Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i\in\mathbb{N}$ and profit $p_i\in\mathbb{N}$, and given a threshold W. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i\leq W$).

```
\begin{array}{cccc} \max & & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & & \sum_{i=1}^n w_i x_i & \leq & W \\ & \forall i \in \{1,\dots,n\} & & x_i & \in & \{0,1\} \end{array}
```

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

max		$\sum_{i=1}^{n} p_i x_i$		
s.t.		$\sum_{i=1}^n w_i x_i$	≤	W
	$\forall i \in \{1, \ldots, n\}$	x_i	\in	$\{0, 1\}$

Algorithm 1 Knapsack 1: $A(1) \leftarrow [(0,0),(p_1,w_1)]$ 2: for $j \leftarrow 2$ to n do 3: $A(j) \leftarrow A(j-1)$ 4: for each $(p,w) \in A(j-1)$ do 5: if $w + w_j \leq W$ then 6: add $(p + p_j, w + w_j)$ to A(j)7: remove dominated pairs from A(j)8: return $\max_{(p,w) \in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

16 Rounding Data + Dynamic Programming

Knapsack:

348/575

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i\in\mathbb{N}$ and profit $p_i\in\mathbb{N}$, and given a threshold W. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i\leq W$).

$$\begin{bmatrix} \max & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & \sum_{i=1}^n w_i x_i \leq W \\ \forall i \in \{1, \dots, n\} & x_i \in \{0, 1\} \end{bmatrix}$$

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

16 Rounding Data + Dynamic Programming

```
Algorithm 1 Knapsack

1: A(1) \leftarrow [(0,0),(p_1,w_1)]
2: for j \leftarrow 2 to n do
3: A(j) \leftarrow A(j-1)
4: for each (p,w) \in A(j-1) do
5: if w + w_j \leq W then
6: add (p + p_j, w + w_j) to A(j)
7: remove dominated pairs from A(j)
8: return \max_{(p,w) \in A(n)} p
```

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

ightharpoonup Let M be the maximum profit of an element.

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

16.1 Knapsack

- Let *M* be the maximum profit of an element.
- ightharpoonup Set $\mu := \epsilon M/n$.

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ▶ Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP')$$

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p_{i}'\right)$$

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right)$$

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

- ▶ Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

16 Rounding Data + Dynamic Programming

Definition 2

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

Let *S* be the set of items returned by the algorithm, and let *O* be an optimum set of items.

$$\sum_{i\in S} p_i$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \; .$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \geq \mu \sum_{i \in S} p'_i$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \; .$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right) \; .$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ▶ Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ► Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

16 Rounding Data + Dynamic Programming

- ► Let *M* be the maximum profit of an element.
- ► Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

16 Rounding Data + Dynamic Programming

- ▶ Let *M* be the maximum profit of an element.
- ► Set $\mu := \epsilon M/n$.
- ► Set $p'_i := |p_i/\mu|$ for all i.
- ► Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_i p_i'\right) = \mathcal{O}\left(n\sum_i \left\lfloor \frac{p_i}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^3}{\epsilon}\right) \; .$$

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

16 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3} C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

16 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

Partition the input into long jobs and short jobs.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \geq \frac{1}{3}C_{\text{max}}^*$ then LPT is optimal this gave a 4/3-approximation.

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute
- force.2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of $\frac{1}{m} \sum_{i \neq \ell} p_j + p_\ell$

$$j \neq \ell$$
 where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_ℓ).

16.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute
- force.

 2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.

EADS II

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ρ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

16.2 Scheduling Revisited

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Partition the input into long jobs and short jobs.

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

 $\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$

We still have a cost of

short jobs.

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_j$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ρ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for

If ℓ is a short job its length is at most

 $p_{\ell} \leq \sum_{j} p_{j}/(mk)$

which is at most $C_{\rm max}^*/k$.

Partition the input into long jobs and short jobs.

A job j is called short if

16.2 Scheduling Revisited

Idea:

1. Find the optimum Makespan for the long jobs by brute

force.

 $p_j \leq \frac{1}{km} \sum_i p_i$

2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

EADS II

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

Hence we get a schedule of length at most

which is at most C_{max}^*/k .

short jobs.

