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Setting: » Suppose we want to solve min{c’x | Ax = b;x = 0}, where

d .
» We assume an LP of the form x € R% and we have m constraints.

: T » In the worst-case Simplex runs in time roughly
min e x Omim+d4a) (mntd>) ~ (m + d)". (slightly better bounds on
st Ax the running time exist, but will not be discussed here).

vV v

X 0 i
» If d is much smaller than m one can do a lot better.
hat th ) ded » In the following we develop an algorithm with running time
> nded. . . .
We assume that the LP is bounde O(d! - m), i.e., linear in m.
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Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x > 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.
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Setting:

» We assume an LP of the form

min cTx
s.t. Ax =
x =

» We assume that the LP is bounded.

EADS Il 8 Seidels LP-algorithm
Harald Racke

149



Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.
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of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

151/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

EADS Il 8 Seidels LP-algorithm
Harald Racke

150



Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

‘m EADS Il 8 Seidels LP-algorithm
Harald Racke

151/575

Ensuring Conditions

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on cTx for any basic feasible
solution.

EADS Il 8 Seidels LP-algorithm
Harald Racke

150



Computing a Lower Bound

Let s denote the smallest common multiple of all denominators
of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does
not change the feasible region.

Add slack variables to A; denote the resulting matrix with A.

If B is an optimal basis then xp with Azxp = b, gives an optimal
assignment to the basis variables (non-basic variables are 0).
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Theorem 2 (Cramers Rule)
Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

o det(Mj)
XiZ Qet(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:

Theorem 2 (Cramers Rule)

Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by

det(Mj)

Xi= det(M)

where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:

» Define | o |
Theorem 2 (Cramers Rule
Xi=|e1---ei-1Xejy1---en ( % ] ) i
| | | | Let M be a matrix with det(M) + 0. Then the solution to the
system Mx = b is given by
det(Mj)
Xi=—"—,
' det(M)
where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:

" Define I
X;=|er e xein - en Theorem 2 (Cra.mer.s Rule) .
| | | | Let M be a matrix with det(M) = 0. Then the solution to the
Note that expanding along the i-th column gives that system Mx = b is given by
det(X;) = x;. det(M;)
8 = —— |
' det(M)
where M; is the matrix obtained from M by replacing the i-th
column by the vector b.
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Proof:
» Define
| |1 |
Xi=|e1---ei-1Xei+1---en
| |1 |

Note that expanding along the i-th column gives that
det(X;) = x;.
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MX; = (Mel -+~ Me;_1 Mx Mej,q - - - Men> =M;
| | | | |
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

|det(C)]
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Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from A by replacing the j-th
column with vector b (for some j).

Observe that

|det(C)| > sgn(m) [] Cima

TESH 1<i<m

> IT ICnm

meSy 1<i<m
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Bounding the Determinant Bounding the Determinant

Let Z be the maximum absolute entry occuring in A, b or c. Let
C denote the matrix obtained from Ag by replacing the j-th
column with vector b (for some j).

Alternatively, Hadamards inequality gives
Observe that

|det(C)|
|det(C)|

> sgn(m) [] Cimg

TTESM l<i<m

> I1 IGnwl

TESH 1<i<m

IA
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Bounding the Determinant

Alternatively, Hadamards inequality gives

i=1

det(C)| < [ [ ICxill < [[(vm2Z)
i=1
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Hadamards Inequality Bounding the Determinant

Alternatively, Hadamards inequality gives

m m
ldet(C)| < [ ICxill = [ [(VmZ)
i=1 i=1
<mm2zm .

Hadamards inequality says that the volume of the red

parallelepiped (Spat) is smaller than the volume in the black

cube (if [le1]l = llayll, lle2ll = llazll, llesll = llazl]).
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Ensuring Conditions Hadamards Inequality

Given a standard minimization LP

min cTx
st. Ax = b
x = 0

how can we obtain an LP of the required form?

» Compute a lower bound on c¢Tx for any basic feasible
solution. Add the constraint c’x = —-mZ(m!- Z™) — 1.

