8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.

> In the following we develop an algorithm with running time
O(d!-m), i.e., linear in m.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

Setting:

» We assume an LP of the form

min cTx
s.t. Ax =
x =

» We assume that the LP is bounded.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Theorem 2 (Cramers Rule)

Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

det(MJ-)

Y= et (M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Proof:

m EADS II 8 Seidels LP-algorithm
Harald Racke

Proof:

» Define

X

(

el -ei_1Xeiyl -

en

T

EADS Il
Harald Racke

8 Seidels LP-algorithm

Proof:

» Define

| I |
Xi=(e1---ei_1xei+1---en)
| I |

Note that expanding along the i-th column gives that
det(X;) = x;.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Proof:

» Define

| I |
Xi=(e1---ei_1xei+1---en)
| I |

Note that expanding along the i-th column gives that
det(X;) = x;.
» Further, we have

| o |
MX; = (Mel -+~ Me;_1 Mx Mej,q - - - Men) = M;
| o |

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Proof:

» Define

Xi= (ell e eil—l 9|C €i|+1 e eln)
| | |
Note that expanding along the i-th column gives that
det(X;) = x;.
» Further, we have

| [. |
MX; = (Mel -+~ Me;_1 Mx Mej,q - - - Men) = M;
| [. |
» Hence,
det(M;)

Xi = det(Xl) = W

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th

column with vector b (for some j).

Observe that

[det(C)|

IHere sgn(mr) denotes the sign of thel
: permutation, which is 1 if the permuta- :
: tion can be generated by an even num- :
1 ber of transpositions (exchanging two
| elements), and —1 if the number of |
| transpositions is odd. j
|The first identity is known as Le|bn|2|

 formula. ,

T

EADS Il
Harald Racke

8 Seidels LP-algorithm

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

ldet(C)| = | > sgn(m) [[Cira

TESM 1<ism

IHere sgn(mr) denotes the sign of thel
: permutation, which is 1 if the permuta- :
: tion can be generated by an even num- :
1 ber of transpositions (exchanging two
| elements), and —1 if the number of |
| transpositions is odd. j
|The first identity is known as Le|bn|2|

\ formula. 1

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

ldet(C)| = | > sgn(m) [] Cirgp
TESM 1<ism
P S

1 Here sgn(mr) denotes the sign of thel
: permutation, which is 1 if the permuta- :
: tion can be generated by an even num- :
1 ber of transpositions (exchanging two
| elements), and —1 if the number of |
| transpositions is odd. j
|The first identity is known as Le|bn|2|

\ formula. 1

TESH 1<i<m

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

ldet(O)[= | > sgn(m) [Cingiy
TESM 1<ism
< N
n; 1<1,_<[| leere sgn(mr) denotes the sign of thel
mist=m : permutation, which is 1 if the permuta- :
<m!.zm :tion can be generated by an even num-!

I
1 ber of transpositions (exchanging two

| elements), and —1 if the number of |
| transpositions is odd. j
|The first identity is known as Le|bn|2|

\ formula. 1

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)|

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

|det(C)| < H ICil

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

§

|det(C)| < 1‘[||C*l|| 1‘[(%@

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Bounding the Determinant

Alternatively, Hadamards inequality gives

§

|det(C)| < 1‘[||C*l|| 1‘[(%@

< mm/zzm)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

Hadamards Inequality

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black
cube (if [[e1ll = llarll, lle2ll = llazll, llesll = llasll).

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution. Add the constraint c’x = —-mZ(m!- Z™) — 1.

Note that this constraint is superfluous unless the LP is
unbounded.

Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

m EADS II 8 Seidels LP-algorithm
Harald Racke

In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set # of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

In the following we use J{ to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(#, d) that is given a set # of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x=-(mz)y(m!-zZm) - 1.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;
2. if 4 = 0 then return x on implicit constraint hyperplane

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;
2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3:
4
5

choose random constraint h € H

- H — H\ {h}
. ®* — SeidelLP(#{,d)

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

o v W =

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

\IOWU'IJSUUN—

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., aﬁx = by,

NP2 R T

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

eliminate xp in constraints from H and in implicit constr.;

SPIILINI

—_

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5: X* — SeidellLP(H,d)

6: if Xx* = infeasible then return infeasible

7. if X* fulfills h then return £*

8: // optimal solution fulfills h with equality, i.e., aﬁx = by,
9: solve agx = by, for some variable xy;

0: eliminate xy in constraints from H and in implicit constr.;
1: X* — SeidellLP(H,d — 1)

Algorithm 1 SeidelLP(H,d)

2 IR LR

NP2 R T

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane

choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., aﬁx = by,

solve agx = by, for some variable xy;

eliminate xp in constraints from H and in implicit constr.;
* — SeidellP(H ,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution

. . .'N?a{e'tﬁa't for the case d = 1, the asymp- !
8 Seldels LP-aIgorlthm totlc bound @ (max{m,1}) is valid aI50|

i for the case m = 0. 1

» If d =1 we can solve the 1-dimen5|onal problem in time
O(max{m,1}).

