B(c,R), and B(x,7) < K for some x
3: output: point x € K or “K is empty”

4: Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5: repeat

6 if c € K then return ¢

7
8

else
choose a violated hyperplane a
1 Qa
9: C —C— ———F———
n+1 /aTQa
2 T
n 2 Qaa'Q
10: - - ===
0 Q n2—1<Q n+1 aTQa)
11: endif

12: until det(Q) < 2" //i.e., det(L) < r"
13: return “K is empty”




Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

‘m EADS Il 9 The Ellipsoid Algorithm
Harald Racke



Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,

» or finds a hyperplane separating x from K.

‘m EADS Il 9 The Ellipsoid Algorithm
Harald Racke



Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x € R™ and either
» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.
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Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either

» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c, R) with radius R that contains K,
> a separation oracle for K.

The Ellipsoid algorithm requires O (poly(n) - log(R /7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.
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