Complexity

LP Feasibility Problem (LP feasibility)
Given A € 7™, b € 7. Does there exist x € R with Ax = b,
x =07

____________________________________

INote that allowing A, b to contain rational numbers does notI
. | make a difference, as we can multiply every number by a suit-,
able large constant so that everything becomes integral but the ' 1

[ fea5|ble region does not change.
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The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)]+1

> Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

(M) := > [ogy (Imgj|) + 1]
i,]
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is L = ©((A) + (b)).

> In the following we sometimes refer to L := (A) + (b) as the
input size (even though the real input size is something in
O((A) + (b))).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L).

9 The Ellipsoid Algorithm
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Suppose that Ax = b; x > 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

XB = Alglb

and all other entries in x are O.

| In the following we show that this x has small encoding length |
1 and we give an explicit bound on this length. So far we havel
! onIy been handwaving and have said that we can compute x via .
| Gaussian elimination and it will be short...
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Size of a Basic Feasible Solution

Lemma 2

Let M € Z"™*™ be an invertible matrix and let b € 7™. Further
define L = (M) + (b) + nlog, n. Then a solution to Mx = b has
rational components x j of the form % where |D;| < 2L and
ID| < 2L,

Proof:
Cramers rules says that we can compute x; as

 det(M))
Xi T det(M)

where M; is the matrix obtained from M by replacing the j-th
column by the vector b.

9 The Ellipsoid Algorithm

Harald Racke

171

Bounding the Determinant

Let X = Ap. Then

ldet(X)| = | > sgn(m) [] Xirai)
TESH 1<i<n
< > |1 Xire!

meESy 1<i<n

<n!. 2+ oL

Analogously for det(M;).
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Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax = b;x = 0} do a binary search for the
optimum solution

(Add constraint c’x — 6 = M; § = 0 or (c'x = M). Then checking
for feasibility shows whether optimum solution is larger or
smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22t’ ,
10g2 (W) =0(") ,
as the range of the search is at most —n22L" ..., n22L" and the

. . . 1 1
distance between two adjacent values is at least 574 = 51

Here we use L’ = (A) + (b) + (c) + nlog, n (it also includes the
encoding size of ¢).

How do we detect whether the LP is unbounded?

Let Mmax = n22L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢”x > M,y + 1 and check for feasibility.
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Ellipsoid Method
> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

» Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

» Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.

> REPEAT
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?

» How do you measure progress? By how much does the
volume decrease in each iteration?

» When can you stop? What is the minimum volume of a
non-empty polytop?
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Definition 3
A mapping f: R" — R" with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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Definition 4
A ball in R™ with center ¢ and radius 7 is given by

B(c,v)={x|(x-0c)T(x -¢) <7r?}

={x|D(x-0)Fr*<1}

B(0,1) is called the unit ball.
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Definition 5
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L1 (y-t) €B(0,1)}

—{yeR" | (y-0)TL VL Y y-1) <1}
={yeR'| (y-HIQ Ny -t) <1}

where Q = LLT is an invertible matrix.

m EADS Il 9 The Ellipsoid Algorithm
Harald Racke

179

How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x1. Hence, ¢’ = te; for t > 0.

» The vectors e, e2,... have to fulﬁlllthe ellipsoid constraint
with equality. Hence (e; — ¢)TQ’" (e; —¢') = 1.
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The Easy Case

. oAl LA, -
» To obtain the matrix Q" = for our ellipsoid E’ note that E’ is
axis-parallel.

> Let a denote the radius along the x-axis and let b denote
the (common) radius for the other axes.

» The matrix

a 0 ... 0
., b
I’ =
: . . 0
0O ... 0 b

maps the unit ball (via function f’(x) = 1'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.
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The Easy Case

» As Q' = P70 the matrix Q'

-1

L0
A1 0 #
0 0

0

= o

is of the form

The Easy Case

> (e — 5’)TQ’71(€1 —¢') =1 gives
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Harald Racke 183
The Easy Case
» For i # 1 the equation (e; — c”)TQ’_l(ei —¢") =1 looks like
(here i = 2)
t\ /1 t
_ 1 0 _
aZ
1 0 L 1
0 b2 0 | -1
: o 0 :
0 0 U 0
» This gives fl—i + bl—z =1, and hence
i—l—ﬁ—l— 2 1-2t
b2 a? (1-6)2 (1-1t)2
m EADS Il 9 The Ellipsoid Algorithm
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T 1
1—t 2 0 ... 0 1-t
1
0 9 0 =1
0
0 0 0 % 0
» This gives (1 — t)2 = a?.
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Summary
So far we have
1-t
a=1-t and b=
V1 =2t
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The Easy Case

We still have many choices for t:

Choose t such that the volume of E’ is minimal!!!

EADS Il 9 The Ellipsoid Algorithm
Harald Ricke

187

The Easy Case

We want to choose t such that the volume of E’ is minimal.