We still have a cost of

busy before time S_{ρ}).

If ℓ is a short job its length is at most

 $p_{\ell} \leq \sum_{j} p_{j}/(mk)$

If ℓ is a long job, then the schedule must be optimal, as it

 $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

where ℓ is the last job (this only requires that all machines are

consists of an optimal schedule of long jobs plus a schedule for

16.2 Scheduling Revisited

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

consists of an optimal schedule of long jobs plus a schedule for

busy before time S_{ρ}). If ℓ is a long job, then the schedule must be optimal, as it

We still have a cost of

short jobs. If ℓ is a short job its length is at most

 $p_{\ell} \leq \sum_{i} p_{j}/(mk)$

which is at most
$$C_{\text{max}}^*/k$$
.

 $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

where ℓ is the last job (this only requires that all machines are

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3 The above algorithm gives a polynomial time approximation

Hence we get a schedule of length at most

identical machines if m is constant.

scheme (PTAS) for the problem of scheduling n jobs on m

355/575

If ℓ is a short job its length is at most

We still have a cost of

busy before time S_{ρ}).

 $p_{\ell} \leq \sum_{i} p_{j}/(mk)$

 $\frac{1}{m}\sum_{i\neq\ell}p_j+p_\ell$

where ℓ is the last job (this only requires that all machines are

consists of an optimal schedule of long jobs plus a schedule for

If ℓ is a long job, then the schedule must be optimal, as it

short jobs.

which is at most $C_{\rm max}^*/k$.

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

We choose $k = \lceil \frac{1}{6} \rceil$.

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ certifies that no schedule of length at most T exists (assum

We partition the jobs into long jobs and short jobs:

- We partition the jobs into long jobs and short jobs:
- A job is long it its size is larger t

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

_.

Theorem 3The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

16.2 Scheduling Revisited

We choose $k = \lceil \frac{1}{6} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{\nu})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{i} p_{i}$).

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

Hence we get a schedule of length at most

$$(-k)^{-\max}$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 3 The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

We choose $k = \lceil \frac{1}{6} \rceil$.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1 + \frac{1}{\nu})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_{i} p_{i}$).

We partition the jobs into long jobs and short jobs:

- ightharpoonup A job is long if its size is larger than T/k.
- Otw. it is a short job.

 $\left(1+\frac{1}{\nu}\right)C_{\max}^*$

implement the algorithm in polynomial time.

Hence we get a schedule of length at most

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to

Theorem 3 The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on midentical machines if m is constant.

We choose $k = \lceil \frac{1}{6} \rceil$.

EADS II

16.2 Scheduling Revisited

- We round all long jobs down to multiples of T/k^2 .
- ▶ For these rounded sizes we first find an optimal schedule
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- \blacktriangleright A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

357/575

356

- We round all long jobs down to multiples of T/k^2 .
- ▶ For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

- We round all long jobs down to multiples of T/k^2 .
- ▶ For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

16.2 Scheduling Revisited

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m} \sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ▶ A job is long if its size is larger than T/k.
- ► Otw. it is a short job.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

- We round all long jobs down to multiples of T/k^2 .
- ► For these rounded sizes we first find an optimal schedule.
- ► If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ► If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most \mathcal{T} .

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

- We round all long jobs down to multiples of T/k^2 .
- ► For these rounded sizes we first find an optimal schedule.
- ► If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ► If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{\nu}\right)T$$
.

- ▶ We round all long jobs down to multiples of T/k^2 .
- ► For these rounded sizes we first find an optimal schedule.
- ► If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- ▶ If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T$$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most \mathcal{T} .

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

 $\left(1+\frac{1}{k}\right)T$.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$ Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T.$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, \dots, k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describe the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T.$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T.$$

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T$$
.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, \ldots, n_{\nu^2}) \leq m$ we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{\nu^2})$

 $\begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \mathsf{otw}. \end{cases}$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Running Time for scheduling large jobs: There should not be a job with rounded size more than ${\cal T}$ as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If
$$OPT(n_1, ..., n_{k^2}) \le m$$
 we can schedule the input.