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

. . .'NB{e'tHa't for the case d = 1, the asymp- !
8 Seldels LP'aIgorlthm totlc bound @ (max{m,1}) is valid aI50|

| tforthecasem =0. ___________ .
» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).
» If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

. . . Note that for the case d = 1, the asymp- j
8 Seldels LP'aIgorlthm totlc bound @ (max{m,1}) is valid alsm

| (forthecasem =0. _ __________ .
» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).
» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.
» The first recursive call takes time T(m — 1,d) for the call
plus @(d) for checking whether the solution fulfills h.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

. . .'NB{e'tHa't for the case d = 1, the asymp- !
8 SEldEIS LP'aIgorlthm totlc bound @ (max{m,1}) is valid alsm

| tforthecasem =0. ___________ .
» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).
» If d > 1 and m = 0 we take time O(d) to return

d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus @(d) for checking whether the solution fulfills h.

> If we are unlucky and X* does not fulfill h we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

. . .'Né{e'tﬁa't for the case d = 1, the asymp- !
8 SEldEIS LP'aIgorlthm totlc bound @ (max{m,1}) is valid aI50|

| (forthecasem =0. ___________ .
» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).
» If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.
» The first recursive call takes time T(m — 1,d) for the call
plus @(d) for checking whether the solution fulfills h.

> If we are unlucky and X* does not fulfill h we need time
O(d(m+1)) =O0(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

» The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

This gives the recurrence

O(max{1,m}) ifd=1
o(ad) ifd>1landm =20
od) +T(m—1,d)+
4(O(dm)+Tim-1,d-1)) otw.

T(m,d) =

Note that T'(m, d) denotes the expected running time.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1landm =0
Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.

T(m,d) =

Note that T(m, d) denotes the expected running time.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

8 Seidels LP-algorithm

Let C be the largest constant in the @-notations.

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1:

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1)

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:

T(m,1) < Cmax{l,m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l, m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1m=0:
T(0,d) <0O(d)

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1m=0:
T0,d) <0(d) <Cd

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1,m=0:
T(0,d) <0(d) <Cd=<Cf(d)max{l, m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1,m=0:
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1,m=0:
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1,m=0:
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd*>+dCf(d-1)

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1,m=0:
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd>+dCf(d—-1)
< Cf(d)max{l,m}

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.

d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1

d>1,m=0:
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

d>1m-=1:
T(1,d) = O(d) + T(0,d) + d(0(d) + T(0,d ~ 1))
<Cd+Cd+Cd>+dCf(d—-1)
< Cf(d)max{1,m} for f(d) = 3d*> +df(d—-1)

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))

<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

Tm,d) =0(d) + Tm —1,d) + %(O(dm) +Tm—1,d— 1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

<2CA+Cf(d(m—-1)+dCf(d-1)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) =O0(d) + T(m - 1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2CA° +Cf(d)(m—-1)+dCf(d—-1)

<Cf(dym

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) = O(d) + T(m —1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2Cd*+Cf(d)(m—1)+dCf(d—1)
<Cf(dym

if f(d)=df(d-1)+2d>.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

> Define f(1) =3 -1%and f(d) = df(d —1) + 3d® ford > 1.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d°+df(d-1)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

> Define f(1) =3 -1%and f(d) = df(d —1) + 3d® ford > 1.
Then

F(d) =3d? +df(d-1)
=3d%+d [B(d— D2+ (d—-1)f(d- 2)]

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d?+df(d-1)
=3d2+d[3(d-1)%+(d-1)f(d-2)]
=3d2+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+dfd-1)
=3d?+d[3(d -1+ d-1f(d-2)]
=3d2+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)d—-2)-...-4-3-2-12

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+dfd-1)
=3d?+d[3(d -1+ d-1f(d-2)]
=3d2+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)d—-2)-...-4-3-2-12

_ d> (d-1)? (d-2)?
_3d!<d!+ (d—l)!+ d—2)l +>

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d2+dfd-1)
=3d?+d[3(d -1+ d-1f(d-2)]
=3d2+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)d—-2)-...-4-3-2-12

_ d> (d-1)? (d-2)?
_3d!<d!+ (d—l)!+ d—2)l +>

=0(d!)

m EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.
Then
f(d) =3d% +df(d-1)
=3d?+d[3(d -1+ d-1f(d-2)]
=3d2+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d% +3d(d—-1)>+3d(d—1)(d—2)* +
+3dd-1)d—-2)-...-4-3-2-12

> (d-1)?2 (d-2)°
—3d< (d—l)'+(d—2)!+"'>

=0(d!)

. i2 . . .
since >, 7 is a constant. PP g itl i
=t = = —— =e+) — =2
DRSS S
1

m EADS Il 8 Seidels LP-algorithm
Harald Racke

	Seidels LP-algorithm