Note that this constraint is superfluous unless the LP is
unbounded.

Hadamards inequality says that the volume of the red
parallelepiped (Spat) is smaller than the volume in the black
cube (if [[e1ll = llarll, lle2ll = llazll, llezll = llazlD).
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Ensuring Conditions

Compute an optimum basis for the new LP.

» If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
original LP is unbounded.

» Otw. we have an optimum basis.
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In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.
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Ensuring Conditions

In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set  of Compute an optimum basis for the new LP.
explicit, non-degenerate constraints over d variables, and » If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
minimizes ¢’ x over all feasible points. original LP is unbounded.

» Otw. we have an optimum basis.
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Ensuring Conditions

In the following we use # to denote the set of all constraints
apart from the constraint c’x > —-mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set  of Compute an optimum basis for the new LP.

explicit, non-degenerate constraints over d variables, and » If the costis cTx = —(mZ)(m!- Z™) — 1 we know that the
minimizes ¢’ x over all feasible points. original LP is unbounded.

» Otw. we have an optimum basis.
In addition it obeys the implicit constraint

cTx>—-(m2z2)(m!-zm) - 1.
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Algorithm 1 SeidelLP(H,d)

1: if d = 1 then solve 1-dimensional problem and return;

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.
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4
5
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible

o v W =

In the following we use # to denote the set of all constraints
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*

\IOWU'IJSUUN—
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;

if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H

H — H\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if X* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., aﬁx = by,

NP2 R T
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
* — SeidelLP(H,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

SPIILINI

—_

eliminate xp in constraints from H and in implicit constr.;
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Algorithm 1 SeidelLP(H,d)

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
X* < SeidellLP(#,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

#9.“??95‘9?.”.‘:’-‘:.“.’!\.’.—‘

—_ -

X* — SeidelLP(H,d — 1)

eliminate xp in constraints from H and in implicit constr.;

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
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Algorithm 1 SeidelLP(H,d)

—_ -

T —
Now N

S P PRINRITLINIT

: if d = 1 then solve 1-dimensional problem and return;
if 7{ = () then return x on implicit constraint hyperplane
choose random constraint h € H
H — H\ {h}
* — SeidelLP(H,d)
if X* = infeasible then return infeasible
if X* fulfills h then return £*
// optimal solution fulfills h with equality, i.e., aﬁx = by,
solve agx = by, for some variable xy;

eliminate xp in constraints from H and in implicit constr.;

* — SeidelLP(H,d — 1)
if X* = infeasible then
return infeasible

. else
15:

add the value of xp to X* and return the solution

In the following we use # to denote the set of all constraints
apart from the constraint c’x = —mZ(m! - Z™) — 1.

We give a routine SeidelLP(7{, d) that is given a set F{ of
explicit, non-degenerate constraints over d variables, and
minimizes ¢’ x over all feasible points.

In addition it obeys the implicit constraint
cT'x = -(mz)(m!-z2™M) - 1.
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» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).
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Algorithm 1 SeidellLP(,d)

A W N = O O

OO\IO\U‘I-PUUN—'

: if d = 1 then solve 1-dimensional problem and return;

if /{ = @ then return x on implicit constraint hyperplane

choose random constraint h € H

H — 3\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if x* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a;Tlx = by,

solve a%x = by, for some variable xy;

eliminate xy in constraints from H and in implicit constr.;
* — SeidellLP(H ,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution




8 Seidels LP-algorithm

» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

» If d > 1 and m = 0 we take time ©O(d) to return
d-dimensional vector x.

m EADS Il 8 Seidels LP-algorithm
Harald Racke

161/575

Algorithm 1 SeidellLP(,d)

A W N = O O

OO\IO\U‘I-PUUN—'

: if d = 1 then solve 1-dimensional problem and return;

if /{ = @ then return x on implicit constraint hyperplane

choose random constraint h € H

H — 3\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if x* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a;Tlx = by,
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O(max{m,1}).