Wa haya

$$OPT(n_1 = n_{12})$$

$$\begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,...,n_{k^2}) = \begin{cases}
0 & (n_1,...,n_{k^2}) = 0 \\
1 + \min_{(s_1,...,s_{k^2}) \in C} OPT(n_1 - s_1,...,n_{k^2} - s_{k^2}) & (n_1,...,n_{k^2}) \ge 0 \\
\infty & \text{otw.}
\end{cases}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, \dots, k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Let $OPT(n_1, ..., n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1, ..., n_{k^2})$ with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,...,n_{k^2}) = \begin{cases}
0 & (n_1,...,n_{k^2}) = 0 \\
1 + \min_{(s_1,...,s_{k^2}) \in C} OPT(n_1 - s_1,...,n_{k^2} - s_{k^2}) & (n_1,...,n_{k^2}) \ge 0 \\
\infty & \text{otw.}
\end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, \dots, k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Can we do hetter?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If
$$OPT(n_1, ..., n_{k^2}) \le m$$
 we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are stronaly NP-hard

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are stronaly NP-hard

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

362/575

$$\begin{aligned}
& \mathsf{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \ngeq 0 \\
& & \mathsf{otw}.
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

361

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

Let $\mathrm{OPT}(n_1,\ldots,n_{k^2})$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_{k^2}) with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$\begin{aligned}
& \text{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \text{otw.}
\end{aligned}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- ▶ We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optima solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ► But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 4

There is no FPTAS for problems that are strongly NP-hard.

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$OPT(n_1,\ldots,n_A)$$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} OPT(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

where *C* is the set of all configurations

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

- ► Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1,...,n_A)$ be the number of machines that are required to schedule input vector $(n_1,...,n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit or the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

$$OPT(n_1,\ldots,n_A)$$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \mathsf{otw}. \end{cases}$$

where C is the set of all configurations.

 $|C| \leq (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

- Suppose we have an instance with polynomially bounded processing times $p_i \leq q(n)$
- ▶ We set $k := [2nq(n)] \ge 2 \text{ OPT}$
- ► Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ► This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unles $\rho = ND$

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \le m$ we can schedule the input.

$$\begin{aligned}
& \text{OPT}(n_1, ..., n_A) \\
&= \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} \text{OPT}(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \geq 0 \\
&\infty & \text{otw.}
\end{aligned}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

More General

Let $\mathrm{OPT}(n_1,\ldots,n_A)$ be the number of machines that are required to schedule input vector (n_1,\ldots,n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1,...,n_A) \leq m$ we can schedule the input.

$$\begin{aligned}
& \mathsf{OPT}(n_1, \dots, n_A) \\
&= \begin{cases}
0 & (n_1, \dots, n_A) = 0 \\
1 + \min_{(s_1, \dots, s_A) \in \mathcal{C}} \mathsf{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\
& & \mathsf{otw}.
\end{aligned}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and askin whether we can pack the resulting items into 2 hins or not
- ▶ A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal
- ► Hence such an algorithm can solve Partition

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more hins when 2 are ontimal
- ► Hence such an algorithm can solve Partition

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ▶ A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence such an algorithm can solve Partition

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ▶ A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 5

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ► We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ► A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ► We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ► A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ► We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- ► A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition.

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ▶ Hence, $r(1-y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

Bin Packing

368/575

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon)\mathrm{OPT}+c$ for minimization problems.

- ► Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing.

$$\frac{1}{1 - \epsilon/2} \cdot \mathsf{OPT} + 1 \le (1 + \epsilon) \cdot \mathsf{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- ▶ If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le SIZE(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *l* items belong to group 2; etc.
- Delete items in the first group
- Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

369

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group
- ▶ Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- ▶ Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Linear Grouping:

Generate an instance I' (for large items) as follows.

