8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

Harald Racke 148/575

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 148/575

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 148/575

8 Seidels LP-algorithm

» Suppose we want to solve min{c’x | Ax = b;x = 0}, where
x € R4 and we have m constraints.

> In the worst-case Simplex runs in time roughly
Omm+d) (m;ld)) ~ (m+ d)". (slightly better bounds on
the running time exist, but will not be discussed here).

» If d is much smaller than m one can do a lot better.

> In the following we develop an algorithm with running time
O(d!-m), i.e., linear in m.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 148/575

8 Seidels LP-algorithm 8 Seidels LP-algorithm

Setting: » Suppose we want to solve min{c’x | Ax = b;x = 0}, where

d .
» We assume an LP of the form x € R% and we have m constraints.

: T » In the worst-case Simplex runs in time roughly
min e x Omim+d4a) (mntd>) ~ (m + d)". (slightly better bounds on
st Ax the running time exist, but will not be discussed here).

vV v

X 0 i
» If d is much smaller than m one can do a lot better.
hat th) ded » In the following we develop an algorithm with running time
> nded. . . .
We assume that the LP is bounde O(d! - m), i.e., linear in m.
m EADS I 8 Seidels LP-algorithm EADS II 8 Seidels LP-algorithm
Harald Racke 149/575 Harald Racke

148

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

150/575

8 Seidels LP-algorithm

Setting:

» We assume an LP of the form

min cTx
s.t. Ax =
x =

» We assume that the LP is bounded.

EADS Il 8 Seidels LP-algorithm
Harald Racke

149

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

T

EADS Il
Harald Racke

8 Seidels LP-algorithm

151/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

EADS I
Harald Racke

8 Seidels LP-algorithm

150

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

151/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

EADS Il 8 Seidels LP-algorithm
Harald Racke

150

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

151/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

EADS Il 8 Seidels LP-algorithm
Harald Racke

150

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).

m EADS Il 8 Seidels LP-algorithm
Harald Racke

151/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

EADS Il 8 Seidels LP-algorithm
Harald Racke

150

Theorem 2 (Cramers Rule)
Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

o det(Mj)
XiZ Qet(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.

m EADS Il 8 Seidels LP-algorithm
Harald Racke 152/575

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).

EADS Il 8 Seidels LP-algorithm
Harald Racke

151

Proof:

Theorem 2 (Cramers Rule)

Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

det(Mj)

Xi= det(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.

‘m EADS Il 8 Seidels LP-algorithm EADS II 8 Seidels LP-algorithm
Harald Racke 153/575 Harald Racke

152

Proof:

» Define | o |
Theorem 2 (Cramers Rule
Xi=|e1---ei-1Xejy1---en (%]) i
| | | | Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by
det(Mj)
Xi=—"—,
' det(M)
where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
| ‘m EADS Il 8 Seidels LP-algorithm EADS II 8 Seidels LP-algorithm
Harald Racke 153/575 Harald Réacke

152

Proof:

" Define I
X;=|er e xein - en Theorem 2 (Cra.mer.s Rule) .
| | | | Let M be a matrix with det(M) = 0. Then the solution to the
Note that expanding along the i-th column gives that system Mx = b is given by
det(X;) = x;. det(M;)
8 = —— |
' det(M)
where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
| ‘m EADS Il 8 Seidels LP-algorithm EADS II 8 Seidels LP-algorithm
Harald Racke 153/575 Harald Racke

152

Proof:
» Define
| |1 |
Xi=|e1---ei-1Xei+1---en
| |1 |

Note that expanding along the i-th column gives that
det(X;) = x;.

» Further, we have

| | | | |
MX; = (Mel -+~ Me;_1 Mx Mej,q - - - Men> =M;
| | | | |

Theorem 2 (Cramers Rule)
Let M be a matrix with det(M) + 0. Then the solution to the

system Mx = b is given by
det(Mj)

Xi= det(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

EADS Il 8 Seidels LP-algorithm
153/575 Harald Racke

152

Proof:

» Define
| I |
Xi=|e1---¢e1XxXe1 ey
| I |
Note that expanding along the i-th column gives that
det(X;) = x;.

» Further, we have

| | | | |
MX; = (Mel -+~ Me;_1 Mx Mej,q - - - Men> =M;
| | | | |

det(M;)

det(M)

» Hence,
x; = det(X;) =

Harald Racke

8 Seidels LP-algorithm

Theorem 2 (Cramers Rule)
Let M be a matrix with det(M) + 0. Then the solution to the

system Mx = b is given by
det(Mj)

Xi= det(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.