» If d > 1 and m = 0 we take time ©O(d) to return
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1: if d = 1 then solve 1-dimensional problem and return;

2. if { = 0 then return x on implicit constraint hyperplane
3: choose random constraint h € H

4 H — H\ {h}

5:
6
7
8

X* — SeidelLP(#{,d)

. if X* = infeasible then return infeasible

. if X* fulfills h then return x*

: // optimal solution fulfills h with equality, i.e., a;Tlx = by,
9:
10:
11:
12:
13:
14:
15:

solve a%x = by, for some variable xy;
eliminate xy in constraints from H and in implicit constr.;
£* — SeidellLP(H,d — 1)
if X* = infeasible then
return infeasible
else
add the value of xp to X* and return the solution
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» If d > 1 and m = 0 we take time O@(d) to return
d-dimensional vector x.

» The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

» If we are unlucky and Xx* does not fulfill 1 we need time
O(d(m+1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).
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8
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. if X* fulfills h then return x*

: // optimal solution fulfills h with equality, i.e., a;Tlx = by,
9:
10:
11:
12:
13:
14:
15:

solve a%x = by, for some variable xy;
eliminate xy in constraints from H and in implicit constr.;
£* — SeidellLP(H,d — 1)
if X* = infeasible then
return infeasible
else
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If d = 1 we can solve the 1-dimensional problem in time
O(max{m,1}).

If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

The first recursive call takes time T(m — 1,d) for the call
plus O(d) for checking whether the solution fulfills h.

If we are unlucky and x* does not fulfill 1 we need time
O(d(m+1)) = O(dm) to eliminate xy. Then we make a
recursive call that takes time T'(m — 1,d — 1).

The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function
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A W N = O O
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: if d = 1 then solve 1-dimensional problem and return;

if /{ = @ then return x on implicit constraint hyperplane

choose random constraint h € H

H — 3\ {h}

X* < SeidellLP(#,d)

if X* = infeasible then return infeasible

if x* fulfills h then return £*

// optimal solution fulfills h with equality, i.e., a;Tlx = by,

solve a%x = by, for some variable xy;

eliminate xy in constraints from H and in implicit constr.;
* — SeidellLP(H ,d — 1)

. if X* = infeasible then

return infeasible

. else
15:

add the value of xp to X* and return the solution
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» If d =1 we can solve the 1-dimensional problem in time
O(max{m,1}).

This gives the recurrence » If d > 1 and m = 0 we take time O(d) to return
d-dimensional vector x.

O(max{l,m}) ifd=1

O(d) ifd>1and m =0 » The first recursive call takes time T (m — 1,d) for the call
Tmd) =1 o)+ T(m-1,d)+ plus O(d) for checking whether the solution fulfills /.

%(O(dM) +T(m-1,d-1)) otw. » If we are unlucky and X* does not fulfill h we need time

O(d(m+1)) = O(dm) to eliminate xy. Then we make a

Note that T'(m, d) denotes the expected running time. : -
recursive call that takes time T(m — 1,d — 1).

» The probability of being unlucky is at most d/m as there
are at most d constraints whose removal will decrease the
objective function
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Let C be the largest constant in the O-notations.

Cmax{l,m} ifd=1

cd ifd>1land m =0

Tmd) =1 casTm-1,d)+

%(Cder Tim-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.
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This gives the recurrence

O(max{l,m}) ifd=1

O(d) ifd>1land m =0

Tm,d) =1 o)+ Tim—1,d)+

4(O(dm)+T(m-1,d—-1)) otw.

Note that T'(m, d) denotes the expected running time.
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Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1land m =0

V0 =1 o+ TP — 1L )

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.
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We show T(m,d) < Cf(d) max{1l,m}.
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

V0 =1 o+ TP — 1L )

%(Cdm +T(m—-1,d-1)) otw.

Note that T (m, d) denotes the expected running time.
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T0,d) <0O(d)
Note that T (m, d) denotes the expected running time.
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T0,d) =0(d) <Cd
Note that T (m, d) denotes the expected running time.
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.