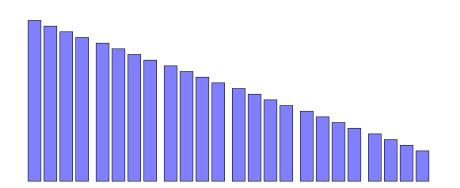
- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

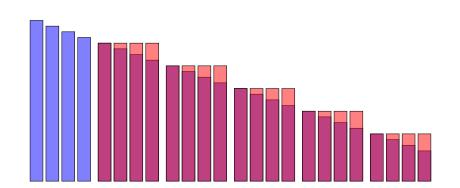
It remains to find an algorithm for the large items.



Bin Packing

Linear Grouping:

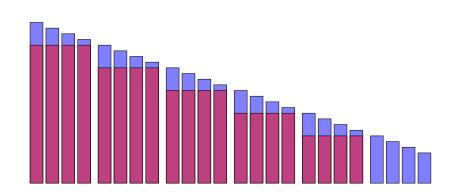
- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Bin Packing

Linear Grouping:

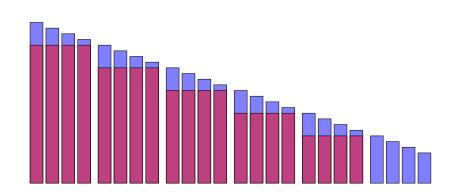
- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Bin Packing

Linear Grouping:

- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Bin Packing

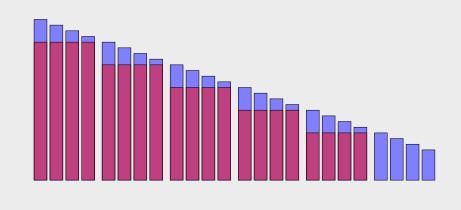
Linear Grouping:

- ► Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- ► Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1

Linear Grouping

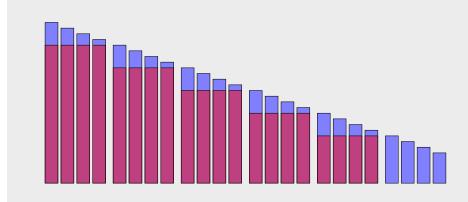


$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;

Linear Grouping



□□ EADS II

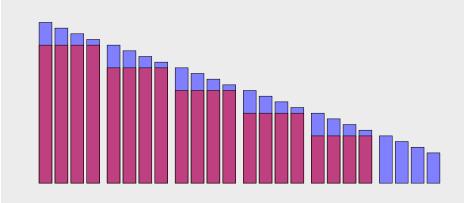
 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;

Linear Grouping

EADS II

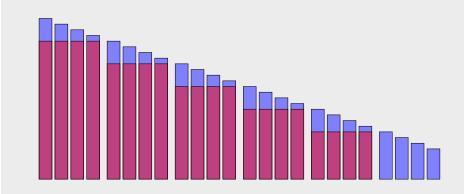


 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;

Linear Grouping

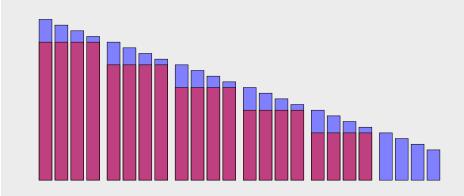


$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 1:

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **...**

Linear Grouping



$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- \triangleright Pack the items of group 1 into k new bins
- ▶ Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;

▶ ...

Lemma 8

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **>** ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into *k* new bins;
- ▶ Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;

▶ ...

Lemma 8

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- ▶ ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into *k* new bins;
- ▶ Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Lemma 8

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **>** ...

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- ▶ Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- **...**

Lemma 8

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- ▶ Any bin packing for I gives a bin packing for I' as follows.
- ► Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ► Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- **>** ...

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$

$$O(1)(1) + k \leq O(1)(1) + eS(2L(1)) \leq (1 + e)O(1)(1)$$

Lemma 9

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ fo $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece size $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

► cost (for large items) at most

▶ running time
$$O((\frac{2}{\epsilon}n)^{4/\epsilon^2})$$
.

Lemma 9

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- ► Pack the items of group 1 into k new bins:
- ► Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;
 - 5 .

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then $n/k \le n/|\epsilon^2 n/2| \le 4/\epsilon^2$ (here we used $|\alpha| \ge \alpha/2$ for $\alpha \geq 1$).