EADS Il 8 Seidels LP-algorithm
Harald Racke

152

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

|det(C)]

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 154/575

Proof:

» Define

| |1 |
Xi=<el"'ei—lxei+1"'en>
| | |

Note that expanding along the i-th column gives that
det(X;) = x;.
» Further, we have

| o |
MX; = (Me1 -+ Me;_1 Mx Mej.q - - - Men) = M;
| o |

det(M;)
det(M)

» Hence,
x; = det(X;) =

EADS Il 8 Seidels LP-algorithm
Harald Racke

153

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

ldet(C)l = | > sgn(m) [] Cing

TESH 1<i<m

Harald Racke

8 Seidels LP-algorithm

154/575

Proof:

» Define

| |1 |
Xi=<el"'ei—lxei+1"'en>
| | |

Note that expanding along the i-th column gives that
det(X;) = x;.
» Further, we have

| o |
MX; = (Me1 -+ Me;_1 Mx Mej.q - - - Men) = M;
| o |

det(M;)
det(M)

» Hence,
x; = det(X;) =

EADS Il 8 Seidels LP-algorithm
Harald Racke

153

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

ldet(C)l = | > sgn(m) [] Cing
TESH I<i<m
< >] ICnwl

meSy 1<i<m

Harald Racke

8 Seidels LP-algorithm

154/575

Proof:

» Define

| |1 |
Xi=<el"'ei—1xei+1"'en>
| | |

Note that expanding along the i-th column gives that
det(X;) = x;.
» Further, we have

| o |
MX; = (Me1 -+ Me;_1 Mx Mej.q - - - Men) = M;
| o |

det(M;)
det(M)

» Hence,
x; = det(X;) =

EADS Il 8 Seidels LP-algorithm
Harald Racke

153

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

|det(C)| > sgn(m) [] Cima

TESH 1<i<m

> IT ICnm

meSy 1<i<m

IA

<m!-ZM .

Harald Racke

8 Seidels LP-algorithm

154/575

Proof:

» Define

| |1 |
Xi=<el"'ei—1xei+1"'en>
| | |

Note that expanding along the i-th column gives that
det(X;) = x;.
» Further, we have

| I |
MX; = (Me1 -+ Me;_1 Mx Mej.q - - - Men) = M;
| I |
» Hence,
det(M;)

Xi = det(Xl) = W

EADS Il 8 Seidels LP-algorithm
Harald Racke

153

Bounding the Determinant Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ag by replacing the j-th
column with vector b (for some j).

Alternatively, Hadamards inequality gives
Observe that

|det(C)|
|det(C)|

> sgn(m) [] Cimg

TTESM l<i<m

> I1 IGnwl

TESH 1<i<m

IA

<m!-ZM .

.
‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 155/575 Harald Racke

154

Bounding the Determinant Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ag by replacing the j-th
column with vector b (for some j).

Alternatively, Hadamards inequality gives
Observe that

m
det(C)| < [] ICil
i=1 |det(C)|

> sgn(m) [] Cimg

TTESM l<i<m

> I1 IGnwl

TESH 1<i<m

IA

<m!-ZM .

.
‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 155/575 Harald Racke

154

Bounding the Determinant

Alternatively, Hadamards inequality gives

i=1

det(C)| < [[ICxill < [[(vm2Z)
i=1

T

EADS Il
Harald Racke

8 Seidels LP-algorithm

155/575

Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ag by replacing the j-th
column with vector b (for some j).

Observe that

|det(C)| = | > sgn(m) [] Cing

TTESM l<i<m

< > I ICnw!

TESH 1<i<m

<m!-ZM .

EADS Il 8 Seidels LP-algorithm
Harald Racke

154

Bounding the Determinant Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ag by replacing the j-th
column with vector b (for some j).

Alternatively, Hadamards inequality gives
Observe that

|det(C)] < [[I1Cxill < [[(vmZ)
i=1 i=1 |det(C)| > sgn(m) [| Cin

<mmi2zm TESHK l<i<m

> I1 IGnwl

TESH 1<i<m

IA

<m!-ZM .

.
‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 155/575 Harald Racke

154

Hadamards Inequality Bounding the Determinant

Alternatively, Hadamards inequality gives

m m
ldet(C)| < [ICxill = [[(VmZ)
i=1 i=1
<mm2zm .