Lemma 6
Let L be an dffine transformation and K < R™. Then

vol(L(K)) = [det(L)]| - vol(K) .
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n-dimensional volume

9 The Ellipsoid Algorithm
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The Easy Case

» We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L))]| ,

» Recall that

a 0 0
-, 0O b
I’ =
0
0 0O b

» Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E’) = vol(B(0,1)) - |det(L")]
=vol(B(0,1)) - ab™ !

:vol(B(O,l))-(l—t)-< Lot )nl

V1 =2t
— vol(B(0,1)) - _a-o"
B ’ (V1 =2t)n-1

We use the shortcut ® := vol(B(0,1)).
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The Easy Case

dvol(E’ ) d ((I) (1-t)" )
dt A-of)n—1
dt dq) (v1=21) Y
=57 (EDna T A
derivative of numerator} [denommator}
N = denominator 1-t¢

/(n—l)b@filz ZM (27 - (T

-
® :
=~z (W1-20"7- -

. ((n— DA-¢)—n(l- 2t)>

= % W1 =2)m 3 -t ((n + 1)t - 1)
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The Easy Case

» We obtain the minimum for t = ﬁ

» For this value we obtain

1-t¢ n

n
a=1-t= and b = =
n+1 1-2t n2 -1

To see the equation for b, observe that

1
p2 — (1-t) _ (1 - 557)° _ (57)° _n
1-2t —— n-l n2 -1
n+1 n+1
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Harald Racke

The Easy Case

Let y, = #gi)) = ab™ ! be the ratio by which the volume
changes:
2
2 n 2 n n-1
Yn = <n+1> <n2—1>
1 2 1 n-1
=(1- 1+
( n+1> ( (nfl)(n+1)>
oL 1

where we used (1 + x)% < e%X for x € R and a > 0.

1
This gives y,, < e 2m+D),
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How to Compute the New Ellipsoid

» Use f~! (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

» Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

» Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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Our progress is the same:

vol(E')  vol(E')  vol(R(E"))
~ vol(B(0,1))  vol(E)  vol(R(E))
_ Vvol(E") _ vol(f(E'))  vol(E")
~ vol(E)  vol(f(E))  vol(E)

1
e7 2(n+1)

Here it is important that mapping a set with affine function
f(x) = Lx + t changes the volume by factor det(L).
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The Ellipsoid Algorithm

How to Compute The New Parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx +c;
The halfspace to be intersected: H = {x | a’ (x —¢) < 0};
SHH) = {f 1 x) aT (x - ¢) <0}
= {1 FoN1al (f(y)—c) <0}
={yla"(f(y)-c) <0}

={ylalLy+c-c) =<0}
={yl(@a'L)y <0}

This means @ = LT a.
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative xi-direction. Hence,

LTa LTa
-1
— ) =-—e -—— =R-e
<||LTa||> ! ILTall !
Hence,

7 N 1 1 LTa

¢ =R-¢ =R- e = —
n+1 ' T n+l|LTal

o
Il

"=f@)=L-¢"+c
1 LTa
=—-———L +cC
n+1 ||LTal|

1 Qa

n+1 aTQa

=Cc -




For computing the matrix Q’ of the new ellipsoid we assume in
the following that £/, £’ and E’ refer to the ellispoids centered in
the origin.
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Recall that

a? o 0
| o o
0
0 0 b2
This gives ,  Note that erel is a matrix

n
n2—1<1_n+1

o -

e eT> 1 M that has M1 = 1 and all
L€1 ) ! other entries equal to 0.

because for a® = n’/(n+1)2 and b2 = n’/n2_1

W2 _p? 2 _ n? 2n?

n+1 n2-1 Mm-1)(n+1)2

~nim+1)-2n> n’(n-1) 22

m-1Dmn+1)2 m-1)mnm+1)?2

9 The Ellipsoid Algorithm

E' =R(E)
—{R(x) | xTQ 'x <1}
— [ R'NTQ 'Ry <1}
— v I yT®RT)1Q 'Ry <1}
={y| yT(@E)*ly <1}
B!
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9 The Ellipsoid Algorithm

Hence,
Q' =RQ'RT
2
_ n 2 T T
R'n2—1<1_n+1elel> R

2

n 2

= R-RT — —=—(Rey)(Rep)T
n2—1< n+1( e)(Re1) )
- n? (_ 2 LTaaTL>

T n2-1 n+1||LTal?

1
: Here we used the equation for Re; proved before, and the fact that RRT = I, which holds for
lany rotation matrix. To see this observe that the length of a rotated vector x should not change, '
1i.e., |
1
! xT1x = Rx)T(Rx) = xT(RTR)x |
I
1
| which means xT (I —RTR)x = 0 for every vector x. It is easy to see that this can only be fulfilled '
1ifI - RTR = 0. !
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9 The Ellipsoid Algorithm

E' =L(E")
— {L(x) | xTQ 'x <1}
=y 1@ 'Ly <1}
=y IyTaH g Ly <13
={y|yT@Q'L") 'y <1}
o
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9 The Ellipsoid Algorithm

Hence,
Q =LQ'L"

2 2 LT TL

=L (1~ Ty LT
-1 n+1 alQa

. n? (Q— 2 QaaTQ)

-1 n+1 alQa
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

. input: point ¢ € R", convex set K < R"
output: point x € K or “K is empty”
Q — 777
repeat
if c € K then return ¢
else
choose a violated hyperplane a

1 Qa
n+1 /aTQa

n? 2 Qaa’qQ
n2—1(Q_n+1 aTQa>

\IO\U'IJ;U)N—'

0

C < C—

9: Q ~
10: endif
11: until 77?