T(0,d) <0(d) <Cd=<Cf(d)max{l,m}
Note that T (m, d) denotes the expected running time.
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Cd ifd>1landm =0

d>1m=0: G0 = Cd+T(m-1,d)+
%(Cdm+T(m—l,d—1)) otw.
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.

d>1m-=1:
T(1,d) = O(d) + T(0,d) + d(@(d) +T(0,d— 1))
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
Cmax{l, m} ifd=1
Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+

%(Cdm+T(m—l,d—1)) otw.
T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.
d>1m=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd*>+dCf(d-1)
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Let C be the largest constant in the @-notations.
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T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
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Tom. d) = cd ifd>1andm =0
d>1m=0: ({oE) = Cd+T(m-1,d)+
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T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.
d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
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Let C be the largest constant in the @-notations.

We show T(m,d) < Cf(d) max{1l,m}.

d=1: Let C be the largest constant in the O-notations.
T(m,1) < Cmax{l,m} <Cf(1)max{l,m} for f(1) =1
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T(0,d) <0(d) <Cd=<Cf(d)ymax{l,m} for f(d) = d

Note that T (m, d) denotes the expected running time.

d>1m-=1:
T(1,d) = 0(d) + T(0,d) + d(O(d) + T(0,d - 1))
<Cd+Cd+Cd*>+dCf(d-1)
< Cf(d)max{l,m} for f(d) = 3d* +df(d—1) EADS I & Seidels Lp-algorith
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)
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Let C be the largest constant in the O-notations.

Cmax{l, m} ifd=1

cd ifd>1and m =20
Cd+T(m-1,d)+

d(Cdm+T(m-1,d-1)) otw.

T(m,d) =

Note that T (m, d) denotes the expected running time.
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Let C be the largest constant in the O-notations.
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d>1m>1:
(by induction hypothesis statm. true for d’ <d,m’ > 0;
and ford =d, m’ <m)
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Let C be the largest constant in the O-notations.
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cd ifd>1land m =0
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> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
<2Cd*+Cf(d)y(m—1)+dCf(d—1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.
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> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

Then (by induction hypothesis statm. true for d’ < d, m’ = 0;
and ford’ = d, m’ <m)

f(d)
Tim,d) =O(d) + T(m —1,d) + %(O(dm) +Tm—1,d— 1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d -1)(m-1)
<2CA°+Cf(d)(m—-1)+dCf(d-1)
<Cf(d)ym
if f(d) >df(d-1)+2d2.
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> Define f(1) =3-1%and f(d) =df(d —1) + 3d® ford > 1. d>1m>1:

Then (by induction hypothesis statm. true for d’ < d, m’ = 0;

and ford’ = d, m’ <m)
F(d) =3d%+df(d-1)
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» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
fd) =3d*>+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d’+3d(d—-1)?+3d(d—-1)(d—-2)° +...
+3dd-1)(d—-2)-...-4-3-2-12
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d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d -1)(m-1)
<2CA°+Cf(d)(m—-1)+dCf(d-1)
<Cf(d)ym

if f(d)=df(d-1)+2d>.
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» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
fd) =3d*>+df(d-1)
=3d?+d[3d -1+ d-1f(d-2)]
=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
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» Define f(1) =3-12and f(d) =df(d —1) + 3d? for d > 1.

Then
f(d) =3d°+df(d-1)
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=3d?+d[3(d-1*+(d-1)[3(d-2)*+(d-2)f(d-3)]]
=3d%+3d(d-1)%+3d(d-1)(d-2)%+...

+3dd-1)(d-2)-...-4-3-2-12
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d> (d-1)°
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d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
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‘3"“(ou+ @d-1! " d-2n " )

=0(d!)

. i2 .
since Zizl T isa constant.
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d>1m>1:
(by induction hypothesis statm. true for d’ < d, m’ > 0;
and ford’ = d, m’ <m)

T(m,d) = O(d) + T(m - 1,d) + %(O(dm) +T(m—-1,d-1))
<Cd+Cf(d)(m-1)+Cd* + %Cf(d— 1)(m—1)
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