▶ running time
$$\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$$
.

Lemma 9

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

Lemma 9

 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- ▶ ...

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

$$\mathsf{OPT}(I') + k \leq \mathsf{OPT}(I) + \epsilon \mathsf{SIZE}(I) \leq (1+\epsilon) \mathsf{OPT}(I)$$

Lemma 9

$$\mathsf{OPT}(I') \leq \mathsf{OPT}(I) \leq \mathsf{OPT}(I') + k$$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- \blacktriangleright Pack the items of group 1 into k new bins:
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- ▶ ...

 $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$. We set $k = |\epsilon SIZE(I)|$.

Assume that our instance does not contain pieces smaller than

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

Lemma 9 $OPT(I') \le OPT(I) \le OPT(I') + k$

- \blacktriangleright Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into k new bins;
- \blacktriangleright Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

Can we do better?

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$

$$\epsilon/2$$
.

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$.

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes
$$(4/\epsilon^2)$$
 and at most a constant number $(2/\epsilon)$ can fit into any bin.

previous Dynamic Programming approach.

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

We can find an optimal packing for such instances by the

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$. 375/575

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee $(1+\epsilon) \mathrm{OPT}(I) + 1 \ .$

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then $\mathrm{SIZE}(I) \geq \epsilon n/2$.

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes
$$(4/\epsilon^2)$$
 and at most a constant number $(2/\epsilon)$ can fit into any bin.

previous Dynamic Programming approach.

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

We can find an optimal packing for such instances by the

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

 $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$.

We set
$$k = \lfloor \epsilon \text{SIZE}(I) \rfloor$$
.

Then
$$n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$$
 (here we used $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Assume that our instance does not contain pieces smaller than

Hence, after grouping we have a constant number of piece sizes
$$(4/\epsilon^2)$$
 and at most a constant number $(2/\epsilon)$ can fit into any bin.

previous Dynamic Programming approach.

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

We can find an optimal packing for such instances by the

Configuration LP

Change of Notation:

- Group pieces of identical size.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

376/575

EADS II

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- $ightharpoonup s_2$ is second largest size and b_2 number of pieces of size s_2 ;
- s smallest size and b number of pieces of size

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

Change of Notation:

- ► Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- ▶ ...
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)\text{OPT}(I)+1$$
.

376/575

EADS II

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i .

$$\sum_i t_i \cdot s_i \le 1$$

Configuration LP

Change of Notation:

- ► Group pieces of identical size.
- ▶ Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \triangleright s₂ is second largest size and b_2 number of pieces of size s₂;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

Configuration LP

Change of Notation:

- ► Group pieces of identical size.
- \blacktriangleright Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \triangleright s₂ is second largest size and b_2 number of pieces of size s₂;
- ▶ ...
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Change of Notation:

- ► Group pieces of identical size.
- ► Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- $ightharpoonup s_2$ is second largest size and b_2 number of pieces of size s_2 ;
- **>** ...
- s_m smallest size and b_m number of pieces of size s_m .

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

$$\begin{array}{lll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall i \in \{1, \dots, N\} & x_j & \text{integral} \end{array}$$

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

$$\begin{array}{llll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall i \in \{1, \dots, N\} & x_i & \text{integral} \end{array}$$

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

16.4 Advanced Rounding for Bin Packing

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

$$\begin{array}{llll} \min & \sum_{j=1}^{N} x_{j} \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{j} i x_{j} & \geq & b_{i} \\ & \forall j \in \{1, \dots, N\} & x_{j} & \geq & 0 \\ & \forall i \in \{1, \dots, N\} & x_{i} & \text{integral} \end{array}$$

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential).

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

16.4 Advanced Rounding for Bin Packing

How to solve this LP?

later...

Configuration LP

Let N be the number of configurations (exponential).

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

```
\begin{bmatrix} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{bmatrix}
```

We can assume that each item has size at least 1/SIZE(I).

How to solve this LP?

later...

- Sort items according to size (monotonically decreasing).
- ► Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1}
- Only the size of items in the last group G_r may sum up to less than 2

We can assume that each item has size at least $1/\mathrm{SIZE}(I)$.