Hadamards inequality says that the volume of the red

parallelepiped (Spat) is smaller than the volume in the black

cube (if [le1]l = llayll, lle2ll = llazll, llesll = llazl]).

‘m EADS Il 8 Seidels LP-algorithm EADS II 8 Seidels LP-algorithm
Harald Racke 156/575 Harald Racke

Ensuring Conditions Hadamards Inequality

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution. Add the constraint c’x = —-mZ(m!- Z™) — 1.

Note that this constraint is superfluous unless the LP is
unbounded.

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black
cube (if [[e1ll = llarll, lle2ll = llazll, llezll = llazlD).

EADS Il 8 Seidels LP-algorithm
Harald Racke

Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

158/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution. Add the constraint c’x > —-mZ(m! - Z™) — 1.
Note that this constraint is superfluous unless the LP is
unbounded.

T

EADS Il
Harald Racke

8 Seidels LP-algorithm

159/575

Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.

EADS Il 8 Seidels LP-algorithm
Harald Racke

158

In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

159/575

Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis c'x = —(mZ)(m!- Z"™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.

EADS Il 8 Seidels LP-algorithm
Harald Racke

158

Ensuring Conditions

In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set of Compute an optimum basis for the new LP.
explicit, non-degenerate constraints over d variables, and » If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
minimizes ¢’ x over all feasible points. original LP is unbounded.

» Otw. we have an optimum basis.

m EADS I 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 159/575 Harald Racke

Ensuring Conditions

In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set of Compute an optimum basis for the new LP.

explicit, non-degenerate constraints over d variables, and » If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
minimizes ¢’ x over all feasible points. original LP is unbounded.

» Otw. we have an optimum basis.
In addition it obeys the implicit constraint

cTx>—-(m2z2)(m!-zm) - 1.

m EADS I 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 159/575 Harald Racke

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)
1: if d = 1 then solve 1-dimensional problem and return;
2. if 4 = 0 then return x on implicit constraint hyperplane

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;
2. if 4 = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke

159

Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if 4 = 0 then return x on implicit constraint hyperplane
3:
4
5

choose random constraint h € H

- H — H\ {h}
. ®* — SeidelLP(#{,d)

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible

o v W =

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*

\IOWU'IJSUUN—

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., aﬁx = by,

NP2 R T

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
* — SeidelLP(H,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

SPIILINI

—_

eliminate xp in constraints from H and in implicit constr.;

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

#9.“??95‘9?.”.‘:’-‘:.“.’!\.’.—‘

—_ -

X* — SeidelLP(H,d — 1)

eliminate xp in constraints from H and in implicit constr.;

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

Algorithm 1 SeidelLP(H,d)

—_ -

T —
Now N

S P PRINRITLINIT

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
* — SeidelLP(H,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

eliminate xp in constraints from H and in implicit constr.;

* — SeidelLP(H,d — 1)
if X* = infeasible then
return infeasible

. else
15:

add the value of xp to X* and return the solution

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.

EADS Il 8 Seidels LP-algorithm
Harald Racke 159

8 Seidels LP-algorithm

T

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

EADS I
Harald Racke

8 Seidels LP-algorithm

161/575

Algorithm 1 SeidellLP(,d)

A W N = O O

OO\IO\U‘I-PUUN—'

: if d = 1 then solve 1-dimensional problem and return;

if /{ = @ then return x on implicit constraint hyperplane

choose random constraint h € H

H — 3\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if x* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a;Tlx = by,

solve a%x = by, for some variable xy;

eliminate xy in constraints from H and in implicit constr.;
* — SeidellLP(H ,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution

8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

» If d > 1 and m = 0 we take time ©O(d) to return
d-dimensional vector x.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

161/575

Algorithm 1 SeidellLP(,d)

A W N = O O

OO\IO\U‘I-PUUN—'

: if d = 1 then solve 1-dimensional problem and return;

if /{ = @ then return x on implicit constraint hyperplane

choose random constraint h € H

H — 3\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if x* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a;Tlx = by,

solve a%x = by, for some variable xy;

eliminate xy in constraints from H and in implicit constr.;
* — SeidellLP(H ,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution

8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

» If d > 1 and m = 0 we take time ©O(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

161/575

Algorithm 1 SeidellLP(,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if { = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5:
6
7
8

X* — SeidelLP(#{,d)

. if X* = infeasible then return infeasible

. if X* fulfills h then return x*

: // optimal solution fulfills h with equality, i.e., a;Tlx = by,
9:
10:
11:
12:
13:
14:
15:

solve a%x = by, for some variable xy;
eliminate xy in constraints from H and in implicit constr.;
£* — SeidellLP(H,d — 1)
if X* = infeasible then
return infeasible
else
add the value of xp to X* and return the solution