12: return “K is empty”

Repeat: Size of basic solutions

Lemma 7

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let (amax)
be the maximum encoding length of an entry in A, b. Then every
entry xj in a basic solution fulfills |x ;| = % with

DJ',D < 22n(amax)+2nlog2 n,

In the following we use § := 227{@max)+2nlogyn
Note that here we have P = {x | Ax < b}. The previous lemmas

we had about the size of feasible solutions were slightly
different as they were for different polytopes.
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Repeat: Size of basic solutions

Proof:
Let A = [A —-A Im], b, be the matrix and right-hand vector after
transforming the system to standard form.

The determinant of the matrices A and Mj (matrix obt. when
replacing the j-th column of Ap by b) can become at most

det(Ap),det(M;) < || maxI*"

=< (\/ﬁ . 2<amax))2’n < 22n(amax>+21’l10g2n ,

where {max is the longest column-vector that can be obtained
after deleting all but 21 rows and columns from A.

This holds because columns from I, selected when going from
A to Ap do not increase the determinant. Only the at most 2n
columns from matrices A and —A that A consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < §.
Hence, P is contained in the cube —6 < x; < 6.

A vector in this cube has at most distance R := ./n6 from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"vol(B(0,1)) < (né)"vol(B(0,1)).

EADS Il 9 The Ellipsoid Algorithm
Harald Ricke 208

When can we terminate?

Let P := {x | Ax < b} with A€ Zand b € Z be a bounded
polytop. Let (amax) be the encoding length of the largest entry
in A orb.

Consider the following polyhedron

1

P/\:_{X|AXSb+}1\ : },
1

where A = §2 + 1.
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Py is feasible if and only if P is feasible.

< obvious!
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=

Consider the polyhedrons
P = {x \ [A fAIm]xzb;sz}
and

; 1.1
PA={XI[A7AIm]x:b+X tlix =0} .
1
P is feasible if and only if P is feasible, and P, feasible if and

only if P, feasible.

P, is bounded since P, and P are bounded.

Let A = [A —A Im].

P, feasible implies that there is a basic feasible solution

represented by
1

- 1 -
xp =Aglb + XAg‘
1

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible
for P is that one of the basic variables becomes negative.

Hence, there exists i with

(Ag'b)i <0 = (Ag'b); + 3+ (A5 T);

By Cramers rule we get

1

(A_élb)l <0 - (A_}Elb)l < —m

and
(Ag'D); < det(M;) ,

where M; is obtained by replacing the j-th column of Ag by I.

However, we showed that the determinants of Ap and MJ- can
become at most 6.

Since, we chose A = §2 + 1 this gives a contradiction.
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Lemma 9
If Py is feasible then it contains a ball of radius v := 1/5°. This
has a volume of at least v"'vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||/]| < 7. Then

(Ax + )i = (Ax); + (AD); < by +all
< by + ldll - 1]l < by + Jn - 2%amax) .y

\/ﬁ . 2<amax) < b, 1 _ 1

<b;+ 53

Hence, x + U is feasible for Py which proves the lemma.

Harald Racke
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How many iterations do we need until the volume becomes too
small?

e 201 - vol(B(0,R)) < vol(B(0,7))
Hence,

Vol(B(O,R))>
vol(B(0,7))
=2n+1)In (n"é” : 63”)
=8nn+1)In(d) + 2(n + 1)nln(n)
= O(poly(n, (dmax)))

i>2(n+1)ln(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K = R", radii R and r
2 with K € B(c,R), and B(x,r) < K for some x
3: output: point x € K or “K is empty”

4. Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5. repeat

6 if c € K then return ¢

7
8

else
choose a violated hyperplane a
1
n ¢ - _Qa
n+1 /aTQa
n? 2 Qaa’qQ
10: - - —
0 Q nz—l(Q n+1 aTQa>
11: endif

12: until det(Q) < 72" // i.e., det(L) < "
13: return “K is empty”

215
Separation Oracle:
Let K = R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R™ and either
» certifies that x € K,
» or finds a hyperplane separating x from K.
We will usually assume that A is a polynomial-time algorithm.
In order to find a point in K we need
» a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c,R) with radius R that contains K,
» a separation oracle for K.
The Ellipsoid algorithm requires O(poly(n) - log(R/7))
iterations. Each iteration is polytime for a polynomial-time
Separation oracle.
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