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1}
- ▶ Only the size of items in the last group G_r may sum up to less than 2

We can assume that each item has size at least 1/SIZE(I).

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than ?

We can assume that each item has size at least 1/SIZE(I).

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_{γ} may sum up to less than 2.

We can assume that each item has size at least $1/\mathrm{SIZE}(I)$.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G₁ and G₂
- ▶ For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ► Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_{γ} may sum up to less than 2.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_{γ} may sum up to less than 2.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Harmonic Grouping

- ► Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- \triangleright Only the size of items in the last group G_r may sum up to less than 2.

The number of different sizes in I' is at most SIZE(I)/2.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- ▶ Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

383/575

382

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- \blacktriangleright Hence, the number of surviving groups is at most SIZE(I)/2

16.4 Advanced Rounding for Bin Packing

 \blacktriangleright All items in a group have the same size in I'.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups G_2, \ldots, G_{r-1} delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ► For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

383/575

382

The number of different sizes in I' is at most SIZE(I)/2.

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

Harmonic Grouping

From the grouping we obtain instance I' as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

Lemma 10

- ▶ Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

- since the smallest piece has size at most $3/n_i$.
- lacksquare Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 10

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \ .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 10

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ▶ Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

• Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 10

- ► Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most $O(\log(SIZE(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- \triangleright Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

- since the smallest piece has size at most $3/n_i$.
- Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

ost
$$\sum_{i=1}^{n_{r-1}} \frac{3}{j} \leq \mathcal{O}(\log(\mathrm{SIZE}(I))) \ .$$

(note that $n_r \leq SIZE(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Lemma 10

- \blacktriangleright Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'.

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\operatorname{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Lemma 11

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ► The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- ► Consider a group G_i that has strictly more items than G_{i-1} .
- ▶ It discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the smallest piece has size at most $3/n_i$.

▶ Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- e: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright | x_i | is feasible solution for I_1 (even integral).
- $\triangleright x_i \lfloor x_i \rfloor$ is feasible solution for I_2

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- ▶ $\lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).

 $\triangleright x_i - |x_i|$ is feasible solution for I_2

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .

16.4 Advanced Rounding for Bin Packing

- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{LP}(I') ≤ OPT_{LP}(I)
- $ightharpoonup \lfloor x_j \rfloor$ is feasible solution for I_1 (even integral).
- $x_i \lfloor x_i \rfloor$ is feasible solution for I_2 .

Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_j \rfloor$ bins in configuration T_j for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.

$$\Omega(\log(\text{SIZE}(I)))$$
.

Analysis

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright | x_i | is feasible solution for I_1 (even integral). ▶ $x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .

$$O(\log(\text{SI7F}(I)))$$
.

Analysis

 \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$

 $OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$

 $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

 \triangleright | x_i | is feasible solution for I_1 (even integral).

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

$$O(\log(\text{SI7F}(I)))$$
.

Analysis

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

 \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$

16.4 Advanced Rounding for Bin Packing

- \triangleright | x_i | is feasible solution for I_1 (even integral). $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- 2. Pieces scheduled because they are in I_1 .
- 3. Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at mos

$$O(\log(\text{SI7F}(I)))$$
.

many hins where I is the number of recursion levels

Analysis

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

- Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, OPT_{IP}(I') ≤ OPT_{IP}(I)
- \triangleright | x_{i} | is feasible solution for L (even integral)

 $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

 $ightharpoonup [x_j]$ is feasible solution for I_1 (even integral).

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed

Pieces of type 1 are packed into at most

into at most OPT_{IP} many bins.

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

Analysis

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

Proof:

- \blacktriangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{LP}(I') \leq OPT_{LP}(I)$
- \triangleright | x_i | is feasible solution for I_1 (even integral).

387/575

 $\blacktriangleright x_i - \lfloor x_i \rfloor$ is feasible solution for I_2 .

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\ensuremath{\mathrm{OPT}_{LP}}$ many bins.

Pieces of type 1 are packed into at most

 $\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$

many bins where L is the number of recursion levels.