8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

» If d > 1 and m = 0 we take time O@(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and Xx* does not fulfill 1 we need time
O(d(m+1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

m EADS Il 8 Seidels LP-algorithm
Harald Racke

161/575

Algorithm 1 SeidellLP(,d)

1: if d = 1 then solve 1-dimensional problem and return;

2. if { = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5:
6
7
8

X* — SeidelLP(#{,d)

. if X* = infeasible then return infeasible

. if X* fulfills h then return x*

: // optimal solution fulfills h with equality, i.e., a;Tlx = by,
9:
10:
11:
12:
13:
14:
15:

solve a%x = by, for some variable xy;
eliminate xy in constraints from H and in implicit constr.;
£* — SeidellLP(H,d — 1)
if X* = infeasible then
return infeasible
else
add the value of xp to X* and return the solution

8 Seidels LP-algorithm

T

If d = 1 we can solve the 1-dimensional problem in time
O(max{m,1}).

If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function

EADS Il 8 Seidels LP-algorithm
Harald Racke

161/575

Algorithm 1 SeidellLP(,d)

A W N = O O

OO\I@U‘I-PUUN—'

: if d = 1 then solve 1-dimensional problem and return;

if /{ = @ then return x on implicit constraint hyperplane

choose random constraint h € H

H — 3\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if x* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a;Tlx = by,

solve a%x = by, for some variable xy;

eliminate xy in constraints from H and in implicit constr.;
* — SeidellLP(H ,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution

8 Seidels LP-algorithm 8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

This gives the recurrence » If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

O(max{l,m}) ifd=1

O(d) ifd>1and m =0 » The first recursive call takes time T (m — 1,d) for the call
Tmd) =1 o)+ T(m-1,d)+ plus O(d) for checking whether the solution fulfills /.

%(O(dM) +T(m-1,d-1)) otw. » If we are unlucky and X* does not fulfill h we need time

O(d(m+1)) = O(dm) to eliminate xy. Then we make a

Note that T'(m, d) denotes the expected running time. : -
recursive call that takes time T(m — 1,d — 1).

» The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function

m EADS I 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 162/575 Harald Racke

161

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l,m} ifd=1

cd ifd>1land m =0

Tmd) =1 casTm-1,d)+

%(Cder Tim-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

8 Seidels LP-algorithm

Harald Racke

163/575

8 Seidels LP-algorithm

This gives the recurrence

O(max{l,m}) ifd=1

O(d) ifd>1land m =0

Tm,d) =1 o)+ Tim—1,d)+

4(O(dm)+T(m-1,d—-1)) otw.

Note that T'(m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

162

8 Seidels LP-algorithm

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm

Let C be the largest constant in the @-notations.

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1:

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1)

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:

T(m,1) < Cmax{l,m}

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.
We show T(m,d) < Cf(d) max{1l,m}.
d=1:
T(m,1) < Cmax{l,m} <Cf(1)max{l, m}

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

V0 =1 o+ TP — 1L)

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T0,d) <0O(d)
Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T0,d) =0(d) <Cd
Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T(0,d) <0(d) <Cd=<Cf(d)max{l,m}
Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T(0,d) <0(d) <Cd=Cf(d)max{l,m} for f(d) = d
Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm 8 Seidels LP-algorithm
Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.

d>1m-=1:
T(1,d) = O(d) + T(0,d) + d(@(d) +T(0,d— 1))

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm 8 Seidels LP-algorithm

Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.
d>1m=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd*>+dCf(d-1)

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm 8 Seidels LP-algorithm

Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.
d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))

<Cd+Cd+Cd*>+dCf(d-1)

= Cf(d) maX{ 1’ m} EADS Il 8 Seidels LP-algorithm
Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm

Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd*>+dCf(d-1)
< Cf(d)max{l,m} for f(d) = 3d* +df(d—1) EADS I & Seidels Lp-algorith

Harald Racke

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

165/575

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1and m =20
Cd+T(m-1,d)+

d(Cdm+T(m-1,d-1)) otw.

T(m,d) =

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d)=0(d)+T(m-1,d) + %(O(dm) +Tm—-1,d - 1))

8 Seidels LP-algorithm

Harald Racke

165/575

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

d(Cdm+T(m-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d)=0(d)+T(m-1,d) + %(O(dm) +Tm—-1,d - 1))

<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 165/575

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1and m =20
Cd+T(m-1,d)+

d(Cdm+T(m-1,d-1)) otw.