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

We can show that $SIZE(I_2) \le SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most $\mathrm{OPT}_{\mathrm{LP}}$ many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal

min $\sum_{j=1}^{N} x_{j}$ s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji}x_{j} \geq b_{i}$ $\forall j \in \{1,...,N\}$ $x_{j} \geq 0$

Dual

 $\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^m T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{array}$

16.4 Advanced Rounding for Bin Packing

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^N x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

388

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

$$\begin{array}{lll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

Dual

 $\max \qquad \qquad \sum_{i=1}^{m} y_i b_i$ s.t. $\forall j \in \{1, \dots, N\}$ $\sum_{i=1}^{m} T_{ji} y_i \leq 1$ $\forall i \in \{1, \dots, m\}$ $y_i \geq 0$

16.4 Advanced Rounding for Bin Packing

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(SIZE(I_{\text{original}})))$ in total.

- ► The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes ($\leq SIZE(I)/2$).
- ► The total size of items in I_2 can be at most $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i).

In total we have b_i pieces of size s_i .

Primal

$$\begin{array}{lll} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(\text{SIZE}(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes ($\leq SIZE(I)/2$).
- ▶ The total size of items in I_2 can be at most $\sum_{i=1}^N x_i \lfloor x_i \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

min $\sum_{j=1}^{N} x_{j}$ s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji}x_{j} \geq b_{i}$ $\forall j \in \{1,...,N\}$ $x_{j} \geq 0$

Dual

 $\begin{array}{lll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

$$\begin{array}{|c|c|c|c|c|} \hline \min & & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ \hline \end{array}$$

Dual

$$\begin{bmatrix} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{bmatrix}$$

16.4 Advanced Rounding for Bin Packing

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

How to solve the LP?

Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

Dual

$$\begin{bmatrix} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{bmatrix}$$

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

min
$$\sum_{j=1}^{N} x_{j}$$
s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji} x_{j} \geq b_{i}$
 $\forall j \in \{1,...,N\}$ $x_{j} \geq 0$

Dual

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1,\dots,N\} & \sum_{i=1}^m T_{ji} y_i & \leq & 1+\epsilon' \\ & \forall i \in \{1,\dots,m\} & y_i & \geq & 0 \end{array}$$

Primal

min
$$(1 + \epsilon') \sum_{j=1}^{N} x_j$$
s.t.
$$\forall i \in \{1 \dots m\}$$

$$\sum_{j=1}^{N} T_{ji} x_j \geq b_i$$

$$\forall j \in \{1, \dots, N\}$$

$$x_j \geq 0$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

► is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

► and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual

$$\max \qquad \qquad \sum_{i=1}^{m} y_i b_i$$
 s.t. $\forall j \in \{1, \dots, N\}$ $\sum_{i=1}^{m} T_{ji} y_i \leq 1 + \epsilon'$ $\forall i \in \{1, \dots, m\}$ $y_i \geq 0$

Primal

min
$$(1 + \epsilon') \sum_{j=1}^{N} x_j$$
s.t. $\forall i \in \{1 \dots m\}$
$$\sum_{j=1}^{N} T_{ji} x_j \geq b_i$$

$$\forall j \in \{1, \dots, N\}$$

$$x_j \geq 0$$

Separation Oracle

Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

► is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

► and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal

$$\begin{aligned} & \min & & (1+\epsilon') \sum_{j=1}^N x_j \\ & \text{s.t.} & & \forall i \in \{1 \dots m\} & & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & & \forall j \in \{1, \dots, N\} & & x_j & \geq & 0 \end{aligned}$$

Separation Oracle

Suppose that I am given variable assignment \boldsymbol{y} for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

► is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

► and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1 - \epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1, \dots, N\} & x_j \geq 0 \end{array}$$

Separation Oracle

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

▶ is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ▶ Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{bmatrix} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{bmatrix}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL'' be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL" is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

$$\begin{bmatrix} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{bmatrix}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{IP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon'=\frac{1}{OPT}$ as $OPT \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ► The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ► We can compute the corresponding solution in polytime.

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{IP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{\mathrm{OPT}}$ as $\mathrm{OPT} \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
 - ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.