T(m,d) =

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) =0(d)+T(m—-1,d) + %(O(dm) +T(m—-1,d- 1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)

<2CA+Cf(d)(m—-1)+dCf(d—-1)

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 165/575

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

d(Cdm+T(m-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) =0(d)+T(m—-1,d) + %(O(dm) +T(m—-1,d- 1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2CA* +Cf(d)(m—-1)+dCf(d-1)

<Cf(dym

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 165/575

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

d(Cdm+T(m-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m-1,d-1))
<Cd+Cf(d)(m—1)+Cd* + %Cf(d— 1)(m—-1)
<2Cd*+Cf(d)(m—1) +dCf(d—1)
<Cf(dym

if f(d)>df(d—1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke 165/575

8 Seidels LP-algorithm

Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L)

d(Cdm+T(m-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.

EADS Il 8 Seidels LP-algorithm
Harald Racke

163

8 Seidels LP-algorithm 8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
<2Cd*+Cf(d)y(m—1)+dCf(d—1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 166/575 Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

Then (by induction hypothesis statm. true for d’ < d, m’ = 0;
and ford’ = d, m’ <m)

f(d)
Tim,d) =O(d) + T(m —1,d) + %(O(dm) +Tm—1,d— 1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d -1)(m-1)
<2CA°+Cf(d)(m—-1)+dCf(d-1)
<Cf(d)ym
if f(d) >df(d-1)+2d2.
| ‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 166/575 Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

Then (by induction hypothesis statm. true for d’ < d, m’ = 0;
and ford’ = d, m’ <m)

fd) =3d2 +df(d-1)
T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
<2Cd*+Cf(d)y(m—1)+dCf(d—1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 166/575 Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

Then (by induction hypothesis statm. true for d’ < d, m’ = 0;
and ford’ = d, m’ <m)

fd) =3d2 +df(d-1)
=3d? +d[3(d-1)?+(d-1)f(d-2)] T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
<2Cd*+Cf(d)y(m—1)+dCf(d—1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 166/575 Harald Racke

8 Seidels LP-algorithm 8 Seidels LP-algorithm

> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

Then (by induction hypothesis statm. true for d’ < d, m’ = 0;

and ford’ = d, m’ <m)
F(d) =3d%+df(d-1)

=3d?+d[3(d-1%+(d-1)f(d-2)] T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m-1,d-1))

=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]] , d
<Cd+Cf(d)y(m—1)+Cd- + ECf(d— (m-1)

<2Cd*+ Cf(d)(m—1) +dCf(d-1)

<Cf(d)ym

if f(d)=df(d-1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm EADS Il 8 Seidels LP-algorithm
Harald Racke 166/575 Harald Racke

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
fd) =3d*>+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d—-2)-...-4-3-2-12

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

166/575

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d -1)(m-1)
<2CA°+Cf(d)(m—-1)+dCf(d-1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

EADS Il 8 Seidels LP-algorithm

Harald Racke

165

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
fd) =3d*>+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d—-2)-...-4-3-2-12

(@ d-1)? (d-2)?
‘3d!<ou+(d—1)!+(d—2)!)

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d -1)(m-1)
<2CA°+Cf(d)(m—-1)+dCf(d-1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

EADS Il 8 Seidels LP-algorithm
166/575 Harald Racke

165

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
f(d) =3d°+df(d-1)

=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d%+3d(d-1)%+3d(d-1)(d-2)%+...

+3dd-1)(d-2)-...-4-3-2-12

=3d!<+

=0(d!)

d> (d-1)°

(d—2)°

al @d-1!

(d—-2)!

v

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
<2Cd*+Cf(d)y(m—1)+dCf(d—1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

T

EADS Il
Harald Racke

8 Seidels LP-algorithm

EADS Il 8 Seidels LP-algorithm
166/575 Harald Racke

165

8 Seidels LP-algorithm

» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
fd) =3d*>+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d—-2)-...-4-3-2-12

(@ d-1)? (d-2)?
‘3"“(ou+ @d-1! " d-2n ")

=0(d!)

. i2 .
since Zizl T isa constant.

8 Seidels LP-algorithm

d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
<2Cd*+Cf(d)y(m—1)+dCf(d—1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

EADS Il 8 Seidels LP-algorithm
166/575 Harald Racke

165

	Seidels LP-algorithm

